Cryogenic electron beam induced chemical etching

Aiden A. Martin, Milos Toth*

School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007, Australia

E-mail: Milos.Toth@uts.edu.au

Abstract

Cryogenic cooling is used to enable efficient, gas mediated electron beam induced etching (EBIE) in cases where the etch rate is negligible at room and elevated substrate temperatures. The process is demonstrated using nitrogen trifluoride (NF₃) as the etch precursor, and Si, SiO₂, SiC and Si₃N₄ as the materials volatilized by an electron beam. Cryogenic cooling broadens the range of precursors that can be used for EBIE, and enables high resolution, deterministic etching of materials which are volatilized spontaneously by conventional etch precursors as demonstrated here by NF₃ and XeF₂ EBIE of silicon.

KEYWORDS: electron beam induced etching, nanofabrication, silicon, nitrogen trifluoride, reaction kinetics, surface chemistry

Gas mediated electron beam induced etching (EBIE) enables maskless, beam-directed editing of materials at the nanoscale. Etching has been demonstrated using precursors such as H_2O , O_2 , H_2 , Cl_2 , SF_6 , XeF_2 and ClF_3 .¹⁻⁴ However, the range of precursor-substrate combinations that is appropriate for EBIE has, to date, been small compared to conventional

^{*}To whom correspondence should be addressed

plasma etching^{5,6} because many of the precursors that yield radicals responsible for plasma etching have properties that are undesirable for EBIE. Ideally, a substrate etched by EBIE is exposed to a vapor-phase precursor that adsorbs to, but does not etch the material spontaneously. An electron beam is then used to dissociate surface-adsorbed precursor molecules, generating fragments that react with the substrate to produce species which desorb, thereby volatilizing substrate regions near the beam¹ (see inset of Figure 1(a)). EBIE is typically performed at room temperature because both heating and cooling can inhibit etching by increasing and decreasing the thermal desorption rate of surface-adsorbed precursor molecules and the final reaction products, respectively.

The limited scope of room temperature EBIE is exemplified by nitrogen trifluoride (NF₃), a common fluorine precursor used in laser⁷ and plasma⁸ induced etching of Si and SiC.⁹ NF₃ satisfies most key requirements for EBIE: it has a large electron dissociation cross-section;¹⁰ high vapour pressure; relatively low toxicity and broad material compatibility (in particular, NF₃ does not cause corrosion of components in electron microscope chambers, and does not etch most solids spontaneously, including silicon¹¹). Despite these favorable characteristics, NF₃ mediated EBIE has previously not been demonstrated, likely due to poor surface coverage at room temperature. Weak physisorption has been observed on platinum,¹² gold (desorption energy = 0.219 eV)¹³ and ruthenium.¹⁴ Standard theory of gas mediated electron beam processing^{1,2,15-22} predicts that the low NF₃ adsorption energies (on the order of 200 meV) give rise to very low etch rates at and near room temperature (Supporting Information Section S3). Coverage can, in principle, be increased by substrate cooling since the desorption rate decreases exponentially with reciprocal temperature (Supporting Information S3). Cooling does, however, also inhibit thermal desorption of the final reaction products, and has therefore not been used to enhance EBIE.

Here we show that cryogenic substrate cooling can enable efficient EBIE in cases where the room temperature etch rate is negligible. We demonstrate efficient EBIE of materials that contain Si, C, N and O at temperatures as low as 100 K. The results show that a range of EBIE reaction products can desorb (during electron irradiation) at cryogenic substrate temperatures, and that cryogenic substrate cooling broadens the range of precursors that can be used to realize EBIE. NF₃ EBIE of Si is particularly significant because silicon is most often etched using XeF₂ which gives rise to spontaneous etching and roughening of Si, while the electron beam merely accelerates the local etch rate.²³ The only alternatives for EBIE of Si reported to date are SF₆,²⁴ which is highly inefficient, and Cl₂^{25,26} which is highly corrosive, toxic and flammable. Cryogenic, NF₃ EBIE overcomes these problems, and enables deterministic, high resolution editing of Si and associated devices.

EBIE was carried out using an FEI Nova NanoSEM variable pressure^{27,28} scanning electron microscope (SEM) equipped with a magnetic immersion lens gaseous secondary electron detector²⁹ and a liquid nitrogen cooling stage. Substrates used for EBIE were Si, SiO₂, SiC and Si₃N₄. Cylindrical etch pits were fabricated under 8.4 Pa (8.4×10^{-2} mBar) of NF₃ a using a stationary, 10 keV, 3.4 nA electron beam that was under-focused to generate a top-hat flux profile (see Supporting Information Sections S1a and b for additional details). This configuration, shown schematically in the inset of Fig. 1, yields conditions that are optimal for quantitative analysis of EBIE rates.^{3,20,22,30} The temperature was always above the condensation point of the precursor gas (Supporting Information Section S1c), in contrast to ice lithography and cryogenic electron beam induced deposition.³¹⁻³⁴

Comparisons to Cl_2 mediated EBIE of Si (Figure 3a) were performed using the electron exposure conditions used by Roediger et. al.,^{25,26} an NF₃ pressure of 6.5 Pa and a substrate temperature of 106 K. Delocalized etching of Si caused by XeF₂ precursor vapor (Sigma Aldrich, 99.99 %) was demonstrated (Figure 3b) using a gas injection capillary located ~ 100 μ m from the substrate surface in high vacuum (~ 3.8×10^{-3} Pa), at room temperature (Supporting Information Section S1d). A framed 'NF3' symbol (Figure 4) was etched into Si by a 20 keV, 9.9 nA electron beam, using an NF₃ pressure of 6.5 Pa and a substrate temperature of 106 K. Total processing time was 5 min with an electron beam dwell time of 13 ms per pixel. Figures 1a and b show plots of the depth of pits made in Si (measured using an atomic force microscope (AFM), see Supporting Information Section S1f) by NF₃ mediated EBIE as a function of temperature (T). The etch rate is negligible at room temperature and increases as the substrate temperature is reduced to ~ 98 K. At any given temperature, the etch rate is constant with time (over the experimental time scale), as seen in Figure 2.

Figure 1b shows that the etch rate scales exponentially with $\frac{1}{T}$ at reciprocal temperatures greater than ~ 0.0075 K⁻¹. At lower values of $\frac{1}{T}$ (i.e. higher temperatures), EBIE is inhibited through a thermally-activated mechanism that we ascribe tentatively to surface diffusion of residual contaminants (such as hydrocarbons and H₂O)^{35,36} present at the substrate surface. Residual contaminants compete for surface sites with NF₃ adsorbates and can therefore inhibit EBIE, particularly at elevated temperatures where the NF₃ coverage is low and diffusivity (of all species at the surface) is relatively high.

At reciprocal temperatures greater than $\sim 0.0075 \text{ K}^{-1}$, the exponential increase in etch

Figure 1: (a) Etch pit depth versus substrate temperature (T) for NF₃ mediated EBIE of Si. (b) Plots used to extract the activation energies E by Arrhenius analyses of the data in (a). *Inset:* Schematic illustration of electron beam induced etching performed using a stationary beam defocused to attain a top-hat electron flux profile.

Figure 2: Etch pit depth versus time measured for Si, SiO_2 , SiC and Si_3N_4 etched by NF₃ mediated EBIE at substrate temperatures of 105 and 300 K.

rate with $\frac{1}{T}$ is attributed to a corresponding increase in the surface coverage of NF₃ caused by a decrease in the NF₃ residence time at the substrate surface (Supporting Information Section S3). We note that an exponential increase in EBIE rate with $\frac{1}{T}$ can not be explained by the temperature-dependence of the adsorbate diffusion coefficient which decreases with $\frac{1}{T}$ (Supporting Information Section S3).

In our experiments, analysis of the EBIE reaction products by mass spectrometry was not possible due to the high NF₃ pressure and small quantity of volatile molecules generated in EBIE. However, based on other dry chemical etch processes,³⁷ and XeF₂ mediated EBIE of Si,³⁸ the etch reaction products are most likely of the form SiF_n, where n = 1 to 4, and the thermal desorption rate increases as $n \rightarrow 4$.³⁹

The etch pit depth data shown in Figure 1b can be used to extract the thermal activation energy (*E*) of the process responsible for the observed temperature dependence. Arrhenius analyses of the curves yield an activation energy of $\sim 63 \pm 1$ meV for EBIE performed using electron fluxes of 1.7×10^{17} cm⁻²s⁻¹ and 4.4×10^{18} cm⁻²s⁻¹, respectively. This value of *E* serves as a lower limit for the adsorption energy of NF₃, as discussed in the Supporting Information (Sections S4 and S5).

 NF_3 mediated EBIE was also applied to silicon oxide, carbide and nitride to determine the etch efficiency of materials other than Si. The etch rates of all three compounds are very low at room temperature, and increase significantly at the cryogenic temperature of

Figure 3: (a) AFM image of a rectangular pit made in Si by NF_3 mediated EBIE, illustrating the absence of delocalized damage produced by spontaneous etching of Si. (b) SEM image of Si processed by XeF_2 mediated EBIE using the same electron exposure parameters as those used in (a). Red rectangles show the areas that were scanned by the electron beam and correspond to the nominal areas of etch pits made by EBIE. The image in (b) shows delocalized damage caused by spontaneous etching of Si by XeF_2 that occurred during EBIE.

105 K, as seen in Figure 2. The volumetric etch rates at cryogenic temperature are 9.1×10^4 , 1.1×10^6 , 1.6×10^5 and 1.6×10^5 nm³ s⁻¹ for Si, SiO₂, Si₃N₄ and SiC, respectively. SiO₂ exhibited the highest volumetric etch rate, likely due to the existence of additional reaction pathways enabled by oxygen, such as the generation of SiOF₂⁴⁰ and OF species,⁴¹ and a lower concentration of silicon atoms in the material.

In the case of SiO_2 and Si_3N_4 , the desorption of nitrogen and oxygen is not surprising at cryogenic temperatures. However, the carbon present in SiC needs to be volatilized by radicals produced by electron dissociation of NF₃ adsorbates. The volatile reaction products are most likely of the form CF_x (where x = 1 to 4).

Next, we compare the efficacy of the cryogenic NF₃ etch process to room temperature alternatives reported to date in the EBIE literature. Electron exposure conditions used by Roediger et. al. for Cl₂ mediated EBIE of Si^{25,26} were replicated using XeF₂ and NF₃. The use of XeF₂ results in highly delocalized damage, caused by rapid spontaneous etching of Si. For example, Figure 3b shows a substrate region that contains an etch box with a nominal area of $1.5 \times 1.5 \ \mu$ m, and a region of severe damage produced by XeF₂ that extends ~ 20 \mum m m m the rectangle scanned by the beam. Such rapid, delocalized etching by XeF₂ is typical when the native oxide layer is compromised (by pinhole defects, or by EBIE). This behavior is clearly unfavorable as it inhibits the ability to etch Si with high spatial resolution (Supporting Information Section S1e). In comparison, NF₃ mediated EBIE did not give rise to any observable spontaneous etching of the Si substrate. Instead, it yielded a well defined etch pit with a depth of ~ 55 nm (Figure 3a), and a volumetric etch rate that is ~ 2.4 times greater than that of Cl_2 under the same electron exposure conditions.

A complex pattern etched into Si using NF_3 is shown in Figure 4. It demonstrates high resolution, localized editing of Si in the absence of highly toxic, flammable and corrosive precursors that are unsuitable for use in electron microscopes (ultimate EBIE resolution is governed by the electron beam diameter, proximity effects and material roughening that occurs during etching).⁴² We note that SF_6 has also been reported as a precursor for room temperature EBIE of Si.²⁴ This etch process is, however, extremely inefficient and inappropriate for high resolution EBIE, and may give rise to unintended deposition of sulphur.⁴³

Figure 4: SEM image of a framed 'NF3' symbol etched into Si by NF₃ mediated EBIE with a line resolution of \sim 85 nm.

In summary, cryogenic cooling was used to enable efficient gas mediated electron beam induced etching using nitrogen trifluoride as the etch precursor. The etch rate is limited by thermal desorption of weakly bound NF_3 adsorbates. The process was demonstrated using Si, SiO₂, SiC and Si₃N₄, and enables high resolution EBIE in the absence of artifacts caused by delocalized spontaneous etching of the substrates.

0.1 Acknowledgements

This work was funded by FEI Company. Aiden Martin is the recipient of a John Stocker Postgraduate Scholarship from the Science and Industry Endowment Fund.

0.2 Associated Content

Supporting Information

S1: Notes; S2: Modeling introduction; S3: Temperature dependence of electron beam induced etching; S4: Arrhenius analysis of single step EBIE reactions; S5: Arrhenius analysis of multi-step EBIE reactions; S6: Model input parameters. This material is available free of charge via the Internet at http://pubs.acs. org/.

References

- Utke, I.; Moshkalev, S.; Russell, P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications; Oxford University Press: New York, 2012.
- (2) Randolph, S. J.; Fowlkes, J. D.; Rack, P. D. Focused, Nanoscale Electron-Bearn-Induced Deposition and Etching. *Crit. Rev. Solid State Mater. Sci.* 2006, *31*, 55–89.
- (3) Toth, M. Advances in Gas-Mediated Electron Beam-Induced Etching and Related Material Processing Techniques. Appl. Phys. A: Mater. Sci. Process. 2014, in press (published online).
- (4) Rack, P.; Randolph, S.; Deng, Y.; Fowlkes, J.; Choi, Y.; Joy, D. C. Nanoscale Electron-Beam-Stimulated Processing. Appl. Phys. Lett. 2003, 82, 2326–2328.
- (5) Winters, H. F.; Coburn, J. W. Surface Science Aspects of Etching Reactions. Surf. Sci. Rep. 1992, 14, 161–269.
- (6) Flamm, D. L. Mechanisms of Silicon Etching in Fluorine-and Chlorine-Containing Plasmas. Pure Appl. Chem. 1990, 62, 1709–1720.
- (7) Brannon, J. H. Chemical Etching of Silicon by CO₂ Laser-Induced Dissociation of NF₃.
 J. Vac. Sci. Technol., B 1987, 5, 1399–1399.
- (8) Bruno, G.; Capezzuto, P.; Cicala, G.; Manodoro, P. Study of the NF₃ Plasma Cleaning of Reactors for Amorphous Silicon Deposition. J. Vac. Sci. Technol., A 1994, 12, 690– 698.
- (9) Tasaka, A.; Takahashi, K.; Tanaka, K.; Shimizu, K.; Mori, K.; Tada, S.; Shimizu, W.; Abe, T.; Inaba, M.; Ogumi, Z.; Tojo, T. Plasma Etching of SiC Surface Using NF₃. J. Vac. Sci. Technol., A **2002**, 20, 1254–1260.
- (10) Haaland, P. D.; Jiao, C. Q.; Garscadden, A. Ionization of NF₃ by Electron Impact. *Chem. Phys. Lett.* 2001, 340, 479–483.

- (11) Miotto, R.; Ferraz, A.; Srivastava, G. Dissociative Adsorption of NF₃ on Si(001)-(2x1).
 Surf. Sci. 2000, 454-456, 152-156.
- (12) Junker, K. H.; White, J. Adsorption of NF₃ on Pt(111): Interactions with Electrons and Photons. Surf. Sci. 1997, 382, 67–78.
- (13) Rzeźnicka, I. I.; Lee, J.; Yates, J. T., Jr. Dynamics of NF₃ in a Condensed Film on Au(111) as Studied by Electron-Stimulated Desorption. Surf. Sci. 2006, 600, 4492– 4500.
- (14) Walczak, M.; Johnson, A.; Thiel, P.; Madey, T. The Interaction of NF₃ with Ru (0001):
 Order at Steps. J. Vac. Sci. Technol., A 1988, 6, 675–680.
- (15) Utke, I.; Hoffmann, P.; Melngailis, J. Gas-Assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. Technol., B 2008, 26, 1197–1276.
- (16) Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.;
 Fantner, G. Focused Electron Beam Induced Deposition: A Perspective. *Beilstein J.* Nanotechnol. 2012, 3, 597–619.
- (17) Lassiter, M. G.; Rack, P. D. Nanoscale Electron Beam Induced Etching: A Continuum Model that Correlates the Etch Profile to the Experimental Parameters. *Nanotechnology* 2008, 19, 455306.
- (18) Smith, D. A.; Fowlkes, J. D.; Rack, P. D. Understanding the Kinetics and Nanoscale Morphology of Electron-Beam-Induced Deposition Via a Three-Dimensional Monte Carlo Simulation: The Effects of the Precursor Molecule and the Deposited Material. *Small* 2008, 4, 1382–1389.
- (19) Fowlkes, J. D.; Rack, P. D. Fundamental Electron-Precursor-Solid Interactions Derived from Time-Dependent Electron-Beam-Induced Deposition Simulations and Experiments. ACS Nano 2010, 4, 1619–1629.

- (20) Randolph, S.; Toth, M.; Cullen, J.; Chandler, C.; Lobo, C. Kinetics of Gas Mediated Electron Beam Induced Etching. Appl. Phys. Lett. 2011, 99, 213103.
- (21) Bishop, J.; Lobo, C. J.; Martin, A.; Ford, M.; Phillips, M. R.; Toth, M. The Role of Activated Chemisorption in Electron Beam Induced Deposition. *Phys. Rev. Lett.* 2012, 109, 146103.
- Martin, A.; Phillips, M. R.; Toth, M. Dynamic Surface Site Activation: A Rate Limiting Process in Electron Beam Induced Etching. ACS Appl. Mater. Interfaces 2013, 5, 8002–8007.
- (23) Matsui, S.; Mori, K. Direct Writing onto Si by Electron Beam Stimulated Etching. Appl. Phys. Lett. 1987, 51, 1498–1499.
- (24) Vanhove, N.; Lievens, P.; Vandervorst, W. Electron Beam Induced Etching of Silicon with SF₆. J. Vac. Sci. Technol., B 2010, 28, 1206–1209.
- (25) Roediger, P.; Wanzenboeck, H.; Hochleitner, G.; Bertagnolli, E.; Buehler, W. Focused Electron Beam Induced Etching of Silicon by Chlorine Gas: Negative Effects of Residual Gas Contamination on the Etching Process. J. Appl. Phys. 2010, 108, 124316.
- (26) Roediger, P.; Hochleitner, G.; Bertagnolli, E.; Wanzenboeck, H.; Buehler, W. Focused Electron Beam Induced Etching of Silicon Using Chlorine. *Nanotechnology* 2010, 21, 285306.
- (27) Danilatos, G. D. Foundations of Environmental Scanning Electron Microscopy. Adv. Electron. Electron Phys. 1988, 71, 109–250.
- (28) Thiel, B. L.; Toth, M. Secondary Electron Contrast in Low-Vacuum/Environmental Scanning Electron Microscopy of Dielectrics. J. Appl. Phys. 2005, 97, 051101.
- (29) Thiel, B.; Toth, M.; Schroemges, R. P. M.; Scholtz, J. J.; van Veen, G.; Knowles, W.

Two-Stage Gas Amplifier for Ultrahigh Resolution Low Vacuum Scanning Electron Microscopy. *Rev. Sci. Instrum.* **2006**, *77*, 033705–7.

- (30) Lobo, C. J.; Martin, A.; Phillips, M. R.; Toth, M. Electron Beam Induced Chemical Dry Etching and Imaging in Gaseous NH₃ Environments. *Nanotechnology* 2012, 23, 375302.
- (31) Bresin, M.; Thiel, B. L.; Toth, M.; Dunn, K. A. Focused Electron Beam-Induced Deposition at Cryogenic Temperatures. J. Mater. Res. 2011, 26, 357–364.
- (32) Bresin, M.; Toth, M.; Dunn, K. A. Direct-Write 3D Nanolithography at Cryogenic Temperatures. Nanotechnology 2013, 24, 035301.
- (33) King, G. M.; Schürmann, G.; Branton, D.; Golovchenko, J. A. Nanometer Patterning with Ice. Nano Lett. 2005, 5, 1157–1160.
- (34) Gardener, J. A.; Golovchenko, J. A. Ice-Assisted Electron Beam Lithography of Graphene. Nanotechnology 2012, 23, 185302.
- (35) Perentes, A.; Hoffmann, P. Oxygen Assisted Focused Electron Beam Induced Deposition of Si-Containing Materials: Growth Dynamics. J. Vac. Sci. Technol., B 2007, 25, 2233–2238.
- (36) Li, J.; Toth, M.; Tileli, V.; Dunn, K. A.; Lobo, C. J.; Thiel, B. L. Evolution of the Nanostructure of Deposits Grown by Electron Beam Induced Deposition. *Appl. Phys. Lett.* 2008, 93, 023130.
- (37) Jansen, H.; Gardeniers, H.; Boer, M. d.; Elwenspoek, M.; Fluitman, J. A Survey on the Reactive Ion Etching of Silicon in Microtechnology. J. Micromech. Microeng. 1999, 6, 14–28.
- (38) Vanhove, N.; Lievens, P.; Vandervorst, W. Particle Emission from Chemically Enhanced

Electron-Beam-Induced Etching of Si: An Approach for Zero-Energy Secondary-Ion Mass Spectrometry. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, *79*, 035305.

- (39) Vugts, M. J. M. Si/XeF₂ Etching: Temperature Dependence. J. Vac. Sci. Technol., A 1996, 14, 2766–2774.
- (40) Hills, M. M. The Interaction of XeF₂ with Sapphire. Appl. Surf. Sci. 1994, 78, 165–177.
- (41) Kastenmeier, B. E. E.; Matsuo, P. J.; Oehrlein, G. S.; Langan, J. G. Remote Plasma Etching of Silicon Nitride and Silicon Dioxide Using NF₃/O₂ Gas Mixtures. J. Vac. Sci. Technol., A 1998, 16, 2047–2056.
- (42) Toth, M.; Lobo, C.; Knowles, W.; Phillips, M.; Postek, M.; Vladár, A. Nanostructure Fabrication by Ultra-High-Resolution Environmental Scanning Electron Microscopy. *Nano Lett.* 2007, 7, 525–530.
- (43) Mattausch, H. J. Reactive Ion Etching of Ta–Silicide/Polysilicon Double Layers for the Fabrication of Integrated Circuits. J. Vac. Sci. Technol., B 1983, 1, 15–22.

Graphical TOC Entry

