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Abstract
Localisation and mapping are two fundamental tasks required for many autonomous 
mobile robot applications. Robot motion has a significant impact on the quality of the 
outcomes of any localisation and mapping algorithm due to the fact that the information 
acquired through observing the environment depends on the viewpoint from which the 
observations are made. This thesis develops mobile robot trajectory planning strategies 
that maximise the information gain, thereby leading to more effective localisation and 
mapping outcomes.  
 
In this thesis, the trajectory planning problems are formulated as optimal control 
problems where the control objective is to maximise the information gain or to 
minimise the uncertainty of the robot location and/or the map estimate. As not all the 
information can be predicted before observations are made, the optimal control 
problems involve gradually identified models. Model Predictive Control (MPC) is 
proposed to solve the control problems as it exploits updated information in the 
planning at each time step. Two optimisation strategies are implemented in the multi-
step optimization of MPC planning.  The first is an Exhaustive Expansion Tree Search 
(EETS) and the second combines this search with Sequential Quadratic Programming 
(SQP). Analyses of the results show that EETS provides a near optimal solution. 
 

Three trajectory planning problems are considered. The first problem is trajectory 
planning for multiple robots in the task of target localisation. The robots are equipped 
with bearing-only sensors and their locations are assumed to be provided by an external 
source. Given initial location estimates with large uncertainty, the task is to pinpoint the 
locations of multiple targets within a prescribed terminal time. An Extended 
Information Filter (EIF) is used to estimate the locations of the targets. 
 
The second trajectory planning problem considers the task of point feature based 
Simultaneous Localisation and Mapping (SLAM) for a single robot. Here, the robot is 
to map a given area within a prescribed terminal time. An Extended Kalman Filter 
(EKF) is used to estimate the robot pose and feature locations. The final trajectory 
planning problem extends the SLAM problem further to the mapping of line features. 
As simply applying EKF to line-feature SLAM produces inconsistent estimates, a 
Smoothing and Mapping (SAM) algorithm is used as a viable alternative. 
 
In these SLAM problems, coverage is another important performance index. As MPC 
with a few steps look-ahead is predominately a local planner without any long term 
planning or any explicit strategy for exploration, an attractor-based strategy is 
developed to improve its performance. With the addition of the attractor, coverage is 
shown to be much improved. On a Pioneer2DX robot, real-time line-feature localisation 
and mapping with SAM is demonstrated.  
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Nomenclature
Commonly used symbols in this thesis are listed as follows. 

, ˆ   Target or feature location, target or feature location estimate 

1j J=  Number of features 

1i T=  Update time steps 

1k K=  Number of observations 

D, N   Planning horizon, number of discrete control options 

h(.)    Observation model  

f(.)   Process model  

r, θ , ϕ  Range, bearing, elevation measurement 

,dα   Angle and distance of line measurement 

ˆ ˆ,i   EKF state vector, SAM state vector 

k  Covariance of observation 

wx,  Single step process noise 

wz  Observation noise 

Pw, i   Covariance of process noise (single step, multiple steps) 

iu    Controls inputs 

, ,v ω ψ   Velocity, turnrate, roll 

  Array of line segments 

1i+   Innovation 

I  Information matrix 

P  Covariance matrix 

K  Kalman gain 

S  Innovation covariance 

β   Mahanalobis distance 

  



 

 

 

 

 

 

 

 

 

 

 

Chapter 1. Introduction 
 

 

1.1.  Overview 

This chapter introduces the trajectory planning problems addressed in this thesis. The 

challenges involved in solving these problems are outlined and the principal 

contributions that have emerged from studying the trajectory planning problems are 

described. Subsequently, a list of publications resulting from these contributions is 

given. The structure of the thesis is then outlined along with a brief description of the 

content of each of the following chapters. 

1.2.  Trajectory Planning Problem 

Trajectory planning is critical to almost all autonomous mobile robot applications. One 

class of trajectory planning problems considers the case where a robot is to travel from 

point A to B in a given map. Common objectives include determining the shortest path 

or the path of quickest time. Typical path planning algorithms that constitute this class 

of problems, such as A* (Nilsson 1980), are deterministic and assume the robot to be a 

point and then with a given map, the shortest path to the destination is planned. When 

the map is partially known, D* planning algorithms (Stentz 1995), a dynamic version of 

A*, can be applied where part of the path may be replanned as more knowledge of the 

environment is acquired. There exists a subtle difference between path planning and 
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trajectory planning. A trajectory is time dependent and may include additional 

parameters such as robot velocities, turn-rate or acceleration, whereas a path is not. 

 

The trajectory planning problem becomes increasingly challenging when a map is not 

available. As robot sets out to explore an unknown environment, it needs to create a 

map simultaneous to determining an appropriate path for exploration. This belongs to a 

class of trajectory planning problems where the robot is not given a specific destination, 

but must instead determine a time dependent path to best achieve a certain task. If the 

robot location is not available from an external source, it must also localise itself within 

the map being built. This is referred to in literature as Simultaneous Planning, 

Localisation and Mapping (SPLAM) (Meger 2006) or Active Simultaneous Localisation 

and Mapping (Active SLAM) (Zhang et al. 2006).  

 

When either the map or the robot locations are unknown, the robot pose and map 

features must be estimated through the information obtained from sensors. These 

sensors could include laser, cameras, or radar. Algorithms such as the Extended 

Information Filter (EIF) (Grocholsky 2006), the Extended Kalman Filter (EKF) 

(Maybeck 1979) and Smoothing and Mapping (SAM) (Dellaert and Kaess 2006) may 

be used for the estimation. Inherent in the estimations are uncertainties and these must 

be accounted for when performing the trajectory planning.   

 

Specific factors to consider in the trajectory planning may include the robot dimension, 

maximum turn-rates and velocities, obstacles in the environment, the uncertainty of the 

location of the robot and the task to be performed. In optimal trajectory planning, all 

possible constraints in the system must be considered and the trajectory should be 

determined to maximise the achievement of the task objectives.  

 

In the case of multiple robots, their coordination needs to be considered for efficiency. 

Redundant actions or interference between robots occur when a robot repeats a task or 

performs actions in common with another robot. Clearly, the trajectory planning needs 

to consider the paths and tasks of all the robots.  

 

In this thesis, three trajectory planning problems are considered. The first trajectory 

planning problem deals with multi-agent bearing-only target localisation. For this 
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problem, the objective is to coordinate multiple robots with given constraints to localise 

multiple targets in the environment. The second trajectory planning problem addresses 

point-feature Active SLAM. Here, the task of the robot is to map an unknown 

environment containing point features. This is then extended to line-feature Active 

SLAM where an unknown structured environment is mapped.  

 

1.3.  Problems Addressed in this Thesis 

In each of the three problems addressed, the following relevant objectives are: 

 

Trajectory Planning for Multi-agent Bearing-only Target Localisation (Chapter 3) 

To obtain the optimal path to maximise the information of the locations of the 

targets within a prescribed terminal time. 

To coordinate multiple agents. 

To incorporate new information to gradually modify the trajectory plans. 

 

Trajectory Planning for Point-feature based SLAM (Chapter 4) 

To obtain the optimal path to map an unknown environment within a prescribed 

terminal time. 

To minimise uncertainty of the robot pose and point feature locations of the map. 

To incorporate long term goals and coverage into the trajectory planning. 

 

Trajectory Planning for Line-feature based SLAM (Chapter 5) 

To obtain the optimal path to map an unknown structured environment within a 

prescribed terminal time. 

To extract and represent lines from range and bearing observations. 

To minimise uncertainty of the robot pose and line feature locations of the map. 

To implement the trajectory planning algorithm developed on a physical mobile 

robot. 
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1.4.  Principal Contributions 

The main contributions of this thesis are: 

Trajectory planning for the tasks of feature-based localisation and mapping are 

formulated as an optimal control problem with a gradually identified model. The 

objective of the planning is to maximise information gain or to minimise 

uncertainty. However, not all of the information required for the trajectory 

planning can be predicted before observations are made and thus the system 

models are gradually identified.  

Model Predictive Control (MPC) is applied to the trajectory planning problems 

for feature-based localisation and mapping. It is a recursive planning strategy that 

exploits the updated information available at each step. An optimisation strategy, 

Exhaustive Expansion Tree Search (EETS), is used to select the optimal control 

input from a discrete set of control options. A comparison of this strategy to other 

algorithms is conducted. 

An attractor based strategy is developed to improve the performance of MPC for 

SLAM. The main motivations for this technique include enabling high-level 

planning, incorporating long term goals, and to provide an incentive for 

exploration using the framework of the MPC strategy. 

The trajectory planning problem for line feature SLAM is considered. The 

developed planning strategies are demonstrated on a physical robot to perform 

real-time line-feature based SLAM, estimated using SAM, in a structured 

environment. 

 

1.5.  Publications 

The following publications document some of the contributions of this thesis and 

related work. 

 

Leung, C. Huang, S. and Dissanayake, G. 2008 “Active SLAM for Structured 

Environments”, IEEE International Conference on Robotics and Automation (in press). 

  

Leung, C. Huang, S. and Dissanayake, G. 2006 “Active SLAM using Model Predictive 

Control and Attractor Based Exploration”, Proceedings of the 2006 IEEE/RSJ 
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International Conference on Intelligent Robots and Systems, Beijing, China, pp. 5026-

5031, October 2006. 

 

Leung, C. Huang, S. Kwok, N. M. and Dissanayake, G. 2006 “Planning under 

Uncertainty using Model Predictive Control for Information Gathering”, Robotics and 
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1.6.  Thesis Structure 

Chapter 2 discusses the trajectory planning problems in the presence of uncertainty. 

Several developed solutions in the literature for trajectory planning in the tasks of target 

localisation and SLAM are reviewed along with related literature. A planning strategy, 

MPC, is also reviewed along with theoretical issues regarding the stability and 

computational complexity and with several works applying this strategy to trajectory 

planning.  

 

Chapter 3 considers the trajectory planning problem for multi-agent bearing-only target 

localisation. The objective of the trajectory planning is to cooperatively maximise the 

information gathered by the agents. The EIF is used to estimate the location of the 

targets of interest and the information gathered is quantified using the information 

matrix. Trajectory planning is formulated as an optimal control problem for a nonlinear 



  6 

 

 

system with a gradually identified model and then solved using nonlinear MPC. The 

optimisation in MPC is via an Exhaustive Expansion Tree Search (EETS) and is shown 

to provide a near optimal solution. MPC for target localisation is demonstrated in both 

two-dimensional and three-dimensional scenarios. 

 

Chapter 4 addresses the Active SLAM problem in the case of point features using a 

single robot. The robot pose and location of point features in the environment are 

estimated using an EKF. The objectives of the trajectory planning is to minimise 

uncertainty of the SLAM estimates and to maximise coverage and efficiency. It is first 

shown that the Active SLAM can be formulated as an optimal control problem for a 

nonlinear control system with a gradually identified model and then solved using MPC. 

To improve the performance of MPC, a novel technique that adds an attractor to 

facilitate exploration is introduced.  

 

Chapter 5 extends the work of Chapter 4 to trajectory planning for line-feature based 

SLAM. The robot poses and line features are estimated using SAM which is found to 

provide more consistent estimates than EKF. To reduce the number of poses in the state 

vector and to reduce the computation time, the SAM algorithm is modified to use the 

relative poses of the robot between observation steps. Trajectory planning is performed 

using the estimates from SAM and for computational efficiency MPC is performed 

using estimates predicted by an EKF. Again, MPC with the addition of the attractor is 

used to obtain trajectories that minimises the uncertainty of the estimates and maximises 

coverage. The trajectory planning is demonstrated in real-time on a Pioneer2DX robot.  

 

Chapter 6 summarises the main contributions of this thesis and notes some directions of 

interest for future research.  



 

 

 

 

 

 

 

 

 

 

 

Chapter 2. Literature Review 
 

 

2.1.  Introduction 

This chapter reviews a number of selected works in literature on mapping and trajectory 

planning. General strategies available for planning of mobile robot information 

gathering tasks under uncertainty are introduced. The discussion then focuses on the 

relevant research and progress in trajectory planning for target localisation and for 

Simultaneous Localisation and Mapping (SLAM). Finally, relevant developments from 

the Model Predictive Control (MPC) literature are studied, which form the foundations 

of the strategy proposed to solve the planning problems considered in this thesis.  

  

2.2.  Strategies for Planning Under Uncertainty 

Information gathering via observations is fundamental for many autonomous robot tasks 

such as target localization, exploration, mapping, search and SLAM. These processes 

are subject to uncertainty; about the environment, in the sensor measurement and in the 

process model. To enable an autonomous robot to optimally exploit the sensor data, 

planning for information gathering needs to effectively mitigate the adverse effects of 

these uncertainties. 
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Several techniques currently exist for planning under uncertainty. For example, 

uncertainties can be viewed as random variables or as a stochastic process. The field of 

stochastic control has popular strategies such as Markov Decision Processes (MDPs) 

and their extensions, Partially Observable Markov Decision Processes (POMDPs) 

(Kaelbling et al. 1998). Uncertainties can also be treated as deterministic signals (with a 

known hard bound or a known energy bound) which leads to nonlinear l  bounded 

robust control (Huang and James 2003) and nonlinear H  control (Helton and James 

1999). All these problems are theoretically solvable and optimal solutions can be 

obtained by computing the value functions defined for the belief states (Kaelbling et al 

1998) or the information state (Helton and James 1999, Huang and James 2003). 

Although these global planning strategies all aim at providing global optimal control 

policies, the curse of dimensionality and curse of history (Brooks et al. 2005) are major 

concerns, where the size of the problem and possible outcomes grows with time. Some 

decomposition and approximation methods are available to obtain solutions, such as via 

clustering (Li et al. 2005), implementing a hierarchical POMDP (Foka and Trahanias 

2005) and using parameters to represent approximate continuous states (Brooks et al. 

2005). Nevertheless it is still very difficult to make them tractable in real-time large-

scale applications with existing computational platforms. 

 

Given the prohibitive computational expense for obtaining optimal solutions, 

computationally tractable sub-optimal solutions are desired for real-time 

implementations. One such approach involves the use of a single-step look ahead 

planning strategy, which has been proposed for various information gathering tasks. 

Feder et al. (1999) used the expected information gain from taking a step in a given 

direction in their Active SLAM algorithm. Stroupe and Balch (2005) selected robot 

movements to maximise the utility of the reduction of uncertainty of the next 

observation in multi-robot mapping. A similar strategy for information gathering in 

vision and image processing is called the Next Best View (NBV) and is applied in (Li 

and Liu, 2005) for the task of three-dimensional object reconstruction.  

 

In terms of resultant plan quality, multi-step planning is clearly an improvement over 

single-step strategies. Model Predictive Control (MPC), or Receding Horizon Control 

(Allgower and Zheng 2000), is a multi-step planning strategy which can also be used in 

information gathering tasks. MPC has found many applications due to its ability to 
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incorporate constraints in the planning process, its limited computational requirements 

and its capability of allowing feedback at each step. Recently, MPC has been applied in 

trajectory planning for multi-robot planning and control under input/state constraints for 

collision-avoidance (Shim et al. 2003), regulation of nonholonomic mobile robots (Gu 

and Hu 2005), multi-agent formations (Wesselowski and Fierro 2003), as well as target 

tracking and engagement (Tierno 2001), and unmanned aerial vehicle (UAV) navigation 

with passive noisy sensing (Frew 2005). In this thesis, MPC is used as the strategy for 

planning trajectories in the tasks of target localisation and SLAM. 

 

2.3.  Trajectory Planning for Target Localisation 

Bearing-only target localisation has a wide range of applications in both military and 

civilian areas (Ristic and Arulampalam 2003; Grocholsky 2006). In Grocholsky (2006), 

the problem of multi-robot target localization was considered and an EIF was applied to 

the estimation process. The trajectories were planned using partial utility measures 

involving the local knowledge and influence of an agent. For the optimisation, the 

solution was approximated using parameterisation of the control trajectories and then 

solved using Sequential Quadratic Programming (SQP). This work focused on sub-

optimal decentralised control through negotiation. 

 

Passerieux and Cappel (1998) applied optimal control theory to determine the trajectory 

of a constant speed bearing-only observer by minimizing the uncertainty of the target 

estimate as described by the inverse of the Fisher Information Matrix (FIM). The target 

was assumed to move in a straight line with constant velocity with the target location 

and velocity to be estimated.  Several assumptions were made to simplify the problem. 

These include assumption of a perfectly omni-directional bearing-only sensor and no 

constraint on the observer maneuverability. To maximize the accuracy of the estimation, 

a hill climbing technique was used to assign the control and in addition to this, several 

arbitrary initial guesses of the control were used to avoid convergence to a local 

optimum. 

 

The optimal robot trajectory for bearing-only localisation, when a single robot is 

locating a single target, can be computed off-line when the exact locations or the 

trajectories of the targets are known. Oshman and Davidson (1999) presented three such 
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techniques for target localization. All three techniques maximised the determinant of the 

information matrix. Two of the methods were gradient based, where the initial guess is 

arbitrarily selected. Differential inclusion (Seywald, 1994) is used in the third 

technique, which handles constraints by employing a description of the dynamical 

system in terms of its states and their sets of attainability. This involved the generation 

of finite-dimensional approximations to the solutions, which effectively eliminate the 

controls from the system model. Oshman and Davidson concluded that directly 

maximising the information matrix is superior to the approximation methods.  

 

A related work on decentralised multi-agent trajectory planning of multiple UAVs for 

multi-target surveillance was recently published (Tang and Özgüner 2005). The 

objective considered was to minimize the average time between consecutive 

observations of each target. The multi-agent motion planning was achieved by dividing 

the targets between the robots and then solving several single-agent problems. These 

agents are modeled as a nonholonomic Dubins car thus the roll of the UAV was not 

considered. Therefore it was assumed that when the agents turn, the direction of the 

sensor remains constant i.e. pointed perpendicular to the ground. The targets were 

treated as a set of waypoints with a given traverse order and the trajectory planning 

connects these waypoints using lines, arcs and circles such that each target is visited in 

sequence. Several heuristics are used to improve the flight time such as reversing the 

entry and exit points of turn sequences in the path to avoid the path crossing over itself. 

It was also assumed that the speed of the agents is much faster than the targets. 

Moreover, sensor noise was not considered. 

 

2.4.  Trajectory Planning in SLAM 

Several works have focused on the Active SLAM problem. In Stachniss et al. (2004), a 

frontier based exploration with SLAM is conducted. A Rao-Blackwellized particle filter 

is applied to localisation and mapping. Using two maps; occupancy grid and 

topological, active loop-closing is performed. Active loop-closing is based on 

determining minimum distances between the current robot location and the old nodes in 

the topological map. The algorithm forces the robot to revisit previously traversed areas 

in order to reduce the uncertainty in the map, although maximisation of information 

gain along the path is not considered. 
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Feder (1999) used the single-step planning strategy for a point feature-based Active 

SLAM problem, where an action is chosen given the current knowledge so as to 

maximise the information gain in the next measurement. This approach is applied to air 

and underwater experiments with sonar sensing and the author showed that adaptive 

sensing can save time, energy and reduce the amount of data that needs to be acquired. 

Planning with a longer horizon could clearly improve results. 

 

Makarenko et al. (2002), considered multiple objectives during the SLAM exploration 

process as a form of utility. To aid the process, an occupancy grid is used in the 

mapping and a frontier method is used to generate several potential destinations for the 

robot. A destination is selected based on the evaluation of several utility functions, 

namely: cost of navigation, information gain and localizability at the destination. The 

solution, however, may be improved by considering these functions along each step in 

the path instead of only at the destination.  

 

Bryson et al. (2005) developed an on-line guidance scheme for maximising vehicle 

navigation and map information for an UAV. SLAM was performed using the EKF. 

The guidance system obtains a discrete set of possible destinations from a frontier cells 

in a grid map. To facilitate exploration, a single feature is assumed to be at the 

destination and is given a large uncertainty. The utility of travelling to a destination was 

then determined by predicting the information gain from simulated observations along 

the path to the destinations. Behaviour-based decision rules were developed based on 

qualitative knowledge of the effect of manoeuvres on observability (Kim and Sukkarieh 

2004). Using the information utility and decision rules, a trajectory consisting of lines 

and arcs to the destination was assigned. This provided a suboptimal solution in terms 

of navigation performance that is computationally practical. 

 

The closest related work to that presented in this thesis is EKF based Active SLAM by 

Sim and Roy (2005), where an A-optimal global planning strategy for SLAM was 

proposed. It was pointed out that, in SLAM, the trace of the covariance matrix is a 

better measure of map quality than its determinant. An assumption was made that the 

approximate locations of all the features are available at the beginning, thus replanning 

was not critical. The planning algorithm does not take into account the robot dynamics 
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or sensor limitations. A global solution for the path is determined for an environment 

discretised into a grid. This global solution was made feasible by using the estimated 

position of the robot and the trace of the covariance matrix during planning, which 

allows far lower computational cost but contains less information. Sim (2005) also 

encouraged a robot to explore by randomly placing virtual features in unexplored areas. 

A Voronoi graph was used for the path planning; with assumptions of perfect data 

association and an unlimited sensor field of view. Similarly, in Sim (2005a), an 

approach was presented for information-driven SLAM. The robot is driven to a globally 

optimal position for maximising information gain of the features. This work was for 

bearing-only SLAM and the main focus was to overcome the stability issues. Features 

that were too close to the robot which may cause filter instability were blocked by using 

a virtual minimum range sensor. 

 

2.5.  Related work on Model Predictive Control (MPC) 

MPC, also referred to as Receding Horizon Control, is applied as the control strategy 

for the trajectory planning problems addressed in this thesis. In general, MPC is a 

recursive strategy where multiple control steps are planned and only the first step is 

executed. In information gathering tasks, observations from sensors are influenced by 

the control action and they involve uncertainty and disturbances. This makes feedback 

essential. The recursive characteristic of MPC makes it suitable for information 

gathering tasks where the knowledge of the environment is gradually improved. 

2.5.1. Theoretical aspects of Nonlinear MPC (NMPC) 

Local planning strategies, such as MPC, are well suited to systems with hard real-time 

constraints and systems with highly dynamic environments. MPC is simple and can be 

fast, thus enabling continuous replanning to incorporate feedback and up to date 

knowledge of the system state and the environment. 

 

There have been over 2000 reported applications of Linear MPC, making it the industry 

standard in some areas. The use of non-linear MPC (NMPC) is also accelerating, from 

1997-2000 the reported applications of NMPC increased from one to eighty six 

(Allgöwer and Zheng 2000). One of the main reasons for the popularity of MPC is its 

ability to incorporate hard constraints that are difficult to handle by other methods.  
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However, the real applications of nonlinear MPC (NMPC) are still limited as compared 

to linear MPC; one of the major difficulties lies in the stability issue (Allgower and 

Zheng 2000). It has been illustrated by Bitmead et al. (1990) that for non-linear systems, 

closed-loop stability is not guaranteed for a generic finite-horizon cost function as the 

local minima found within the planning horizon may not lead to the global minima at 

the terminal time. Stabilisation methods including the dual-mode receding horizon 

controller, the infinite horizon closed loop costing, the quadratic terminal penalty and 

the contractive constraint have been proposed (Allgöwer and Zheng 2000).  

 

For the information gathering tasks, however, the stability is not critical when the 

features are stationary. In general, the only concern here is the stability of robot motion 

and the convergence of the estimation algorithms. The stability of the robot motion 

should be guaranteed as long as the control actions are admissible and the obstacles are 

avoided. The convergence of the SLAM algorithm is generally guaranteed for any robot 

motion (Dissanayake et al. 2001). For the multi-robot target localisation problem, the 

information about the targets can only be increasing (resulting in smaller uncertainties) 

when observations are made. Thus the uncertainty of the target location estimates is 

always bounded for arbitrary robot trajectories.  

 

Large computational burden creates another practical issue that limits the applications 

of NMPC. Generally, the computational cost grows exponentially with the increase of 

the planning horizon or the number of control options. Several techniques can be used 

to reduce the computational complexity in the optimization process. To provide an 

example, one can compute the first control, which is implemented exactly, while 

approximating the remaining controls, which are not implemented, see (Zheng 1997).  

2.5.2. Application of MPC to Mobile Robot Trajectory Planning 

Several works have applied MPC to mobile robot trajectory planning. In Bellingham et 

al. (2002), a mobile robot is set to travel from one side of a two-dimensional map to a 

destination point on the other side, avoiding obstacles. It is demonstrated that MPC can 

lead to the robot being trapped in dead-ends due to the limited planning horizon. A 

strategy is introduced that gives penalties for undesirable paths in the MPC solution 

using a precomputed cost-map over the known map. The time-optimal cost map is 
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generated using lines connecting edges of obstacles to the goal and searched using 

Dijkstra’s algorithm. Mixed-Integer Linear Programming (MILP) is used as the 

optimisation strategy. The results show near time-optimal paths that avoid entrapment. 

However, noise in the system is not considered. 

 

In (Mettler and Toupet 2005), trajectory planning is conducted for a single robot in a 

known three-dimensional environment using MPC. The robot is intended to traverse 

from its current position around obstacles to a specified destination point. MILP is used 

as the optimisation strategy. A cost-to-go function is computed off-line that decomposes 

the environment into obstacle free cells and then the graph representing the connectivity 

of the cells is searched for the shortest path to the destination, using dynamic 

programming. The cost-to-go function is incorporated with the MPC optimisation. The 

authors state that local-minima in the cost-to-go map may result in the robot becoming 

trapped.  

 

Kuwata et al. (2006) presented a solution to the decentralised control of multiple 

homogeneous UAVs using MPC. A cost-to-go function is generated for intelligent 

trajectories around obstacles. In this function, a shortest path algorithm is applied to a 

graph-based representation of the environment to approximate the cost to fly from each 

obstacle corner to the destination. Vehicles exchange information with neighbouring 

vehicles and collisions are detected by checking for the overlap of loiter-circles in the 

UAV paths. It is argued that the robust feasibility of the entire fleet of UAVs can be 

guaranteed using only local knowledge of the environment and other vehicles. The 

optimisation technique is also performed using MILP. Although the disturbance in the 

vehicle model is considered, the map is entirely known. 

 

In all three of the aforementioned works, the robots were set to travel from their current 

point to a predefined goal in a known map. MPC is applied and a cost-to-go function is 

incorporated to provide a good estimate of the path beyond the planning horizon. In 

each case, the uncertainties present in the measurements is not considered. 

 

Frew (2005) proposed to use MPC in several different problems, including UAV 

waypoint navigation, trajectory following, safe exploration of unknown environment 

and aircraft see-and-avoid. The planning technique was developed for a single robot 
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using a two-dimensional model. Constraints were set in the cost function with a large 

weight and the optimization technique generated the candidate control input set using 

breath-first random search. The cost of fuel, navigation, information ignorance and 

safety are all considered in the cost function. The trace of the covariance matrix is 

minimised as this is claimed to be the simplest scalar measure to compute. The robot 

location uncertainty is not considered in this work. 

 

2.6.  Summary 

The literature reviewed addresses trajectory planning problems for target localisation 

and mapping. Current optimal control strategies such as MDP and POMDP can be 

applied to systems with uncertainty but are computationally expensive. MPC has been 

applied to trajectory planning problems where the information to be acquired beyond 

the planning horizon can be approximated by computing a cost-to-go function for a 

known map. The trajectory planning problems considered in this thesis requires a 

simple algorithm that can be implemented in real-time without the need for a known 

map. Chapter 3 of this thesis makes a contribution in that a strategy is developed for 

using MPC in multi-agent information gathering tasks where robot cooperation and the 

uncertainty of the system are predominant aspects of the tasks. For such tasks, the 

destination point is not defined and therefore creating a cost map or cost-to-go function 

is difficult. To further improve the performance of MPC, Chapter 4 introduces an 

attractor to encapsulate possible information available beyond the planning horizon and 

to allow for multiple objectives of the planning. This is applied to information gathering 

tasks where the robot localisation and feature detection are also considered. The 

following chapters describe how MPC can be used to; a) plan trajectories for multi-

agent bearing-only target localisation, b) plan trajectories for active SLAM with point 

features, and c) plan trajectories for active SLAM with line features. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Trajectory Planning for Multi-Agent 
Bearing-only Target Localisation 

 

 

3.1.  Introduction 

This chapter is concerned with planning the trajectory for multiple agents attempting to 

locate targets using bearing-only information. The objective of the trajectory planning is 

to cooperatively maximise the information gathered by these agents. The Extended 

Information Filter (EIF) is used to estimate the location of the targets of interest and the 

information gathered is quantified using the information matrix.  

 

The trajectory planning problem is formulated as an optimal control problem for a 

nonlinear system with a gradually identified model and then solved using nonlinear 

Model Predictive Control (MPC).  A solution to the MPC optimization problem is 

provided using an Exhaustive Expansion Tree Search (EETS).  Sequential Quadratic 

Programming (SQP) is used to refine the solution obtained from an EETS. MPC for 

target localisation is demonstrated in both two-dimensional and three-dimensional 

scenarios for locating targets on the ground with a camera mounted on multiple UAVs. 

The proposed methods are analysed and evaluated through simulations. 
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3.2.  Background 

Cooperation among a team of distributed agents enables tasks such as target search, 

localisation, tracking and engagement to be performed with greater efficiency than a 

single robot (Bourgault et al. 2004; Passino et al. 2002; Ristic and Arulampalam 2003; 

Furukawa et al. 2003).  The accuracy of information available about the targets 

determines which task is to be performed. If the targets are not visible and the area 

within which the targets are present is known, the primary task is to search. If the 

targets are moving and observable, the primary task is target tracking.  If the target 

location is known and the target is approachable then the primary task may be 

engagement. If the targets are stationary and the locations of the targets are partially 

known, then the primary task of the robots becomes target localisation (sometimes 

referred to as geolocation). This chapter focuses on multi-agent cooperation for target 

localisation. 

 

One of the practical situations that motivate the work presented in this chapter is the 

scenario where the approximate locations of targets are available through satellite 

surveillance, for example, and the precise target location estimates are to be acquired 

through cameras mounted on a set of UAVs. 

 

When a sensor on board the robot measures the relative bearing to the target without 

any range information, as in the case of a camera, the robot trajectory has a significant 

influence on the accuracy of the target location estimate. In many applications, the 

location of the targets needs to be estimated on-line and only the estimates of the target 

locations are available for computing the robot trajectories. With bearing-only 

localisation, the initial estimates of target locations may be fairly inaccurate.  

Undoubtedly these location estimates are gradually updated as more measurements are 

acquired.  Given these considerations, the development of real-time optimal trajectory 

planning algorithms for multi-robot target localisation is a challenging problem. 

 

3.3.  Target Localisation Problem 

In target localisation (Grocholsky 2006), the task is to localise the targets in an 

environment as quickly as possible from a sequence of observations.  
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Suppose there are N robots and J targets. The target localisation problem is to estimate 

the locations of the J targets using the information obtained from a sequence of 

observations made by the N robots. The sensors on the robots have limited viewing 

range, scope and precision and the targets are assumed to be stationary and can be 

abstracted as points in space, as illustrated in Figure 3-1. It is assumed that the initial 

estimates of the target locations are available and that the location of the robot is 

provided by an external source such as GPS. It is also assumed, for simplicity, that 

collision between the robots will not occur (for example, the robots may be a set of 

UAVs flying at different altitudes).  

 

 

Figure 3-1 Problem Scenario, Multi-agent Bearing-only Target Localisation 

 

3.3.1. Robot Process Model 

Let n
ix  denote the robot pose of robot n at time i in a Cartesian coordinate frame. The 

discrete-time process model of the nth robot is 

 

( )1 ,n n n
i n i if w+ = + xx x u       (3.1) 

 

where n
iu  is the control input at time i and is constant during [ ; 1)i i + , wx  is the process 

noise and nf  is a nonlinear function which depends on the dynamic model of the nth 

robot, which may vary for heterogeneous robots. 

     Robots 
      True Target Locations  
      Estimated Target Locations 
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Constraints of the robot’s motion are to be incorporated into the planning process. The 

control constraints and state constraints can be expressed by 

 

1, , [ , 1)n n n n
i i t iU R t i i+∈ ∈ ∈ +u x     (3.2) 

 

where n
iU  is the set of admissible controls for the robot n at time i and 1

n
iR +  describes 

the safe region for robot n during time i to time i + 1. 

3.3.2. Bearing-only Observation model 

Following a discrete-time model, observations are made at each time step in a finite 

time horizon [0, T] where T is a given integer. The observation model, at time 1i + , for 

the nth robot observing the jth target is 

 

1 1( , )jn n j n
i n ih w+ += + zz x      (3.3) 

 

where 1
jn
i+z  is the angular measurement from the n-th robot to the j-th target at time-step 

i+1, j  defines the location of the j-th target in a Cartesian coordinate frame, nwz  is a 

zero-mean Gaussian noise measurement with covariance matrix n and hn is a nonlinear 

function which describes the model of the sensor mounted on the nth robot.  Here, 

1
n
ij J +∈  where 1

n
iJ +  denotes the set of the indices of the features that robot n can observe 

at time i+1, which is expressed by 

 

{ }11 1, ,
i

n
i KJ j j

++ = ,     (3.4) 

 

where the integer 1iK +  depends on the pose of robot n at time i+1 and the range of the 

sensor. 
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3.4.  Algorithm for Target Localisation 

3.4.1. The Extended Information Filter 

The observations made from various robot poses can be processed using an Extended 

Information Filter (EIF) (Grocholsky 2006; Maybeck 1979; Thrun et al. 2004) and 

compiled into estimates of the target locations.  Theoretically, the EIF is equivalent to 

the Extended Kalman Filter (EKF). However, the EIF is computationally more efficient 

than the EKF when there is no prediction step. For the target localisation problem 

addressed in this chapter, the poses of robots are available and the targets are assumed 

to be stationary, thus a prediction step in the EIF is not required. For this reason, the EIF 

is used here as the underlying estimator.  

3.4.2. New Information Obtained from Observations 

Let the state estimate of the jth target location at time i be ˆ j
i  for j = 1, …, J. The 

information on the target location obtained from the observation 1
jn
i+z  can be represented 

by the information matrix 

 
T 1

1 ( )jn jn jn
i i n i

−
+ =I H H      (3.5) 

   

where jn
iH  is the Jacobian of hn with respect to the target state j

i , evaluated at 

1
ˆ( , )n j

i i+x .  That is 

 

1
ˆ( , )

| jnj i i

jn
i nh

+
= ∇

x
H .     (3.6) 

 

If target j is out of the sensor range of robot n at time 1i + , then no new information 

about the target is obtained from the observation and 1
jn
i+I  is returned as a zero matrix.   

3.4.3. Target Location Estimate using Multi-agent Data Fusion 

Since N independent observations (from the N robots) are made to target j at time 1i + , 

the new information obtained about this target is 
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,
1 1

1

N
new j jn
i i

n
+ +

=

=I I .           (3.7) 

 

The total information on target j at time 1i + , after acquiring these observations, 1
j
i+I , 

can be calculated by  

 
,

1 1
j j new j
i i i+ += +I I I          (3.8) 

 

where j
iI  is the total information available on the target j at time i. 

 

At time i and 1i + , the estimates of the locations of target j are denoted as ˆ j
i  and 1

ˆ j
i+ , 

respectively.  The update of the location estimate takes the form  

 

1
1 1 1

1

ˆ ˆ ( )
N

j j j jn
i i i i

n

−
+ + +

=

= + I i      (3.9) 

where      
T 1

1 1( )jn jn jn
i i n iμ−
+ +=i H ,               (3.10) 

 

here jn
iH  is given by (3.6) and 1

jn
iμ +  is the innovation defined by  

 

1 1 1
ˆ( , )jn jn n j

i i n i ihμ + + += −z x .     (3.11) 

 

Combining (3.5), (3.8), and (3.9), yields  

 

( )

( )

T 1
1 1 1

1

1

1 1 1
1

ˆ ˆ

N
j j jn jn
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for j = 1,…, J, where 
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    (3.13) 

 

for n = 1,…, N, j = 1,…, J.   

 

Equation (3.12) represents the EIF information and state updates for multi-robot 

geolocation. The EIF equations above are slightly different from the typical EIF 

equations (Maybeck 1979, Thrun et al. 2004) as the state estimate is obtained without 

computing the information vector. They are however equivalent.  

 

3.5. Formulation of Trajectory Planning as an Optimal Control 
Problem 

3.5.1. Problem Statement 

In bearing-only target localisation, it is critical that the robots observe the targets from 

different viewpoints. The robot trajectories therefore play an important role in the 

effectiveness of information gathering.  In this section, the trajectory planning problem 

is formulated on a finite time horizon [0, T].  The objective is to maximise the total 

information on the target locations at time step T by choosing suitable control actions 

for the N robots.  In particular, the trajectory planning problem can be stated as follows. 

 

Problem: Suppose at time step 0, the pose of the nth robot is 0
nx , n=1…N. The initial 

location estimate of the jth target is 0
ˆ j , j=1…J, and the information available on the 

target is 0
jI , j=1…J.  Compute the control actions, iu , for the N robots from time i=0 to 

time i=T–1, 

 

0 1 1, , , 1n n n
T n N− =u u u                (3.14) 
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such that     

 

1
min min(eig( ))j

Tj J≤ ≤
I                (3.15) 

 

is maximised, where j
TI  is the information matrix of the jth target at time T and is 

obtained by  

 
1

0 1
0 1

T N
j j jn

T i
i n

−

+
= =

= +I I I      (3.16) 

 

where 1
jn
i+I  is given by (3.5). 

 

The inverse of the information matrix, i.e. the covariance matrix, describes the 

uncertainty. For a target location estimate, the 95% or 99% confidence bound can be 

represented as an ellipse with the longest axis representing the greatest uncertainty. In 

bearing-only localization, it is typical for the shape of the uncertainty ellipse of a target 

location to be long and narrow in the direction of the sensor reading due to the lack of 

range information. If the smallest eigenvalue of the information matrix is maximised, 

the largest axis of the uncertainty ellipse is minimised, which directly influences the 

direction of uncertainty. Therefore, the scalar from (3.15) is used as the objective 

function as it provides a good indication of the total information about the targets. Other 

scalar measures of information could also be used, such as the determinant or the trace 

of the information matrix. Note, however, that maximising the determinant of the 

information matrix would inherently minimise the area of the uncertainty ellipse of the 

target location estimate, which may still leave the target location highly uncertain in one 

direction.  

3.5.2. Optimal Control Problem Formulation 

The objective of the optimal control problem is to choose the control (3.14) in order to 

maximise the performance measure (3.15). At first glance, the trajectory planning 

problem is equivalent to a finite horizon optimal control problem for a nonlinear control 

system.  The model of the “control system” is the compilation of equations (3.1), (3.5), 

(3.6), (3.8), (3.9), (3.10), and (3.11). 
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Note that in (3.5) and (3.8), jn
iH  is needed to calculate 1

j
i+I , and in (3.6) ˆ j

i  is needed to 

calculate jn
iH , but to update 1

ˆ j
i+  using (3.9), (3.10), and (3.11), the observation 1

jn
i+z  is 

required.  However as the observation 1
jn
i+z  is not available until time 1i + , a clear 

relationship between the control actions (3.14) and the performance measure (3.15) is 

not available at time 0. Because the value of 1
jn
i+z  is yet to be obtained until the next time 

step and the information from this observation contributes to the knowledge of the 

system model, the system model can only be updated when 1
jn
i+z  gradually becomes 

available at each iteration. Hence the above model is a nonlinear control system with a 

gradually identified model.  

 

Seeing that the system is gradually identified, this problem cannot be solved by 

traditional control optimisation methods. In spite of this, the problem can be 

approximated as a traditional control problem by assuming:  

 

Assumption I.  The innovations at any time are zero. i.e. 

 

1 1 1
ˆ( , ) 0jn jn n j

i i n i ihμ + + += − =z x      (3.17)  

 

for all n = 1, …, N, j = 1, …, J, i = 0, …, T – 1. 

 

There is also an underlying assumption, as with any EIF implementation, that the 

innovation, 1 1 1 0
ˆ( , )jn jn n j

nhμ = −z x , is a random variable with zero mean, where the 

distribution of the true target location, j , is Gaussian with 0
ˆ j  as the mean. For this 

reason, the value of the innovations is assumed to be zero in Assumption I. It follows 

that the safe region 1iR +  hence contains the safe region 0R . 

 

Under Assumption I, the Jacobians present in (3.12) do not change and the state 

estimate remains the same, hence the system becomes deterministic and a solution can 

be computed before new information is obtained. The solution to this approximated 

problem, however, may be far from optimal. This is a key reason behind the motivation 
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for using the MPC strategy, as it is a recursive strategy that continually incorporates 

new information into the planning process.  

 

3.6.  Nonlinear Model Predictive Control 

In Model Predictive Control (MPC), given a planning horizon of D and information 

available at the current time, D control actions are obtained. Only the first control action 

is applied to the system, and at the end of the first time step, a new set of D control 

options are computed. This strategy is repeated at each time step i until i T= .  

3.6.1. Prediction in D-step Optimisation 

In the context of the problems considered in this thesis, an important step for MPC is to 

predict the maximal information gain after D-steps, for an arbitrary set of controls. At 

step 0, 0
nx , 0

ˆ j  and 0
jI  are known. Referring (3.1), (3.5), and (3.6), 1

nx  are functions of 

the control input at time 0, 0
nu , and hence 0

jnH  are functions of 0
nu . Therefore 1

jI  is a 

function of 0
nu . Note that 1

ˆ j  depends on the observation 1
jnz  though 1

jI  does not. 

 

Information from the observation 1
jnz  at time 0 is required in order to predict more than 

one step ahead.  Although the real value of 1
jnz  is unknown, Assumption I provides a 

mechanism for long term prediction. 

3.6.2. D-step Optimisation Problem 

Under Assumption I, the D-step optimisation problem becomes the following  

  

D-step optimisation problem.  Given 0
nx , 0

ˆ j  and 0
jI , choose control  

 

1 2, , , , 1, ,n n n
D n N=u u u     (3.18) 

 

to maximise  

 

1
min min(eig( ))j

Dj J≤ ≤
I      (3.19) 
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where j
DI  is given by 
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for n = 1,…, N; j = 1,…, J.  

 

Similarly, from time i to i + D, the D-step optimization problem is to choose control at 

time i,  

1 2, , , , 1, ,n n n
i i i D n N+ + + =u u u           (3.21) 

 

to maximise 

 
1
min min(eig( ))j

i Dj J +≤ ≤
I      (3.22) 

where j
i D+I  is given by 

   1 1
1

N
j j jn
p p p

n
+ +

=

= +I I I  

( ) 1T

1
jn jn jn
p p n p

−

+ =I H H              (3.23) 

             ( )1
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+
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        1 ( , )n n n
p n p pf+ =x x u  

 

for n=1,…, N, j=1,…, J, p=i,…, i + D. 
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Equations (3.21)-(3.23) describe a deterministic optimisation problem which can be 

solved by a number of optimisation techniques. Two optimization techniques 

implemented in this thesis are described below. 

 

3.7. Solution to the D-step Optimisation Problem 

Systematic techniques are required to solve the D-step optimal control problem and 

determine the sequence of control actions. There are many ways to search for the 

optimal control sequence. Two strategies, Exhaustive Expansion Tree Search (EETS) 

and Sequential Quadratic Programming (SQP), are described below. 

3.7.1. Exhaustive Expansion Tree Search (EETS) 

One of the solutions to this optimisation problem is to use an Exhaustive Expansion 

Tree Search (EETS) to conduct a coarse exhaustive search.  EETS conducts a search 

among a limited number of control sequences. For each robot, let the number of 

possible control options it can take at each time step i be Nω .  Thus using (3.23), each 

robot n can move to Nω  different poses, 1
n
i+x , at time 1i +  if they were to apply Nω  

separate controls 1
n
i+u  over the period i to 1i + . At the N  different poses 1

n
i+x , N  

different 1
jn
i+I  matrices can be evaluated using (3.23).  

 

For the D-step optimal control problem, different control options may be chosen from 

step i to step 1i D+ − . Thus the robot would have ( )DNω  different control sequence 

options. The information gain for the ( )DNω  options needs to be evaluated and 

compared, hence the computational cost of this strategy for a single robot is O( ( )DNω ). 

For multiple robots, each robot has ( )DNω  different jn
i D+I  matrices at prediction step D. 

Using (3.23), ( )DNNω  combinations of jn
i D+I  are available to evaluate j

i D+I . The 

computation cost for considering all combinations is exponential, ( ( ) )DNO J Nω× . 

 

Only feasible and obstacle free control actions can be chosen to maximise measure 

(3.22). Constraints representing no-go-zones, depicted by the green circle in Figure 3-2, 
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can be enforced by an explicit condition based on predicted target and robot locations. 

Branches containing infeasible control actions can be removed from the tree search 

accordingly, as illustrated in Figure 3-2.  

 

 

Figure 3-2 Branches through No-go-zone Removed from Search 

 

Since no information is obtained when the targets are out of the robot’s sensor range (as 

described in Section 3.4.2), it may be possible for a robot n to not gain any information 

even after looking at all possible trajectories in D steps. Therefore, 

 

 
1

J
jn
i+D

j
zero matrix

=

=I .     (3.24) 

 

In this case, it is beneficial to predict further again if the computational capacity allows. 

However, if the plan is recomputed with an increased planning horizon, the computation 

load will increase exponentially. The following strategy may be applied in this situation. 

The planning horizon D is doubled but the number of control options is reduced by 

keeping a control option unchanged for two steps (e.g. [i; i + 2)) instead of one step (e.g. 

[i; i + 1)) as illustrated in Figure 3-3.  Through this approach, the information gain is 

also evaluated every two steps and the computational cost remains the same (although 

the total planning time is doubled). As with the previous case, the control for only one 

step 1i +  is applied before the above procedure is repeated.  
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         (a) First repeat    (b) Second repeat 

Figure 3-3 Expanding the Tree Search 

 

Although this is a coarser search, it allows the robot to look further ahead and provides 

it with an idea of the direction to head at the next step 1i + , without severely burdening 

the processor. If no information can be obtained by doubling the planning horizon, the 

same strategy can be repeated with a larger step size. Alternatively, as all possible 

controls are equally optimal when there is no information gain, a feasible control may 

be randomly selected if the computation required does not allow for another replan. 

3.7.2. Refining the EETS Solution using Sequential Quadratic 
Programming 

The benefit of an exhaustive search is that it finds the global optimum among the finite 

control options.  However, it can be argued that a coarse exhaustive search would not 

obtain the optimal solution because only a few discrete options are considered.  An 

alternative method for the D-step optimisation is presented in this section.  In this 

method, Sequential Quadratic Programming (SQP) is used to refine the results from 

EETS. 

 

The SQP algorithm is a generalization of Newton's method for unconstrained 

optimization that finds a point near the current guess to the optimum point by 

minimizing a quadratic model of the problem. For each iteration, a positive definite 

quasi-Newton approximation of the Hessian of the Lagrangian function is calculated 

i+2 i+4 i+6 i+3 i+6 i+9
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using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and a quadratic 

programming (QP) problem is solved. The BFGS method is a method to solve an 

unconstrained nonlinear optimization problem and is derived from the Newton's method 

in optimization. Newton's method is a class of hill-climbing optimization techniques. It 

assumes that the objective function can be locally approximated as a quadratic in the 

region around the optimum and uses the first and second derivatives to find the 

stationary point, where the gradient is zero. The constraint functions are replaced by 

their linear approximations. 

 

Unlike EETS, SQP is an optimization method based on hill climbing and may be 

trapped in a local optimum solution.  Consequently, giving SQP a random point as the 

initial guess would not result in a good performance.  Instead it is proposed for the 

system to be given the control sequence (3.21) for each robot that was obtained from 

EETS.  This is such the SQP method is given an initial condition that is substantially 

close to the global optimum solution and the coarseness of EETS can be refined to solve 

the same objective function (3.22). In Figure 3-4, the optimum solution from SQP is 

obtained, depicted by the red circle, by passing it an initial guess from EETS. The initial 

guess is depicted by the light blue asterisk on the left.  

 

 

Figure 3-4 Optimum Solution Found by SQP with Initial Guess from EETS for a Single 

robot in a Two-dimensional Environment with Multiple Targets with D=2 
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3.7.3. A Decentralised Implementation 

The robots are able to cooperate in maximising the objective function in the centralised 

approach presented above. However, cooperation is attained at the expense of greater 

computation time which increases exponentially with the number of robots. To 

demonstrate the value of cooperation, a simple decentralised framework for trajectory 

planning is implemented and compared (see Section 3.8.1.4). In this framework, the 

control actions of each robot are determined separately, ignoring the information gain 

through other robots. By using a decentralised framework, a lower computation time 

can be maintained by greatly sacrificing the optimality. In practice, a decentralised 

strategy should not be naively implemented. Strategies of cooperation such as 

computing additional negotiation strategies (Grocholsky 2006) are necessary for 

effective planning, however these are not explained further as improving upon 

decentralised approaches is not a focus of the research of this thesis.  

 

3.8. Simulation Results for Target Localisation using MPC  

Trajectory planning for target localisation is demonstrated through a computer 

simulation in both two-dimensional and three-dimensional scenarios. For the first case, 

two robots are to observe two targets in a two-dimensional environment. The initial 

locations of the targets have a large uncertainty representing approximate locations of 

the targets obtained from satellite surveillance. The robots are to localise these targets 

using bearing only sensors. To illustrate the ability of the proposed algorithm to enforce 

state constraints, a no-go-zone around the targets is enforced. Results obtained using 

EETS with three control options are compared to those obtained using EETS+SQP, 

EETS with nine control options and Decentralised EETS with three control options. The 

significance of using the full information matrix during the problem formulation is also 

demonstrated.  

 

For the three-dimensional case, two UAVs are to localise three targets on the ground. 

These UAVs are equipped with a camera where the sensor field of view is dependent on 

the roll of the UAV. The no-go-zone constraint around the targets in this case is 

dynamic as it is dependent on the uncertainty of the target location. The more accurate 
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the target location, the closer the UAVs may move towards the targets to make 

observations. The trajectory planning with MPC is compared to fixed control.    

3.8.1. Trajectory Planning for Two Robots Observing Two Targets in 
a Two-dimensional Environment 

This section provides a solution to the scenario depicted in Figure 3-1. Two robots are 

equipped with a bearing-only sensor with a field of view of ± /2rad across the front of 

the robot, with a maximum range of 20m. The robots are set to move at a constant speed 

of 2ms-1 with a maximum turn-rate of /6rads-1.  No-go-zone constraints of radius 2m 

around the targets are applied. Initial conditions 0
nx , 0

ˆ j  and 0
jI  are given manually and 

n
iu  is selected from a 3-step look-ahead ( 3D = ) optimisation.  The initial positions of 

the robots and features are place in an open environment of 900m2 as seen in Figure 3-5, 

however, the motion of the robots are not restricted to the boundaries.  

3.8.1.1. Process Model 

The robot poses are predicted using the following model, 

 

[ ]; ;n
i i i ix y φ=x       (3.25) 

( ),n n n
t n t if wδ+ = + xx x u        (3.26) 

cos( )
sin( )

n n n n
t i t i
n n n n

n t i t i
n n
t i

x v t t
f y v t t

t

φ ω
φ ω

φ ω

+ Δ + Δ
= + Δ + Δ

+ Δ
    (3.27) 

 

where , , , 1t i i iδ= + +  and t is the actual time difference between successive pose 

predictions. n
ix  is the pose of the nth robot at time i and [ , ]n n n

i i iv ω=u  is the control input 

for the nth robot consisting of velocity and turn-rate and is constant from time i to time 

i+1. For the problem of geolocation, it is assumed that the robot locations are provided 

by an external source and hence is not estimated. Due to this assumption it is also 

assumed that the process noise wx is zero for the multi-step predictions. This process 

model for the robot motion is iterated 10 times (δ =1/10) for every step i.  
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3.8.1.2.  Observation Model 

For the following bearing-only observation model, the state of the target is described by 

[ ; ]j j jx y=  and the observation, jn
iz , is described by  

 

atan2
j

jn ni
i j

i

y y w
x x

θ −= = +
− zz    (3.28) 

    

where θ  is the bearing from the robot to the target and nwz  is the measurement noise 

with a standard deviation of 0.03nσ =z rad.   

3.8.1.3. Comparison of Different Strategies 

Trials were conducted to assess computation times required and information gain 

achieved for the optimisation strategies proposed in Section 3.7. The first two columns 

of Table 3-1 compare EETS with three control options (N =3) and the effect of refining 

this result using SQP. Computation times in brackets are for an implementation of the 

algorithm in Matlab on a 2GHz Pentium IV.  

 

Table 3-1  demonstrates that the combination EETS+SQP often performs slightly better 

in terms of information gain than EETS alone. However, there are often instances where 

the information gains are equal (trials 1-4). There is a fundamental reason for this 

counter intuitive result. In the case of bearing-only localisation, often the highest 

information gain can be obtained by taking an observation at an angle that is 

perpendicular to the previous observation.  To maximise the information gain, the 

robots would therefore often be driven at the maximum turn-rate to circumnavigate the 

targets. In fact, in the 200 trials undertaken, the resultant control actions were evaluated 

to be at the maximum turn-rate 70 percent of the time.  

 

Although EETS+SQP was found to have slightly better information gain (on average 

1.3% better than EETS N =3), it has a significantly longer computation time as shown 

in the bracketed valued in the table. The additional computation time of SQP is 

dependent on how far the initial condition is from the optimal, as evident in Trials 5-10. 

Thus, the coarse EETS was found to produce an adequate solution without the 

additional computation of SQP. 
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– Optimal Control Strategy – 

 Information Gained (Computation Time (s)) 

 

 

Trial 

EETS N =3 
EETS (N =3) + 

SQP 
EETS N =9 

EETS (N =3) 

Decentralised 

1 3.5947 (0.12) 3.5947 (0.26) 3.5947 (39.72) 2.0748 (0.07) 

2 2.2478 (0.13) 2.2478 (0.27) 2.2478 (39.76) 1.4044 (0.08) 

3 7.1881 (0.07) 7.1881 (0.22) 7.1881   (8.95) 6.8754 (0.05) 

4 5.2361 (0.09) 5.2361 (0.24) 5.2361 (25.16) 4.2059 (0.06) 

5 0.3866 (0.12) 0.3869 (3.06) 0.3868 (36.96) 0.2681 (0.07) 

6 1.3465 (0.12) 1.3696 (5.53) 1.3680 (36.88) 0.2652 (0.07) 

7 1.4133 (0.11) 1.4569 (4.50) 1.4530 (29.42) 0.9449 (0.07) 

8 0.9559 (0.08) 1.0025 (4.63) 0.9929 (11.89) 0.5803 (0.05) 

9 1.3003 (0.20) 1.3109 (4.95) 1.3082 (74.59) 0.7745 (0.08) 

10 2.0831 (0.08) 2.1418 (0.37) 2.1405 (21.10) 1.5059 (0.06) 

Table 3-1  Information Gained and Computation Times of MPC  

where Information Gained = ( )( )
1
min min eig j

i Dj J +≤ ≤
I  

 

Trials were also conducted to compare EETS with nine control options (i.e. N =9) 

instead of N =3.  The results of the finer search are shown in the third column of Table 

3-1; the computation time has increased significantly (approx. 300 times greater) 

without achieving comparable improvements in information gain.  

3.8.1.4. Results from a Naive Decentralised Implementation  

Cooperation among multiple agents plays a vital role. The last column of Table 3-1 

contains the results from a decentralised strategy. The computation time for the 

decentralised approach is the shortest of all the approaches implemented, however, it 

comes at the cost of inferior global performance. The information gain is consistently 

the lowest, at a mean of 35% less information than centralised EETS. It is evident that 

cooperation is necessary for effective trajectory planning and therefore relevant 

strategies should be explored when implementing a decentralised approach. 
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3.8.1.5. Significance of Information Represented as a Matrix 

An interesting observation can be made when EETS is simulated given three sets of 

initial information matrices 0
jI  all with identical eigenvalues (eig( 1

0I )=0.4384, 4.5616; 

eig( 2
0I )=0.6972, 4.3028) and determinants (det( 1

0I )=2, det( 2
0I )=3). It is demonstrated 

that although the information gain is evaluated using the eigenvalues, the trajectory is 

actually governed by the whole information matrix. 

 

Simulations were conducted with a terminal time of T = 10, 3-step look-ahead and three 

control options.  Figure 3-5 shows the solution trajectories optimised for the different 

initial information matrices with identical scalar properties. 

 

As the three environments have identical scalar measures of information, it is interesting 

to observe the performance of the trajectories optimised for a particular environment 

and applied the other environments. Table 3-2 displays the final information (i.e. the 

minimum eigenvalue of the information matrices) acquired from executing the three 

trajectories in Figure 3-5 with the three sets of initial information matrices. It is clear 

that the solution obtained is not as effective when the trajectories are applied to the 

other environments with identical scalar measures. As there is greater representation of 

information as a matrix, the solution for corresponding trajectories and environments 

are superior. This reinforces the importance of representing the information as a matrix.  
 

 

 (a) 1
0I  = diag[0.4384, 4.5616]       (b) 1

0I  = [3 2; 2 2]       (c) 1
0I  = diag[4.5616, 0.4384] 

       2
0I = diag[4.3028, 0.6972]             2

0I  = [1 1; 1 4]           2
0I  = diag[0.6972, 4.3028] 

Figure 3-5 Trajectories of the Two Robots, with Different 0
jI  
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 Path (a) Path (b) Path (c) 
1
0I  (a) 3.5363 3.1927 2.0063 
1
0I  (b) 1.7280 3.0650 1.6678 
1
0I  (c) 0.8937 1.3412 2.2307 

Table 3-2 Final Information for Different 1
0I  and Associated Paths 

 

3.8.1.6. Constraint Satisfaction 

Figure 3-6 demonstrates that the proposed algorithm does not violate the constraints of 

the no-go-zones that are depicted by the circles around the targets. With a 3-step look-

ahead, the robots are prevented from moving to a pose where violating a constraint is 

unavoidable in the next step.  With a one-step look-ahead it is more likely that the robot 

would move close to the target to gain more information but may unknowingly 

encounter an obstacle in the following step that is within its minimum turn radius.   

 
 

 

Figure 3-6 Trajectories Outside the No-Go-Zone after i=80 Time Steps 

 

3.8.2. Trajectory Planning for Two UAVs Observing Three Ground 
Targets  

Simulations were conducted in three-dimensional space with two UAVs and three 

targets on the ground. The two UAVs are set to fly at different set altitudes of 200m and 

250m thus strategies for inter-robot collision avoidance are not required. The UAVs are 

x (m) 

y 
(m

) 
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to localise the targets on the ground within a prescribed terminal time. No-go-zones are 

prescribed around the targets and in this example the constraint is enforced such that the 

uncertainty of the target location is also taken into consideration. Each UAV has a 

maximum bank angle and minimum and maximum velocities limiting the roll and turn-

rate. In the simulations, the UAVs have a maximum bank angle of /6rad and fly with a 

constant velocity of 30ms-1. Observations are made with a camera with ± /12rad field of 

view and the sensor footprint depends on the current roll of the UAVs.  

3.8.2.1. Three-dimensional UAV Process Model 

The process model for the UAVs is obtained from Kim et al. (2004). This model is 

particular to the two UAVs (called Brumbies), deployed at the Centre of Excellence for 

Autonomous Systems, shown in Figure 3-7.  

 

 

Figure 3-7 Brumbies in Field 

 

The following describes a general model of the brumbies. The state of the UAVs are 

described by location [ ; ; ]n
i x y z=L , velocities [ ; ; ]n

i x y zv v v=V  and the attitude 

[ ; ; ]n
i ψ ρ φ=  (Euler angles roll, pitch and yaw),  

 

1 1

1 1

1 1

[ f ]

n n n
i i i

n n n nb b n
i i i i i

n n nb b
i i i i

t
g t

tω

− −

− −

− −

+ Δ
= = + + Δ

+ Δ

L L V
x V V C

E
    (3.29) 
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where f b
i and b

iω  are acceleration and rotation rates measured in the body frame. nb
iC is 

the direction cosine matrix and nb
iE is the matrix that transforms the rotation rates in the 

body frame to the Euler angle rates: 

 

c( ) c( ) c( )s( ) s( )s( ) c( ) s( )s( ) c( )s( ) c( )
c( )s( ) c( ) c( ) s( )s( )c( ) s( )s( ) c( )s( ) c( )

s( ) s( )c( ) c( )c( )

nb
i

ρ φ ψ φ ψ ρ φ ψ φ ψ ρ φ
ρ φ ψ φ ψ ρ φ ψ φ ψ ρ φ

ρ ψ ρ ψ ρ

− + +
= + − +

−
C     (3.30) 

1 s( )s( ) / c( ) c( )s( ) / c( )
0 c( ) s( )
0 s( ) / c( ) c( ) / c( )

nb
i

ψ ρ ρ ψ ρ ρ
ψ ψ

ψ ρ ψ ρ
= −E   (3.31) 

 

where s(.) and c(.) represent sin(.) and cos(.) respectively. 

 

The following conditions are applied in this simulation: a) Altitude fixed, 0zΔ =V ; b) 

Velocity constant c C=V ; c) Roll, ψΔ , assigned as the control input, n
iu . The model 

(3.29) can now be simplified with  

 

9.8 tan( ) /

sin( )
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c

x

y

z

φ ψ ψ

ω ψ
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    (3.32) 
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f cos( ) sin( )
f f 9.8sin( ) ( sin( ) cos( )) cos( )

f 9.8cos( ) ( sin( ) cos( )) cos( )

x x y
b
i y x y

z x y

V V
V V
V V

φ φ
ψ φ φ ψ
ψ φ φ ψ

Δ + Δ
= = − Δ − Δ

+ Δ − Δ
  (3.34) 

 

where ψΔ  is the change in the roll set by the trajectory planner.  
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3.8.2.2. Observation Model 

Each observation 1 [ ; ]jn
i θ ϕ+ =z  of target j from robot n comprises of both bearing, θ , and 

elevation, ϕ , measurements from the n-th robot to the j-th target at time step i+1, given 

by  

 

2 2

( , )

atan2

atan2
( ) ( )

jn n j
i n n

j
i

nj
i

j
i

nj j
i offset i offset

h

y y
x x

z z
x x x y y y

θ

ϕ

θ
ϕ

= +

− +
−

= =
− +

− + + − +

z x w

w

w

     (3.35) 

 

where ; ;j j j jx y z=  denotes the state of the j-th target, nh  is a nonlinear function 

which depends on the model of the sensor equipped on the n-th robot and nw  is a zero-

mean Gaussian measurement noise with standard deviation of / 36σ = rad is used for 

both the bearing and elevation measurements. 

 

offsetx  and offsety  are the offsets of the camera view due to the roll (ψ ) and pitch ( ρ ) of 

the UAV, and are defined by 

 

tan( ) cos( )
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tan( ) cos( / 2)
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    (3.36) 

 

The information predicted to be observed depends largely on the roll of the UAV as the 

camera is mounted on the base of the UAVs, as seen in Figure 3-8.  
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Figure 3-8 Camera View of the UAV (Kim et al. 2004) 

 

3.8.2.3. Performance of MPC 

Figure 3-9 illustrates the initial setup of the simulation with three targets on the ground 

and two UAVs at different altitudes. Ten trials were conducted with an increasing 

planning horizon. The UAVs are simulated using MPC from one-step (D = 1) to five-

step (D = 5) planning horizon. Table 3-3 contains the average information gain from 

these trials and the single-step method (D = 1) is used as the benchmark. 

 

 

Figure 3-9 Initial Information and Starting Poses 

 

System performance using an arbitrary fixed path, where the roll is a constant /6rad 

(Figure 3-11), is also evaluated for the purpose of comparison. This path is selected 
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such that each target is visible to at least one of the UAVs along the path and the no-go-

zone constraints are not violated. 

 

Results in Table 3-3 show that the information gain following the trajectory generated 

by MPC is much higher than that of the fixed path. Furthermore, it can be seen that 

higher information gain is obtained from the MPC strategy with the increase of the 

planning horizon D. After a terminal time of T = 50 steps, with a planning horizon of 

5D = , MPC gained on average 426% of the information obtained using D = 1. The 

difference in information gain is not as large after 500 steps as the rate of information 

gain plateaus. This is a result of the planes flying at a fixed altitude high above the 

targets. The eigenvalues of the information matrices in the vertical direction eventually 

became dominant and will not increase significantly further due to the fixed altitude. 

Figure 3-10(a) shows the vertical offset of the planes and the uncertainties of the targets 

at the end of the mission. There is greater uncertainty in the vertical direction. 

 

D T Nω  Imax R (%) D T Nω  Imax R (%) 

 0 (fixed ctrl) 50 NA 0.0080 84  0 500 NA 0.0212 53 

 1  50 3 0.0095 100 1 500 3 0.0403 100 

 2 50 3 0.0179 188 2 500 3 0.0535 133 

 3 50 3 0.0219 231 3 500 3 0.0561 139 

 4 50 3 0.0333 351 4 500 3 0.0584 145 

 5 50 3 0.0405 426 5 500 3 0.0596 148 

Table 3-3 Results from the Three Approaches  

where Imax=min(eig( TI )), R=Imax/Imax(D=1)*100 

 

3.8.2.4. Incorporating Dynamic Constraints 

A benefit of using MPC is that varying constraints can be continuously incorporated 

into the planning process. To illustrate this aspect, a no-go-zone constraint, depicted by 

the green circles in Figure 3-9 is enforced, i.e. the robots cannot fly within the maximal 

axis of the 95% confidence ellipse of any target in addition to a predefined safety 

distance. When the uncertainty of the target location is large, this no-go-zone constraint 
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is larger. As the robots gain more information on the target's location, then the size of 

the no-go-zones around the targets reduce accordingly.  

 

The result of using MPC is displayed in Figure 3-10. The UAVs gradually move closer 

to the targets as the sizes of the no-go-zones reduce so as higher information gain may 

be obtained from their observations. Figure 3-10(b) shows the plane-view depicting the 

paths outside the no-go-zones.  

 

 
  (a) MPC Path    (b) MPC Path within Constraints 

Figure 3-10 MPC Path 

 

 
  (a) Fixed Path    (b) Fixed Path within Constraints 

Figure 3-11 Fixed Control 
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3.9. Discussion 

3.9.1. Computational Issues  

3.9.1.1. Planning Horizon 

By planning a number of steps ahead, a near optimal route can be chosen by assessing 

the maximum predicted future reward. Increasing D may provide a solution closer to the 

global optimum; however this results in an exponential increase in computational 

complexity. Size of D is clearly limited by the available computational capacity. 

 

On the other hand, if the sensor noise is high, Assumption I in Section 3.5.2 is violated 

and the control action obtained by the D-step optimisation strategy may be far from 

optimal.  Thus in many practical scenarios using a large D may not provide significant 

gains.  

 

Additionally, in the proposed strategy, equal steps sizes in the planning horizon are 

used. It is possible to use varying step sizes, such as a geometric series, where there is a 

finer resolution at the start and an increasing step size for each time step in the future. 

Other variations to the structure of the tree search, not explored here, also represent an 

interesting subject for future work.  

 

3.9.1.2. Optimisation Algorithm 

Optimisation algorithms are necessary to systematically search through possible control 

actions that are within the constraints to obtain the solution that best meets the objective 

of the trajectory planning. Although the computational complexity of EETS grows 

exponentially with respect to the number of options N , keeping N  small reduces the 

computational cost while having only a minor tradeoff in information gain, as seen from 

Table 3-1.  This is due to the nature of the target localisation problem; if two 

observations are made at points very close to each other, then the information obtained 

from the observations will be similar.   

 

Figure 3-5 shows that the information gain as a function of the control actions (the turn-

rates) is relatively smooth, except for the steep drop due to the control actions moving 

the robots such that the targets are out of the sensor’s field of view.  
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Figure 3-12 Graph Of Information Gain Vs. Turn-Rates  

Taken from 2 Different Robot Locations 

 

To further analyse the affect of considering a larger number of control options, 34 trials 

were conducted with one robot, one target in a two-dimensional scenario with the 

planning horizon set to D=2. Two cases are compared with N =129 and N =3. The 

results obtained are shown in Table 3-4.  The study showed only 4% improvement in 

information gain with N =129.  It follows that, in the bearing-only trajectory planning 

problem, it is appropriate to select only a small number of possible control actions that 

result in significantly different observing points in the next time step. 

 
 

 Information Gain 

N  Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 

3 0.2346 1.3621 0.8192 1.5429 1.1056 1.7024 1.7184 

129 0.2596 1.3621 0.8192 1.5435 1.1056 1.7178 1.7425 
 

Table 3-4 EETS Increasing Control Options 

 

3.9.1.3. Centralised Control 

Centralised control suffers from the key problem of computational complexity 

increasing exponentially with the number of robots used. On the other hand, 

decentralised control without coordination may clearly perform poorly in comparison. 

An extreme case is when the two robots start from similar poses. Trajectories obtained 
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from optimal decentralised control will intuitively result in similar trajectories for each 

robot, which is far from the global optimal.  Better performance may be achieved by 

decentralised control combined with negotiation between robots (e.g. Grocholsky 2006) 

but negotiation processes are generally complex.  

 

In the target localisation problem, the number of actively cooperating robots may be 

small in general.  The cooperative control problem for a large number of robots can 

often be decoupled into two sub-problems; a task assignment problem and an actively 

cooperative control problem, in the case of a small group of robots. This presents a 

potentially fruitful area for future research. 

3.9.2. Bearing-Only Target Initialisation  

The strategies proposed in this chapter are effective only if an initial target location 

estimate, for example from satellite surveillance, is available. When the initial target 

locations are unknown, the fundamental task then becomes target search and exploration 

(Roy and Earnest 2006). Then in such case, target initialisation needs to be considered. 

 

The initial target location estimate cannot be described by a single Gaussian distribution 

when the information is from only one observation using a bearing-only sensor. This 

prevents the use of the EIF from the outset due to the Gaussian assumption.  

3.9.2.1. Strategies for Bearing-Only Target Initialisation 

There are many established methods to represent non-Gaussian estimates. Ong et al. 

(2005) compared different ways of non-Gaussian representations including Gaussian 

mixture models, Parzen density estimates and particles. The results of the study led to 

the conclusion that particle representations are best used for initialisation. It is a popular 

strategy for bearing-only initialisation (Davison, 2003). 

 

In Bryson (2007), a delayed strategy is used for the initialisation of targets. The robot 

poses and observations are stored until a sufficient baseline exists between two 

observations. The information from poses and observations are recovered in a batch 

update step. Due to a delayed initialisation, the trajectory planning does not consider the 

new target until it is initialised.   
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Kwok and Dissanayake (2004) used a multiple hypothesis filter where several 

hypotheses of the target location are created along the line of sight of the initial 

observation. Each hypothesis is integrated into the filter and treated as a separate target. 

As further observations are made, the false hypotheses are eliminated.  

3.9.2.2. Incorporating new Targets in the Trajectory Planning during Initialisation 

There may be cases where there are several targets being estimated and most of these 

targets have already been initialised. It then becomes difficult to weight the information 

gain from the targets described by the information matrix as well as the newly detected 

targets described by other forms such as particles. 

 

For the delayed initialisation case, it is not possible to incorporate a new target in the 

planning before its initialisation. In the multi-hypothesis case, it is difficult to include 

the new target in the planning because there are multiple possibilities. Incorporating all 

the hypotheses would incorrectly alter the balance between the information gain of the 

new target and the information gain of existing targets.  

 

These initialisation processes may be quite fast as several subsequent observations are 

often made while the UAV flies over the target. Given a reasonable sensor sample rate, 

it is unlikely that a target will be observed only once and then disappear for several 

observations. One possible option for the trajectory planning is to ignore the 

information gain from the new target, until the initialisation process is complete.  

 

3.10. Summary 

In this chapter, a trajectory planning problem for heterogeneous robots in bearing-only 

target localisation is investigated.  The problem has been formulated as an optimal 

control problem for a nonlinear system with a gradually identified model and a 

nonlinear MPC strategy is proposed.   

 

Simulations of two scenarios are presented comparing the information gain and 

computation times of different optimisation strategies.  The results show that on average 

EETS ( 3Nω = ) is 20 times faster than EETS+SQP and achieves similar gains in 

information. It is demonstrated that EETS alone provides a near-optimal solution. The 
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value of cooperation is also demonstrated with the centralised control, obtaining on 

average 35% higher information gain than a simple decentralised control solution. An 

interesting observation is presented where the trajectories obtained by the proposed 

method is governed by the information matrix and not the scalar measure of 

information. MPC is shown to perform better than an arbitrary fixed control and 

increasing the planning horizon improved results. It is also demonstrated that the MPC 

solution does not violate dynamic constraints. 

 

According to the analysis and simulation results, the following conclusions are made for 

effective trajectory planning in multi-agent bearing-only target localisation: 1) 

Information matrices and EETS allow the planning of near optimal trajectories in terms 

of time and information gain.  2) A small number of control options are sufficient to 

obtain a near optimal result.  3) Maintaining a short planning horizon, D, is beneficial to 

reduce computation.  4) Centralised control is important for optimal robot coordination.  

 

In this chapter it is assumed that the locations of the robots are known. However, it 

would be more realistic for the location estimates of the robots to inherently contain 

noise and errors, even if they are provided by an external source such as GPS. Often, the 

locations of the robots may not even be available nor observable externally, as would be 

the case in indoor environments. The process of estimating both the robot location and 

the target/feature locations is called Simultaneous Localisation and Mapping (SLAM). 

In the next chapter, the trajectory planning problem for SLAM is addressed. The 

objective is to plan the robot trajectory such that the quality of the SLAM result is 

maximised. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 4. Trajectory Planning for Point Feature 
based SLAM 

 

 

4.1.  Introduction 

This chapter explores trajectory planning for point feature based Simultaneous 

Localisation and Mapping (SLAM). The main performance criteria in SLAM are to 

achieve good coverage of the unexplored area and to obtain a map with high accuracy 

within an available time. To this end, trajectory planning provides scope for the robot to 

exploit the latest knowledge obtained from sensor observations in actively mapping an 

environment. As the robot gradually updates its knowledge of the environment, the 

uncertainties of the robot pose and map features are continually taken into account. This 

process of trajectory planning for SLAM is referred to in the literature as Active SLAM 

(Zhang et al. 2006) or Simultaneous Planning, Localisation and Mapping (SPLAM) 

(Meger 2006).  

 

For this problem, an Extended Kalman Filter (EKF) is considered as the underlying 

estimator. It is used to estimate the robot pose and the features of interest, where the 

uncertainty of the estimate is expressed by the covariance matrix. Figure 4-1 illustrates 

the SLAM problem where a relative map is created based on sensor observations. 
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Figure 4-1 The SLAM Problem  

 

This chapter demonstrates that Active SLAM can be formulated as an optimal control 

problem for a nonlinear control system with a gradually identified model. It is then 

shown that the MPC framework proposed in Chapter 3 can be used to obtain robot 

trajectories. The objective of the MPC optimisation is to maximize the information 

gathered from the environment within a finite time horizon. In MPC however, the 

planning horizon is limited by the computational capacity and only a local solution is 

possible. A novel technique is introduced that utilises an attractor combined with MPC 

to improve the solution. The attractor provides high level task intentions and 

incorporates global information about the environment for the local planner, thereby 

eliminating the need for costly global planning with longer horizons. It is shown that 

trajectory planning with MPC and an attractor can effectively deal with a range of 

objectives and results in improved performance over systems that employ local planning 

alone.  

 

4.2.  Background 

In the SLAM problem, the feature locations are initially unknown. The robot builds a 

relative map based on observations of features and localises itself within this map. Both 

features locations and robot pose are estimated as illustrated in Figure 4-1. Trajectory 
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planning for SLAM is more challenging than the problem addressed in Chapter 3 

because the robot is required to revisit well known features to improve the accuracy of 

its pose estimate, explore unknown areas to ensure the map is complete, consider the 

detection and initialisation of new features, and account for new constraints imposed on 

the trajectory.  

 

Several works present in the literature have addressed the Active SLAM problem. 

Localisability of the robot during the SLAM process is considered by Stachniss et al. 

(2004) through the use of active loop closing and Makarenko et al. (2002) by 

considering it as a utility at the destination. However, as the robot may require to 

localise itself before it reaches the destination, it may be beneficial to consider 

localisability along each step of the path and to determine appropriate instances to 

revisit well known features.    

 

For exploration, both Stachniss et al. (2004) and Makarenko et al. (2002) performed 

frontier based exploration using an occupancy grid map. Sim (2005) on the other hand 

encouraged coverage by randomly placing virtual features in unexplored areas. Yet, this 

strategy is not particularly effective for systems with short planning horizons and 

limited sensing as the virtual features will not influence the robot’s decision if they are 

not visible within the planning horizon. Overcoming this limitation by placing 

numerous features would increase the computational cost of the planner. 

 

4.3.  Trajectory Planning Problem in SLAM 

Planning robot actions for SLAM requires fast algorithms that can adapt to changes in 

the current knowledge of the environment. Two main items not considered in the 

previous chapter, the addition of newly observed features and the update of the robot 

pose covariance, need to be considered here.  

4.3.1. The Process and Observation Models 

What follows is the formulation of a single robot SLAM problem. In SLAM, the state 

vector contains the robot’s pose and the locations of the features of interest, 

 

1{ , , , }i i Jx .     (4.1) 
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Suppose the discrete-time process model of the robot is 

 

1 ( , , )i i if+ = xx x u w      (4.2) 

 

where (.)f  is a nonlinear function, which depends on the type of robot and its dynamic 

model, ix  is the robot pose, iu  is the control input at time i and is constant during [i; i + 

1), and xw  is the zero-mean Gaussian process noise with covariance matrix Pw. 

 

Constraints on the robot’s motion are to be incorporated into the planning process. The 

control constraints and state constraints can be expressed by 

 

, , [ , 1)i i t iU R t i i∈ ∈ ∈ +u x ,    (4.3) 

 

where iU  is the set of admissible controls for the robot at time i and iR  describes the 

safe region for robots during time i to time i + 1. 

 

The features are assumed to be stationary. Let 1iJ +  denote the set of the indices of the 

features that the robot can observe at time i + 1,  

 

11 1{ , , }
ii KJ j j
++ =      (4.4) 

 

where the integer 1iK +  depends on the pose of the robot at time i+1, on the range of the 

sensor and the feature distribution in the environment. The 1iK +  features may contain 

both previously observed features as well as new features. The observation of the robot 

at time i + 1 is then 

 

11
1 1 1[ , , ]Kijj

i i i
+

+ + +=z z z      (4.5) 

 

such that for each feature, 1ij J +∈ , the observation model is 

 



  52 

 

 

1 1 1( , )j j j j
i i i zh+ + += +z x w     (4.6) 

 

where j  denotes the state of the j-th feature, 1(.)j
ih +  is a nonlinear function which 

depends on the model of the sensor, and j
zw  is a zero-mean Gaussian measurement 

noise with a covariance matrix 1
j
i+ . 

4.3.2. Extended Kalman Filter based SLAM Algorithm

The Extended Kalman Filter (EKF) can be used to update the knowledge of the system. 

The complete process model, for a state vector containing the robot pose ix  and the 

locations of all the observed features, , is 

 

1

( , , )
( , , ) i i

i i i

f
+ = = x

x

x u w
f u w .    (4.7) 

 

The prediction step is 

 

1
T T

1

ˆ ˆ( , ,0)i i i

i i i i i w i

−
+

−
+

=

= +

f u

P P Y P Y
    (4.8) 

 

where ˆ
i  and iP  are the state estimate and covariance matrix at time i (after the update), 

1
ˆ

i
−
+  and 1i

−
+P  are the predicted state estimate and covariance matrix at time 1i +  (before 

the update), i  and iY  are the Jacobians of f  with respect to  and xw  which are 

evaluated at ˆ( , ,0)i iu , respectively. 

 

The update step in EKF SLAM is: 

 

( )( )1 1 1 1 1 1

T
1 1 1 1 1

ˆ ˆ ˆ
i i i i i i

i i i i i

− −
+ + + + + +

−
+ + + + +

= + −

= −

K z h

P P K S K
     (4.9) 

where 



  53 

 

 

T 1
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− −
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K P H S
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    (4.10) 

 

and 1
T1

1 1 1
iJ

i i ih h +
+ + +=h  is the set predicted observations, 1i+H  is the Jacobian of 1i+h  

evaluated at 1
ˆ

i
−
+  and 1 1[ ]j

i idiag+ += . Note that 1i+H  depends on 1iJ +  since 1i+h  

depends on 1iJ + . Also, detection of new features increases the dimension of 1
ˆ

i+  and 

1i+P .  

 

The EKF formulation requires the estimate of the state vector and the corresponding 

covariance matrix to be updated in a recursive manner. 

 

Combining equations (4.8) and (4.9), the EKF formula can be summarized as 

 

1 1 1

1 1

ˆ ˆˆ ( , , , , )
ˆˆ ( , , , )

i P i i i i i

i P i i i i

J

J
+ + +

+ +

=

=

F P u z

P G P u
    (4.11) 

 

where ˆ
i , iP  and 1

ˆ
i+ , 1i+P  denote the state vector estimate and covariance matrix at 

time i and time i + 1, respectively, ui is the control applied at time i, Ji+1 and zi+1 are 

defined in (4.4) and (4.5). The functions ˆ
PF  and ˆ

PG  are determined by the process and 

observation models along with the prediction and update formulas (4.8) and (4.9) 

respectively. 

4.3.3. Problem Statement 

The objective of the trajectory planning is to minimise the uncertainty of the system 

after a finite time T has elapsed. The covariance matrix at time T, PT, provides a 

complete representation of this uncertainty. 

 

Problem Statement: Suppose the total time for the SLAM task is T. At time step 0, the 

robot pose is 0x , the initial estimate of the J0 features observed are 0 0, 1, ,j j J=  and 

the covariance matrix is 0P . The task is to choose suitable control actions for the robot 

during [0; T),  
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0 1 1, , , T −u u u      (4.12) 

 

such that a quantitative measure of the final covariance matrix PT is minimised. 

 

Note that different quantitative measures of the covariance matrix may be used 

depending on the application, such as the maximal/minimal eigenvalue, determinant, or 

the trace of the matrix. For this problem, the trace is selected as the quantifier, i.e. 

 

trace( )TP .     (4.13) 

 

It has been shown in Sim and Roy (2005) that in Active SLAM, optimisation using the 

trace of the covariance matrix from the EKF performs better than using the determinant. 

Computing the eigenvalue as used in Chapter 3 is computationally expensive due to the 

relatively large size of P in the case of SLAM. Furthermore, as a bearing-only sensor is 

not used in this chapter, the uncertainty ellipses of the features do not have the same 

characteristics as those present in the bearing-only target localisation problem. 

4.3.4. An Optimal Control Problem for a Gradually Identified Model 

The above planning problem can be regarded as a finite-time horizon optimal control 

problem for a nonlinear control system where the system dynamics are given by (4.11). 

The system state includes the estimate of the state vector ˆ
i  and the independent 

elements of the covariance matrix iP . The objective of the control problem is to 

minimise the trace given by (4.13), which is a function of the system state. 

 

It must be noted that the system given by (4.11) is not an ordinary nonlinear discrete-

time control system. The reasons for this are: 

 

(a) The dimension of the system state is not fixed. For example, as new features are 

detected in the environment, the dimensions of ˆ
i  and the associated covariance 

matrix iP  are enlarged; 
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(b) The state constraints in (4.3) are not known a priori. For example, an obstacle may 

not be detected until it appears within the sensor field of view; and 

 

(c) The dynamics of the system depend on 1iJ +  and 1i+z . Neither of these are 

available until time step i + 1. For example, it is difficult to predict the set of 

features 1iJ +  that can be observed due to the inaccurate robot pose and feature 

position estimates, and the unknown locations of possible new features. In 

addition, the true observation 1i+z  contains sensor noise. 

 

Equation (4.11) shows that the uncertainty, 1i+P , at time i+1, is not dependent on the true 

observation 1i+z . It is dependent on the uncertainty at time i, the state vector estimate at 

time i, the control action taken at time i, and the set of features observed at time i + 1. 

However, as the estimate ˆ
i  depends on the noisy observations, 1, , iz z , when 1i+P  is 

to be predicted at time 0, not only is it necessary to know the set of features that can be 

observed, 1 1, , iJ J + , but also the real observations 1, , iz z . In the special case when 

the feature set is not variable and the observation noises are very small (thus the 

innovations are small and 0
ˆ ˆ , 1, ,i i M≈ = ), it is possible to predict 1i+P  by only 

predicting 1 1, , iJ J + ; this is the method used in Sim and Roy (2005). 

 

In general, as the information gathering task progresses, the knowledge about the 

environment accumulates. Firstly, there is increasing knowledge about the total number 

of features in the environment, thus the control system dimension and the state 

constraints become more defined. Secondly, the feature location estimates become 

increasingly accurate, thus 1iJ +  and 1i+z  are more predictable and hence the 

uncertainties involved in the dynamics of the control systems become smaller. 

Therefore the control system (4.11) is a system with a gradually identified model. 

 

4.4.  Model Predictive Control for Active SLAM 

As shown in the previous section, the model of the Active SLAM problem is gradually 

identified. It may be possible to use a general representation, in the EKF update 

equations (4.11), such as Markov Decision Process (MDP) or Partially Observable 
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Markov Decision Process (POMDP), to take into account all the possible dimensions of 

the state vector, all the possible 1iJ +  features and 1i+z  observations based on knowledge 

about the feature distribution in the environment and the sensor noise. However, such a 

model would be excessively complex and would render the planning problem 

intractable. Following from Chapter 3, it is proposed to use Model Predictive Control 

(MPC) for Active SLAM. This provides for a simple but tractable strategy where new 

knowledge is exploited at every time step.  

 

In MPC, recall that at each time step i, an optimal control problem of fixed planning 

horizon of D steps is solved and a sequence of D control actions 

 

1 1, , ,i i i D+ + −u u u      (4.14) 

 

is obtained, but only the first control action, iu , is applied. This strategy requires a 

fixed control system model at each step to compute the D-step optimal control action. 

Therefore, a means to predict 1iJ +  and 1i+z  for D steps is required. 

4.4.1. Multi-Step Prediction for Active SLAM 

In order to plan within a limited computational capacity using MPC, it is proposed to 

simplify the multi-step predictions at each time step. The mean value of the current state 

estimate may be used to predict 1iJ +  for D steps assuming no new features and perfect 

process models. The predicted 1iJ +  features will be used to predict 1i+z  assuming zero 

observation innovations. Another assumption to be made in the D-step optimal control 

problem is that the control constraints and the state constraints are constant. Thus, to 

enable the planning of multiple steps in Active SLAM, the following assumption is 

formally stated. 

 

Assumption I. For any possible control sequence 0 1, , D−u u , the group of features that 

are predicted to be observed at time 1 (0 1)i i D+ ≤ ≤ −  incorporate all the features that 

constitute the observation 1i+z . Moreover, the safe region 1iR +  contains the safe region 

0R  as no new features are detected. 
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In Active SLAM, the real observations 1i+z  are required to update the state. These 

observations for i = 0,…, D  1, are not available at time i = 0, and need to be predicted. 

In an EKF, there is an underlying assumption that the distribution of the true locations 

1i+x  is Gaussian with mean 1ˆ i
−
+x . The observation noises are also assumed to be 

Gaussian with zero mean. Thus it can be stated that at time i = 0, the innovations 

( )1 1 1
ˆ

i i i
−

+ + +−z h  are all random variables with zero mean. This leads to the following 

assumption. 

 

Assumption II. The innovations at any time i+1 are zero, i.e. 

 

( )1 1 1
ˆ 0i i i

−
+ + +− =z h      (4.15) 

 

for all i = 0, … , D  1. 

 

At time i = 0, under Assumptions I and II, the D-step optimal control problem for the 

gradually identified system becomes an optimal control problem for an ordinary 

deterministic control system. This allows (4.14) to be computed in the following multi-

step look-ahead control optimisation.  

 

D-step optimal control problem. Given 0
ˆ  and 0P , find (4.14)  such that trace( )DP  is 

minimized, where DP  is given by the following equations: 

 

( )
1

T T
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Following this, at time i, Assumptions I and II need to be made from time i to i + D and 

the objective is to minimise  

 

trace( )i D+P      (4.18) 

 

In the planning process, the possible future changes in the model are not considered, 

thus it is crucial to replan as soon as new state estimates are available. 

4.4.2. Optimization Techniques 

A range of optimisation techniques can be used to solve the D-step optimal control 

problem. An EETS was demonstrated in the previous chapter as a suitable technique in 

that it conducts a coarse exhaustive search. SQP was shown to increase the 

computational cost. SLAM itself is already computationally expensive and hence using 

SQP makes this problem computationally intractable. EETS is chosen in the following 

as the optimisation technique to perform the D-step optimisation. 

4.4.3.  Simulation Results for Active SLAM using MPC 

Simulations are conducted using a single robot with multiple features in a two-

dimensional environment. Velocity and turn-rate are the available control inputs. 

Equipment specifications including the standard deviations, , for measurement and 

control noise are as follows: sensor field of view, ± /8rad with = /180rad for bearing 

noise; maximum sensor range, 5m with =0.2m; robot maximum velocity, 0.2ms-1 with 

0.3σ = ms-1; robot maximum turn rate, /180rads-1 with / 60σ π=  rads-1. As new 

features are detected, they are assigned an exclusion (no-go) zone of 0.3m around them.  
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4.4.3.1. Performance of MPC in Active SLAM 

In the first set of simulations, an environment is considered where 20 features are 

scattered in a 400m2 search space as seen in Figure 4-2. The tasks for the robot are to 

discover and localise these features while maintaining a good estimate of its pose. A 

terminal time of T=1000 discrete time steps is allotted to the robot. The length of each 

time step from i to i+1 is set to 0.4 seconds.  

 

Examining now the single-step planning strategy, the robot may observe a new feature 

at pose ix  and in the subsequent steps, 1i+x  and 2i+x , the robot may continue to observe 

this feature. Suppose the robot moves past this feature at step i+3, such that at 3i+x  the 

feature is no longer within the sensor field of view. Now the trajectory and kinematic 

constraints may be such that multiple steps are required for the robot to turn sufficiently 

for the feature to re-enter the field of view. With the single step planning strategy there 

will not be the necessary length in the planning horizon to actively revisit this feature, 

i.e. it falls out of the planning horizon and thus contributes no information to the 

algorithm. Figure 4-2(a) illustrates the problem, with trajectories generated for planning 

horizon D = 1 with Nω = 5 control options. Clearly, the whole map is not uniformly 

targeted, also note the two features with larger uncertainties; the robot trajectory has 

been biased to nearby features that are observed in the next step.  

 

Computing multiple steps in the planning horizon improves results. Now, the features 

detected may be revisited in an attempt to minimise the uncertainty of the map. Figure 

4-2(b) illustrates where the trajectory is obtained with a planning horizon D=3 and 

Nω =5 and for the sake of comparing the single-step and multi-step planning strategies, 

these two examples are selected for the similar number of features they identify. At 

solution end, i=T, the multi-step MPC strategy yields a smaller uncertainty, yet both 

strategies have a common failing in that features are only detected by chance as there is 

no explicit exploration strategy. 
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          (a) MPC D=1              (b) MPC D=3 

 
          (c) Random Control            (d) Fixed Control 

Figure 4-2 Robot Path and Feature Uncertainties 

 

For the sake of some relevant discussion results are provided for random (Figure 4-2(c)) 

and fixed control (Figure 4-2(d)). Random control is a general approach when there is 

no information available for the planning of trajectories. The random control applies a 

random selection from a set of feasible control options and clearly provides a trajectory 

with a poor SLAM result. The robot heads predominantly in a straight line whilst 

swerving from left to right, under the influence of a constraint at the edge of the 

exploration space, it stops and turns randomly. This constraint is indicated by the green 

border. The results illustrate that although the exploration space is largely explored by 

the terminal time but the uncertainties of the robot and map features are quite high, 

thereby increasing the chance of an incorrect data association. Note the large ellipses of 

uncertainty around the features. 
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The fixed control (constant velocity and turn-rate) guarantees loop closure but not 

constraint satisfaction. The controls are arbitrarily selected. It gives the predictable 

result of Figure 4-2(d); the robot was unable to cover much of the area due to the 

restricted path. Although artificially simple, the simulation demonstrates how the robot 

localises correctly on its path as it continuously revisits these previously observed 

features. Note the small ellipses of uncertainty around the six observable features. A 

smaller turn-rate may be applied to enable the robot to move in a larger circle to obtain 

higher coverage, however this increases the chance that a new feature would be detected 

in its path and thus constraints would be violated.  

4.4.3.2. Increasing Process Noise 

The effect of process noise on the effectiveness of the trajectory planning is always of 

interest. Recall the underlying assumption in applying the multi-step prediction, 

Assumption II, where the innovations are assumed to be zero; it is valid if the process 

noise is small. Increasing the process noise would inherently increase the innovation. 

What follows are trials to examine the effect of the control noise on the effectiveness of 

the planning strategy. Table 4-1 gives a set of results for Nω =3 control options, 20 

features, 1000 loops and different process noise levels. In each case, the same initial 

conditions are set and the results are from an average of ten trials. Sensor limitations are 

removed to avoid large differences in the number of features detected between 

simulations. The table gives the average uncertainties and its ratio over the uncertainty 

for the single-step optimisation method. The trials show that the benefits of planning 

with a longer look-ahead decrease as the process noise increases. However the results in 

the table show that even with a high noise level in the last column, a multi-step planning 

still performs better than the single-step optimisation method. Obviously, increasing the 

observation noise would generate similar results as it would also increase the 

innovations. However this is not studied further as the true observation noise parameters 

would be used in practical implementations and cannot be varied through trajectory 

planning.  
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 2 Vel noise 
(m/s) 

0.03 0.04 0.05 0.06 

 2 Turn noise
(deg/s) 

3 4 5 6 

D PTrace  RFinal PTrace RFinal PTrace RFinal PTrace RFinal 

  0 (fixed ctrl) 0.0065 1.14 0.0084 1.17 0.0111 1.22 0.0153 1.31 

  1  0.0057 1.00 0.0072 1.00 0.0091 1.00 0.0117 1.00 

  3 0.0052 0.92 0.0067 0.93 0.0085 0.94 0.0112 0.96 

  5 0.0047 0.83 0.0061 0.85 0.0080 0.88 0.0106 0.91 

  7 0.0042 0.73 0.0055 0.77 0.0075 0.83 0.0107 0.92 

Table 4-1 Results from Increasing Process Noise  

where PTrace= Trace(PT)/(number of rows in P) averaged over 10 trials  

and RFinal= PTrace / PTrace (D=1) 

 

It should be noted that the benefits attainable by applying MPC over other methods also 

depend on many factors. These factors include the environmental conditions (e.g. 

feature density) and system constraints (such as field of view, maximum turn-rate), etc. 

For example, in a confined space with near complete sensor field of view, all methods 

may locate the features well and planning is not as critical. When the sensing is limited, 

the position of the sensor becomes imperative to the mapping of the environment and 

coverage also needs to be considered in the trajectory planning. It is apparent in Figure 

4-2 (a) and (b) that the robot does not visit features that have not come into the sensor 

range as there is no explicit exploration strategy. This limitation is addressed in the next 

section. 

 

4.5.  Attractor aided MPC for Active SLAM 

4.5.1. Limitations and Insight of MPC for Active SLAM 

MPC with a few steps look-ahead is principally a local planning strategy and thus 

suffers from a fundamental shortcoming, along with other similar local planners. MPC 

with limited number of steps is unable to perceive beyond the set planning horizon. The 

planning algorithm will only optimise using features visible within the planning 

horizon, while ignoring distant features, even if they exist in the map. As illustrated in 
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Figure 4-3(a), map features outside the scope of the planning horizon are neglected from 

the optimisation.  

 

MPC is also incapable of proactively exploring. The robot does not consider moving to 

unexplored areas of the environment. In an illustrative result, (see Figure 4-3(b)), the 

robot is given an area to explore. Selecting T=30000 in the simulation will provide 

coverage equivalent to the case of T = ∞  for the given finite space. The features 

detected by the robot are well localised due to the optimization of the map within the 

sensed area. Yet as there is no explicit exploration strategy in MPC, the features are 

detected by chance and thus six features remain undetected even after the robot has 

sufficiently localised the known features.  

 

It is desirable to incorporate long term goals and exploration in the trajectory planning 

whilst maintaining simplicity and low computation. On the other hand, extending the 

planning horizon to enable the robot to incorporate long-term rewards is 

computationally expensive. Weighting utilities for multiple objectives for SLAM in an 

objective function, as in Frew (2005), may provide incentives for exploration and 

provide a means to incorporate long term rewards. It is however difficult to express the 

value of long-term rewards and tuning weights is cumbersome. 

 

 

Figure 4-3 Limitations of MPC 

 

(a) Limited scope of MPC (b) MPC path 
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By observing simulations, some insights into the behaviour of the robot during the 

SLAM process are obtained. Key behaviours demonstrated in the implementation of 

MPC for point-feature SLAM are revealed below and although these are readily 

apparent from examining the algorithms, they are of interest to the concept introduced 

in the subsequent section: 

a) When the robot is surrounded by features with large uncertainty, the robot itself 

will also have large uncertainty. An observation of a well-defined feature will 

improve the robot pose estimate and that of other features. Hence the 

information gain in observing the well-defined feature is large and the robot 

would be influenced to move in the direction of this feature so as to optimise the 

objective function in MPC. 

b) When the robot pose has small uncertainty and the map includes features with 

large uncertainty then the robot will gain more information about the feature 

locations by making further observations. The large information gain in the 

direction of these features then influences the robot to move in this direction, so 

as to optimise the objective function in MPC. 

c) Small uncertainty in the robot pose generally correlates with small uncertainty 

for location estimates of surrounding features.  Little information gain will be 

made as time progresses. However if a feature with large uncertainty comes into 

the range of the planning horizon then robot will maximise information gain by 

heading in the direction of this feature, again optimising the objective function 

in MPC. 

 

Furthermore, there are instinctive instances where certain tasks in SLAM are 

appropriate. These tasks include: a) covering unknown areas, b) observing well-defined 

features to localise the robot and c) localising poorly-defined features.  

a) When the map features are well-defined and the robot location is also well-

defined, then the robot should explore. The robot should seek opportunities to 

explore to minimise the time required to complete coverage of the environment. 

Exploration of unknown areas is important in Active SLAM to ensure good 

coverage. 

b) If the estimate of the location of the robot has large uncertainty and the map 

feature estimates also have large uncertainty then there is not beneficial to move 

into unexplored areas. Doing so would result in an inaccurate map. There is a 
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competing requirement in SLAM for the robot to regularly revisit known 

features to localise so as to not become lost. The larger the uncertainty of the 

robot pose estimate grows when exploring, the greater the chance the robot 

would make an incorrect data association. Revisiting well-known features is 

therefore critical for maintaining consistent estimates.  However, if the robot 

revisits known features too frequently then there will be a corresponding 

increase in the time to complete the exploration. 

c) If the estimates of the locations of map features contain large uncertainty and the 

uncertainty of the robot pose is low then it is necessary to localise these features 

to maximise the accuracy of the map. As new features are detected they will 

have large error in their estimated location. Subsequent observations of these 

features decrease this error. To be effective in the localisation of new features 

the robot should revisit well known features between subsequent observations of 

new features.  This reduces the impact of odometry error in the robot location 

estimate and increases the correlation between the well-known features and the 

new features.  

 

In order to conduct SLAM efficiently, high level planning is therefore required to 

instruct the robot when to focus on certain tasks. For each of these tasks it is desirable to 

change the trajectory of the robot such that it performs the particular task. Additionally 

it is advantageous to have a mechanism to switch between these tasks at appropriate 

instances during the SLAM process. From the insights gained by studying the behaviour 

of the robot, an attractor strategy is developed to aid MPC in the planning which allows 

for more effective task selection. It is proposed to use a feature as the attractor such that 

the properties inherent in the optimisation of the objective function can be exploited. 

That the attractor is included as a feature brings much adaptability to MPC. In Active 

SLAM, the objective function in the MPC strategy is predominately driven by the 

uncertainty of the features in the map.  MPC still has one objective, i.e. to minimise 

uncertainty, and applying the insights discussed above, the properties of the attractor (as 

a feature) may be adjusted so as to achieve certain goals.  The details of this strategy 

follow. 
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4.5.2. Concept of an Attractor and Reference Point 

The attractor strategy is a novel heuristic that adds a virtual feature to which the robot is 

directed to move in order to facilitate the SLAM process. The attractor enables the 

incorporation of global information and high level goals into the planning process by 

converting the long-term goals to potential information gain from observations within 

the short planning horizon of MPC. This is also the mechanism that enables the robot to 

proactively explore. The attractor strategy allows the MPC framework previously 

established to be maintained. As the attractor is a virtual feature, it is only included in 

the estimation process during the trajectory planning phase. Once the control action for 

the robot is selected, the EKF proceeds as normal without the attractor.  

 

The function of the attractor is to influence the gross motion of the robot towards 

desired locations by influencing the information gain of particular control actions. At 

each time step, i, the attractor is placed in the line of sight to an assigned reference 

point. Through tactical placement of the virtual feature, i.e. the attractor, the information 

gain for certain control actions can be increased and the motion of the robot is then 

directed towards a desired goal, which is the reference point. The reference point may 

be a specific point or on a feature of interest that needs to be observed based on whether 

the robot is exploring or mapping.  To be able to influence the MPC objective function, 

the attractor must lie in a location visible to the robot within the planning horizon. The 

attractor should also be placed further than the distance the robot can move in the 

planning horizon such that the robot does not consider the attractor an obstacle during 

the planning horizon or possibly move past the attractor in the initial steps. It is 

proposed to place the attractor at a range equivalent to the robot’s current sensor range, 

which meets the above two requirements as illustrated in Figure 4-4. With this 

approach, the local MPC strategy is able to incorporate the high level decisions and 

goals through the incentive provided by the attractor. Placing the attractor closer to the 

robot results in higher information gain and renders the attractor's influence greater. 

However, the optimal distance from the robot for the attractor to be placed is yet 

unresolved and needs further investigation.  
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Figure 4-4 Placement of Attractor 

 

4.5.3. State Machine for Active SLAM 

4.5.3.1.  Defining Modes in the State Machine 

For efficient implementation of Active SLAM, a system is devised with three operating 

modes for the robot: explore, improve localisation and improve map, which corresponds 

to the three main tasks in SLAM. The aim of the trajectory planning is to maximise the 

accuracy of a built map and to maximise coverage of an unexplored area within a 

prescribed terminal time. This is achieved in two stages: (i) first maximise coverage 

while maintaining a map at a certain level of accuracy; (ii) then once the environment 

has been completely explored, minimise the uncertainty of the map. In Stage (i) all three 

modes are active to maximise coverage. Once the area has been explored, then it 

switches to Stage (ii) where only the improve localisation and improve map modes are 

active. Figure 4-5 illustrates these modes and their selection process which in turn are 

based on the uncertainty of the estimates.  

 

      Robot 
       Attractor 
       Reference Point 
       Sensor View 
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Figure 4-5 State Machine for the Attractor Strategy,  

where Stage (i) incorporates both the light and dark blue zones;  

and Stage (ii) is defined by the light blue zone only 

 

4.5.3.2. Mode Transitions 

The robot determines its current mode in the state machine and appropriate instances to 

change modes based on the uncertainty of the state estimation. If the robot’s location 

uncertainty exceeds a threshold, then the robot changes its mode to improve 

localisation. When both the uncertainty of the robot and map features is below a 

predefined threshold, the robot mode becomes explore. If the uncertainty of the map is 

high and the robot location estimate is acceptable, the mode would be to improve map. 

Upon visiting a poorly estimated feature under the improve map mode, the robot either 

repeatedly switches between improve localisation and improve map modes or chooses 

to explore depending on the uncertainty of the system state.  

 

The robot remains in its current mode until either of the following two events occurs: a) 

the desired point or feature of interest falls into range of the sensor, or b) the robot’s 
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uncertainty exceeds a predefined threshold, triggering a mode transition to the improve 

localisation mode. 

4.5.3.3. Implementation of the Attractor for the Three Modes 

The modes in the state machine are facilitated by selecting suitable destination reference 

points to attract the robot. When the mode is explore, an exploration point is selected. 

When the mode is improve localisation, a nearby feature with a well-defined location 

estimate is selected and when the mode is improve map, a nearby feature with large 

uncertainty in the location estimate is selected. Selection of the particular exploration 

point or feature of interest is based on a heuristic of minimum distance such that it may 

be reached quickly.  

 

For the selection of features of interest as the reference point, thresholds are set to 

determine if the uncertainty of the feature location is large or small. If no features are 

found to meet the threshold requirement, then the feature with the largest uncertainty or 

the smallest uncertainty is selected depending on the mode.  

 

The thresholds for switching modes and selecting features as reference points are 

determined based on knowledge from previous experimental trials. For example, if the 

robot has a small maximum turn-rate it may need to turn a large circle to return to 

known features, in which case the threshold to switch to the improve localisation mode 

may be smaller. If the robot’s sensor noise is large, then the feature estimates will 

generally have a larger uncertainty and converge at a slower rate, thus the thresholds for 

selecting a feature of interest may be larger. 

 

In each mode, the attractor is placed in the direction of the reference point at a distance 

equivalent to the robot’s sensor range. The position and covariance of the attractor also 

depends on the current mode of the robot and the current knowledge of the system, i.e. 

iP  and  ˆ
i . 

 

1) Explore: For this mode the closest exploration point is selected from an exploration 

point list. Initially the entire search space is covered uniformly with exploration points, 

each representing an unexplored area. Exploration points are removed once they fall 

within the range of the sensor. If the exploration points are distributed too sparsely then 
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certain areas may be left unexplored, whereas the assignment of many exploration 

points will result in increased computations. Thus for this study, these points are 

distributed with a distance proportional to the robot’s sensor range. Figure 4-6 displays 

an example initial environment; the exploration points are indicated by light blue dots, 

the feature distributions are depicted by the red dots and the initial robot pose is 

indicated by the blue triangle in the centre of the map.  

 

 

Figure 4-6 Initial Environment Setup (m) 

 

An artificial state, artificial, and an artificial covariance, Partificial are created for the 

trajectory planning to include the state and covariance of the attractor. The attractor is 

added by initialising a new feature as if it was observed at the desired placement, i.e. the 

system state vector is now augmented with the location of the attractor. The new 

estimate becomes 

 

 
( )

T
T Tˆ

artificial i attractor

artificial i attractor

diag=

=

P P P
    (4.19) 

 

where attractor  is the location of the attractor and attractorP  is the associated covariance 

generated from initialising a new point feature in the desired location. 
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Figure 4-7 shows a robot in the explore mode with the attractor having a large 

uncertainty. The robot is able to observe the attractor as a new feature and it moves in 

attempt to localise the attractor. This mode is no longer active once all the exploration 

points are covered. 

 

 

Figure 4-7 Attractor - Explore 

 

2) Improve Localisation: For this mode, a well-defined feature is selected. Here, only 

the state vector, ˆ
i , is changed. The state of the feature selected to be the reference 

point is altered to be at the desired placement of the attractor. The covariance Pi is left 

unchanged and thus the effect of the correlations from observing the well-defined 

feature is maintained, i.e.  

 

 

( )
ˆ

artificial i

artificial i

artificial s attractorj

=

=

=

P P

     (4.20) 

 

with js representing the index of the feature selected. 

 

Figure 4-8 is a snapshot of the planning during the improve localisation mode, where 

the robot’s uncertainty is quite high. The attractor in this case has a low uncertainty 

equivalent to the uncertainty of the feature selected. This feature is indicated by the 

Robot
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magenta asterisk. The robot sees the attractor as a feature with a well-defined location 

and moves towards it to localise itself.  

 

 

Figure 4-8 Attractor – Improve Localisation 

 

3) Improve Map: For this mode, the artificial state and covariance is created as in 

(4.20), where only the state vector, ˆ
i , is changed for the feature with large uncertainty 

selected. The covariance Pi is unchanged and thus the large uncertainty of the feature 

becomes that of the attractor. 

 

Referring now to Figure 4-9, a snapshot of the improve map mode, note that the 

uncertainty of the attractor is equivalent to the uncertainty of the feature selected for the 

reference point. The robot sees the attractor as a feature with large uncertainty and 

moves towards it to localise it. Once all the exploration points have been visited, the 

robot may continue improving the accuracy of the map. 
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Figure 4-9 Attractor - Improve Map 

4.5.4. Simulation Results for Attractor aided MPC 

In the simulation, the robot is to explore and map an area of 400m2 in a terminal time of 

T=3000. The environment consists of 22 randomly located features with three features 

visible from the starting position. The sensor range of the robot is set to 5m with field of 

view of ± /4rad. The thresholds for mode transitions and feature selection were based 

on the maximum eigenvalue of the feature or robot uncertainty and are listed as follows: 

well defined feature < 0.02, poorly defined feature > 0.2, improve localisation mode 

when robot uncertainty > 0.1, improve map mode when feature uncertainty > 0.2. Table 

4-2 displays the results obtained using the proposed algorithm. 

4.5.4.1. MPC+Attractor vs. MPC alone 

The addition of the attractor improved coverage significantly. In comparing the 

coverage of MPC to MPC+Attractor, it can be observed in Table 4-2 that 

MPC+Attractor took 1606 time steps to cover 100% of the exploration space. After 

3000 time steps MPC alone only managed to cover 88% of the exploration space.  

 

Conversely, it is evident that there is a tradeoff between coverage and uncertainty 

reduction. The results from using the attractor obtained less accuracy. In the 

MPC+Attractor strategy, the robot is often led to the edges of the environment to ensure 

coverage. The exploration points may be far from a cluster of known features and there 

may be few or no features observed at these points. If a new feature is detected at these 

points then the uncertainty would consequently be large due to the robot traveling a 
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Poor
Feature
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long distance without making observations. When MPC is implemented without the 

attractor, the robot only traverses near known features and new features are only 

detected by chance. Hence, the new features detected would be reasonably close to 

known features. As a result the uncertainty does not grow excessively large. In Table 

4-2, MPC alone achieved a slightly lower uncertainty of 0.0045 compared to 0.0048 

from MPC+Attractor.  

 

Comparison of Strategies for Active SLAM 

Method 
Area 

Covered (%) 

Time Steps (i) 

to Complete 

Coverage 

Trace(PT)/(total 

rows in PT) 

100 1777 0.0035 

100 1124 0.0035 

100 1643 0.0043 

100 1644 0.0082 

100 1760 0.0039 

MPC (3 steps) + Attractor   

100 1685 0.0056 

Average 100  1606 0.0048 

86 N/A 0.0037 

91 N/A 0.0046 

84 N/A 0.0040 

80 N/A 0.0036 

95 N/A 0.0065 

MPC (3 steps)  

without Attractor 

92 N/A 0.0044 

Average 88 N/A 0.0045 

100 2760 0.0081 

100 2460 0.0092 

100 2195 0.0066 

100 2621 0.0043 

100 2594 0.0072 

MPC (1 step) + Attractor 

100 2370 0.0088 

Average 100 2500 0.0074 

Table 4-2 Active SLAM Simulation Results 
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The performance of these strategies largely depends on the density of the features and 

the sensor range. The larger the sensor range, the higher the amount of features or the 

smaller the exploration space, the easier the exploration task would be. The differences 

in Table 4-2 are not influenced by these factors as they are kept constant. Variance in 

the results is principally due to the random placement of features and the sensor noise. 

4.5.4.2. Multi-step Planning vs. Single-Step Planning 

The attractor method allows local information to be incorporated into the planning 

along with the long term goals. Further simulations were conducted to observe the 

influence of multi-step MPC as compared to single-step look-ahead with the presence of 

an attractor. From the data in Table 4-2, the single-step planning method, on average, 

took 56% longer to cover the area and the final uncertainty of the system was 54% 

higher. Multi-step planning may perform better than a single step due to the robot 

predicting further ahead and thus considers features that may be slightly further away. 

Hence the trajectory is optimised based on more local knowledge. This demonstrates 

that even with the attractor providing global knowledge, the local optimisation of 

nearby features continues to largely influence the system performance.  

 

4.6.  Discussion 

4.6.1. Number of Prediction Steps in MPC 

The optimal length of the planning horizon in MPC is application specific. Intuitively, 

when the uncertainty involved is large, a short planning horizon with immediate 

rewards is desired. This is due to the high likelihood that the optimal plan will change 

significantly once new information is acquired. If the uncertainty is small, longer plans 

generally equate to obtaining higher benefits. However, the planning horizon D is 

limited by the computational capacity of the planner. The selection of D should be made 

depending on the resources available. 

 

It is shown by the simulation results in Section 4.4.3.2 that there is a limit to the benefit 

attained when the uncertainty of the system is large. 
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4.6.2. Optimality of MPC 

Theoretically, the performance of D-step optimization is better than the performance of 

the single-step optimisation. If a fixed number of control options are considered and an 

EETS is used to select the best option, then the set of control options considered in the 

D-step optimisation is larger than the set of control options considered single-step 

optimisation. Additionally, all the control options considered in the single step 

optimisation are also considered in the D-step optimisation. Similarly, performing 

single-step optimisation is better than random control and fixed control because the 

fixed and random control solutions are two options considered in the one-step 

optimization. Returning to Assumptions I and II, the original planning problem has been 

simplified, and by only looking D-steps ahead, there is no guarantee that the proposed 

MPC strategy is the best for the overall planning problem. However, the simulations do 

show that it outperforms the other strategies in most cases. 

4.6.3. Coverage Improved 

MPC has been demonstrated to be a good planning strategy in the optimisation of 

information gain; however, coverage relies on the chance of detection of features. 

Incorporating an attractor to the MPC strategy improves the coverage significantly as 

shown in Table 4-2. There is still nevertheless no guarantee of complete coverage. One 

example is where there are large distances between features; the uncertainty of the robot 

pose may grow too large before new features can be detected. This is a fundamental 

limitation of SLAM where features need to be frequently observed to maintain a good 

estimate.  

4.6.4. Obstacle Avoidance 

In some cases (subject to the available robot control options such as minimum velocity 

constraints and maximum turn-rate) there are no obstacle-free control options. This 

problem is encountered more frequently in the single-step planning method where the 

robot does not consider possible obstacles after one step and moves too close to no-go-

zones. In the current implementation the robot is forced to stop and then turn randomly 

on the spot. However, other types of robots, such as UAVS, are not necessarily able to 

stop in mid-flight. This is one of the situations where it is worthwhile to plan more than 

a single step than to merely obtain more information. Planning obstacle free trajectories 

for fast robots is a challenging topic when uncertainties in the environment exist. 
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4.6.5. Localisability 

Even with the incentive provided by the attractor to localise when necessary, there is no 

guarantee that the robot will not lose its location. A common reason for the robot losing 

its location is by making an incorrect data association when uncertain of its pose 

resulting in an inconsistent pose estimate. In some cases, depending on the robot’s 

maximum turn-rate and control options available, the robot may move to the outskirts of 

the exploration space to observe new features and then require much time to turn and 

observe previously initialised features once again. If the robot is uncertain of its pose 

when returning to the exploration space, then the first observation may be incorrectly 

associated.  

 

An approach to improve localisability would be to use more robust methods for data 

association. The nearest neighbour approach (Dissanayake et al. 2001) is currently 

implemented, but other approaches such as the joint compatibility test (Neira and 

Tardós, 2001) may reduce the occurrence of an incorrect association.  

 

4.7.  Summary  

In this chapter, Model Predictive Control (MPC) is first proposed as a strategy for 

planning in a point-feature-based SLAM that uses an EKF in the estimation process. 

The effectiveness of the strategy is illustrated through simulated trials. 

 

The MPC strategy is suitable for planning in SLAM, since: 

(a) Changes in the environment including new features are managed by utilising 

updated models at each time step; 

(b) Dynamic constraints which cannot be detected a priori are incorporated into the 

planning as new features are detected or the feature location estimates change; 

(c) The prediction time horizon is flexible and can be set within the constraints of 

computational capacity; 

(d) The strategy provides an improved control policy compared with single-step 

planning.  

 

MPC alone has a number of limitations in that no explicit mechanisms for exploration 

or for high level planning are available. To introduce high level planning and 
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exploration in Active SLAM, a novel technique of using an attractor together with MPC 

is developed. The attractor strategy is implemented using a state machine where three 

modes (a) improve localisation, (b) improve map and (c) explore are defined. These 

modes are based on the fundamental tasks inherent in SLAM. The attractor is 

implemented as a virtual feature as the optimisation in MPC is predominately governed 

by the features in the planning horizon. Simulation results show that combining MPC 

with an attractor further improves the SLAM result. Coverage is found to be 

significantly improved by the attractor while MPC is effective in optimising the 

information gain. Planning with MPC with the presence of the attractor using 3-step 

look-ahead is found to perform better than planning with a single step. Although the 

optimality of MPC or Attractor aided MPC cannot be guaranteed, using an attractor 

with MPC for Active SLAM is a good approach in terms of coverage, efficiency and 

accuracy.  

 

The SLAM problem considered in this chapter uses points as features. Lines are natural 

features that exist in structured environments and SLAM using lines as features 

provides a more informative map. In the next chapter, a trajectory planning strategy is 

developed for SLAM with line features. This strategy is then implemented on a 

Pioneer2DX robot with a laser scanner to demonstrate Active SLAM in an indoor 

environment. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 5. Active SLAM with Line Features 
 

5.1.  Introduction 

This chapter investigates trajectory planning for line-feature-based SLAM. The 

objective is to extend the MPC and attractor strategy developed in the previous chapter 

to actively explore and build maps in structured environments. Lines are a common 

feature in indoor environments and can be extracted from observations acquired by a 

laser range finder. Representing the environment with lines instead of point features 

result in a compact map with a smaller number of states. A map based on lines may also 

be more informative than point features due to the use of more measurements from the 

laser range finder. Since applying the EKF to line-feature SLAM has been found to 

generate inconsistent estimates in large scale environments (Rodriguez-Losada et al. 

2006), unless geometric constraints are exploited, it was decided to develop another 

estimator for line-feature SLAM. A Smoothing and Mapping (SAM) technique was 

found to give consistent estimates and is used as the underlying estimation strategy. In 

the SAM state vector, the entire robot trajectory is retained such that linearization errors 

embedded into the robot pose are not accumulated. Based on the estimates obtained 

from this method, a planning strategy for efficient mapping and exploration in a 

structured environment is developed.  
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5.2.  Background 

There has been extensive research on the extraction of lines from a 2-D laser scan 

(Nguyen et al. 2005) and methods for increasing the accuracy and speed of the 

extraction process have been developed (Alempijevic 2004). Nguyen et al. (2005) 

compared six popular algorithms for line extraction from a two-dimensional laser range 

finder. It was found that algorithms that take advantage of the sequential property of 

laser scans had faster computation times. Algorithms such as the Hough Transform 

were slower but more accurate. Alempijevic (2004) developed an algorithm which pre-

processed the laser scans to detect the slopes of lines, taking advantage of the sequential 

property of laser measurements. This allowed for a smaller region of the Hough 

Transform to be computed in extracting an accurate line. 

 

SLAM using line features has been previously achieved (Garulli et al. 2005; Yuen and 

MacDonald 2003). Garulli (2005) used the EKF as the basis of the estimation and 

determined the covariance of the observation noise from the statistical properties of the 

laser range and bearing measurements. Yuen (2003) used Sequential Monte Carlo 

(SMC) SLAM to perform the estimation and demonstrated that performance is better 

for line features than with the EKF. Several variations for performing SLAM with line 

features have been developed. The SPMap (symmetries and perturbations map) 

(Castellanos et al. 1999) is one such method, where the robot pose and each feature are 

treated as geometric entities represented by a quadruple that includes a location vector, a 

perturbation vector, a covariance matrix and a self-binding matrix. A hierarchical multi-

scale strategy (Pfister and Burdick 2006) is another approach in which features are 

grouped into blocks to reduce computation time. 

 

Recently, the traditional implementation of the EKF has been shown to produce 

inconsistent estimations when used for SLAM in large-scale structured environments 

(Rodriguez-Losada et al. 2006). Rodriguez-Losada et al. (2006a), achieved real-time 

SLAM for large indoor environments using the EKF framework with ideas adapted 

from the SPMap. The computation cost involved in large scale EKF SLAM is reduced 

by using local sub-map fusion. The inconsistency from the EKF is overcome using 

shape constraints of collinearity, parallelism and perpendicularity. Shape constraints 



  81 

 

 

require prior knowledge of an environment but are a reasonable assumption for most 

structured environments. 

 

In Dellaert and Kaess (2006), the SAM algorithm was presented as an accurate and fast 

method to perform SLAM. Compared against the EKF, results showed SAM to be faster 

for large-scale problems while providing consistent estimates. The method was only 

implemented for point-feature SLAM but the framework allows for line features to be 

estimated. It is viewed as a generic strategy that can be applied to mapping indoor 

environments without applying shape constraints. 

 

There are many differences in optimising for information gain between SLAM with 

point features and SLAM with line features. In a point feature scenario, a robot mapping 

beacons would only see the beacon if it is near it, thus it would observe it for a small 

amount of time. On the other hand, when the robot is observing line features, the same 

feature would be observed for a long time. For this reason, the performance of MPC 

without an incentive for exploration for line-feature Active SLAM is likely to be 

significantly worse in terms of coverage as compared to that of point-feature based 

SLAM. Consider a scenario of a robot walking down a corridor, the line feature that the 

robot would observe at the start of the corridor would be the same feature that it 

observes at the end of the corridor. If it was to optimise for information gain then it 

would not move to the other end of the corridor. The robot would have a higher 

uncertainty due to accumulated errors from traversing and the robot would not gain 

more information from looking at the same feature with a higher uncertainty.  

 

In addition, a robot mapping line features may observe the same feature at different 

places. Consider two rooms with common or aligned walls, which is common in most 

structured environments; a robot can observe the same line feature in the second room 

without returning to the first room.  

 

Another difference between line-feature and point-feature SLAM is that in line-feature 

SLAM there are generally less features to observe but more features are required to 

localise the robot. With point-feature SLAM only two points are required for the robot 

to localise, however with line-feature SLAM the robot moving down a corridor with 

two parallel line-features is unable to localise itself along that corridor. 
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To the author’s knowledge, Active SLAM using line feature estimation is yet to be 

studied. Exploration in structured environments is quite different to trajectory planning 

in open space. Corridors and doorways place constraints on the robot’s trajectory. 

Additionally lines may obscure other lines such that the prediction of information from 

observations in the planning horizon requires knowledge of their visibility.     

 

5.3.  Trajectory Planning Problem for Line-feature SLAM  

Suppose a mobile robot is placed in an unknown structured environment. The robot is 

required to explore an unknown area and produce a map. The trajectory of the robot 

needs to be optimised for map accuracy, area coverage and coverage time. 

 

The following sections present the notations and formulate the trajectory planning 

problem. 

5.3.1. Notations 

The pose of the robot is denoted by the following symbols. 

(1: ) { }mX i x  All the robot positions from which observations are made  

1,...,m i=  Time steps where observations are made, where i is the index of 

the current pose 

[ ; ; ]i i i ix y φ=x   Elements of robot pose 

Observations are taken at each time step i, and are described by:  

{ }(1: ) kZ K z  Set of observation measurements with noise 

1,...,k K=   Number of all observations from time m=1…i 

[ ; ]local local
k k kdα=z  Observation to a line feature 

 

The line features are detected and their properties are estimated during the mapping 

process are denoted by: 

{ }jL    Set of line features 

1,...,j J=   Number of line features detected 

[ ; ]global global
j j jdα=  Line feature in global reference frame 
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5.3.2.  Representation of a Line 

A line may be represented in many different ways. For the work in this chapter, lines 

will be represented in polar coordinates, with the line segments represented by the 

corresponding endpoints in Cartesian coordinates. This is to maintain a compact 

representation and simplicity where only two terms are required to describe the state of 

each line to be estimated. The additional information of the endpoints of line segments 

can be stored separately to be used in the trajectory planning. 

5.3.2.1. Parameters of a Line 

The two parameters that represent a line are  and d, where  is the angle of the 

perpendicular to the line from the reference origin and d is the distance from the 

reference origin to the line (Figure 5-1). The equation of the line is described by 

 

cos( ) sin( )x y dα α+ = .    (5.1) 

 

Figure 5-1 Line Parameters 

 

5.3.2.2. Line Segments 

Although a line described by (5.1) is infinite, in reality only segments of the line 

actually exist. As illustrated in Figure 5-2, there may be many line segments observed 

for a single line observation. A wall of a corridor broken up by doorways could be an 

example of a single line observation with multiple segments. Broken lines may also 

occur due to obstructions by obstacles. For the purposes of this chapter, all individual 

line segments associated with the observation are recorded using the coordinates of the 

endpoints in an array. This array is only required for the planning and will not be used 

for the estimation.  

-  
   0 
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Figure 5-2 Multiple Line Segments for Single Line Observation 

 

The coordinates of the endpoints, andseg seg
pt ptx y , of a line segment are determined using 

the bearing and range measurements to each endpoint, i.e. 

 

( )
( )

( )
( )

1 1

1 1 1

1 1 1

2 2

2 2 2

2 2 2

cos

sin

cos

sin

seg seg
pt pt i

seg seg seg
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seg seg
pt pt i

seg seg seg
pt pt pt i

seg seg seg
pt pt pt i

x r x

y r y

x r x

y r y

ϕ θ φ

ϕ

ϕ

ϕ θ φ

ϕ

ϕ

= +

= +

= +

= +

= +

= +

             (5.2) 

     

where 1
seg
ptr  and 2

seg
ptr  , and 1

seg
ptθ  and 2

seg
ptθ  are the ranges and bearings to the endpoints of 

the line segments respectively, the superindex seg represents the line segment number 

from the current observation belonging to the infinite line described by  and d,  the 

subindex pt represents the endpoint that is associated with the line segment seg and 

( , , )i i ix y φ  is the robot pose. 

 

( )1 1
1 1,pt ptx y  

( )1 1
2 2,pt ptx y  

( )2 2
1 1,pt ptx y  

( )2 2
2 2,pt ptx y  

( )3 3
1 1,pt ptx y  

( )3 3
2 2,pt ptx y  

1
1ptr  

1
2ptr  

1
1ptθ  

1
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The properties of the line segments are stored in an array q where q is the line segment 

index for each of the line segments in the map and j is the feature number of the 

associated infinite line, i.e. 

 

1 1 2 2
seg seg seg seg

q pt pt pt ptj x y x y= .     (5.3) 

 

The observed line segments are checked for overlap after data association is performed. 

If line segments belonging to the same feature overlap then they are merged to a single 

line segment. The newly observed line segment may overlap between more than one 

existing line segments, in which case all the overlapping line segments are merged with 

the new segment. Otherwise if there is no overlapping, the new line segment is then 

added to the array of line segments. 

 

When global
jα  and global

jd  change during the update of the estimation process, the line 

segment parameters are adjusted to comply with the estimated parameters of the line by 

computing 

 

( ) ( )( ) ( )
( ) ( )( ) ( )

, , 1 , 1 , 1

, , 1 , 1 , 1

cos sin cos

cos sin sin

q q global q global q global global
pt i pt i j pt i j pt i j j

q q global q global q global global
pt i pt i j pt i j pt i j j

x x d x y

y y d x y

α α α

α α α

− − −

− − −

= + − −

= + − −
.  (5.4) 

 

5.3.3.  Observation Model  

Lines are extracted from each 2-D laser scan consisting of range and bearing 

measurements, using the line extraction strategy described in Alempijevic (2004). This 

algorithm provides parameters of a line given by local
kα  and local

kd , where the reference 

origin is the robot position. These line parameters form observation kz . Let the general 

observation model be 

 

( , )k k i j kh ν= +z x ,     (5.5) 
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where h is the relationship between local
kα  and local

kd  to global
kα  and global

kd , and 

~ (0, )k kNν  is the zero mean Gaussian noise with covariance k . The detailed 

formula for h is given in the following. 

5.3.3.1. Observation Function 

Two sets of equations apply for the two different scenarios depending on the locations 

of the robot, line and origin. The following subsections describe the transformation of 
local
kα  and local

kd  with a reference for an arbitrary robot pose ( , , )x y φ  to global
kα  and 

global
kd  with a reference at the map origin for the two scenarios. 

Case 1. Line is not between the robot and origin  

 

Figure 5-3 Parameters for a Line when the Origin and the Robot are both on One Side of 

the Line 

 

If the line is not between the origin and the robot then the equation, derived from Figure 

5-3, is: 

 
1

2 2 1

( , )

cos( tan ( , ))

case
k k

localglobal
kk

global local local
k k

g

d d x y y x

α φα

α φ −

=

+
= =

+ + + −

x z

. (5.6) 
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This can alternatively be written in the following form, which can be found in (Garulli 

et al. 2005),  

 
1( , )

cos( ) sin( )

case
k k

global local
k k
global local local local
k k k k

g

d d x y
α α φ

α φ α φ

=

+
= =

+ + + +

x z

.  (5.7) 

 

The observation model for case 1 is the following. 

 

1( , )

.
cos( ) sin( )

local
k case

k k klocal
k

global
k

kglobal global global
k k k

h
d

d x y

α
ν

α φ
ν

α α

= = +

−
= +

− −

z x

   (5.8) 

 

Case 2. Line is between the robot and origin 

 

Figure 5-4 Parameters for a Line when the Line Lies Between the Origin and the Robot 

 

If the line is between the origin and the robot then the equation, derived from Figure 

5-4, is: 

 
2

2 2 1

( , )

cos( tan ( , ))

case
k k

localglobal
kk

global local local
k k k

g

d d x y y x

α φ πα

α φ π −

=

+ +
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− + + + + −

x z

.  (5.9) 
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This can alternatively be written in the following form, which can also be found in 

(Garulli et al. 2005),  

 
2 ( , )

cos( ) sin( )

case
k k

global local
k k
global local local local
k k k k

g

d d x y
α α φ π

α φ π α φ π

=

+ +
= =

− + + + + + +

x z

. (5.10) 

 

The observation model for case 2 is then  

 

2 ( , )

.
cos( ) sin( )

local
k case

k k klocal
k

global
k

kglobal global global
k k k

h
d

d x y

α
ν

α φ π
ν

α α

= = +

− +
= +

− + +

z x

    (5.11) 

 

With the two models, there may be the instance where  switches from –  and . In this 

event, the observation may not be associated correctly and a new line feature may be 

created. This issue however, may result in redundant features but does not cause any 

problems with the filter.  

5.3.3.2. Covariance of Observation Noise 

The covariance of the observation noise, k , may be calculated using knowledge of the 

distribution of the sensor noise contained in each laser measurement that constitute the 

line observation. 

 

The laser scan consists of range measurements up to 8m with bearings from - /2    

/2 rad at every 0.5 degrees which results in 361 measurements. The standard deviation 

of the range noise for these measurements is approximately r = 0.02m. For each line 

detected, kz , the covariance, k , of the observation is calculated from these range 

measurements. It is assumed that there is no noise in the bearing measurement. The set 

of range measurements for a single observation and their associated variances are zranges 

and R respectively and are defined as 
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1

2
ranges

r
r

rη

=z , 
1 2

2 2 2[ ]r r rdiag
η

σ σ σ=R    (5.12) 

 

where η  is the number of range measurements associated with the line measurement. 

 

Using a least squares method, k  is calculated in the following way: 

 

The measured state is given in the form 

 
local
k

mea klocal
k

X
d
α

= = z .     (5.13) 

 

For a given bearing θ  measurement and the line equation (5.1), the observation model 

for the range measurement r  can be formulated as 

 

( )
cos( )

local
k

mea mea local
k

dr h X w
α θ

= = +
−

 ,   (5.14) 

 

where w  is the range noise with variance r
2. 

 

The whole observation model can be expressed as 

 

1

2
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where wranges is the measurement noise whose covariance matrix is R. 

 

Using the equations from the information filter, the information matrix, Imea, can be 

calculated by 

 
T 1

mea ranges ranges
−= ∇ ∇I H R H ,    (5.16) 

 

where ranges∇H  is the Jacobian of rangesH  w.r.t. state meaX , i.e. 

 

( )

( )
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∂
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H     (5.17) 

 

The final covariance of  and d can be obtained by the inverse of the information 

matrix, i.e. 

 
1

k mea
−= I .     (5.18) 

 

5.3.4. Single Step Process Model 

For a single step, the discrete-time process model is defined by: 
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  (5.19) 

 

where the time elapsed between steps, measured in seconds, is tΔ . The noise, wi, come 

through the errors in velocity, vi, and turn-rate, i, i.e. vi = vtrue + vnoise and i = true + 

noise. The covariance of the control noise is described by 
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0
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w
ω

σ
σ

=P      (5.20) 
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where v is the standard deviation of the velocity noise and  is the standard deviation 

of the turn-rate noise. 

 

To accommodate process noise which has not been modelled, a small stabilising noise 

is included in the prediction with covariance as   

 
6

6

6

1 0 0
0 1 0
0 0 1

e
e t

e

−

−

−

= ΔQ .    (5.21) 

 

This noise is added to the covariance of the robot pose at each step. However this noise 

should only be added when the robot is moving, because if the robot is stopped and no 

features are available, the covariance will grow without limits. 

 

5.4.  EKF-SLAM for Line Features 

The robot pose and line features may be estimated using the EKF. However, for long 

experiments, the EKF has been shown to provide inconsistent estimates. As a result, the 

EKF is found to be unsuitable as the underlying estimator for performing SLAM unless 

additional shape constraints are enforced. On the other hand, an EKF can efficiently 

provide consistent estimates when the number of update steps is small. An EKF is 

therefore adequate for the purposes of multi-step prediction in the trajectory planning. 

This section describes the EKF algorithms as adapted for line-feature SLAM.  

5.4.1. State vector 

In an EKF, the state vector contains the current robot pose xi and the array of line 

features Li at update time step i, i.e.  
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5.4.2.  Prediction 

For the robot pose prediction the equations for a single step prediction (5.19) is used. As 

the features are stationary (i.e. 1i iL L+ = ), state prediction is given by  
 

( )
( )

1

1

1

ˆ ˆ ,

ˆ ˆ ,
ˆ ˆ

i i i i

i i i

i i

p

f

L L

−
−

−

−

=

= =

u

x x u .    (5.23) 

 

To update the covariance of the predicted state, first the Jacobian of pi w.r.t. the state 

1i−  is determined,   
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Next, the Jacobian of  pi w.r.t. the control ui is computed as 
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Then from the standard EKF equations, the predicted covariance i
−P  is determined by 
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    (5.26) 

 

where Q is the covariance matrix of the stability noise defined in (5.21). 

5.4.3. Data Association 

The nearest neighbour method is used here for data association. Let i
−

 and i
−P  be the 

current predicted state and covariance of the system, including the current robot pose 

and the locations of the line features. 

 

All the line features in the state vector are converted to a local reference frame using 

(5.8) or (5.11), depending on the location of the line. Then for each measurement, k, 

acquired at time i, the innovation jk is calculated by 

 
local local
k j

jk local local
k jd d

α α−
=

−
     (5.27) 

 

where local
jα  and local

jd  are the line parameters of ˆ j  converted to local coordinates. 

 

Using k calculated from the process in Section 5.3.3.2, the observation covariance kS  

can be obtained by 
T

k k i k kh h−= ∇ ∇ +S P      (5.28) 

 

where the appropriate Jacobian, kh∇ , can be calculated using Equations (5.8) or (5.11) 

depending on the location of the line. 

 

The Mahanalobis distance, jkβ , is 

 
1T

jk jk jk jkβ −= S .     (5.29) 

 

Many measurements are required for a line to be fitted, which minimises the possibility 

for false readings. Detected lines that cannot be associated are assumed to be new 
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features. Accordingly, using the Mahanalobis distance, jkβ , and a chi-squared 2 gate of 

99.99% confidence level with 2 degrees of freedom (DOF), the observations are 

categorised as either associated or as new features. The associations of observations k to 

features j are mapped in  along with observations to new features, which are given an 

index of 0. 
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                        (5.30) 

 

5.4.4. Initialising New Line Features 

When a new feature is detected, i.e. ik = 0, the measurements zk and the predicted 

robot pose xi are used to initialise a new feature in the state vector,  

  

1

global
k

J global
kd

α
+ = ,    (5.31) 

 

where J+1 is calculated by either equation (5.7) or (5.10) depending on the location of 

the line. This feature is then added to the state vector, i.e. 

 

1

i
i

J

−
−

+

← .      (5.32) 

 

Then taking k  from Sec. 5.3.3.2, the new covariance of estimation can be calculated by 

 

0 00
0 00

i
i T

k

I I
g g

−
− ←

∇ ∇
P

P ,   (5.33) 

 

where g∇  is the Jacobian of equation (5.7) or (5.10) depending on the location of the 

new line feature. The above process is repeated for each new line feature detected. 
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5.4.5.  Update of Associated Features 

The features in the state vector are updated using the associated observations, i.e.  

ik j= . Using the innovations jk is calculated in (5.27), the innovations for the n 

associated measurements are then assembled forming 

 

   
T

1jk jkn= ,             (5.34) 

 

and depending on the location of the line, the appropriate Jacobian, h∇ , of the 

observation model can be calculated using either (5.8) or (5.11) for the n associated 

measurements thus yielding 

 
T

1jk jknh h h∇ = ∇ ∇ .    (5.35) 

 

Then using the same k used in (5.28), the observation noise covariance for each 

associated measurement can be assembled and expressed as 

 

[ ]( )1k kndiag= .    (5.36) 

 

Following the EKF equations, the Kalman gain is calculated and the predicted i
−  and 

i
−P  are updated accordingly, i.e.  
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      (5.37) 

 

5.4.6. Estimation Result of EKF 

In attempting to apply the EKF to line feature SLAM, it was found that the estimates 

soon became inconsistent in many simulations. An example simulation illustrates the 

problem in Figures 5-5 to 5-7. Here, the robot is set to run for 1000 steps with 
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observations taken every 50 steps and robot pose predictions computed at every step. 

The robot is kept stationary for the first two updates and then moves continuously 

thereafter. A total of 20 updates are computed and data association is assumed. Figure 

5-5 shows the robot pose estimate at every step and it is clear that the 2σ  bound has 

been exceeded in the x and φ  estimates. A clearer picture can be seen when only the 

pose estimates at the update steps are shown in Figure 5-6. The 2σ  bound of the 

innovation covariance is also exceeded by the observation innovations (see Figure 5-7).  

This is a typical case in that the EKF fails after a short time. 

 

 

Figure 5-5 EKF Pose Estimate at Every Time Step 
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Figure 5-6 EKF Pose Estimate at Observation Update Steps 

 

Figure 5-7 EKF Observation Innovation  

 

 

Observation Number 
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Given that the EKF approach is not succeeding with line features in the case, an 

alternate algorithm suitable for mapping an arbitrary environment with line features is 

required to be explored. It is possible to apply constraints based on knowledge of the 

environment to improve the consistency of EKF (Rodriguez-Losada et al. 2006a), 

however it is decided that another algorithm is warranted. Heuristics used in the 

trajectory planning (Section 5.6.2.4) requires that previous robot poses are stored along 

with the associations of observations made from these poses to line features in the map. 

Incremental SAM (iSAM) provides a mechanism to maintain an estimate of all the 

robot poses, thus providing an accurate history of robot poses of which may be used in 

the trajectory planning strategy.  

5.5.  Incremental SAM (iSAM) 

Using the algorithm from Dellaert and Kaess (2006), incremental Smoothing and 

Mapping (iSAM) is implemented and proves to perform much better in terms of 

maintaining consistent estimates. This approach allows the line representation already 

established for the EKF implementation to be utilised. The following subsections 

describe the iSAM algorithm as adapted to line features, including the modifications 

made to improve the efficiency and minimise errors in the initial pose estimate.  

5.5.1. Relative Pose between Two Consecutive Observation Points 

One key difference between EKF-SLAM and iSAM lies with the maintenance of all 

robot poses in the state vector. To minimise computation and to avoid recording all the 

positions between updates, it is necessary to compute the robot pose between 

consecutive observation points, such that only the poses where observations are made 

are included in the state vector. This is achieved by computing the relative pose, xrel, 

between the observation steps using the function , i.e. 

 

   1( , )rel i i iqγ −= +x x x       (5.38) 

 

where the noise term, qi, is defined as a Gaussian with zero mean and covariance i , 

i.e.  

 

~ (0, )i iq N            (5.39) 
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and the covariance matrix, i, of control noise for multiple steps is calculated using the 

following process: 

[ ]T
0 0 0 0=x         (5.40) 
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for n = 1… Nsteps , where Q is the stabilising noise defined in (5.21).
 

Following this, the predicted state can be computed as 
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such that the relative pose between two consecutive observation points is given by 
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5.5.2. SLAM as a Least Squares Problem 

The entire state to be estimated in iSAM includes all robot poses from time m=1…i, 

combined with all the landmarks from j=1…J and is defined by 

 

( )
T

1 1
ˆ ˆ ˆˆ ˆ, i JX L → = x x .        (5.43) 

 

The aim is to estimate the position of all the poses and features. This is achieved by 

solving the least squares problem as follows 
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arg min ( , ) ( , )
m k

i K
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m m m m k mk jk k
m k

hγ −
= =

− + −x x x x z .  (5.44) 

 

The first term in the equation above is the process innovation, which is expressed as 
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where ∂x is the difference between the true and estimated states; 1i
i

−F  and 1i
i
−G  are the 

Jacobians of (5.42), such that  
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and the i  is the odometry prediction error defined by 

 
0 0

1( , )
ˆ

i i i i i
rel rel
i i

γ −= −

= −

x x x

x x
      (5.47) 

 

where 0
ix  and 0

1i−x  are the initial guesses of the robot poses obtained either from the 

state vector or through prediction. 

 

 

≜
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The second term in (5.44) is the observation innovation and is expressed as 

 

{ } { }0 0( , ) ( , ) k k k ki j i j
k ik jk k k ik jk k ik k ik k k ik k ik kh h δ δ δ δ− ≈ + + − = + −x z x H x J z H x J  (5.48) 

 

where 0
jk  is the initial guess of the feature observed and ki

kH  and kj
kJ  are Jacobians of 

(5.5), such that 
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and k  is the measurement prediction error defined by 

 
0 0( , )k k k ik jk
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The least squares iSAM problem (5.44) is linearised to make it solvable. To update the 

state , the term δ  is to be solved in  

 

2 2* 1
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m m i j
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= =
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and the noise covariances m  and k  can be incorporated into the norm using the 

following property: 

 
22 T 1 T / 2 T T / 2 T / 2

2
( ) ( )e e e e e e− − − −

Σ
Σ = Σ Σ = Σ .    (5.52) 

 

By collecting the Jacobian matrices into A and the innovations into b, the standard 

least-squares problem can be obtained and solved given the following expression: 

 
2*
2

arg min
δ

δ δ= −A b .    (5.53) 
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This process is repeated for each update until the solution has converged, i.e. δ  is 

smaller than a threshold. Appendix A gives further details on the implementation. 

5.5.3. SAM vs. Incremental SAM  

The key difference in the implementation of SAM and iSAM lies with the process of 

acquiring the initial guess for the least squares problem. In SAM, all the robot poses and 

features detected are given an initial estimate through prediction, thus data association 

needs to be assumed and the error in the robot pose predictions are accumulated. 

Alternatively, in iSAM the initial estimates for the robot pose are given by the current 

state and a prediction of only the current pose. This allows the robot pose estimate to be 

refined at every step giving a more accurate initial estimate for the subsequent poses. 

Data association is also possible in iSAM as a map is available, i.e. generated from the 

observations in the previous steps. Clearly, an incremental approach is required to 

perform Active SLAM. The algorithms described up to this point are applicable to both 

SAM and iSAM however the data association in the following section can only be used 

with iSAM.  

5.5.4. Data Association 

The data association in iSAM is the same as that implemented for the EKF-SLAM. 

First, the covariances and states in iSAM are modified to that form used in EKF-SLAM, 

where all the robot poses except the current pose are omitted. The remainder of the 

algorithm follows that described in Section 5.4.3. 

 

The details for using iSAM estimates for data association are as follows. The current 

state estimate and associated covariance need to be extracted from the iSAM matrices 

 and A. To generate the terms necessary for the data association, the information 

matrix is first computed by 

 
T=I A A ,     (5.54) 

 

then the covariance P is simply the inverse of the information matrix, i.e. 

 
1−=P I       (5.55) 
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However, the direct inverse is computationally demanding in Matlab. Cholesky 

Factorisation for sparse linear equations (Golub and Van Loan, 1996) is used instead 

where only relevant columns are selected to compute the sub-matrix of the inverse. This 

method reduces computation. 

 

Once the inverse of the information matrix is obtained, the current state and associated 

covariance can be extracted as  
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  (5.56) 

 

Using the current state and covariance, the nearest neighbour method described in 

Section 5.4.3 can be applied for data association. 

5.5.5.  Estimation Result of iSAM

Line feature SLAM using iSAM remains consistent for long simulation runs. To 

illustrate the performance iSAM, an example result from the simulation scenario of that 

described in Section 5.4.6 is shown in Figure 5-8 and Figure 5-9. It can be seen that the 

pose estimate remains consistent throughout the simulation. In a number of other 

simulation trials, consisting up to 100000 steps with an update every 50 steps and iSAM 

still maintains a good estimate of the robot pose and features. 
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Figure 5-8 iSAM Robot Pose Estimate 

 

 

Figure 5-9 iSAM Observation Innovation 

 

Given this demonstrated consistency in the iSAM estimation, it is deemed suitable to be 

used as the underlying estimator for the trajectory planning algorithms. Other consistent 
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estimation algorithms may be used, however they are not studied further as the focus of 

the thesis is on trajectory planning. 

 

5.6.  Trajectory Planning 

The MPC+Attractor strategy, demonstrated to encourage localisation, mapping and 

exploration (Section 4.5.4), is once again used as a basis for trajectory planning. A 

number of modifications must be applied to adapt the trajectory planning to structured 

environments and are described as follows.  

5.6.1.  Model Predictive Control 

The implementation of MPC for line-feature SLAM requires not only the current state 

estimate to be considered, ˆ ix  and L, but also the array of line segments, q, for 

determining the robot trajectory. Although the underlying estimator for SLAM is iSAM, 

the EKF continues to be used in the MPC strategy as it is more efficient and the 

estimates remain consistent for short periods required for MPC. Thus the state estimates 

from iSAM are converted to the form used in EKF-SLAM prior to the planning 

following the conversion process, as described in Section 5.5.4. The objective function 

is maintained to be the trace of the covariance matrix as the parameters of a line are 

measured in meters and radians which are similar in scale. 

5.6.1.1. Obstacle Avoidance 

Modifications need to be made to the obstacle avoidance developed in Chapter 4. 

Previously, the predicted pose of the robot was checked to determine if it lies within a 

certain radius of a point feature, however this is too simplistic for a structured 

environment. Not all objects present in an environment can be classified as line features 

and searching through an occupancy grid map requires significant computation. The 

sensor range is much greater than the planning horizon of the robot, which allows for 

the current laser scan of the robot to be used for determining whether a path is obstacle-

free, which is similar to the idea used in González-Baños (2002).  

 

At each step, the robot’s direction of travel is calculated (i.e. bearing of the predicted 

robot pose to the current robot pose) and the laser measurement with the closest bearing 

is identified. If the predicted pose for the next step puts the robot beyond a boundary 

distance then the path is deemed infeasible. The boundary distance is taken as the laser 
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range measurement less the width of the robot. If the predicted robot pose is feasible, 

then the information gain based on the predicted sensor readings and line observations 

are computed.  

5.6.1.2. Prediction of Information from Line Observations 

The line observations need to be predicted to determine the information gain for each 

control option. By use of the predicted robot pose and the line feature estimates, a 

prediction of sensor measurements may be made. If the robot is predicted to observe an 

adequate number of sensor measurements to an estimated line feature then that line is 

deemed to be observed. Observation noises of range measurements are simulated and all 

the measurements associated to the line feature estimate are then used to determine the 

covariance of the predicted line observation.  

 

The feasible control option with the highest information gain based on predicted 

observations is selected to be executed. The strategy shows a similar characteristic to 

trajectory planning with point features, with the robot tending to move close to features 

in an attempt to obtain more information. In a structured environment this results in the 

robot approaching features and then having to stop and turn to avoid crashing, as seen in 

Figure 5-10. 
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Figure 5-10 MPC and iSAM with Line Features  

(red path = true path, blue path = estimated path)   
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Furthermore, with the robot performing Active SLAM with MPC alone, the resulting 

path is only around known features as there is no incentive to explore as evident in 

Figure 5-10. The attractor concept will again be helpful in providing this incentive. 

5.6.2.  Attractor Strategy for Active SLAM with Line Features 

The attractor strategy, developed in Chapter 4 for point feature SLAM for an open 

environment, is based on heuristics that may not be suitable for line feature SLAM in 

structured environments. Thus an adaptation of this strategy together with a new set of 

heuristics is required.  

5.6.2.1.  Addition of Occupancy Grid Map  

In Section 4.5.3.3, the reference point for the attractor was determined based on 

minimum distance and the attractor was placed at the maximum sensor range in the line 

of sight to the reference point. In a structured environment there may not be direct line 

of sight to the attractor when it is placed at the maximum sensor range and the closest 

exploration point may be behind a wall. To facilitate exploration, localisation and 

mapping in structured environment, an occupancy grid map is built in conjunction with 

the SAM line-feature map. The occupancy grid map records information for explored 

and unexplored areas as well as occupied and obstacle-free cells. It is used to determine 

frontiers for exploration and traversable areas. This map replaces the uniformly 

distributed exploration points used in Chapter 4. The heuristics used to select the 

reference point and the placement of the attractor are also modified to exploit the 

knowledge contained in the occupancy grid map.  

 

The occupancy grid map is built based on the estimated poses from the iSAM 

algorithm. Creating a new map using all the accumulated poses in the iSAM state vector 

at each time step allows production of a map accurate to the current estimate, but is 

computationally expensive. To save computation, only the final pose in the iSAM 

estimate is used to create the occupancy grid map. It should be noted that the cells 

marked from previous time steps are not updated when the pose estimate is updated. 

This results in an occupancy grid map that is not statistically accurate. However for the 

trajectory planning strategy, the occupancy map is predominately used to find 

unexplored frontier regions and the information contained in this map is not used during 

estimation. Therefore it was found to be adequate for the intention of trajectory 

planning. 
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5.6.2.2. Attractor as a Virtual Point Feature 

As the attractor has been demonstrated to be effective as a virtual point feature (as 

described in Section 4.5.2), it is maintained in the same form for line-feature Active 

SLAM. Defining the attractor to be a line feature requires many heuristics to define 

parameters such as the angle and distance of the line, the length of the line segment and 

the covariance of the observation of the line. On the whole, it is not a trivial task and 

requires more processing. The aim here is to maintain simplicity and minimise 

computation as the planning needs to be computed between iSAM updates. Thus the 

attractor is always initialised as a new point feature and placed at the end of the state 

vector. By maintaining the attractor as a point feature, it is clear which direction the 

robot is encouraged to move and this direction is determined by the reference point. 

5.6.2.3. Reference Point for Exploration 

In order to obtain a reference point for the explore mode in the state machine (see 

Section 4.5.3), the frontier points are extracted from the occupancy grid map. Frontier 

points are cells on the grid map that are unexplored and adjacent to an empty cell. These 

points are grouped together into regions and the centres of each region are used as 

potential reference points. A selection amongst these points is made based on the 

minimum absolute bearing to the robot. This encourages the robot to continue exploring 

in its current direction and minimises turning. 

5.6.2.4. Reference Point for Localisation and Mapping 

For the improve localisation mode and the improve map mode, a feature of interest is 

selected based on the covariance of the line features. A set of candidate well-defined or 

poorly-defined features are selected for the respective modes based on a threshold. Then 

a reference point for the attractor needs to be determined from the candidate set of 

features. Determining the reference point is not as simple as in point feature SLAM 

where the coordinates of a well-defined or poorly-defined feature is extracted from the 

state vector based on minimum distance. A line may have many segments and may not 

be continuous. In addition, lines may occlude other lines. Therefore, instead of using the 

position of the feature as the reference point, the robot poses that have previously 

observed the line feature are used as the potential reference points. These poses can 

easily be retrieved as all previous data associations are recorded for the iSAM process. 

Thus a set of robot locations derived from the candidate set of features is used as the 

group of potential reference points. 



  109 

 

 

 

Once a group of potential reference points are obtained, the distance transform (see 

Appendix B for details) is computed for the occupancy grid map. Each cell is given a 

value based on its traversable distance from the robot. This information is then treated 

as a lookup table. Using the result of the distance transform, the reference point is 

selected from the group obtained based on minimum traversable distance. However, it is 

important to note that this reference point may still be occluded or out of the sensor 

range.  

5.6.2.5. Placement of Attractor 

The attractor is placed within the sensor range so as to lead the robot to the selected 

reference point. Previously (Chapter 4), the environment was not structured and direct 

line of sight to the attractor was always possible. In structured environments the 

attractor may be obscured by walls, thus its placement needs to be adapted to the 

environment. To determine this placement, a cell path is planned using the result of the 

distance transform and then starting from the reference point, the location of the first 

cell along the path that is visible to the robot is set as the location of the attractor. Figure 

5-11 provides an illustration of this idea. 

    

 

 Figure 5-11 Placement of Attractor 

  

      Robot 
      Attractor 
      Attractor Reference Point 
      Cell Path 
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5.7.  Simulation Results 

The proposed planning strategy using Attractor aided MPC is demonstrated for line-

feature SLAM using iSAM in this section. The simulation results for MPC are also 

presented so as to provide a framework for discussion and to highlight its distinguishing 

features. The task of the robot is to map an enclosed indoor environment within a 

prescribed number of time steps. Three control options, N =3, at each time step are 

available and a planning horizon of D=3 is used.  

 

To illustrate the result where no planning is conducted, a “random select” method is 

implemented. The robot also has three available control options and a random selection 

is made from the options which do not result in collision with obstacles.  

 

Two different indoor environments are given for the robot to map. The first is the floor 

plan of an office area similar to that of the office space occupied by the ARC Centre of 

Excellence for Autonomous Systems (CAS) at UTS. The second is an arbitrary 

environment, twice as large.  

5.7.1. Simulation Results for a Section of the CAS Office Area 

 

Figure 5-12  Section CAS UTS Floor Map (m) 

 

The robot is initially placed at [ ]T
0 5.7 3.9 / 2π= − −x  as denoted by the red triangle 

in Figure 5-12. The velocity and turn-rate are measured each step with 0.055tΔ = s and 

the laser makes a reading every 50 steps. The maximum velocity of the robot is set to be 
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0.5ms-1 and the maximum turn-rate is /36rads-1. Simulations end after 3000 loops and 

updates are only computed when new observations are taken.  

5.7.1.1. Map and Path 

Mapping and planning using the MPC+Attractor strategy give good coverage and a well 

aligned map as seen in Figure 5-13. The robot pose estimate is accurate as evident by 

the current laser scan, depicted in green, matching the alignment of the walls. The 

magenta coloured star is the position of the attractor and the magenta coloured cross is 

the reference point for the attractor, which in this case is a group of frontier points. This 

particular path generated sensor coverage of 99.60% and the covariance of the line 

features is small.  

 

It is apparent from the simulated mapping and planning using the MPC strategy 

(without the attractor) that there is no implicit strategy for the robot to explore. Figure 

5-14 illustrates where the robot traverses many loops around its initial location to 

maximise information gain for the known features. For MPC, the uncertainty of line 

features is in general found to be small and the path of Figure 5-14 generated sensor 

coverage of 99.01%, which is a reasonable result.  

 

For the random select method (Figure 5-15), there is no planning and the robot 

randomly moves from left to right while predominately walking in a straight line 

directed by the walls of the corridor. The robot does not return to localise unless, for 

example, where returning from a dead end. If the area was not enclosed, it could be 

expected that the robot would seldom cross a previously traversed area. Given the small 

enclosed map it is unremarkable that the random select method also achieved good 

coverage. 
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Figure 5-13 MPC+Attractor Path – CAS Map (m) 
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Figure 5-14  MPC Path – CAS Map (m) 
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Figure 5-15 Random Select Path – CAS Map (m) 
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5.7.1.2. Rate of Coverage 

The number of remaining unexplored cells is recorded at every time step and used to 

quantify the coverage rates. Ten trials were conducted and the rate of coverage achieved 

for the three methods is plotted in Figure 5-16 each showing a similar distribution, 

where the mean of these coverage rates are plotted in Figure 5-17. The MPC strategy 

and random select have the highest initial coverage increases and as time progresses the 

attractor strategy outperforms them by a small margin. For the latter, the knowledge of 

the map leads the robot to corners that have not been explored, which naturally would 

be a key advantage in many environments. 
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c) Random Select  

Figure 5-16 Rate of Coverage – CAS Map 
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Figure 5-17 Rate of Coverage Mean for the 3 Strategies – CAS Map 

 

5.7.1.3. Final Coverage and Uncertainty of State Estimate 

The following tables show the resultant coverage and uncertainty of the state estimate 

from the ten trials. Table 5-1 displays the final percentage of coverage and the time step 

it has reached the maximum coverage. It can be seen in Table 5-1 that on average, 

MPC+Attractor obtains the highest coverage and is still covering new areas near the end 

of the simulation. For the MPC strategy, the robot on average fails to explore new areas 

after 75% of the time through the simulation and the random select strategy shows 

similar traits. 

 

Table 5-2 displays the final uncertainty of the state estimates. It can be seen that the 

MPC strategy has the lowest uncertainty followed by MPC+Attractor and then the 

random select strategy. This result is consistent with the expected outcome as there is a 

trade-off between coverage and map accuracy in SLAM, such that the further the robot 

moves from its initial pose, the greater the uncertainty. 
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 MPC+Attractor MPC Random Select 

Trial C  icover C  icover C icover 

1 99.77 593 100 521 99.14 527 

2 99.86 539 99.77 395 99.62 428 

3 88.43 549 99.48 458 99.16 410 

4 98.44 527 77.57 204 98.74 545 

5 97.50 599 87.23 427 99.78 327 

6 99.80 546 73.31 409 98.85 432 

7 99.66 595 95.04 579 70.88 551 

8 100 491 35.90 554 99.97 500 

9 99.03 552 99.01 414 88.20 304 

10 100 527 98.46 284 99.73 568 

Avg 98.25 552 86.57 424 95.41 459 

Table 5-1 Final Coverage – CAS map  

where C=final coverage percentage, icover= time step of obtaining maximum coverage  

 

 

Trial MPC+Attractor MPC Random Select 

1 0.0414 0.0246 0.0095 

2 0.0140 0.0114 0.0156 

3 0.0084 0.0150 0.0274 

4 0.0086 0.0082 0.0136 

5 0.0110 0.0094 0.0188 

6 0.0189 0.0095 0.0137 

7 0.0148 0.0156 0.0382 

8 0.0083 0.0168 0.0106 

9 0.0149 0.0071 0.0181 

10 0.0090 0.0104 0.0088 

Avg 0.0149 0.0128 0.0174 

Table 5-2 Trace of Covariance Matrix After 600 Updates – CAS map 

showing Trace(P)/(number of rows in P)  
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Although these results show that the simulations with the Attractor produce a slightly 

better result than the other planning strategies, the result was not convincing. Mostly 

due to the fact that the robot sensor range relative to the size of the environment and the 

deviation of the values shown are quite large. A more complex environment is then 

created so as to purposely make it more difficult for a naive implementation, random 

select, to perform well. Such an environment would also provide a challenge the 

attractor aided MPC strategy. 

5.7.2.  Larger Environment with Divider 

The size of the environment is increased such that the ratio of the sensor range to the 

map dimensions is smaller. The environment contains a wall dividing the area into two 

separate rooms, as in Figure 5-18. All the parameters from the previous simulation 

remain the same except the robot start pose is set to [0, -3, 0] denoted by the red 

triangle. The simulations are run for 100,000 steps with observations taken at every 50 

steps. 

 

 

Figure 5-18 Larger Environment with Divider (m) 
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5.7.2.1. Map and Path 

The resultant map and path for the three methods are displayed in Figure 5-19, Figure 

5-20, and Figure 5-21. It can be seen in these maps that there are several false line 

segments. Occasionally, false line segments are initialised due to the noise and speed of 

turning or errors in the line extraction. There is nothing implemented at the moment to 

delete false lines. If an expected line segment is not observed then it may be deleted or 

segmented. A more suitable trajectory may be achieved if the map is more accurate but 

requires greater computation. An appropriate map management strategy could be used 

to delete the incorrect initialisations but this was not pursued further. Nevertheless, the 

robot is still able to maintain a consistent pose estimate as it is able to associate real 

observations to real lines and not to the false lines which are therefore not updated. The 

robot pose estimate is accurate as the current laser scan in green is aligned with the real 

line segments and not the false line segments.  

 

The behaviour of the robot is quite different for the different strategies. In the trajectory 

generated using MPC, the robot predominately travelled around the centre of the map. 

There are more line features in the centre of the map and these features are close to the 

starting point of the robot. Observing features near the starting point minimises the 

robot uncertainty and staying in areas with more features leads to higher information 

gain. Hence the trajectory remains predominately in the centre and the robot rarely 

expands the path to the unknown areas of the map. 

 

For the attractor aided MPC, the trajectory also remains near the starting point of the 

robot, however in this case, the robot does venture out further due to the attractor 

directing the robot out towards the frontiers. Thus the attractor once again improved the 

result of MPC, enabling the robot to explore. With knowledge of the line segments and 

the map, the robot was able to plan paths in and out of the rooms created by the divider.  

 

In the random select strategy, it is found that the robot quickly covers the perimeter. The 

robot rarely stays in the centre of the map. Unlike the previous environment, this 

environment is open without as many dead-ends. Here, there are few areas that the robot 

cannot see by chance excluding the room created by the divider. The random select 

strategy does not perform as well in this environment in terms of coverage as there is a 

lower chance for this strategy to explore the entire area due to the divider. Analogous to 
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other random methods such as Probabilistic Road Maps (PRMs), paths through narrow 

openings require many iterations of the algorithm to find.   
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Figure 5-19 Attractor Path - Larger Environment 
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Figure 5-20 MPC Path - Larger Environment 
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Figure 5-21 Random Select Path - Larger Environment 

 

5.7.2.2. Rate of Coverage 

The rates of coverage for the different strategies are shown in Figure 5-22 and Figure 

5-23. It can be seen that the distribution of the coverage rates for the MPC and 

MPC+Attractor strategies are quite similar. The coverage of MPC+Attractor in the 

larger environment is much better than that of MPC alone. In the MPC strategy, as the 

robot remains near the good features and much of the space remains unexplored. The 

addition of an attractor has a significant influence on improving the coverage.  

 

Random select method has the largest deviation of coverage rates depicting its 

unreliability as the variation in the result is large. Doorways or openings in the unknown 

environment reduce the probability of the robot to explore the entire space by random 

chance. Given that the environment to be mapped is unknown the using a random 

strategy is not a sensible choice. 
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                 c) Random Select 

Figure 5-22 Rate of Coverage for Larger Map - Larger Environment 

 

 

Figure 5-23 Mean of 3 Strategies - Larger Environment 
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5.7.2.3. Final Coverage and Uncertainty of State Estimate 

The final values for coverage are displayed in Table 5-3. These values coincide with the 

rate of coverage figures. Clearly, there is a larger difference in the final percentage 

covered in that MPC+Attractor explored approximately 10% more of the environment 

than the random select method. This is largely the consequence of the divider placed in 

the environment.  

 

Once again, from Table 5-4, it can be seen that the strategies that optimised for 

information gain had the lowest uncertainty of the state estimate and the strategies with 

higher coverage had larger uncertainty as expected.  

 

 MPC+Attractor MPC Random Select 

Trial C icover C icover C icover 

1 98.61 1945 81.47 1851 66.60 1787 

2 99.91 1746 99.54 1832 99.85 1605 

3 83.24 1872 73.87 1829 81.46 1854 

4 88.54 2000 89.77 1945 86.28 1619 

5 88.67 1646 86.14 1681 95.58 1531 

6 99.79 1530 62.64 1459 60.08 2000 

7 92.53 1439 71.69 1882 71.99 1353 

8 93.27 1129 77.57 1980 89.10 1765 

9 95.59 2000 64.47 1981 84.89 1076 

10 89.50 1877 81.92 872 85.42 2000 

Avg 92.97 1718 78.91 1731 82.13 1659 

Table 5-3 Final Percent Coverage – Larger Environment  

where C=final coverage percentage, icover= time step of obtaining maximum coverage 
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Trial MPC+Attractor MPC Random Select 

1 0.0005 0.0007 0.0010 

2 0.0007 0.0010 0.0006 

3 0.0008 0.0009 0.0018 

4 0.0022 0.0007 0.0013 

5 0.0005 0.0009 0.0050 

6 0.0016 0.0009 0.0018 

7 0.0013 0.0008 0.0010 

8 0.0007 0.0018 0.0010 

9 0.0009 0.0007 0.0011 

10 0.0010 0.0005 0.0014 

Avg 0.0010 0.0009 0.0016 

Table 5-4 Trace of Covariance Matrix After 2000 Updates – Larger Environment 

showing Trace(P)/(number of rows in P)  

 

5.8.  Experimental Results 

The proposed trajectory planning strategies are demonstrated in real-time in a practical 

experiment. Results using MPC as well as random select are also given. The details of 

the experiment and results obtained are described as follows.  

5.8.1. Experiment Setup 

The experimental setup is constructed from 4 sofas, several cardboard boxes, cushions 

and a table as seen in Figure 5-25. A Pioneer2DX robot, pictured in Figure 5-24 is used. 

This robot is equipped with a SICK laser range finder that allows scans to be taken up to 

10Hz. The wheel encoders on the robot are used to obtain robot velocity and turn-rate. 

Each of the experiments is run for 150 observation steps. The robot is set to move at 

0.15ms-1 with a maximum turn-rate of /22.5rads-1(8deg/s). The processor is 1.7GHz 

with 512MB of RAM. 
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Figure 5-24 Pioneer2DX Robot 

 

 

Figure 5-25 Experimental Setup 
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5.8.2. Extensions for Practical Implementation 

The simulations applied the assumption that the computation time for the algorithms is 

instantaneous. In practice, this is not the case. The computation time required to process 

the observations, update the estimations and plan the trajectories is a major issue. It 

affects the frequency at which the robot’s pose and map estimate is updated. The longer 

the computation time the longer the robot is unaware of its current situation and the less 

effective the planning. Several methods implemented to alleviate problems associated 

with this assumption are described below. 

5.8.2.1. Robot Actions Recorded in Parallel to iSAM and Planning 

It is required that the control measurements between observation time steps are recorded 

and used to obtain initial value for each ith robot pose for the iSAM. There are two 

main reasons: a) the computation time for iSAM and trajectory planning may take 

several seconds and the larger the time between updates of robot pose, the larger the 

error in the initial pose prediction by the linearised process model; and b) midway 

through the execution of a planned control action, it may be required that the robot 

change its control action to avoid an obstacle. Between the time steps i-1 to i, the 

control measurements are recorded by a thread parallel to the iSAM and trajectory 

planning computations in the array  

 

[ ]i
n n n nv tω= ΔC      (5.66) 

 

where ntΔ  is the time difference between control measurements and 1, , i
stepsn N= , 

where i
stepsN  is the number of control measurements between observation steps. Recall v 

and  are velocity and turn-rate respectively.  

5.8.2.2. Prediction of the Robot Pose at Time of Next Control Execution  

It would be convenient to assume that the duration of a single time step (i-1 to i) for 

each control action is constant. However, in practice, the length of the control action 

increases with computation time. Planning for the next control action requires the 

system to know or predict the position of the robot after the computation time for 

planning has elapsed. If the trajectory planning uses the current pose estimate, then the 

trajectory is based on the robot pose at the time data is acquired and thus would be 

incorrect due to the computation time between data acquisition and plan execution as 
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illustrated in Figure 5-26. First, data is acquired at the start of the first period (red) and 

then the robot pose is updated (end of yellow) to be at the time the data was collected. 

The planning then starts from the time where the system information is updated (start of 

blue bar) for the next control action. This plan is executed at the end of the planning 

process (green bar), i.e. based on the robot pose at the start of the time line. During this 

time the robot would have moved and is no longer at the position from which the data 

was acquired. Thus a prediction of the computation time between the times of data 

acquisition and the execution of new controls must be made. 

 

 

Figure 5-26 Illustration of Delay of Plan Execution 

 

The computation time for each control action varies with the number of features and 

robot poses, and the number of loops executed in the estimation and planning 

algorithms. This is the difficulty in predicting the duration of a control action. 

Generally, as the information and planning requirements evolve gradually, the duration 

of the previous steps are similar to that of the current. Hence the computation time of 

the previous step may be used to approximate the pose of the robot where the next 

planned control action is to be applied.  

 

Prior to planning the trajectory, the robot pose from which the next control action is to 

be executed is approximated. Using the number of control measurements, i
stepsN , the 

mean of ntΔ  for 1, , i
stepsn N=  recorded from the previous time step, the current control 

action nu  together with the process model (5.40) and (5.41), this pose is computed. 

Additionally, the robot poses in the tree search are determined using the duration of the 

previous step; i.e. during the planning phase, i
stepsN  and the mean of ntΔ  for 
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1, , i
stepsn N=  are also used to predict the pose of the robot for the Nω  different control 

options in the planning horizon. Figure 5-27 illustrates this approach. 

 

 

Figure 5-27 Predicted Start Pose 

  

5.8.2.3.  Emergency Obstacle Avoidance 

Practical implementation of the planning algorithms requires the inclusion of overriding 

obstacle avoidance in case the robot encounters unexpected obstacles. The planning 

process may have errors, including but not limited to longer than expected computation 

times and significant noise in measured velocities. To act quickly (much faster than the 

planning algorithm) the obstacle avoidance relies only on laser measurements and if 

collision is imminent, the control action is to stop and turn away from the obstacle. This 

emergency obstacle avoidance process is also placed in the thread where control 

measurements are taken. 

5.8.3.  Map and Path 

Figure 5-28 displays the resultant map and path for the three methods after 150 

observation steps. The robot trajectory appears quite jagged in the diagrams. The reason 

for this is that only the robot poses at the update step are displayed. The poses between 

updates are not displayed as the relative pose is computed and intermediate poses are 

not included in the state vector (see Section 5.5.1).  
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It should also be noted that the maps displayed in Figure 5-28(a)-(d) are not all 

identically aligned. This is due to the variations in the start position of the robot 

between experimental runs. Although the start pose was marked with white tape as 

displayed in Figure 5-24, the robot cannot be positioned exactly the same for each 

experimental run as the placement relies on human judgement. 

 

        
     (a) MPC+Attractor, Observation Steps=150       (b) MPC, Observation Steps=150 

        
(c) Random Select, Observation Steps=150   (d) Random Select, Observation Steps=450 

Figure 5-28 Map and Path from Practical Experiment (m) 
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The map from the MPC+Attractor strategy in Figure 5-28(a) appears to be mostly 

complete. After 150 observation steps, most of the area is explored except for a single 

line-feature. The map from the MPC strategy is less complete as the robot in Figure 

5-28(b) remained near the starting point at the top of the map. The map generated by the 

random select method is the least complete. In Figure 5-28(c) it can be seen that the 

robot has turned three times in the same vicinity due to poor decision making. 

 

For the random select method, the path is relatively short. This corresponds to the 

computation time required for each loop. The robot, travelling at the same speed as the 

other strategies, travels for a shorter time due to the shorter computation time. It is 

difficult to observe the behaviour of this method for such a short experiment time. The 

Random Select strategy is run again for 450 observation steps and the map is displayed 

in Figure 5-28(d). For this experimental run, the total time is 312 seconds longer than 

the time for the MPC+Attractor. However the map from the Random Select is still less 

complete than the map from MPC+Attractor.  

5.8.4. Loop Times 

The computation time for each loop, previously illustrated in Figure 5-26, is realised for 

the three methods as displayed in Figure 5-29. It can be seen that the computation time 

for MPC+Attractor is significantly longer than that of Random Select. However despite 

the longer computation time, it is demonstrated that the algorithm can work in real-time 

to perform active SLAM. The primary reason why a loop time of 4 seconds or over is 

still manageable is by the strategy described in Section 5.8.2.1 where the measurements 

of the control actions are recorded independently. 

 

Furthermore, it can be seen that the majority of the computation time is consumed by 

the MPC planning. The computation time for the iSAM update is predominately the 

computation of the Random Select strategy. It can be seen that after the initialisation 

phase the computation time for the Random Select strategy increases gradually. This is 

due to the increase in the number of features and the increase in the number of poses, 

even for a small environment such as this and the small amount of loops it is quite 

apparent. 
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Figure 5-29 Loop Times vs. Observation Time Steps - Experiment  

 

From Table 5-5 it can be seen that the length of the path (row 1) and duration of the 

experiment (row 3) is directly coupled with the computation time for each loop (row 4). 

It can be seen that the accuracy of the map (i.e the final trace of the covariance matrix P 

in row 6) for the MPC+Attractor strategy is not as good as the other two strategies. This 

is due to the lower frequency at which the estimation is updated.  

 

The Random Select strategy enabled the robot to update its control, process information 

observations and update its estimate at a smaller time interval allowing a more accurate 

estimation. However despite the longer computation time required for the attractor, a 

good estimate of the map is still maintained. 
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MPC + 

Attractor MPC 

Random 

Select 

Random 

Select x3 

1 Total Number of Control 

Measurement Steps 
6483 4912 1544 1655 

2 Total Number of Observation 

Steps 
150 150 150 450 

3 Total Experimentation Time (s) 374 281 98 686 

4 Average Loop Time (s) 2.4784 1.8599 0.6477 1.524 

5 Average Time between Control 

Measurements (s) 
0.0656 0.0640 0.0708 0.0673 

6 Trace(PT)/number of rows in PT 0.0022 0.0018 0.0012 0.0034 

7 Number of Features 15 13 6 14 

Table 5-5 Experimental Results 

 

In parallel to the main thread that computes the SLAM and trajectory planning, a 

control measurement thread is implemented for the practical experiment. To 

demonstrate the operation of the thread, Figure 5-30 and Figure 5-31 are displayed 

below. Figure 5-30 shows the number of velocity and turn-rate readings taken for each 

loop. This is directly correlated to the loop time (Figure 5-29). The longer the 

computation required to compute the SLAM and trajectory planning the greater the 

number of control measurements taken. As there is only one computer, the processor 

switches between the two threads regularly. In Figure 5-31 the time between taking 

velocity and turn-rate measurements is shown. It appears that it generally takes a 

measurement every 0.05 or 0.085 seconds. The difference in these times may be due to 

the obstacle avoidance being in the same thread or perhaps simply the operation of the 

processor. The more frequent the measurements, the less linearity error caused by the 

linearised process model as without using a separate thread (i.e. using only a single 

control measurement for each observation update), the error in the predicted robot pose 

for the initial guess for the iSAM was so large that the algorithm could not converge. 
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Figure 5-30 Number of Process Measurements per Loop 

 

 

Figure 5-31 Time between Process Measurements 
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5.9.  Discussion 

5.9.1. Reduce Poses in State Vector 

Although the iSAM algorithm provided consistent estimates, computation time remains 

an issue for long experiments. When the number of poses grows large in the iSAM state 

vector, a large amount of memory is required to store the corresponding information 

and covariance matrices. The computation time increases and the trajectory planning 

eventually becomes ineffective. The number of poses far exceeds the number of line 

features as there are generally only a few dominant lines in a structured environment, 

thus reducing the number of poses retained in the state vector would significantly 

reduce computation.  

 

Previous robot poses can be removed by following the procedure in Section 5.5.4. A 

formulation of a new SAM algorithm was developed to compute the estimates using the 

observations obtained in the subsequent time steps after removing the poses. In this new 

algorithm, the state estimate immediately after the removal of poses is treated as an 

observation with the covariance of the estimates used as the covariance of the 

observation. An additional term is introduced into the least squares problem to include 

the state observation and is then solved. Further details are given in Appendix C. 

Removing the poses reduce the size of the information matrix but effectively make the 

information matrix denser. 

 

To evaluate the effectiveness of this strategy of removing poses, a dataset of 1000 time 

steps was taken of the office area of the Centre of Excellence for Autonomous Systems 

(CAS) at UTS as seen in Figure 5-32. The laser scans, robot velocity, turn-rate and time 

were recorded at each time step. Each time step is approximately 0.3 seconds. This 

dataset was processed offline on 3.0GHz Pentium 4 processor with 2GB 400MHz DDR-

RAM. 

 

It was found through processing this dataset that the computation time (Figure 5-33) 

increased exponentially when all the poses were maintained in the state vector. When 

the poses were removed, the computation time remained short. However, the more 

frequently poses were removed, the more inconsistent the map estimates (Figure 5-34). 
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It should be noted that the EKF formulation is equivalent to removing poses at every 

step.  

 

Ideally the covariance of the robot pose with the removal of poses should not differ 

from the case where all the poses are maintained. However it is observed that the 

covariance of the robot pose estimate (Figure 5-35) does change slightly after removing 

the poses. The main factor that may attribute to the differences in covariance is the fact 

that all the previous poses and associated observations could no longer be updated at 

every time step when the iSAM convergence loop is applied. The variation in the robot 

pose estimate may have attributed to incorrect data associations.  

 

A strategy into which poses can be removed without causing inconsistencies in the 

estimation is necessary. There may be critical poses in the state vector that needs to be 

maintained for a consistent estimate. These could be the initial start pose or perhaps 

poses where loop closure occurs. A criterion for selectively removing poses is yet to be 

determined. Alternatively there may be critical instances where removal of poses is fatal 

for the estimation to remain consistent. In the experiment, the robot makes a loop 

around a set of cubicles. The robot covariance grows until it closes the loop. Removing 

the poses as the covariance grows may not be beneficial for the estimation; it may be 

best to wait until after a loop has been closed or when the covariance of the robot is low. 

These strategies require further investigation however as the focus of this thesis is on 

trajectory planning, they are not explored any further. 

 

With the inconsistency found in the result obtained from removing the poses, it is 

decided that this algorithm developed to reduce robot poses would not be used in the 

actual experiment presented in this thesis.  
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Figure 5-32 Environment of Dataset (CAS UTS office) 

 

 

Figure 5-33 Computation Time for iSAM 
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(c) Remove Poses Every 20 Steps  

Figure 5-34 Map from Removing Poses in SAM (m) 
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Figure 5-35 Covariance of Robot Pose for iSAM  

where green=remove poses every 20 steps, blue=50 remove poses every steps, 

red=maintain all poses 

 

5.9.2. General Practical Issues 

It must be noted here that a faster processor will result in a higher frequency of updates 

and hence the results would be more accurate and the robot would be able to move 

faster. The experimental results were conducted on a computer that is 4 years old with a 

1.7GHz processor and 512MB of RAM. Currently there are computers available that 

have dual processing power and with significantly more memory. Additionally, the 

current state of the system is displayed using a 16MB graphics card which is quite slow 

but was required for monitoring the current status during the experiment. A combination 

of Matlab and C was also used in the experiments. Although Matlab simplifies 

implementation, it is less efficient at processing code. These issues resulted in a lower 

frequency of updates especially for the more intelligent strategies. 

 

During the experiment, the start position was marked with a tape. However the robot 

may not have been at exactly the same angle or position given human error. Hence the 
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map may not always be perfectly aligned between experimental runs. The differences 

inherent in the initial robot start pose may also affect the decisions made in the 

planning. 

 

One of the issues encountered during the experiment was the battery life of the robot 

and the laptop. It is discovered that they rarely lasted longer than an hour. Although this 

is not an issue of the planning algorithms, it should be noted that power cables for the 

laptop were dragged across the experiment which created dynamic obstacles or false 

readings when moved across the face of the laser scanner and would sometimes move 

boxes creating. 

 

The lines in the environment were required to be at least a metre long for good 

detection. The robot was able to avoid smaller obstacles but the inclusion of smaller line 

segments in the estimation and map did not work as successfully. 

 

The Pioneer Robot was not able to run smoothly at low speeds on carpet. Also, with the 

weight of the batteries, it also made it difficult to turn on the spot. Even on hard ground, 

there was significant slip of the robots wheel when it turned on the spot. This also 

prevented the laptop to be mounted on the Pioneer robot during the experiment. This 

resulted in the requirement of following the robot with the laptop and act as a human 

extension of the robot. This caused some dynamic obstacles or false readings when the 

robot turned unexpectedly and the laptop carrier could not get out of the way in time. 

 

There were insufficient features for the robot to localise with in the CAS environment. 

Although the CAS environment has many long straight lines, they were mostly parallel. 

When the robot is moving down long corridors it is found that the robot has a tendency 

to loose its location along the corridor. It does not have sufficient features to localise 

with when there are only two parallel lines.  

 

For short experimental trials, recording the robot velocity and turn-rate between updates 

is sufficient for real-time implementation. The computation time becomes a problem 

when it is larger than approximately 7 seconds depending on the robot speed. A method 

to reduce computation for long experimental runs requires further investigation. 
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5.10. Summary 

This chapter studied trajectory planning for line-feature SLAM. SAM was used to solve 

the estimation problem since the EKF was found to give inconsistent estimates for large 

scale implementations (Rodriguez-Losada et al. 2006). The covariance of the noise of a 

line measurement was computed through a least squares method based on the laser 

measurements. The SAM algorithm was also modified to reduce the number of poses in 

the state vector and computation time by computing the relative pose of the robot 

between consecutive observation steps. This also reduces accumulated errors in the 

robot pose estimate.  

 

Two planning strategies, using MPC and MPC+Attractor, are proposed. Modifications 

to these strategies are made to adapt them to structured environments. To determine 

frontiers for exploration, an occupancy grip map was incorporated to the trajectory 

planning. A demonstration of these strategies is given. Purely optimising for 

information gain with MPC is found not to be suitable for line-feature SLAM. Adding 

the attractor to MPC significantly improved the coverage and allowed it to handle more 

complex environments. Several modifications to the algorithm were also implemented 

to assist practical implementation. The proposed strategy, MPC+Attractor, is shown to 

perform well in all the simulations and real-time practical experiments conducted.  

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Conclusion and Future Work 
 

 

This thesis provides a solution to effectively map and localise through planning 

trajectories such that the information gain from selective observation points are 

maximised. Three problems were considered: 1) Multi-agent bearing-only target 

localisation 2) Point feature based Active SLAM, and 3) Line feature based Active 

SLAM. Certain objectives were set (see Section 1.3) to advance the trajectory planning 

strategies for feature-based localisation and mapping amid uncertainties. This chapter 

summarises the principle contributions made in meeting these objectives and provides 

suggestions for future research directions. 

 

6.1.  Summary of Contributions  

The following lists the major contributions made in this thesis. 

6.1.1. Formulation of the Trajectory Planning Problem as Optimal 
Control Problems with Gradually Identified Models 

The trajectory planning problems were formulated as optimal control problems with 

gradually identified models as not all the information can be predicted before the 

observations are made. Assumptions are clearly stated for the unknown observations to 

convert the optimal control problem to a deterministic system. This is central to 

enabling multi-step predictions in the trajectory planning. In Chapter 3 bearing-only 
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target localisation using the EIF was considered under the objective of maximising 

information gain. Chapter 4 considered minimisation of uncertainty for point-feature 

based SLAM using the EKF and Chapter 5 considered minimisation of uncertainty for 

line-feature based SLAM using iSAM. 

6.1.2. Application of MPC for Trajectory Planning of Feature-based 
Localisation and Mapping 

Model Predictive Control (MPC) is applied to the three tasks of feature-based 

localisation and mapping. The MPC strategy entails planning multiple steps ahead and 

only executing the first step, so as the updated information is exploited. Constraints 

such as robot maximum turn-rates, sensor field of view limitations and no-go-zones are 

incorporated into the trajectory planning. In Chapter 3, two optimisation strategies are 

introduced. The first strategy, EETS, conducts a coarse exhaustive tree search. This is 

then compared to EETS+SQP, where the solution from EETS is refined using SQP. 

Analysis of the results shows that EETS provides a near optimal solution with 

significantly less computation than EETS+SQP. Subsequent chapters, Chapter 4 and 

Chapter 5, also use EETS. 

6.1.2.1. Multi-Agent Target Localisation 

Simulation results in Chapter 3 showed that planning multiple steps performs better 

than the single-step planning method. On the other hand, increasing the number of 

control options at each step to a fine discretisation in the trajectory planning is found to 

increase the computational cost significantly with only minor benefits in information 

gain.  

 

Cooperation among robots during the trajectory planning phase is shown to be valuable 

in the task of multi-agent bearing-only target localisation. A naive decentralised 

solution for using multiple robots for this task is implemented. As expected, the 

computation time for a decentralised implementation is reduced compared to a 

centralised approach at the cost of optimality in information gain.  

 

The importance of representing the information in the form of an information matrix is 

also demonstrated. Paths generated for features with particular information content are 

applied to other features with identical determinants and eigenvalues but different 

information content. It is found that the information gained from a trajectory 
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specifically optimised for particular information matrices of location estimates is 

superior to using trajectories optimised for other environments with identical scalar 

measures of location estimates. 

6.1.2.2. Active SLAM 

In the case of SLAM, it was found in Chapter 4 that for large process noise or high 

uncertainty in the system estimate, extending the planning horizon does not necessarily 

equate to higher information gain. Long term plans may not be realised when the 

uncertainty of the system is high. Thus the computation time may increase 

exponentially without achieving proportional gains in information. 

 

Furthermore, MPC was found to be flexible and able to adapt to new constraints and 

information. In the SLAM case, when new features are detected, new no-go-zones and 

new information are easily incorporated into the MPC strategy. They are simply added 

in the following time steps. In addition, parameters for MPC, such as the planning 

horizon and the number of control options are flexible and can be made to meet the 

computational capacity. 

6.1.3. Incorporating Long-term Goals 

MPC alone lacks long term look-ahead in the planning and also lacks any implicit 

strategy for exploration. Thus a strategy based on an attractor is developed in Chapter 4 

to improve the performance of MPC for point-feature based SLAM. Modifications to 

the attractor based strategy are made in Chapter 5 for line-feature based SLAM. The 

purpose of this attractor is to allow the incorporation of long term goals and provide an 

incentive for exploration for the MPC strategy. In this strategy, three modes a) explore, 

b) improve map and c) improve localisation, are devised for a state machine based on 

the fundamental tasks observed in SLAM. A feature or point of interest is then selected 

based on the current mode as the reference point. It is proposed to use the attractor in 

the form of a virtual feature and placed in the direction of the reference point. MPC is 

implemented with an attractor and demonstrated to give improved coverage. 

6.1.4. Active SLAM for Line Features 

A novel implementation of performing trajectory planning for line-feature SLAM was 

presented in Chapter 5. Since line features are natural features already present in 

structured environments, they obviate the need for pre-positioned laser beacons. Line 
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features also provide a more informative map to the user and assists in trajectory 

planning in a structured environment. There is more information contained in a line-

feature map than in a point feature map as more range measurements are utilised in each 

laser scan. For line feature observations, an algorithm is developed to determine the 

observation noise covariance using a least squares method.  

6.1.4.1. Application of iSAM to Line-feature Mapping 

In Chapter 5, implementations using EKF with line features were found to fail in a short 

time. iSAM is introduced as an alternative estimation algorithm to replace EKF. The 

iSAM algorithm is based on a least-squares formulation and is claimed to be more 

consistent in its estimation. Line-feature mapping is formulated for iSAM and the 

method is shown to maintain consistent estimates. Multiple robot poses between the 

steps where observations are made are predicted in a batch mode using the relative pose 

to reduce accumulated errors. This allows the robot velocity and turn-rate to be recorded 

at a higher frequency between iSAM updates and computed as a batch of pose 

predictions, which results in reduced error in the linearised process model and reduced 

number of poses to be computed in the state vector. 

6.1.4.2. Trajectory Planning for Line-feature SLAM 

The strategy for the attractor, presented in Chapter 4, is modified in Chapter 5 for line-

feature trajectory planning. Localising in a line-feature map is more difficult than in a 

point-feature map since the robot requires more features to localise but now generally 

fewer of them are available. Visibility also becomes an issue in line-feature mapping, as 

lines may occlude other lines. For exploration, two enabling items are introduced; an 

occupancy grid map to determine frontiers in the map and the distance transform 

algorithm to determine shortest path to the robot. For localisation and mapping, the 

reference point for the attractor is set to previous robot poses that have observed the line 

feature instead of using the position of the line feature itself. The placement of the 

attractor also considers the actual visibility in the structured environment.  

 

For line-feature SLAM, it is discovered that an attractor is imperative for performing 

exploration. A fundamental issue in line-feature SLAM lies with the fact that the robot 

observes a single line feature for a long time such that there may be no information gain 

from moving to observe the same feature. By incorporating the attractor, the MPC 

strategy perceives the information gain from the attractor and is lured to explore.  
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6.1.4.3. Practical Implementation of Line-feature Mapping with iSAM 

Line-feature mapping with iSAM has been demonstrated on a Pioneer2DX robot in 

Chapter 5, where an environment constructed from available furnishings was actively 

mapped in real-time. Although the computation time for trajectory planning and 

estimation was assumed to be instantaneous in simulations, consideration of 

computation time is necessary in practice. A modification to the planning algorithm, in 

which the robot pose is predicted based on the computation time for the previous loop, 

is implemented in this practical experiment.  

 

The computation time required for each time step effectively determines the frequency 

at which the estimation is updated. Consequently, trajectory planning algorithms 

requiring shorter computer times stand to lead to more accurate maps. This work 

demonstrates that trajectory planning with MPC+Attractor is sufficient for a robot 

moving at low speeds to successfully map the environment. It therefore represents an 

applicable strategy for real-time mapping and localisation. 

 

6.2. Directions for Future Work 

The research documented herein provided insight into possible future directions as well 

as unforseen challenges. These are put forward in the following brief discussion. 

6.2.1. Improvements to the Trajectory Planning 

Trajectory planning for feature-based mapping remains a challenging problem despite 

the development of a number of solutions. In particular, the need to consider multiple 

objectives and constraints such as coverage, localisation, map accuracy, minimising 

computations, robot dynamics, cooperation, and obstacle avoidance renders the problem 

difficult to solve. 

 

To improve localisation, it may be possible to consider areas that are likely to result in 

incorrect data association or good data association can be incorporated into the planning 

to assist the estimation accuracy of the map and localisation. Analysing the feature 

distribution or similarities in features observed may also assist in active sensing. 
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Although incorporating an attractor into the trajectory planning has improved coverage, 

complete coverage can still not be guaranteed. Moreover, obstacle avoidance is an issue 

especially when the planning horizon is short. As the robots are assumed in this work to 

stop and turn on the spot when there are no feasible control options, further work is 

need to extend the presented techniques to other vehicles such as UAVs. 

 

Computational cost remains an issue for large dimensions of control inputs or states. 

The optimisation strategy is the principal factor contributing to the large computational 

requirements for long planning horizons. The attractor based strategy developed to 

incorporate long-term goals is currently a heuristic and more formal methods are 

desirable. Using a geometric series in the tree search may reduce computation as it 

allows for a finer search in the immediate steps in the future and a coarser branching of 

the tree search for steps further in the future. A complete reformulation of the trajectory 

planning problem may be possible where the rewards are approximated, or alternatively 

a method may be developed to summarise the long-term rewards into the objective 

function. 

6.2.2. Trajectory Planning for Multi-agent SLAM 

As seen in the multi-agent work in Chapter 3, cooperation amongst robots to perform 

active SLAM provides a naturally interesting topic. Since heterogenous sensing and 

mutual information from different robots can provide higher quality maps, adopting 

appropriate strategies for coverage and information sharing may improve the time 

required to perform the localisation and mapping task. A centralised approach is optimal 

but computationally expensive. Decentralised techniques will be necessary due to the 

cost of centralised approaches. However, there would be an increasing need to consider 

the inference between the robots as more of them are deployed for the task. 

6.2.3. Trajectory Planning for Vision-based Estimation 

Planning with visual information can further extend the possible applications of the 

MPC+Attractor technique to environments that are non-structured. When cameras are 

used in the estimation, a large amount of information can be used such as texture, 

colour, and brightness. Hence the map will contain more information and the mapping 

and localisation is not constrained to specific features in the environment such as points 

and lines. Environments such as disaster zones rarely have solid line features or 
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poles/corners to extract point features. Therefore other features should be explored and 

the trajectory planning inturn needs to be adapted.  

6.2.4. Improvements in Mapping and Map Management 

Strategies for reducing poses in the iSAM state vector without causing inconsistencies 

remains an outstanding issue. Such issues need to be resolved for large-scale mapping 

as the computational cost increases with the number of poses in the state vector. An 

algorithm is thus formulated in Appendix C to reduce the number of poses in the iSAM 

estimation. While the removal of poses from the state vector increases the density of the 

information matrix, the approach is still more computationally efficient due to the small 

number of line features. The experiments presented in Chapter 5 demonstrate that the 

computation time remains low when the poses are removed. The use of the approach 

requires balancing between estimation accuracy and computational time, since more 

frequent removals will reduce the accuracy. At the limit, removing the poses at every 

step would be equivalent to the EKF state estimate. Selectively removing poses or 

waiting for opportunistic times where the robot covariance is small may be a possible 

method to maintain consistency in the estimation but requires further investigation. 

 

A comparative study between various line-feature based SLAM algorithms would be of 

interest. Using infinite lines as features rather than line segments provides a more 

compact map as there may be many line segments to an infinite line; however a loss of 

locality may occur. The use of SPMap and other algorithms may have other benefits 

such as a single observation model unlike two presented in Chapter 5 which may cause 

singularities and redundant features. Knowledge of strengths and weaknesses of 

different approaches would be of benefit to the research community. 

 

Mapping for efficient trajectory planning may require the maps to be dynamic. Doors 

may open at different angles for example, or in the case of mining, walls may be 

receding and effective map management strategies need to take this into account. 

Labelling features as good or poor for localisation may enable data association to ignore 

poor features so as the robot does not try to localise with a dynamic feature. Dynamic 

maps may also include the removal of incorrectly initialised features.  
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6.2.5. Trajectory Planning for Highly Constrained Environments or 
Fast Moving Vehicles 

The greatest pressure on a planning algorithm is where there is little room for error. 

This is the case when a robot is moving in a confined space such as an automated 

wheelchair in a house or when the robot moves at fast speeds such as UAVs or 

autonomous cars in traffic. The trajectory planning is required to account for all 

uncertainties in the map and potential noise and errors in the control whilst maintaining 

low computation. Setting safety bounds on the trajectory may be possible however in a 

confined space it may prohibit the robot from moving if it is too large. The processing 

of information from various sensors requires significant computation. For effective 

planning, the trajectory planning needs to incorporate the most current information. This 

is a growing area as there is less space available for living and the growing need for 

faster processes and higher productivity for industrial and domestic applications in 

robotics. 

 



 

Appendix A - iSAM Convergence Loop 
The following describes the SAM estimation process. This algorithm is repeated until 

the solution converges. It is assumed that the robot may start stationary but once it starts 

moving it would not become stationary until it has finished. 

 

The initial robot pose and all the estimated poses, all the observations, and all the 

control inputs: x̂ , z, and u respectively are inputs to iSAM.   

 

The predicted pose, relative pose, noise covariance of the relative pose ˆ ix , ˆ rel
ix and 

i ,can be calculated following (5.42).  

 

Set the convergence threshold CThreshold =1e-3 

Set convergence loop counter 0τ =   

 

Loop while 1 3eδ > −x   

 increment  

Loop 1:m i=  This loop calculates the Hessian for the poses and the odometry 

prediction error up to time step i. 

  If robot has started moving 

If first moving step Then  

Record the first step robot moves s = m 

    If 1τ =  

Fill up the state vector with robot poses from the 

first step 

ˆ(( 1) 3 2 : ( 1) 3,1) mm s m s− + × − − + × = x  

End        
rel
mx  from process loop (5.40) 

1ˆ ˆ ˆ( , )rel
m m mγ −=x x x  from (5.42)  

    ˆrel rel
m m m= −x x  The odometry prediction error 

    ( ) 1new
m m m

−
= ×  
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   End If 

  End If 

 End Loop 

  

Loop m =1:i  

Loop k=1:Ki 

              km  from Section 5.4.3 

            If km >0 then associated 

  mkj =  

local
jlocal

j local
jd

α
=  from (5.8) or (5.11) depending on the 

location of the line  
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Else is a new feature 

1j J= +  

global
k

j global
kd

α
=  from (5.7) or (5.10) depending on the 

location of the line 

End If 
local

k k j= −z  The measurement prediction error. 

   ( ) 1new
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             End If 

  End Loop    

    End Loop 

If   1τ =  

   
ˆ
ˆ=
x

 

End If 

 

   
new

new=b  

    b = AT b 

    Rtriangle = chol (ATA) Cholesky factorisation   

x = Rtriangle\(Rtriangle
T\b) Matlab backslash operator 

          =  + x 

If any distances are negative after update 

 Add  to the angle 

 Multiply the distance by -1 

End If 

     Update x̂  and ˆ with new  

End Loop 
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Appendix B - Distance Transform 

 

Figure B-6-1 Distance Transform 

A popular method for path planning from a source to any destination in the map is the 

Distance Transform (Jarvis 1985, Lengyel 1990; Murray and Jennings 1997).  

 

2 1 2

1 0 1 

2 1 2

Figure B-6-2 Chamfer Distance Connectedness 

 

The distance transform algorithm works by propagating wavefronts from the source 

which is the location of the robot. Each cell in the wavefront generated is designated a 

higher value than the previous. The Chamfer Distance Connectedness (Murray and 

Jennings 1997) is used as it is deemed to generate a more direct path. The shortest path 

can be determined by selecting any point on the map and then tracing the highest 

descent of wavefronts back to the source. Paths to multiple destinations can be planned 

from a single source without regeneration of the wavefronts. This is beneficial when 

computing paths to several destinations to compare costs. 

Source of 
Wavefronts 
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Appendix C - Formulation of New SAM Algorithm for 
Computing the Estimates after Reducing Poses 

 

The SAM state vector and its corresponding covariance matrix can be reduced to the 

EKF form as described in Section 5.5.4. After removing the unwanted poses, a new 

SAM algorithm is formulated, where the inputs include the current map, relative pose 

information and observations. This allows the continuation of the SAM estimation using 

the reduced state in subsequent time steps and by treating the map as an observation 

(instead of the real observations and control measurement as previously used) 

information is not lost. 

 

To begin, prior to calculating ˆ ix , the poses in the state vector can be reduced leaving the 

most current pose estimate 1ˆ i−x  before the update. First the unwanted poses and 

associated covariances are removed leaving ˆ cut  and ˆ cutP , i.e.   

 

1

1
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.  (C.59) 

 

To maintain the information from the removed poses, a new formulation for the least 

squares problem for SAM, similar to that described in Section 5.5, is required. This 

process is described as follows. 

Step 1: Defining the Initial and Observed States 

Let true  be the state  

 

1itrue

L
−=

x
      (C.60) 

 

with the distribution ˆ ˆ( , )true cut cutN P  and the error of the estimate follows the 

distribution 
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ˆ ˆ(0, )cut true cutN− P     (C.61) 

 

Next, let 0  be the initial state value and ˆ cut  be the observed state and then ˆ cutP  

becomes the uncertainty of the observation. 

 

The observation function is  

 
0 0( )cuth =       (C.62) 

 

and the innovation c is then 

 
0ˆ cut= −c .       (C.63)    

 

Step 2: Defining the new Least Squares Problem 

Subsequently, as the robot moves and makes sensor observations, the new SAM 

problem now contains a new term, ∗ , for the remaining state, ˆ cut , after removing the 

poses, i.e.  

 

2 2
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 (C.64)   

 

where W is the number of elements in ˆ cut , τ  is the time step where the poses were 

removed and kτ  is the index of the first observation observed at time τ . If the 

formulation for reducing poses is computed at the current time step prior to updating the 

state vector then 1iτ = − . The new term ∗  is formulated such that it is similar to the 

existing terms in the least squares SAM problem and can thus be solved in the same 

manner by solving δ −A b . 
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Step 3:  Approximating the Error of the Estimation 

Using the initial state value 0 , the error of the estimation is approximated 

 
0 0ˆ ˆ( )true cut true cut− ≈ + − −     (C.65) 

where 
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L
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δ
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     (C.66) 

thus 
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Step 4: Defining the new Linearised Least Squares Problem  

The new linearised least squares problem now becomes 

 

2 2* 1
1

1
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m k

i K
m m m j
m m m m m k mk k jk k

m k kτ
δ

δ δ δ δ δ−
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where  is 
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Step 5: Solving the new Linearised SAM Problem 

To solve for the linearised problem δ −A b , let newc  be defined as the innovations for 

the current state ˆ cut  such that 

 

T/ 2ˆ
new

new
cut new

L L

−= =x xc c
c P

c c
.     (C.70) 

 

Using the new process innovation new  and observation innovation new  from the next 

time step, b can be constructed as 

 
Tnew new new new

L= xb c c .     (C.71) 

 

By separating the terms,  can be expressed as 
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1
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W
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E x E E c ,    (C.72) 

 

where E is an identity matrix and P can be dropped by the following property 
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( ) 1
T/ 2ˆ ˆnew cut

M M M cut

−
−= × =E P E P      (C.73) 

 

All the parameters required to construct b have now been defined for the equation 

δ −A b . Next A will need to be calculated to solve for δ . Suppose the example state 

consists of one pose followed by two features, i.e.  

 

3
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.     (C.74) 

 

Then the covariance would be 
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The least squares problem δ −A b  can be expressed as  
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Suppose now in the next time step there is one more pose 4x  and one new and one old 

feature observed from this pose. The new state estimate would be 

 
T1 2 3

3 4= x x      (C.77) 
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and the new innovation vector would be 

 

3 1 2

T

4
new new new new new

z= xb c c c .    (C.78) 

 

Finally, the Hessian matrix A in the equation δ −A b  can be constructed as follows  
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