

A national survey of trace organic contaminants in Australian rivers

Journal:	Journal of Environmental Quality
Manuscript ID:	JEQ-2014-01-0012-TR.R2
Manuscript Type:	Technical Research Paper
Technical Report Subtypes:	Surface Water Quality
Date Submitted by the Author:	15-Jun-2014
Complete List of Authors:	Scott, Phil Bartkow, Michael Blockwell, Stephen Coleman, Heather Khan, Stuart Lim, Richard McDonald, James Nice, Helen Nugegoda, Dayanthi Pettigrove, Vincent Tremblay, Louis Warne, Michael Leusch, Frederic; Griffith University, School of Environment
Keywords:	Hazard Quotient, Micropollutant, Surface Water, TrOC, Water Quality
	·

SCHOLARONE[™] Manuscripts

1	A national survey of trace organic contaminants in Australian
2	rivers
3	Philip D. Scott ^a , Michael Bartkow ^b , Stephen J. Blockwell ^c , Heather M. Coleman ^d , Stuart J.
4	Khan ^d , Richard Lim ^e , James A. McDonald ^d , Helen Nice ^f , Dayanthi Nugegoda ^g , Vincent
5	Pettigrove ^h , Louis A. Tremblay ^{i,j} , Michael St.J. Warne ^k , and Frederic D.L. Leusch ^{a,*}
6	^a School of Environment, Griffith University, Southport, Queensland, 4222, Australia
7	^b Seqwater, PO Box 16146, Brisbane City East, Queensland, 4002, Australia
8	^c Sydney Water Corporation, PO Box 399, Parramatta, New South Wales, 2124, Australia
9	^d School of Civil & Environmental Engineering, University of New South Wales, New South
10	Wales, 2052, Australia
11	^e School of the Environment, University of Technology Sydney, PO Box 123, Broadway,
12	New South Wales, 2007, Australia
13	^f Water Science Branch, Department of Water, Government of Western Australia, PO Box
14	K822, Perth, Western Australia, 6842, Australia
15	^g School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71,
16	Bundoora, Victoria, 3083, Australia
17	^h Melbourne Water, PO Box 4342, Melbourne, Victoria, 3001, Australia
18	ⁱ Cawthron Institute, 98 Halifax Street East, Nelson, 7042, New Zealand
19	^j School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142,
20	New Zealand
21	^k Water Quality and Investigations, Department of Science, Information, Technology,
22	Innovation and the Arts, Queensland Government, GPO Box 5078, Brisbane, Queensland,
23	4001, Australia

- 24 * Corresponding Author.
- 25 e: <u>f.leusch@griffith.edu.au</u>
- 26 p: +61 7 5552 7832
- 27 Mailing address:
- 28 Dr Frederic Leusch
- 29 Smart Water Research Centre (G51)
- 30 Griffith University, Gold Coast Campus
- 31 Southport, Queensland, 4222
- 32 Australia
- 33

34 List of abbreviations

35	APCI	Atmospheric Pressure Chemical Ionization
36	DEET	N,N-Diethyl-meta-toluamide
37	ESI	Electrospray Ionization
38	EU	European Union
39	HPLC	High Performance Liquid Chromatography
40	HQ	Hazard Quotient
41	LC-MS/MS	Liquid Chromatography Tandem Mass Spectrometry
42	LOQ	Limit of Quantification
43	MRM	Multiple Reaction Monitoring
44	NOEC	No Observable Effect Concentration

45	NSW	New South Wales (state of Australia)
46	NT	Northern Territory (territory of Australia)
47	РСР	Personal Care Product
48	PNEC	Predicted No Effect Concentration
49	РРСР	Pharmaceutical and Personal Care Product
50	QLD	Queensland (state of Australia)
51	SA	South Australia (state of Australia)
52	SEM	Standard Error of the Mean
53	SPE	Solid Phase Extraction
54	TCEP	tris(2-Chloroethyl) Phosphate
55	TrOC	Trace Organic Contaminant
56	US	United States
57	VIC	Victoria (state of Australia)
58	WA	Western Australia (state of Australia)
59	WWTP	Wastewater Treatment Plant

61 Abstract

- 62 Trace organic contaminant (TrOC) studies in Australia have focused on wastewater effluents,
- 63 leaving a knowledge gap of their occurrence and risk in freshwater environments. This study

64	measured 42 TrOCs including industrial compounds, pesticides, pharmaceuticals and
65	personal care products (PPCPs) by liquid chromatography tandem mass spectrometry at 73
66	river sites across Australia quarterly for one year. TrOCs were found in 92% of samples, with
67	a median of three compounds detected per sample (maximum 18). The five most commonly
68	detected TrOCs were the pharmaceuticals salicylic acid (82% ; max = 1,530 ng/L),
69	paracetamol (also known as acetaminophen; 45% ; max = 7,150 ng/L) and carbamazepine
70	(27%; max = 682 ng/L), caffeine (65%; max = 3,770 ng/L), and the flame retardant $tris$ (2-
71	chloroethyl) phosphate (TCEP; 44%; max = 184 ng/L). Pesticides were detected in 28% of
72	the samples. To determine the risk posed by the detected TrOCs to the aquatic environment,
73	hazard quotients were calculated by dividing the maximum concentration detected for each
74	compound by Predicted No Effect Concentrations (PNEC). Three of the 42 compounds
75	monitored (the pharmaceuticals carbamazepine and sulfamethoxazole and the herbicide
76	simazine) had a hazard quotient >1 suggesting that they may be causing adverse effects at the
77	most polluted sites. A further 10 compounds had hazard quotients >0.1 indicating a potential
78	risk; these included four pharmaceuticals, three personal care products and three pesticides.
79	Most compounds had hazard quotients significantly <0.1. The number of TrOCs measured in
80	this study was limited and further investigations are required to fully assess the risk posed by
81	complex mixtures of TrOCs on exposed biota.

82 Keywords

83 Hazard quotient; micropollutant; surface water; TrOC; water quality.

84

1. Introduction 85

- 86 With the human population surpassing seven billion, freshwater demand for municipal,
- 87 agricultural and industrial use has never been higher. There are over 100,000 registered

Journal of Environmental Quality

88	chemicals in the European Union (EU) alone (Schwarzenbach et al. 2006) and recent
89	improvements in analytical chemistry methodologies have enabled the study of trace organic
90	contaminants (TrOCs) in freshwater at relevant environmental concentrations. There are over
91	4,000 pharmaceutical and personal care products (PPCPs) on the market (Boxall et al. 2012)
92	and studies on their fate in the environment are lacking, along with an understanding of the
93	nature and toxicity of their environmental transformation products (Brausch and Rand 2011,
94	Fent et al. 2006). This is particularly the case in Australia (reviewed in Santos et al. 2010).
95	A 2002 study detected 76 out of 95 wastewater-associated TrOCs monitored in 139 streams
96	across the United States (US; Kolpin et al. 2002). A follow up study targeted 74 groundwater
97	and surface water sources of drinking water for 100 TrOCs and found at least one TrOC at
98	92% of the sites (Focazio et al. 2008). These two nation-wide studies established TrOC
99	concentration patterns across US impacted waterways. The first EU-wide assessment of
100	TrOCs covered 122 surface water sites across 27 countries where 90% of the samples had a
101	detection of at least one of the target TrOCs (Loos et al. 2009).
101 102	detection of at least one of the target TrOCs (Loos et al. 2009). Australian research on TrOCs has predominantly focused on wastewater treatment plant
102	Australian research on TrOCs has predominantly focused on wastewater treatment plant
102 103	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b,
102 103 104	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al.
102 103 104 105	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP
102 103 104 105 106	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP effluent concentrations of at least 50 pharmaceuticals and prioritised subsequent efforts for
102 103 104 105 106 107	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP effluent concentrations of at least 50 pharmaceuticals and prioritised subsequent efforts for analytical investigation. A recent study of 39 Victorian WWTP effluents confirmed the
102 103 104 105 106 107 108	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP effluent concentrations of at least 50 pharmaceuticals and prioritised subsequent efforts for analytical investigation. A recent study of 39 Victorian WWTP effluents confirmed the presence of various TrOCs including PPCPs, pesticides, food additives and alkylphenols
102 103 104 105 106 107 108 109	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP effluent concentrations of at least 50 pharmaceuticals and prioritised subsequent efforts for analytical investigation. A recent study of 39 Victorian WWTP effluents confirmed the presence of various TrOCs including PPCPs, pesticides, food additives and alkylphenols (Allinson et al. 2012). Concentrations were typically in the 1-1000 ng/L range but some
102 103 104 105 106 107 108 109 110	Australian research on TrOCs has predominantly focused on wastewater treatment plant (WWTP) processes and effluent rather than the receiving environment (Braga et al. 2005a, b, Chapman 2003, Coleman et al. 2008, Leusch et al. 2006, Mispagel et al. 2009, Williams et al. 2007, Ying et al. 2009). Khan and Ongerth (2004) used fugacity models to predict WWTP effluent concentrations of at least 50 pharmaceuticals and prioritised subsequent efforts for analytical investigation. A recent study of 39 Victorian WWTP effluents confirmed the presence of various TrOCs including PPCPs, pesticides, food additives and alkylphenols (Allinson et al. 2012). Concentrations were typically in the 1-1000 ng/L range but some compounds like carbamazepine were found above this range. Another study detected

113 For this study, 285 grab water samples were collected from 73 river sites across Australia

114 every quarter over a one-year period. Samples were concentrated using solid phase extraction

115 (SPE) and specific TrOCs analyzed by liquid chromatography tandem mass spectrometry

116 (LC-MS/MS). The objective was to assess the risk of TrOCs to the environment by

117 determining their concentrations in impacted freshwater environments to better understand

the relationship between land-use activities and aquatic contamination.

119

- 120 **2. Experimental section**
- 121 2.1. Site selection

122 Sites were selected after extensive consultation with academics, regulators and water industry

123 partners. Sample locations consisted of 19 sites each in New South Wales (NSW),

124 Queensland (QLD), and Victoria (VIC), 10 sites in Western Australia (WA), and three sites

125 each in the Northern Territory (NT) and South Australia (SA) (Fig. 1). Sampling locations

126 (Fig. 1) reflect the fact that most Australians live in close proximity to the coast and the

127 center of the continent receives little rain. Sites were categorized based on the primary land-

128 use activity upstream in the catchment. Sites were rarely influenced by just one land-use and

so the dominant land-use dictated site categorization. Detailed catchment information can be

130 found in SI Table S1. Freshwater aquatic environments in catchments with agricultural,

industrial, residential and WWTP activities were selected, along with sites in catchments with

132 less anthropogenic influences (*i.e.*, "undeveloped" or "reference" sites) from each

133 state/territory (Table 1). QLD consisted of five undeveloped sites, while NSW and VIC both

had three. NT, SA and WA had only one undeveloped site per territory/state. Other land-uses

had to be prioritized due to a smaller number of sampling locations.

136

137 [INSERT FIG 1 HERE]

138	
139	[INSERT TABLE 1 HERE]
140	
141	2.2. Water sampling
142	Grab river water sampling started at the project commencement and samples were obtained
143	every three months, in Autumn (May 2011), Winter (August 2011), Spring (November 2011)
144	and Summer (February 2012) from each site (with the exception of NT sites, which were
145	only sampled twice, due to in-kind service personnel relocation) (Table 1). Two solvent-
146	rinsed 1 L amber glass bottles were submerged to approximately 20-30 cm depth in fast
147	flowing water as far towards the centre of the channel as possible from the water's edge in
148	order to collect 2 L grab water samples. To prevent biological degradation, 1.5 mL of 12 M
149	HCl (Merck, Victoria, Australia) was added to each bottle to lower the pH to approximately
150	2. Samples were packaged with ice blocks and sent by overnight courier to the laboratory for
151	solid-phase extraction (SPE). Geographic location and budgetary constraints made field
152	blanks unfeasible; however, one laboratory blank was generated for each sampling event.
153	
154	2.3. General water quality parameters
155	Basic water chemistry (dissolved oxygen, electrical conductivity, pH, temperature) was
156	measured in the field for each sample prior to acidification (SI Table S2). To minimize risk of
157	contamination, a small volume of water from each sample was decanted into a small vial for
158	determination of nitrate and nitrite concentrations with Hach AquaChek Nitrate Nitrite strips
159	(Notting Hill, Australia). Total chlorine, free chlorine, total hardness, total alkalinity and pH
160	were then measured using Hach AquaChek 5-in-1 strips (Notting Hill, Australia) following
161	the manufacturer's instructions (SI Table S2), and the decanted sample was discarded.

162	Stream flow data were not available at the time of sampling; however, rainfall (and
163	atmospheric temperature) data were obtained for one week prior to sampling (SI Table S2).
164	
165	2.4. Solid-phase extraction (SPE)
166	Upon arrival in the laboratory, water samples were adjusted to precisely pH 2 using 12 M
167	HCl and extracted within 24 h. Samples were vacuum filtered through 2 μ m glass fibre filters
168	(47 mm diameter; Millipore, Kilsyth, Australia). One L of sample was passed through a
169	preconditioned SPE cartridge (Oasis HLB SPE cartridges; 500 mg sorbent, 6 cc; Waters,
170	Rydalmere, Australia) at 10 mL/min. Cartridges were pre-conditioned with 2× 5 mL of
171	acetone: hexane (1: 1) (analytical reagent grade; Merck, Victoria, Australia) followed by 2× 5
172	mL methanol (analytical reagent grade; Labscan, Thailand) and finally 2× 5 mL distilled
173	water. After passing the full water sample, the SPE cartridges were dried under vacuum at 20
174	mmHg for 2 h (or until dry). Dried cartridges were wrapped in aluminium foil and stored at
175	4°C until elution (up to two weeks). A polar fraction was eluted with 2× 5 mL methanol and a
176	non-polar fraction was eluted with 2×5 mL acetone: hexane (1: 1). This was repeated for the
177	second 1 L bottle. Fractions from both cartridges were combined and evaporated under
178	nitrogen until dry and immediately reconstituted into 1 mL methanol for chemical analysis.
179	One laboratory blank was generated for each sampling event.
180	one haboratory brank was generated for each sampling event.
181	2.5. Liquid chromatography

- 182 TrOCs were selected for monitoring based on their occurrence in WWTP effluents and
- 183 environmental waters, availability of deuterated standards and previously established
- 184 methods. Analytes were separated using an Agilent (Palo Alto, CA, USA) 1200 series high
- 185 performance liquid chromatography (HPLC) system equipped with a 150×4.6 mm, 5 μ m
- 186 particle size, Luna C18(2) column (Phenomenex, Torrence CA, USA). A binary gradient

187	consisting of 5 mM ammonium acetate in water (A) and 100% methanol (B) at a flow rate of
188	$800 \ \mu L/min$ was used. For ESI positive analyses, the gradient was as follows: 10% B held for
189	0.50 min, stepped to 50% B at 0.51 min and increased linearly to 100% B at 8 min, then held
190	at 100% B for 2 min. For ESI negative analyses, the gradient was as follows: 10% B held for
191	0.50 min, stepped to 60% B at 0.51 min and increased linearly to 100% B at 8 min, then held
192	at 100% B for 3 min. A 5 min equilibration step at 10% B was used at the beginning of each
193	run. For APCI analysis the eluents consisted of milli-Q grade water (A) and 0.1% v/v formic
194	acid in methanol with the following ramp at a flow rate of 700 μ L/min: 60% B held for 5
195	min, increased linearly to 100% B at 20 min, then held at 100% B for 3 min. A 3 min
196	equilibrium step preceded injection. An injection volume of 10 μ L was used for all methods.
197	Analytical methods using electrospray ionization (ESI) were based on Vanderford and
198	Snyder (2006).

200 2.6. *Mass spectrometry*

201 Mass spectrometry was performed using an API 4000 triple quadrupole mass spectrometer
202 (Applied Biosystems, Foster City, CA, USA) equipped with a turbo-V ion source employed

203 in both positive and negative electro-spray modes. Using multiple reaction monitoring

204 (MRM), two mass transitions for all but three of the analytes were monitored for unequivocal

205 confirmation. One mass transition for the labeled internal standard was monitored. Only the

206 first transition was used for quantification. Relative retention times of the analyte and

207 isotopically labeled internal standard were also monitored to ensure correct identification. A

table of transitions can be found in the Supplementary Information (SI Tables S3 and S4).

209

210 2.7. Calibration and limits of quantification

- 211 Standard solutions of all analytes were prepared at 1, 5, 10, 50, 100, 500 and 1000 ng/mL. A
- 212 relative response ratio of analyte/internal standard over a 1–1000 ng concentration range was
- 213 generated enabling quantitation with correction for losses due to ion suppression. All
- 214 calibration curves had a correlation coefficient of 0.99 or better. The limits of quantification
- 215 (LOQs) were determined as an s/n ratio greater than 10.
- 216
- 217 2.8. Statistical analysis
- 218 When required, statistical analysis was performed using the Kruskal-Wallis nonparametric
- 219 test, followed by Dunn's multiple comparison test, on Prism 5 software (GraphPad Software, PREC
- 220 California, USA).
- 221

222 3. Results and discussion

- 223 3.1. Chemical analysis
- 224 The monitored TrOCs were found in 92% of samples, with a median of three compounds
- 225 detected per sample (maximum of 18). In contrast, Kolpin et al. (2002) reported a median of
- 226 seven chemical detects per sample and a maximum of 38 (out of 95) in a study that
- 227 investigated many overlapping chemical classes. Focazio et al. (2008) indicated that a median
- 228 of four chemicals detected per sample, with a maximum of 31 (out of 100) in surface water
- 229 and groundwater. These studies used LC-MS with detections typically between 10-500 ng/L.
- 230 The most chemically diverse sample had 45% of the targeted compounds compared to 40%
- 231 found in a US study (Kolpin et al. 2002). However, a subsequent US-based surface water and
- 232 groundwater study reported 63% of targeted TrOCs present in the most chemically complex
- 233 sample (Focazio et al. 2008). Overall, the six most frequently detected compounds in this
- 234 study were salicylic acid (82%), caffeine (65%; not analyzed in Spring sampling),

- paracetamol (also known as acetaminophen; 45%; not analyzed in Spring sampling), TCEP
- 236 (44%), carbamazepine (27%) and triclosan (25%). Four compounds were detected at least
- once at concentrations in excess of 1,000 ng/L: paracetamol (7,200 ng/L), simazine (3,900
- ng/L), caffeine (3,800 ng/L) and salicylic acid (1,500 ng/L).
- 239
- 240 [INSERT FIG 2 HERE]
- 241
- 242 [INSERT TABLE 2 HERE]
- 243
- 244 [INSERT TABLE 3 HERE]
- 245
- 246 *3.1.1. Land-use*

247 The analytical methods were initially developed for wastewater contaminants such as

248 pharmaceuticals and personal care products (PPCPs). Of the five land-uses targeted, samples

- collected downstream of WWTPs (n=50 out of 285) had the highest median number of
- detections with 7 chemicals per sample (average = 6.5) although this was not significantly
- 251 different (Kruskal-Wallis test; p>0.05) from industrial, residential, or agricultural samples.
- Industrial (n=28), residential (n=74) and agricultural (n=80) samples had medians of 6, 4 and
- 253 2 TrOCs per sample, respectively (averages of 6.2, 4.3 and 2.6 TrOCs respectively). Finally,
- undeveloped sites had the lowest number of TrOCs with an average of 1.5 per sample
- 255 (median = 1); this value was significantly different (Kruskal-Wallis test; p<0.05) from other
- 256 land-uses. These results indicate that TrOCs are widespread across land-uses and not simply
- 257 in rivers receiving WWTP discharges. This may be due to the presence of septic tank
- systems, leaking sewer lines, the result of combined sewer overflows into waterways

259	following intense wet weather events, or some other unknown source. There is clearly a need
260	for further research investigating TrOCs from other land-uses activities.
261	Fig. 2 (top) indicates that the top five most frequently detected compounds did not vary
262	greatly across the different land-uses. The most frequently detected TrOCs were: salicylic
263	acid, caffeine, paracetamol, TCEP, carbamazepine, triclosan, 2-phenylphenol and
264	propylparaben (Tables 2 and 3). Of those, salicylic acid (64-100%) and caffeine (34-90%)
265	were in the top five compounds for all land-use categories (Fig. 2, top). Caffeine is a common
266	wastewater contaminant and has occasionally been used as a marker compound for human
267	wastewater (Metcalfe et al. 2003). The prevalence of caffeine and PPCPs suggests
268	widespread (but low) wastewater pollution, from an unknown source(s), possibly septic tank
269	leakage, or sewage overflow during heavy rainfall, which was common in the sampling
270	period (SI Table S2).
271	
272	3.1.2. Location

273 Geographic location (Fig. 1, SI Table S2) was used to sort number of TrOCs per sample by

Australian state or territory. Samples from NT (n=6) had the highest average number of

detections per sample (6.5 compounds per sample). NSW (n=76) had 4.4, WA (n=40) had

4.3, SA (n=12) had 4.2, and VIC (n=76) had 4.1 detections per sample. QLD samples (n=75)

had the lowest national average with 2.7 compounds detected per sample.

278 Salicylic acid was the most frequently detected compound in each state (Fig. 2, bottom) and

- detection frequencies varied from 61% in QLD to 100% in SA. It was interesting to see that
- salicylic acid was one of the most commonly detected compounds despite its relatively high

281 LOQ.

282

283 *3.1.3. Seasonal and land-use trends*

Journal of Environmental Quality

284	Qualitative assessment of the dataset indicated that most analytes had similar frequencies of
285	detection throughout all four sampling events with a few exceptions (Table 2). Primidone
286	was detected more frequently in Autumn (May-2011) and Spring (Nov-2011), compared to
287	Winter (Aug-2011) and Summer (Feb-2012). Phenytoin was found consistently in Autumn,
288	Winter and Spring (11, 15 and 13 times, respectively), but not once in Summer.
289	Propylparaben was detected 23 times in Spring, but not as often in other sampling events (0
290	times in Autumn; 3 times in Winter; 8 times in Summer). The biocide 2-phenylphenol was
291	only identified twice each in Autumn and Winter, seven times Spring, and 27 times in the
292	Summer. Australia, a continent the size of Europe, experiences vast climatic and seasonal
293	differences between states/territories and even between sites within states/territories.
294	Temperature can significantly influence WWTP removal efficiencies of TrOCs (Ternes et al.
295	1999), and rainfall can impact their dilution in receiving environments (Ternes 1998).
296	Analysis of chemical data sub-divided by land-use did not indicate any trends. Sites were
297	categorized based on the most influential point (e.g. WWTP) or non-point sources (e.g.
298	agricultural, industrial, or residential) and many had influence from multiple land-use
299	categories. The data suggest that the water quality does not necessarily reflect the dominant
300	proximal land-use influence.
301	proximal land-use influence.
302	3.1.4. Pharmaceuticals.

- 303 Six pharmaceuticals were detected in more than 10% of samples: salicylic acid (82%),
- 304 paracetamol (45%), carbamazepine (27%), primidone (14%), phenytoin (14%) and
- 305 gemfibrozil (11%). Nine pharmaceuticals were never detected (Table 2) and paracetamol and
- 306 salicylic acid were detected at concentrations above 1,000 ng/L.
- 307 Salicylic acid, the most frequently detected compound, is an important metabolite of
- 308 acetylsalicylic acid (aspirin), but is also a plant hormone and can be found in many species,

309 most notably in willow tree bark (Krantz et al. 2010, National Center for Biotechnology 310 Information 1999). Willows are a pest species in many Australian waterways and may partly 311 explain the broad presence of salicylic acid in this study. Salicylic acid is relatively non-toxic 312 to aquatic wildlife with a predicted no effect concentration (PNEC) usually ranging from 313 60,000 - 170,000 ng/L (Schowanek and Webb 2002, Wang et al. 2010), and the 314 concentrations reported here represent a negligible risk. Many metabolites and degradation 315 products exhibit toxicological effects (Lambropoulou and Nollet, 2014), so further research 316 into these chemical products is required. 317 Paracetamol was detected in 45% of the samples, with a maximum of 7,150 ng/L (the highest 318 concentration in this entire study). In two USA studies, maximum concentrations ranged 319 from 160-10,000 ng/L (Focazio et al. 2008, Kolpin et al. 2002). With a PNEC of 9,200 ng/L 320 (Schowanek and Webb 2002), our data suggests that paracetamol represents a low risk in 321 Australian rivers, although it should be highlighted that the highest concentration detected 322 provided only a narrow margin of safety (Table 3). 323 The next most common pharmaceutical was carbamazepine, an anticonvulsant, with a 324 frequency of 27% and a maximum of 682 ng/L (Table 3). In a USA surface water and 325 groundwater study, the frequency of detection was 22% and the maximum concentration was 326 200 ng/L (Focazio et al. 2008). However, in an EU-wide study of surface waters, 327 carbamazepine was detected more frequently (95%) with a maximum concentration $\sim 20 \times$ 328 higher (Loos et al. 2009). Carbamazepine was one of five most frequently detected 329 compounds in each land-use category, except for undeveloped. It was found most commonly 330 in NSW and VIC. The PNEC for carbamazepine is 500 ng/L (Agerstrand and Ruden 2010), 331 suggesting that while there is little cause for concern in most situations, carbamazepine may 332 pose a risk to the receiving environment at some sites (carbamazepine was above 500 ng/L in 333 five out of 285 measurements, *i.e.*, 1.7% of samples). Phenytoin (an antiepileptic also known

334	as dilantin) and primidone (an anticonvulsant) had maximum concentrations of 145 and 259
335	ng/L, respectively (Table 3). In four USA streams, concentrations of phenytoin ranged from
336	3.7–391 ng/L (Snyder et al. 2007), while the maximum concentration in Japanese river water
337	was 51 ng/L (Komori et al. 2013). Primidone was found in 10 German rivers at
338	concentrations ranging from 10–594 ng/L, but typical concentrations were >300 ng/L
339	(Hummel et al. 2006). In Japan, primidone was detected with a maximum concentration of 38
340	ng/L (Komori et al. 2013). Both phenytoin and primidone are relatively non-toxic to aquatic
341	organisms with PNECs of >100,000 ng/L (Komori et al. 2013), suggesting that the
342	concentrations found in this study are unlikely to be of environmental concern.
343	Gemfibrozil (an antiepileptic; $LOQ = 5 \text{ ng/L}$) had a maximum concentration of 213 ng/L and
344	a detection frequency of 11% (Table 3). In comparison, it was detected 3.5% of the time in
345	one US-wide study (with a maximum concentration of 790 ng/L; LOQ = 15 ng/L) (Kolpin et
346	al. 2002), and not at all in a follow-up study (LOQ = 15 ng/L; Focazio et al. 2008). However,
347	gemfibrozil was found more frequently in a European study (35%; LOQ = 1 ng/L), which
348	also reported a higher maximum concentration of 900 ng/L (Loos et al. 2009). While the
349	maximum concentration is less than in other studies, the detection frequency is in a similar
350	range. With a PNEC of 1,000 ng/L (Wang et al. 2010), the concentrations detected here
351	represent negligible risk.
352	Sulfamethoxazole, an antibiotic often used in combination with trimethoprim (another
353	antibiotic), was detected in nine percent of samples, with a maximum concentration of 67
354	ng/L (Table 3). Four samples had concentrations that exceeded the PNEC of 26.8 ng/L
355	(Agerstrand and Ruden 2010), while two additional samples were close. Further effects
356	monitoring at the most polluted sites would help assess the environmental risk of
357	sulfamethoxazole.

358	Although trimethoprim was only detected in 5% of samples, it was present at the sixth overall	
359	highest concentration (657 ng/L; Table 3). It was detected more frequently (12.5%) and had a	
360	higher maximum concentration of 710 ng/L in a US study (Kolpin et al. 2002). However,	
361	another US study had a much lower maximum concentration (20 ng/L) (Focazio et al. 2008).	
362	With a comparatively high PNEC of 180,000 ng/L (Halling-Sorensen et al. 2000), the	
363	concentrations of trimethoprim detected here are unlikely to cause direct environmental	
364	effects, however indirect antibiotic resistance could be a potential problem.	
365		
366	3.1.5. Personal care products (PCPs)	
367	Caffeine was the most commonly detected PCP, occurring in 65% of samples, followed by	
368	triclosan (25%) and propylparaben (12%). Caffeine was the second most common TrOC in	
369	this study (median = 19 ng/L) and had the third highest reported concentration overall (3,770	
370	ng/L; Table 3). The maximum concentration was measured in a NSW industrial sample.	
371	There were seven other samples with caffeine concentrations above 1,000 ng/L; four	
372	residential, three industrial and one WWTP samples. The maximum concentration of caffeine	
373	falls between that reported in Focazio et al. (2008) (270 ng/L) and Kolpin et al. (2002) (6,000	
374	ng/L). All three mentioned maximums fall significantly short of 39,813 ng/L reported in a	
375	European surface water sample (Loos et al. 2009). The frequency of detection for caffeine	
376	corresponded closely with that reported in Kolpin et al (2002) (71%). With a PNEC for	
377	caffeine of 5,200 ng/L (Komori et al. 2013), caffeine generally poses a low risk, although it	
378	should be noted that some of the data points above 1,000 ng/L only leave a slim margin of	
379	safety.	
380	Triclosan, a widely used broad spectrum antibacterial compound, was the second most	
381	commonly detected PCP (25%), with a maximum concentration of 87 ng/L. Kolpin et al.	
382	(2002) detected triclosan in 57% of samples with a maximum concentration of 2,300 ng/L	

Journal of Environmental Quality

383	and a median concentration of 140 ng/L. Triclosan was also found in wild fish in WWTP
384	effluent receiving environments in Sweden at concentrations up to 0.90 mg/kg fresh weight
385	of bile (Adolfsson-Erici et al. 2002). New evidence suggests that the risk from exposure to
386	triclosan could be underestimated and as such, the PNEC of 500 ng/L (Perez et al. 2013) may
387	not be adequate. For instance, triclosan was found to negatively affect larval fathead minnow
388	(Pimephales promelas) swimming performance at 151 ng/L, an exposure concentration less
389	than twice the maximum concentration reported herein (87 ng/L; Table 3; Cherednichenko et
390	al. 2012). Drury et al. (2013) reported that sediment triclosan concentrations (a maximum
391	concentration of $107 \pm 18 \text{ ng/g}$ were directly proportional to the relative abundance of
392	resistant bacteria. In light of this information, some triclosan concentrations in Australian
393	rivers may pose considerable risk to aquatic organisms.
394	Propylparaben which is both a natural substance and a PCP, was the third most commonly
395	detected PCP (12%) with a maximum concentration of 218 ng/L (Table 3). The maximum
396	concentration reported is much less than that found in Spanish surface waters (32,000 ng/L)
397	(Regueiro et al. 2009), while another Spanish study did not detect propylparaben in surface
398	waters (<5 ng/L) (Pedrouzo et al. 2009). A UK study reported a maximum concentration of
399	11 ng/L in surface waters (Kasprzyk-Hordern et al. 2008). With a PNEC of approximately
400	20,000 ng/L (Yamamoto et al. 2011), the risk of propylparaben to the Australian aquatic
401	environment appears negligible.
402	Triclocarban, used as an anti-bacterial and anti-fungal disinfectant in soaps and other
403	household products, was detected in one percent of the samples, with a maximum
404	concentration of 58 ng/L. A PNEC of 190 ng/L was recently derived for triclocarban (Tamura
405	et al. 2012). A LOEC of 130 ng/L (NOEC of 60 ng/L) was previously reported for
406	Mysidopsis bahia reproduction rate (U.S. Environmental Protection Agency 2008). There is
407	limited information about the occurrence of triclocarban in the environment in general,

408 compared to triclosan. Halden and Paull (2005) predicted mean and median concentrations of 409 213 and 109 ng/L, respectively, in US streams, which warrants further chemical monitoring 410 efforts. 411 DEET was analyzed but results were not presented due to concerns that some LC-MS/MS 412 methods, including ours, may overestimate DEET concentrations due to an unidentified 413 natural substance that is being incorrectly measured as DEET (Snyder, pers. comm.). A more 414 robust chemical analysis methodology for DEET may be required to accurately quantify this 415 compound in the environment. 416 417 3.1.6. Industrial compounds 418 The flame retardant TCEP was the only industrial compound examined. TCEP was detected 419 in 44% of samples, with a maximum concentration of 184 ng/L (detected in a SA sample 420 downstream of a WWTP; Table 3). Similarly, Kolpin et al. (2002) detected TCEP in 60% of 421 samples, but reported significantly higher maximum and median concentrations (54,000 422 ng/L, 100 ng/L). Focazio et al. (2008) detected TCEP in 20% of samples, but concentrations 423 were less than the quantification limit (500 ng/L). Mean and maximum concentrations of 203 424 ng/L and 2,019 ng/L, respectively, were found in five German rivers (Quednow and 425 Puttmann 2009). While it was frequently detected, TCEP poses a negligible risk considering 426 its PNEC of 65,000 ng/L (Quednow and Puttmann 2009). 427 428 3.1.7. Pesticides 429 Pesticides were not commonly detected in our water samples. As of 2002, simazine (LOQ = 5430 ng/L) and atrazine (LOQ = 5 ng/L) were the most widely used herbicides in Australia 431 (Radcliffe, 2002), however they were only detected in 14% and 11% of samples, 432 respectively. The fungicide 2-phenylphenol (LOQ = 10 ng/L) was detected in 13% of

Journal of Environmental Quality

433	samples, although it was not among the most frequently used fungicides in Australia	
434	(Radcliffe 2002). Linuron (LOQ = 5 ng/L), which has the same mode of action as atrazine	
435	and simazine, has also been used frequently in Australia, but was only detected in three	
436	percent of samples; predominantly in agricultural samples (66% of detections). Chlorpyrifos	
437	(LOQ = 5 ng/L) and diazinon $(LOQ = 5 ng/L)$ have been the most widely used insecticides in	
438	Australia (Radcliffe, 2002); but despite its wide use, chlorpyrifos was detected only twice at	
439	very low concentrations (5 ng/L) and diazinon was never detected. Trifluralin was not	
440	detected either (LOQ = 150 ng/L), despite its wide use as a pre-emergent control for weeds	
441	(Radcliffe, 2002). It is, however, important to note that chlorpyrifos, diazinon and trifluralin	
442	were only analyzed in the Spring sampling event.	
443	Simazine had a maximum concentration of 3,930 ng/L (Table 3), which exceeded the PNEC	
444	of 3,200 ng/L derived using the 95 th percentile and may pose a risk (ANZECC/ARMCANZ	
445	2000). However it should be noted that it was only exceeded in one sampling event. The	
446	maximum concentration was also higher than those found in different studies in Australia, the	
447	US and Europe. An Australian study of 39 WWTP effluents reported a maximum	
448	concentration for simazine of 1,727 ng/L (Allinson et al. 2012). A European survey of river	
449	waters reported a detection frequency of 26%, a maximum concentration of 169 ng/L and an	
450	average concentrations of 10 ng/L (Loos et al. 2009). An EU ground water survey reported a	
451	higher detection frequency of 43% but a lower maximum concentration of 127 ng/L and an	
452	average of 7 ng/L (Loos et al. 2010). In a US shallow groundwater study of 1,034 sites,	
453	simazine had a detection frequency of 18% and a maximum concentration of 1,300 ng/L $$	
454	(Kolpin et al. 1998), while a surface water study including 151 water samples from 71	
455	streams (and five reservoirs) detected simazine in $7 - 47\%$ of samples (depending on sample	
456	type) and a maximum concentration of 14,150 ng/L, while median concentrations were all	
457	below the reporting limit (<50 ng/L; Battaglin et al. 2003).	

458	The maximum concentration for 2-phenylphenol (92 ng/L) occurred in a sample collected
459	downstream of a WWTP in VIC. This concentration was lower than the sole concentration
460	measured from 39 different WWTP effluent samples in the same state (240 ng/L) (Allinson et
461	al. 2012). A PNEC of 900 ng/L was determined using a reproduction test with Daphnia
462	magna (Bayer 2001), which results in a Hazard Quotient (HQ) of 0.1 for 2-phenylphenol.
463	This indicates that there may be cause for concern at the maximum concentration.
464	Atrazine was detected in 11% of samples, with a maximum concentration of 209 ng/L (Table
465	3). Kolpin et al. (1998) reported a much higher detection frequency (38%) and maximum
466	concentration (3,600 ng/L). In Europe, a detection frequency of 68%, a maximum
467	concentration of 46 ng/L and an average concentration of 3 ng/L were reported in surface
468	waters (Loos et al. 2009). Atrazine was detected in 56% of groundwater samples in Europe
469	with a maximum concentration of 253 ng/L and an average of 8 ng/L (Loos et al. 2010).
470	Atrazine was detected twice in WWTP effluents from across VIC with a maximum
471	concentration of 63 ng/L (Allinson et al. 2012). Interestingly, Australian WWTP effluent
472	contained less atrazine than river waters investigated in this study, again clearly indicating
473	that pesticides are likely to be attributable to other activities (such as agriculture, road
474	maintenance, etc). Atrazine has a PNEC of 13,000 ng/L (ANZECC/ARMCANZ 2000) and as
475	such, the maximum concentration of 209 ng/L is unlikely to be cause for concern, although
476	sampling design did not take into account run-off events, when environmental concentrations
477	could be elevated. Furthermore, there is still a vigorous scientific debate about its potential
478	endocrine effects (APVMA 2008).
479	It should be noted that we only measured a small number of pesticides, and that there is a
480	large and growing body of literature on many different types of pesticides detected in
481	Australian rivers (e.g., Allinson et al. 2012; Church et al. 2004; Davis et al. 2008; Lewis et al.

482 2009; Sanchez-Bayo and Hyne 2014; Schäfer et al. 2011).

100	
484	3.2. Conclusions
485	A median of three TrOCs out of 42 was detected per sample, with a maximum of 18. The six
486	most frequently detected compounds in this study were: salicylic acid (82%), caffeine (65%),
487	paracetamol (45%), TCEP (44%), carbamazepine (27%) and triclosan (25%). Most
488	pharmaceutical detected were at concentrations posing negligible risk. However,
489	carbamazepine and sulfamethoxazole exceeded their PNECs five and four times each,
490	respectively. Maximum concentrations of other pharmaceuticals (fluoxetine, gemfibrozil,
491	naproxen, paracetamol) and PCPs (caffeine, triclocarban and triclosan) left only small
492	margins of safety when compared to their respective PNECs. The pesticide simazine
493	exceeded its PNEC in one sample, indicating potential risk. Chlorpyrifos, linuron and 2-
494	phenylphenol concentrations were below their respective PNECs, but had thin margins of
495	safety. TCEP was commonly detected but unlikely to be cause for concern.
10.6	

496

497 *3.3. Limitations and future research*

498 The PNEC values used to calculate Hazard Quotients (HQs) and margins of safety were

499 based on international studies, and it is unclear at this stage whether those levels would

500 protect the unique Australian wildlife. Further work is needed to establish PNECs specific to

501 the Australian environment.

502 The analytical issues with DEET and salicylic acid need to be overcome in the future to

- 503 determine the actual impact that anthropogenic use of these chemicals have on the
- 504 environment. This study relied on grab sampling, and further studies with composite or
- 505 passive sampling techniques may provide a better measure of concentrations over longer time
- 506 windows.

507	This study measured "only" 42 TrOCs and many more are likely present in the Australian
508	environment, including environmental transformation products. While most compounds were
509	present below PNEC values, their potential for interaction and mixture toxicity needs to be
510	investigated using effects based assessment (e.g., using in vitro and in vivo techniques).
511	Finally, <i>in situ</i> studies at the most polluted sites identified would help determine if the PNEC
512	exceedances reported lead to significant environmental disturbances.
513	
514	Acknowledgment
515	The authors gratefully acknowledge the assistance of E. Prochazka and T. Teo for their
516	laboratory analysis, and M. Allinson, J. Blackbeard, S. Codi-King, H. Chapman, A. Colville,
517	D. Gale, B. Harper, M. Mortimer, and T. Reitsema for their input in planning and
518	implementation during this project. Sampling could not have been completed without the
519	dedication of many industry partners, whose support we are very grateful for. This study was
520	funded by the Australian Research Council (ARC Linkage scheme LP100100163) in
521	collaboration with Water Research Australia, Sydney Water, Seqwater and Melbourne Water,
522	and supported in-kind by the Queensland Department of Science, Information, Technology,
523	Innovation and the Arts (DSITIA) and the Western Australia Department of Water. P.S. was
524	supported with an Australian Postgraduate Award (Industry) scholarship and Water Research
525	Australia PhD top-up scholarship.
526	

References 527

- Adolfsson-Erici, M., Pettersson, M., Parkkonen, J. and Sturve, J. 2002. Triclosan, a 528
- commonly used bactericide found in human milk and in the aquatic environment in 529
- Sweden. Chemosphere 46(9-10), 1485-1489. 530

Journal of Environmental Quality

531	Agerstrand, M. and Ruden, C. 2010. Evaluation of the accuracy and consistency of the
532	Swedish Environmental Classification and Information System for pharmaceuticals.
533	Sci. Total Environ. 408(11), 2327-2339.
534	Allinson, M., Kageyama, S., Nakajima, D., Kamata, R., Shiraishi, F., Goto, S., Salzman, S.A.
535	and Allinson, G. 2012. A pilot survey of 39 Victorian WWTP effluents using a high
536	speed luminescent umu test in conjunction with a novel GC-MS-database technique for
537	automatic identification of micropollutants. Water Sci. Technol. 66(4), 768-774.
538	ANZECC/ARMCANZ. 2000. Australian guidelines for water quality monitoring and
539	reporting, Agriculture and Resource Management Council of Australia and New
540	Zealand, Agriculture and Resource Management Council of Australia and New
541	Zealand, Canberra, ACT, Australia.
542	APVMA. 2008. Atrazine final review report and regulatory decision. Australian Pesticides &
543	Veterinary Medicines Authority, Australia Capital Territory.
544	Australian Bureau of Statistics. 2012. Report 3218.0 Regional population growth, Australia,
545	2012, Commonwealth of Australia, Canberra.
546	Battaglin, W.A., E.M. Thurman, S.J. Kalkhoff and S.D. Porter. 2003. Herbicides and
547	transformation products in surface waters of the midwestern United States. Journal of
548	the American Water Resources Association 39. doi:10.1111/j.1752-
549	1688.2003.tb04402.x.
550	Bayer, A.G. 2001. Report on Preventol O extra Daphnia magna reproduction test (OECD
551	211), Report No. 1092A/01/DL.
552	Boxall, A.B.A., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes,
553	E., Ostapyk, K., Staveley, J.P., Verslycke, T., Ankley, G.T., Beazley, K.F., Belanger,
554	S.E., Berninger, J.P., Carriquiriborde, P., Coors, A., DeLeo, P.C., Dyer, S.D., Ericson,
555	J.F., Gagne, F., Giesy, J.P., Gouin, T., Hallstrom, L., Karlsson, M.V., Larsson, D.G.J.,

556	Lazorchak, J.M., Mastrocco, F., McLaughlin, A., McMaster, M.E., Meyerhoff, R.D.,
557	Moore, R., Parrott, J.L., Snape, J.R., Murray-Smith, R., Servos, M.R., Sibley, P.K.,
558	Straub, J.O., Szabo, N.D., Topp, E., Tetreault, G.R., Trudeau, V.L. and Van Der Kraak,
559	G. 2012. Pharmaceuticals and personal care products in the environment: What are the
560	big questions? Environ. Health Persp. 120(9), 1221-1229.
561	Braga, O., Smythe, G.A., Schafer, A.I. and Feltz, A.J. 2005a. Fate of steroid estrogens in
562	Australian inland and coastal wastewater treatment plants. Environ. Sci. Technol. 39,
563	3351-3358.
564	Braga, O., Smythe, G.A., Schafer, A.I. and Feltz, A.J. 2005b. Steroid estrogens in primary
565	and tertiary wastewater treatment plants. Water Sci. Technol. 52(8), 273-278.
566	Brausch, J.M. and Rand, G.M. 2011. A review of personal care products in the aquatic
567	environment: Environmental concentrations and toxicity. Chemosphere 82(11), 1518-
568	1532.
569	Carlsson, C., Johansson, A.K., Alvan, G., Bergman, K. and Kuhler, T. 2006. Are
570	pharmaceuticals potent environmental pollutants? Part I: Environmental risk
571	assessments of selected active pharmaceutical ingredients. Sci. Total Environ. 364(1-3),
572	67-87.
573	Chapman, H. 2003. Removal of endocrine disruptors by tertiary treatments and constructed
574	wetlands in subtropical Australia. Water Sci. Technol. 47(9), 151-156.
575	Church, A., Wood, J., Kobayashi, T. and Doherty M. 2004. Pesticide discharges from
576	irrigated agriculture in the Murray Irrigation Area, New South Wales, Australia.
577	Australasian J. Ecotoxicol. 10: 21-32.
578	Coleman, H.M., Khan, S.J., Watkins, G. and Stuetz, R.M. 2008. Fate and analysis of
579	endocrine disrupting chemicals in some sewage treatment plants in Australia. Water
580	Sci. Technol. 58(11), 2187-2194.

581	Crane, M., Maycock, D., Watts, C.D., Atkinson, C. and Johnson, I. 2007. Proposed EQS for
582	Water Framework Directive Annex VIII substances: linuron. Science Report –
583	HOEP670085/SR18, Bristol.
584	Davis, A., Lewis, S., Bainbridge, Z., Brodie, J. and Shannon E. 2008. Pesticide residues in
585	waterways of the Lower Burdekin Region: Challenges in ecotoxicological
586	interpretation of monitoring data. Australasian J. Ecotoxicol. 14: 89-108.
587	Drury, B., J. Scott, E. Rosi-Marshall and J. Kelly. 2013. Triclosan exposure increases
588	triclosan resistance and influences taxonomic composition of benthic bacterial
589	communities. Environmental science & technology 47: 8923-8930.
590	doi:10.1021/es401919k.
591	Escher, B.I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J. and McArdell, C.S. 2011.
592	Environmental toxicology and risk assessment of pharmaceuticals from hospital
593	wastewater. Water Res. 45(1), 75-92.
594	Fent, K., Weston, A.A. and Caminada, D. 2006. Ecotoxicology of human pharmaceuticals.
595	Aquat. Toxicol. 76(2), 122-159.
596	Focazio, M.J., Kolpin, D.W., Barnes, K.K., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Barber,
597	L.B. and Thurman, M.E. 2008. A national reconnaissance for pharmaceuticals and
598	other organic wastewater contaminants in the United States - II) Untreated drinking
599	water sources. Sci. Total Environ. 402(2-3), 201-216.
600	Girling, A.E., Tattersfield, L., Mitchell, G.C., Crossland, N.O., Pascoe, D., Blockwell, S.J.,
601	Maund, S.J., Taylor, E.J., Wenzel, A., Janssen, C.R. and Juttner, I. 2000. Derivation of
602	predicted no-effect concentrations for lindane, 3,4-dichloroaniline, atrazine, and
603	copper. Ecotox. Environ. Safe. 46(2), 148-162.
604	Halden, R.U. and Paull, D.H. 2005. Co-occurrence of triclocarban and triclosan in US water
605	resources. Environ. Sci. Technol. 39(6), 1420-1426.

- Halling-Sorensen, B., Lutzhoft, H.C.H., Andersen, H.R. and Ingerslev, F. 2000.
- 607 Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim
- and ciprofloxacin. J. Antimicrob. Chemoth. 46, 53-58.
- 609 Harada, A., Komori, K., Nakada, N., Kitamura, K. and Suzuki, Y. 2008. Biological effects of
- 610 PPCPs on aquatic lives and evaluation of river waters affected by different wastewater
- 611 treatment levels. Water Sci. Technol. 58(8), 1541-1546.
- Henschel, K.P., Wenzel, A., Diedrich, M. and Fliedner, A. 1997. Environmental hazard
- assessment of pharmaceuticals. Regul. Toxicol. Pharm. 25(3), 220-225.
- Hummel, D., Loffler, D., Fink, G. and Ternes, T.A. 2006. Simultaneous determination of
- 615 psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography
- 616 mass spectrometry. Environ. Sci. Technol. 40(23), 7321-7328.
- 617 Kasprzyk-Hordern, B., Dinsdale, R.M. and Guwy, A.J. 2008. The occurrence of
- 618 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in

619 surface water in South Wales, UK. Water Res. 42(13), 3498-3518.

- 620 Khan, S.J. and Ongerth, J.E. 2004. Modelling of pharmaceutical residues in Australian
- 621 sewage by quantities of use and fugacity calculations. Chemosphere 54(3), 355-367.
- 622 Kolpin, D.W., Barbash, J.E. and Gilliom, R.J. 1998. Occurrence of pesticides in shallow
- 623 groundwater of the United States: Initial results from the National Water-Quality
- Assessment Program. Environ. Sci. Technol. 32(5), 558-566.
- 625 Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. and
- 626 Buxton, H.T. 2002. Pharmaceuticals, hormones, and other organic wastewater
- 627 contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ. Sci.
- 628 Technol. 36(6), 1202-1211.

629	Komori, K., Suzuki, Y., Minamiyama, M. and Harada, A. 2013. Occurrence of selected
630	pharmaceuticals in river water in Japan and assessment of their environmental risk.
631	Environ. Monit. Assess. 185(6), 4529-4536.
632	Krantz, M.J., Berger, J.S. and Hiatt, W.R. 2010. An aspirin a day: Are we barking up the
633	wrong willow tree? Pharmacotherapy 30(2), 115-118.
634	Leusch, F.D.L., Chapman, H.F., Kay, G.W., Gooneratne, S.R. and Tremblay, L.A. 2006.
635	Anal fin morphology and gonadal histopathology in mosquitofish (Gambusia
636	holbrooki) exposed to treated municipal sewage effluent. Arch. Environ. Con. Tox.
637	50(4), 562-574.
638	Lambropoulou, D.A. and L.M.L. Nollet. 2014. Transformation products of emerging
639	contaminants in the environment: Analysis, processes, occurence, effects and risksJohn
640	Wiley & Sons, Hoboken, NJ, USA.
641	Lewis, S.E., Brodie, J.E., Bainbridge, Z.T., Rohde, K.W., Davis, A.M., Masters, B.L.,
642	Maughan, M., Devlin, M.J., Mueller, J.F. and Schaffelke, B. 2009. Herbicides: a new
643	three to the Great Barrier Reef. Environ. Pollut. 157(8-9): 2470-2484.
644	Loos, R., Gawlik, B.M., Locoro, G., Rimaviciute, E., Contini, S. and Bidoglio, G. 2009. EU-
645	wide survey of polar organic persistent pollutants in European river waters. Environ.
646	Pollut. 157(2), 561-568.
647	Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O.,
648	Weiss, S., Blaha, L., Bolchi, M. and Gawlik, B.M. 2010. Pan-European survey on the
649	occurrence of selected polar organic persistent pollutants in ground water. Water Res.
650	44(14), 4115-4126.
651	Metcalfe, C.D., Miao, X.S., Koenig, B.G. and Struger, J. 2003. Distribution of acidic and
652	neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes,

653 Canada. Environ. Toxicol. Chem. 22(12), 2881-2889.

654	Mispagel, C., Allinson, G., Allinson, M., Shiraishi, F., Nishikawa, M. and Moore, M.R.
655	2009. Observations on the estrogenic activity and concentration of 17 beta-estradiol in
656	the discharges of 12 wastewater treatment plants in Southern Australia. Arch. Environ.
657	Con. Tox. 56(4), 631-637.
658	National Center for Biotechnology Information. 1999. Salicylic acid, USA Government,
659	Bethesda, USA.
660	Pedrouzo, M., Borrull, F., Marce, R.M. and Pocurull, E. 2009. Ultra-high-performance liquid
661	chromatography-tandem mass spectrometry for determining the presence of eleven
662	personal care products in surface and wastewaters. J. Chromatogr. A 1216(42), 6994-
663	7000.
664	Perez, A.L., De Sylor, M.A., Slocombe, A.J., Lew, M.G., Unice, K.M. and Donovan, E.P.
665	2013. Triclosan occurrence in freshwater systems in the United States (1999-2012): A
666	meta-analysis. Environ. Toxicol. Chem. 32(7), 1479-1487.
667	Pycke, B., G. Vanermen, P. Monsieurs, H. De Wever, M. Mergeay, W. Verstraete, et al.
668	2010. Toxicogenomic response of Rhodospirillum rubrum S1H to the micropollutant
669	triclosan. Applied and environmental microbiology 76: 3503-3513.
670	doi:10.1128/AEM.01254-09.
671	Quednow, K. and Puttmann, W. 2009. Temporal concentration changes of DEET, TCEP,
672	terbutryn, and nonylphenols in freshwater streams of Hesse, Germany: possible
673	influence of mandatory regulations and voluntary environmental agreements. Environ.
674	Sci. Pollut. Res. 16(6), 630-640.
675	Radcliffe, J.C. 2002. Pesticide use in Australia. Australian Academy of Technological
676	Sciences and Engineering, Victoria, Australia.
677	Regueiro, J., Becerril, E., Garcia-Jares, C. and Llompart, M. 2009. Trace analysis of
678	parabens, triclosan and related chlorophenols in water by headspace solid-phase

Journal of Environmental Quality

679 microextraction with in situ derivatization and	gas chromatography-tandem mass
---	--------------------------------

- 680 spectrometry. J. Chromatogr. A 1216(23), 4693-4702.
- 681 Sanchez-Bayo, F. and Hyne, R. 2014. Detection and analysis of neonicotinoids in river
- 682 waters Development of a passive sampler for three commonly used insecticides.
- 683 Chemosphere 99: 143-151.
- 684 Santos, L., Araujo, A.N., Fachini, A., Pena, A., Delerue-Matos, C. and Montenegro, M. 2010.
- Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 175(1-3), 45-95.
- 687 Schäfer, R.B., Pettigrove, V., Rose, G., Allinson, G., Wightwick, A., von der Ohe, P.C.,
- 688 Shimeta, J., Kühne, R. and Kefford, B.J. 2011. Effects of pesticides monitored with
- three sampling methods in 24 sites on macroinvertebrates and microorganisms.
- 690 Environ. Sci. Technol. 45: 1665-1672.
- Schowanek, D. and Webb, S. 2002. Exposure simulation for pharmaceuticals in European
 surface waters with GREAT-ER. Toxicol. Lett. 131(1-2), 39-50.
- 693 Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten,
- U. and Wehrli, B. 2006. The challenge of micropollutants in aquatic systems. Science313, 1072-1077.
- 696 Snyder, S., Wert, E., Lei, H.D., Westerhoff, P. and Yoon, Y. 2007. Removal of EDCs and

697 pharmaceuticals in drinking and reuse treatment processes, American Water Works698 Research Foundation, Denver, USA.

- 699 Tamura, I., Kagota, K.-i., Yasuda, Y., Yoneda, S., Morita, J., Nakada, N., Kameda, Y.,
- 700 Kimura, K., Tatarazako, N. and Yamamoto, H. 2012. Ecotoxicity and screening level
- 701 ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban,
- resorcinol, phenoxyethanol and p-thymol. J. Appl. Toxicol. doi: 10.1002/jat.2771..

703	Ternes, T.A. 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water
704	Res. 32(11), 3245-3260.
705	Ternes, T.A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R.D. and Servos, M. 1999.
706	Behavior and occurrence of estrogens in municipal sewage treatment plants - I.
707	Investigations in Germany, Canada and Brazil (vol 225, pg 81, 1999). Sci. Total
708	Environ. 228(1), 87-87.
709	U.S. Environmental Protection Agency. 2008. Screening-level hazard characterization of
710	high production volume chemicals, Washington, DC.
711	Vanderford, B.J. and Snyder, S.A. 2006. Analysis of pharmaceuticals in water by isotope
712	dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol.
713	40(23), 7312-7320.
714	Wang, L., Ying, G.G., Zhao, J.L., Yang, X.B., Chen, F., Tao, R., Liu, S. and Zhou, L.J. 2010.
715	Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai
716	River and Liao River of north China. Sci. Total Environ. 408(16), 3139-3147.
717	Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D. 2009. The occurrence of
718	antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total
719	Environ. 407: 2711-2723.
720	Williams, M., Woods, M., Kumar, A., Ying, G.G., Shareef, A., Karkkainen, M. and
721	Kookana, R. 2007. Endocrine disrupting chemicals in the Australian riverine
722	environment, Land and Water Australia / CSIRO, Braddon, ACT, Australia.
723	Winter, M.J., Lillicrap, A.D., Caunter, J.E., Schaffner, C., Alder, A.C., Ramil, M., Ternes,
724	T.A., Giltrow, E., Sumpter, J.P. and Hutchinson, T.H. 2008. Defining the chronic
725	impacts of atenolol on embryo-larval development and reproduction in the fathead
726	minnow (Pimephales promelas). Aquat. Toxicol. 86(3), 361-369.

- 727 Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Kagota, K., Katsuki, S., Yamamoto, A.,
- 728 Kagami, Y. and Tatarazako, N. 2011. Aquatic toxicity and ecological risk assessment
- 729 of seven parabens: Individual and additive approach. Sci. Total Environ. 410, 102-111.
- 730 Ying, G.-G., Kookana, R.S., Kolpin, D.W. 2009. Occurrence and removal of
- 731 pharmaceutically active compounds in sewage treatment plants with different
- 732 technologies. J. Environ. Monit. 11: 1498-1505.

733 Figure titles -

Figure 1 - Location of sampling sites across mainland Australia. State and territory capitals
are depicted by white stars, while black circles represent sampling locations. The population
density graph was obtained from the Australian Bureau of Statistics (2012).

- Figure 2. (top) Frequency of detection for the five most detected compounds for each land-
- use. Salicylic acid and caffeine were the most and second most commonly detected
- compounds in each land-use. (bottom) Frequency of detection for the five most detected
- compounds in each state. Salicylic acid and caffeine were again the first and second most
- detected compounds, respectively, in all six states and territories. Numbers in brackets
- represent the total number of samples analyzed for the respective compound. "TCEP" =
- 744 tris(2-Chloroethyl) phosphate.

747 Table 1. The number of samples collected during the four separate sampling events

and the dominant land-use at each site. WWTP = wastewater treatment plant.

749

Dominant adjoining	Autumn	Winter	Spring	Summer		
land-use	May-11	Aug-11	Nov-11	Feb-12		
Agricultural	20	20	20	20		
Industrial	7	7	7	7		
Residential	19	19	18	18		
WWTP	13	13	12	12		
Undeveloped	14	14	12	13		
Total	73	73	69	70		

Table 2. Chemical limit of quantification (LOQ) and number of detections above the LOQ throughout four sampling events during a one-year

period for targeted trace organic pollutants (TrOCs). "CASRN" = Chemical Abstracts Service Registry Number; "NA" = not analyzed; "NR" =
 not reported (DEET only).

				Detection Frequency (%)				
				Autumn	Winter	Spring	Summer	
			LOQ	May-11	Aug-11	Nov-11	Feb-12	
Contaminant	CASRN	Use	(ng/L)	n=73	n=73	n=69	n=70	
Industrial compound								
tris(2-Chloroethyl) phosphate (TCEP)	115-96-8	flame retardant	10	33	42	45	56	
Pharmaceuticals								
Amitriptyline	50-48-6	antidepressant	10	0	3	3	0	
Atenolol	29122-68-7	beta blocker	5	7	7	4	9	
Atorvastatin	134523-00-5	antilipidemic	5	0	NA	NA	NA	
o-Hydroxy atorvastatin	265989-46-6	atorvastatin metabolite	5	7	NA	NA	NA	
p-Hydroxy atorvastatin	214217-86-6	atorvastatin metabolite	5	5	NA	NA	NA	
Carbamazepine	298-46-4	anticonvulsant	5	25	33	25	27	
Clozapine	5786-21-0	antipsychotic	5	3	7	1	3	
Diazepam	439-14-5	benzodiazepine tranquilizer	5	0	1	0	1	
Enalapril	75847-73-3	angiotensin-converting enzyme inhibitor	10	0	NA	NA	0	
Fluoxetine	54910-89-3	selective serotonin uptake inhibitor	5	1	1	3	1	
Gemfibrozil	25812-30-0	antilipidemic	5	10	16	10	6	
Hydroxyzine	68-88-2	antihistamine	10	0	NA	0	0	
Ibuprofen	15687-27-1	anti-inflammatory	5	7	5	3	3	
Ketoprofen	22071-15-4	anti-inflammatory	10	0	0	0	0	
Meprobamate	57-53-4	anti-anxiety agent	10	0	NA	0	0	

Methotrexate	21672	antifolate	50	NA	NA	0	NA
Naproxen	22204-53-1	anti-inflammatory	5	4	4	4	1
Omeprazole	73590-58-6	antigastroesophageal reflux	5	0	1	0	0
Paracetamol	103-90-2	antipyretic	5	38	47	NA	50
Phenytoin	57-41-0	antiepileptic	5	16	21	19	0
Primidone	125-33-7	anticonvulsant	5	22	8	16	10
Risperidone	106266-06-2	antipsychotic	5	0	0	0	0
Salicylic acid	69-72-7	antiacne, acetylsalicylic acid metabolite	20	78	64	100	86
Simvastatin	79902-63-9	antilipidemic	5	0	0	0	0
Simvastatin-hydroxyacid	121009-77-6	simvastatin metabolite	5	0	0	0	0
Sulfamethoxazole	723-46-6	antibiotic	5	11	10	10	4
Triamterene	396-01-0	for hypertension and edema	5	0	1	3	0
Trimethoprim	738-70-5	antibiotic	5	5	7	4	3
Verapamil	52-53-9	antiarrhythmic	5	0	1	1	0
Personal care products							
Caffeine	1958-08-02	stimulant	10	71	49	NA	76
N,N-Diethyl-meta-toluamide (DEET)*	134-62-3	insect repellent	5	NR*	NR*	NR*	NR*
Propylparaben	94-13-3	preservative	10	0	4	33	11
Triclocarban	101-20-2	antibacterial	10	0	0	6	0
Triclosan	3380-34-5	antibacterial	10	33	19	22	26
Pesticides							
Atrazine	1912-24-9	herbicide	5	5	16	9	13
Chlorpyrifos	2921-88-2	insecticide	5	NA	NA	3	NA
Diazinon	333-41-5	insecticide	5	NA	NA	0	NA
Linuron	330-55-2	herbicide	5	1	4	4	3
2-Phenylphenol	90-43-7	biocide	10	3	3	10	39
Simazine	122-34-9	herbicide	5	NA	NA	10	17

	Trifluralin	1582-09-8	herbicide	150	NA	NA	0	NA
754	*Not reported, see section 3.1.5 for m	nore information	on.					

5585 Guilford Rd., Madison WI 53711

Table 3. Summary of the monitoring data of trace organic compounds from 285 samples, spanning 73 locations across mainland Australia, with
 four sampling events over a one-year period. "NA" = Not available. Compounds with a hazard quotient >0.1 are highlighted in bold.

757

Compound	# samples analyzed (n)	Detection frequency (%)	Mean ± SE (ng/L)	50 th percentile (ng/L)	95 th percentile (ng/L)	Maximum value (ng/L)	Predicted No Effect Concentrations (PNEC)* (ng/L)	Hazard Quotient (Max/PNEC)
ndustrial compound								
tris(2-Chloroethyl) phosphate (TCEP)	285	44%	19 ± 2	<10	89	184	65,000 ^a	0.0028
Pharmaceuticals								
Amtriptyline	285	1%	<10	<10	<10	62	2500 ^b	0.025
Atenolol	285	7%	<5	<5	7	133	10,000 ^c	0.013
Atorvastatin	73	0	<5	<5	<5	<5	24,000 ^b	< 0.00021
o-Hydroxy atorvastatin	73	7%	<5	<5	7	20	NA	NA
p-Hydroxy atorvastatin	73	5%	<5	<5	7	34	NA	NA
Carbamazepine	285	27%	30 ± 6	<5	171	682	500 ^b	1.4
Clozapine	285	4%	<5	<5	<5	90	16,000 ^d	0.0056
Diazepam	285	1%	<5	<5	<5	8	4,300 ^e	0.0019
Enalapril	212	0	<10	<10	<10	<10	180,000 ^b	< 0.00006
Fluoxetine	285	2%	<5	<5	<5	22	47 ^b	0.47
Gemfibrozil	285	11%	7 ± 1	<5	15	213	1,000 ^f	0.21
Hydroxyzine	212	0	<10	<10	<10	<10	[3,900 ^g]	< 0.0025
Ibuprofen	285	5%	<5	<5	<5	44	1,650 ^b	0.027
Ketoprofen	285	0	<10	<10	<10	<10	2,000 ^h	< 0.005
Meprobamate	212	0	<10	<10	<10	<10	NA	NA

Methotrexate	69	0	<50	<50	<50	<50	45,000 ⁱ	< 0.001
Naproxen	285	4%	<5	<5	<5	347	640 ^b	0.54
Omeprazole	285	<1%	<5	<5	<5	5	[210 ^j]	0.024
Paracetamol	216	45%	85 ± 38	<5	271	7,150	9,200 ^k	0.78
Phenytoin	285	14%	8 ± 1	<5	32	145	>100,000 ¹	< 0.0015
Primidone	285	14%	6 ± 1	<5	18	259	>100,000 ¹	< 0.0025
Risperidone	212	0	<5	<5	<5	<5	[690 ^m]	< 0.007.
Salicylic acid	285	82%	82 ± 9	42	278	1,530	60,000 ^f	0.025
Simvastatin	285	0	<5	<5	<5	<5	9,600 ^b	< 0.000
Simvastatin-hydroxyacid	285	0	<5	<5	<5	<5	NA	NA
Sulfamethoxazole	284	9%	<5	<5	10	67	26.8 ^b	2.5
Triamterene	285	1%	<5	<5	<5	14	[1,900 ⁿ]	0.0074
Trimethoprim	285	5%	5 ± 2	<5	<5	657	180,000 °	0.0037
Verapamil	284	1%	<5	<5	<5	36	54,000 ^b	0.00067
ersonal care products								
Caffeine	216	65%	130 ± 28	19	453	3,770	5,200 ¹	0.73
DEET**	NA	NA	NA	NA	NA	NA	NA	NA
Propylparaben	285	12%	<10	<10	20	218	20,000 ^p	0.011
Triclocarban	285	1%	<10	<10	<10	58	190 ^q	0.31
Triclosan	285	25%	<10	<10	24	87	500 ^r	0.17
esticides								
Atrazine	285	11%	5 ± 1	<5	12	209	13,000 ^s	0.017
Chlorpyrifos	69	3%	<5	<5	<5	5	10 ^s	0.5
Diazinon	69	0	<5	<5	<5	<5	10 ^s	< 0.5
Linuron	285	3%	<5	<5	<5	72	500 ^t	0.14
2-Phenylphenol	285	13%	<10	<10	19	92	900 ^u	0.10
Simazine	139	14%	52 ± 29	<5	122	3,930	3,200 ^s	1.2

	Trifluralin	69	0	<150	<150	<150	<150	2,600 ^v	< 0.058
--	-------------	----	---	------	------	------	------	--------------------	---------

758

^aQuednow and Puttmann 2009 ^bAgerstrand and Ruden 2010 ^cDerived based on no observable effect concentration (NOEC) for condition index in fathead 759 minnow of 1 mg/L, as reported in Winter et al. (2008) with an uncertainty factor (UF) of 100 dEscher et al. 2011 Carlsson et al. 2006 Wang et al. 2010 760 ^gDerived based on EC₅₀ for green algae (96h) of 3.9 mg/L, as calculated by ECOSAR, with a UF of 1000 ^hDerived based on EC₅₀ for growh inhibition of P. 761 subcapitata of 2 mg/L, as reported in Harada et al. 2008, with a UF of 1000 Derived based on EC₅₀ for growth inhibition of T. pyriformis of 45 mg/L, as 762 reported in Henschel et al. 1997, with a UF of 1000 ^jDerived based on EC₅₀ for green algae (96h) of 0.21 mg/L, as calculated by ECOSAR, with a UF of 1000 763 764 ^kSchowanek and Webb 2002 ^lKomori et al. 2013 ^mDerived based on EC₅₀ for green algae (96h) of 0.69 mg/L, as calculated by ECOSAR, with a UF of 1000 ⁿDerived based on LC₅₀ for daphnid (48h) of 1.9 mg/L, as calculated by ECOSAR, with a UF of 1000 °Halling-Sorensen et al. 2000 ^pYamamoto et al. 2011 765 ^qDerived from a NOEC based on an 8d chronic toxicity test with C. dubia reported in Tamura et al. (2012), with a UF of 10 ^rPerez et al. 2013 766

^sANZECC/ARMCANZ 2000 95th percentile ^tCrane et al. 2007 ^uDerived from a NOEC based on a *D. magna* reproduction test in Bayer 2001, with a UF of 10 767 ^vANZECC/ARMCANZ 2000, 99th percentile 768

* low reliability PNEC derived from QSAR data are indicated in brackets, **Not reported, see section 3.1.5 for more information. 769

770

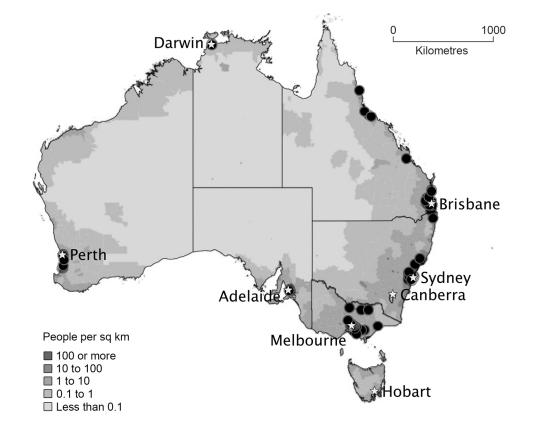


Figure 1 - Location of sampling sites across mainland Australia. State and territory capitals are depicted by white stars, while black circles represent sampling locations. The population density graph was obtained from the Australian Bureau of Statistics (2012). 285x240mm (150 x 150 DPI)

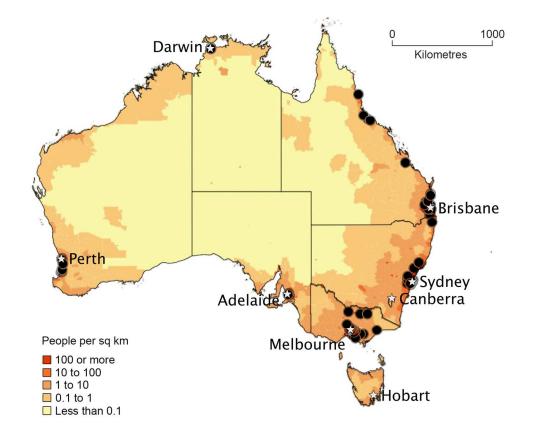


Figure 1 - Location of sampling sites across mainland Australia. State and territory capitals are depicted by white stars, while black circles represent sampling locations. The population density graph was obtained from the Australian Bureau of Statistics (2012). 285x240mm (150 x 150 DPI)



Figure 2. (top) Frequency of detection for the five most detected compounds for each land-use. Salicylic acid and caffeine were the most and second most commonly detected compounds in each land-use. (bottom) Frequency of detection for the five most detected compounds in each state. Salicylic acid and caffeine were again the first and second most detected compounds, respectively, in all six states and territories. Numbers in brackets represent the total number of samples analysed for the respective compound. "TCEP" = tris(2-Chloroethyl) phosphate. 255x327mm (300 x 300 DPI)

5585 Guilford Rd., Madison WI 53711

SUPPLEMENTARY INFORMATION FOR

A national survey of trace organic contaminants in Australian

rivers

Philip D. Scott^a, Michael Bartkow^b, Stephen J. Blockwell^c, Heather M. Coleman^d, Stuart J. Khan^d,

Richard Lim^e, James A. McDonald^d, Helen Nice^f, Dayanthi Nugegoda^g, Vincent Pettigrove^h, Louis A.

Tremblay^{i,j}, Michael St. J. Warne^k, and Frederic D.L. Leusch^{a,*}

^a School of Environment, Griffith University, Southport, Queensland, 4222, Australia

^b Seqwater, PO Box 16146, Brisbane City East, Queensland, 4002, Australia

^c Sydney Water Corporation, PO Box 399, Parramatta, New South Wales, 2124, Australia

^d School of Civil & Environmental Engineering, University of New South Wales, New South Wales,

2052, Australia

^e School of the Environment, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007, Australia

^f Water Science Branch, Department of Water, Government of Western Australia, PO Box K822,

Perth, Western Australia, 6842, Australia

^g School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora,

Victoria, 3083, Australia

^h Melbourne Water, PO Box 4342, Melbourne, Victoria, 3001, Australia

ⁱ Cawthron Institute, 98 Halifax Street East, Nelson, 7042, New Zealand

^j School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New

Zealand

^k Water Quality and Investigations, Department of Science, Information, Technology, Innovation and the Arts, Queensland Government, GPO Box 5078, Brisbane, Queensland, 4001, Australia

* Corresponding Author.

e: <u>f.leusch@griffith.edu.au</u>

p: +61 7 5552 7832

Mailing address:

Dr Frederic Leusch

Smart Water Research Centre (G51)

Griffith University, Gold Coast Campus

Southport, Queensland, 4222

Australia

Table S1. Catchment composition based on primary land-use. Catchment assessments were

 performed for each sampling site to assess the impact of agricultural, industrial, residential,

 wastewater treatment plant (WWTP) effluent, and undeveloped inputs at each sampling location. The

 dominant land-use was used for grouping.

Catchment composition (percent total catchment)										
Site	Agricultural	Industrial	Residential	WWTP	Undeveloped					
Agricultura	l sites (n=20)				-					
1	40	0	20	30	10					
2	70	10	10	10	0					
3	50	0	10	20	20					
4	60	0	0	0	40					
5	95	0	0	0	5					
6	90	0	10	0	0					
7	90	0	10	0	0					
8	80	20	0	0	0					
9	80	10	10	0	0					
10	80	0	10	0	10					
11	100	0	0	0	0					
12	100	0	0	0	0					
13	90	0	0	0	10					
14	80	0	20	0	0					
15	70	0	30	0	0					
16	100	0	0	0	0					
17	75	0	5	0	20					
18	70	0	30	0	0					
19	100	0	0	0	0					
20	60	0	0	0	40					
Industrial s	ites (n=7)									
21	0	60	40	0	0					
22	0	80	20	0	0					
23	0	80	20	0	0					
24	0	80	20	0	0					
25	0	100	0	0	0					
26	0	100	0	0	0					
27	0	90	10	0	0					
	sites (n=19)									
28	0	20	80	0	0					
29	0	20	60	20	0					
30	0	0	90	0	10					
31	0	0	100	0	0					
32	0	0	50	0	50					
33	0	5	65	0	30					
34	0	0	60	0	40					
35	0	20	80	0	0					
36	0	10	90	0	0					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
46 0 80 0 20 <i>WWTP sites (n=13)</i> 47 0 0 0 60 40 48 15 5 30 50 0 49 5 15 40 40 0 50 0 10 40 50 0 51 0 20 20 60 0 52 20 0 0 60 20 53 0 0 0 100 0 54 20 0 20 50 10 55 20 0 0 80 0 57 20 0 0 80 20 59 30 0 0 60 10 59 30 0 0 80 62 60 0 10 0 80 62 62 20 0 10 0						
<i>WWTP sites (n=13)</i> 47 0 0 0 60 40 48 15 5 30 50 0 49 5 15 40 40 0 50 0 10 40 50 0 51 0 20 20 60 0 52 20 0 0 60 20 53 0 0 0 100 0 54 20 0 20 50 10 55 20 0 0 60 20 56 30 0 0 80 0 57 20 0 0 80 20 59 30 0 0 60 10 <i>Undeveloped sites (n=14)</i> 60 0 10 0 90 61 10 0 10 0 90 64 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	0	0	80	0	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WWTP sites ((n=13)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	0	0	0	60	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48		5	30	50	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	5	15	40	40	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0	10	40	50	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	0	20	20	60	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	20	0	0	60	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	0	0	0	100	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	20	0	20	50	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	20	0	0	60	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	30	0	0	70	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	20	0	0	80	0
Undeveloped sites $(n=14)$ 60001009061100100806220000806300100906420010070650000100660001006700100906830003040694000060700000100710009072010090	58	0	0	0	80	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	30	0	0	60	10
	Undeveloped	sites (n=14)				
	60	0	0	10	0	90
	61	10	0	10	0	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	20	0	0	0	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	0	0	10	0	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	20	0	10	0	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	0	0	0	0	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	0	0	0	0	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	0	0	10	0	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	30	0	0	30	40
71 0 0 0 0 100 72 0 10 0 0 90						
71 0 0 0 0 100 72 0 10 0 0 90	70	0	0	0		
72 0 10 0 90			0			
					0	
	73					

Table S2. Basic water parameters and meteorological data. Ranges reported here are based on four sampling events. pH, water temperature, dissolved oxygen (DO) and electro-conductivity (EC) determined via multi-meter. Nitrate, nitrite, total chlorine, free chlorine, total hardness, total alkalinity, pH (Hach strip) all determined using Hach strips (Section 2.3). Average atmospheric temperature and total precipitation values calculated for the week prior to sampling day (data downloaded for the nearest weather station from the Australian Bureau of Meteorology). "NA" = not available.

Site Number	рН	Water temperature (ºC)	Dissolved oxygen (mg/L)	Electro- conductivity (µS/cm ²)	Nitrate (ppm)	Nitrite (ppm)	Total chlorine (ppm)	Free chlorine (ppm)	Total hardness (ppm; CaCO₃)	Total alkalinity (ppm; CaCO₃)	pH (Hach strip)	Atmospheric temperature (ºC)	Precipitation (mm)
New South	Wales												
1	7.1 - 7.9	14 - 25	8.2 - 10.1	182 - 243	0.15 - 0.5	0 - 1	0 - 0.01	0	50 - 120	40 - 80	6.8 - 7.2	9.8 - 21.7	1.4 - 66.4
2	7 - 7.8	15 - 26	7.7 -8 10.5	185 - 277	0 - 0.5	0 - 0.5	0 - 0.06	0	50 - 50	40 - 80	6.8 - 7.2	10.3 - 22.1	0.4 - 46.2
3	7.3 - 7.7	13.4 - 26.2	6.1 - 8.9	643 - 1421	0.15 - 1	0 - 1.5	0	0	7 - 120	80 - 120	7.2 - 7.6	10.3 - 22.1	0.4 - 46.2
4	7.2 - 8	13.9 - 23.2	6.3 - 8.5	185 - 1078	0 - 0.5	0.15 - 1.5	0	0	7 - 250	50 - 180	7.2 - 7.8	11.7 - 23.2	5.8 - 44.1
5	5.2 - 7.8	17.7 - 26.3	6.2 - 9.5	0 - 1262	0.15 - 2	0 - 1	0	0	50 - 120	40 - 120	6.8 - 7.2	14.5 - 21.5	1.2 - 72.4
6	7.1 - 8	22.4 - 24.1	4.3 - 8.3	200 - 325	0.15 - 0.5	0 - 1	0	0	50 - 50	40 - 80	6.8 - 7.8	9.2 - 23.6	2.6 - 82.2
7	6.9 - 7.8	15.4 - 22	4.5 - 9.3	63 - 4686	0 - 1	0 - 1	0	0	25 - 425	60 - 120	6.8 - 7.8	11.2 - 22.6	7.8 - 40.8
8	7.3 - 7.5	10.2 - 20.7	5.4 - 90	230 - 397	0 - 2	0 - 0.15	0	0	120 - 120	60 - 80	6.8 - 7.2	12 - 23.2	2 - 71
9	7.2 - 7.6	12.2 - 24.4	6.3 - 10.4	89 - 224	0.15 - 2	0 - 0.15	0	0	50 - 50	40 - 120	6.8 - 7.2	14.3 - 22.9	10.6 - 120.2
10	6.2 - 7.6	17 - 25.5	3.4 - 6.6	9 - 41	0.15 - 2	0 - 1	0	0	25 - 425	180 - 240	7.2 - 7.8	12.9 - 22.2	1.2 - 58.8
11	7.3 - 8.7	15 - 24	1.9 - 19.2	9 - 1055	0 - 2	0 - 1	0	0	25 - 425	120 - 240	7.2 - 8.4	11.7 - 20.8	8 - 63
12	6.9 - 7.9	17 - 25.2	1.9 - 8.3	16 - 47	0 - 2	0 - 0.15	0	0	25 - 425	120 - 240	6.8 - 7.8	12.9 - 22.2	1.2 - 58.8
13	7.1 - 7.7	12.5 - 21.2	2.3 - 8.7	102 - 977	0 - 1.5	0.15 - 0.65	0	0	50 - 250	120 - 240	6.8 - 7.6	20.6 - 21.1	67.4 - 74.4
14	7.2 - 7.5	11 - 22.7	1.6 - 6.6	685 - 1414	0 - 0.5	0.05 - 1	0	0	10 - 120	120 - 180	6.8 - 7.8	11.1 - 23.2	2.4 - 39.6
15	6.8 - 7.6	12.4 - 22	4.2 - 8.8	307 - 1038	0.15 - 3.5	0 - 0.5	0	0	120 - 250 💧	40 - 240	7 - 7.8	11.1 - 21.8	6.4 - 60.4
16	7.1 - 8	10.8 - 22.5	7.1 - 10.8	60 - 148	0.15 - 1.5	0 - 1	0	0	25 - 50	20 - 100	6.8 - 7.2	12 - 20.3	41.4 - 109.4
17	6.9 - 7.6	11.1 - 26.8	8 - 10.4	75 - 121	0 - 1.5	0 - 0.5	0	0	25 - 50	20 - 40	6.8 - 7.2	10.9 - 23.7	0.6 - 51.6
18	5 - 6	10.1 - 18	9.1 - 10.7	138 - 172	0.15 - 1	0 - 0.5	0	0	25 - 50	20 - 40	6.2 - 7	11.1 - 20.6	0 - 83.6
19	6.4 - 7.7	11.3 - 20.9	9.1 - 10.9	109 - 171	0 - 0.15	0 - 1	0	0	25 - 85	40 - 80	6.8 - 6.8	11.1 - 20.6	0 - 83.6
Northern T	erritory												
20	7.2 - 7.2	25.6 - 25.6	NA	NA	1.5 - 1.5	0.23 - 2	0	0	50 - 120	120 - 180	7.8 - 8.4	0 - 31.2	0

Page	48	of	53
------	----	----	----

21	7.1 - 7.7	27 - 27	5.3 - 6.9	NA	0.5 - 1.5	0.15 - 1	0	0	50 - 50	120 - 120	7.2 - 8.4	0 - 26.1	0 - 0.6
22	7.9 - 8.1	25.7 - 25.7	0.5 - 6.4	NA	0	0 - 1.5	0	0	25 - 425	180 - 220	7.8 - 7.9	0 - 25.7	0 - 0.6
Queenslan	d												
23	7.8 - 8.4	13.3 - 24.2	2.8 - 8.2	464 - 729	0 - 0.15	0 - 0.5	0	0	120 - 250	160 - 240	7.2 - 8.4	11.7 - 22.9	0 - 69.2
24	7.7 - 8.3	16 - 26.2	7.7 - 11.3	513 - 780	0 - 1	0 - 1	0	0	120 - 338	120 - 240	7.8 - 7.8	11.1 - 25.1	0 - 32.8
25	8.1 - 8.2	15.4 - 24.8	7.2 - 9.5	303 - 684	0 - 0.2	0 - 0.05	0	0	120 - 200	120 - 180	7.8 - 7.8	13.8 - 24.9	0.2 - 12.8
26	6.4 - 7.5	20.1 - 31.2	2.2 - 7.6	227 - 1049	0 - 1	0 - 0.15	0	0	120 - 250	80 - 240	6.8 - 8.4	19.1 - 28.4	0 - 155.2
27	6.1 - 6.8	20.2 - 27.5	7.7 - 8.5	38 - 41	0 - 1	0 - 1	0	0	0 - 25	0 - 80	6.2 - 6.8	19.2 - 28.4	0 - 230.5
28	7.5 - 8.6	20.4 - 29.4	8.1 - 9	237 - 729	0 - 1	0 - 0.5	0	0	50 - 250	180 - 240	7.8 - 8.4	16 - 27.6	0.2 - 86.2
29	7.9 - 8.3	14.8 - 26.6	6.1 - 13.5	452 - 1732	0 - 0.25	0 - 0.15	0	0	120 - 425	180 - 240	7.8 - 8.4	13.8 - 24.9	0.2 - 12.8
30	7.9 - 8.2	15.6 - 26	7.4 - 9.7	371 - 701	0 - 0.5	0 - 0.15	0	0	120 - 425	80 - 240	7.2 - 7.8	16.4 - 25.3	0 - 38.4
31	6.2 - 7.6	16.1 - 28.7	2.7 - 7.1	310 - 440	0 - 2	0 - 0.15	0	0	120 - 120	40 - 120	6.2 - 7.8	14.5 - 24.7	0 - 28.2
32	7.9 - 8.9	17.5 - 29.2	1.2 - 9	48 - 672	0 - 0	0 - 0.5	0	0	120 - 250	120 - 240	7.8 - 8.4	15.7 - 25.2	0 - 38.4
33	7.3 - 7.5	15.8 - 25.2	7.8 - 9.5	160 - 578	0.1 - 1	0 - 1	0	0	100 - 120	40 - 180	7 - 7.9	13.6 - 24.9	0 - 29.6
34	7.3 - 8	26.5 - 27.6	4.1 - 4.4	370 - 864	0.1 - 2	0 - 0.5	0	0	120 - 250	8 - 240	7.5 - 19.1	12.2 - 24.2	0 - 11.8
35	7.7 - 8.2	13 - 25.2	6 - 10.2	818 - 2309	0 - 0.15	0 - 0.05	0	0	250 - 425	240 - 240	7.8 - 8.4	14 - 25.2	0 - 48
36	6.3 - 7.7	22 - 30	2.4 - 7.1	69 - 278	0 - 0.15	0 - 0.15	0	0	25 - 75	40 - 120	6 - 6.8	20.9 - 27.8	0.2 - 74
37	6.8 - 8.2	21.9 - 26.3	5.6 - 10.2	45 - 100	0 - 0.15	0 - 0.5	0	0	25 - 50	40 - 240	7.2 - 7.2	19.1 - 28.3	0 - 126.6
38	7.7 - 8.9	15.2 - 25.8	9.4 - 10.3	57 - 70	0 - 0	0	0	0	25 - 120	40 - 40	6.8 - 7.8	14.8 - 24.7	4.8 - 14
39	4.9 - 7.8	28.7 - 29.1	5.1 - 8.2	70 - 1023	0.15 - 1	0 - 0.15	0	0	0 - 425	0 - 80	6.8 - 19.2	16.1 - 25.6	0 - 54.2
40	7.8 - 8.2	14.6 - 22	1.2 - 7.7	210 - 432	0 - 0.1	0 - 0.5	0	0	50 - 120	40 - 120	6.8 - 7.2	14.1 - 22.8	0.2 - 46.8
41	7.1 - 8.2	10 - 26.9	7.1 - 7.9	370 - 590	0 - 1	0 - 0.15	0	0	7 - 425	8 - 240	6.8 - 18	16.1 - 25.6	0 - 54.2
South Aust	ralia												
42	6.9 - 11.3	11.8 - 20.8	6.9 - 9.1	1154 - 2167	0 - 2	0 - 1	0 - 0.5	0	25 - 120	240 - 240	7.2 - 8.4	9.8 - 21.6	0 - 19.2
43	6.8 - 8.3	11.9 - 20.2	6.7 - 10.6	622 - 821	0 - 1	0	0	0	7 - 250	180 - 240	8.4 - 8.4	9.8 - 18	0.2 - 19.2
44	7.3 - 8	11.5 - 19.7	7.2 - 24.1	271 - 385	0 - 1	0 - 0.15	0	0	3 - 120	40 - 80	6.8 - 7.2	8.2 - 18	0.2 - 19.2
Victoria													
45	6.9 - 7.2	13.4 - 26.9	5.2 - 7.3	90 - 142	0 - 1	0 - 0.15	0	0	50 - 50	40 - 80	6.8 - 8.8	10.1 - 28.9	0 - 23.9
46	6.1 - 6.7	12 - 30.1	5 - 6.8	102 - 437	0 - 1	0 - 0.15	0	0	50 - 120	40 - 40	6.8 - 7.2	9.9 - 18.7	6 - 42
47	6.7 - 7.1	13.6 - 27.3	5.7 - 7.9	42 - 54	0 - 1	0 - 0.15	0	0	25 - 25	0 - 80	6.8 - 6.8	9.8 - 19.9	0.2 - 45.2

48	6.6 - 7.1	8.3 - 21.4	6.4 - 9.6	112 - 246	0 - 1	0 - 0.15	0	0	50 - 50	40 - 40	6.8 - 6.8	8.8 - 19.9	2.6 - 29.8
49	6.2 - 6.9	9 - 23.9	5.9 - 9.5	217 - 260	0.15 - 1	0 - 1	0	0	3 - 50	40 - 80	6.2 - 6.8	8.2 - 19.9	2.6 - 29.8
50	6.4 - 7.5	12.1 - 25.4	3.8 - 6.9	400 - 1774	0 - 1	0 - 1	0	0	7 - 425	40 - 120	6.8 - 7.8	9.7 - 19.8	5 - 58.4
51	6.1 - 8.3	11 - 20.5	6 - 7.2	101 - 148	0 - 1	0	0	0	2 - 50	40 - 40	6.8 - 6.8	6.9 - 17.5	13.6 - 62.4
52	6.8 - 7.5	15 - 26.6	6.5 - 7.4	15 - 686	0 - 1	0 - 1	0	0	50 - 120	40 - 120	6.8 - 7.2	10.1 - 21	0.4 - 37.4
53	6.4 - 7.8	9.8 - 26.3	5 - 7.9	159 - 2550	0 - 1	0 - 1	0	0	0 - 425	40 - 240	6.8 - 7.8	11.4 - 20.8	6 - 37.8
54	7 - 7.4	12.3 - 22.2	5 - 6.9	9 - 780	0 - 1	0 - 0.15	0	0	50 - 120	40 - 120	6.8 - 68	11.9 - 20.8	6.6 - 20.4
55	5.9 - 7.1	13.3 - 22.5	3.1 - 4.9	509 - 1231	0.15 - 1	0 - 0.15	0	0	120 - 120	40 - 120	6.2 - 7.2	11.1 - 19.2	12.2 - 48.3
56	6.1 - 7.1	14.1 - 20.4	4.7 - 5.7	176 - 242	0 - 1	0 - 1	0	0	50 - 120	40 - 80	6.8 - 6.8	11 - 19.5	11.4 - 45.8
57	6 - 7.1	13.2 - 19.2	3.1 - 6.9	266 - 2089	0.15 - 1	0 - 0.15	0	0	120 - 425	40 - 240	6.8 - 68	11.2 - 20.1	1.2 - 51.8
58	6.8 - 7.9	10.1 - 18.8	4.4 - 6	125 - 600	0.15 - 1	0 - 0.3	0	0	50 - 120	80 - 120	6.8 - 7.8	11.6 - 20.8	6.6 - 31.4
59	6.9 - 8	11 - 19.9	5.9 - 7.8	167 - 1123	0.15 - 1	0 - 0.15	0	0	50 - 250	80 - 240	6.8 - 8.4	10.5 - 19.6	3.2 - 39.4
60	6.9 - 8	11.3 - 23.9	7.2 - 8.8	1384 - 2129	0 - 1	0 - 0.15	0	0	120 - 250	240 - 240	7.8 - 8.5	10.6 - 19.8	3.2 - 39.4
61	7 - 8.5	11.6 - 24.5	7 - 9.7	211 - 572	0 - 1	0 - 0.15	0	0	50 - 120	80 - 240	7.2 - 8.4	10.7 - 20.1	1.2 - 17.8
62	5.6 - 7.3	10.5 - 22.3	4.4 - 10.2	375 - 3120	0 - 1	0 - 0.15	0	0	25 - 425	240 - 240	6.8 - 8.4	10.6 - 19.7	1.4 - 6.4
63	6.1 - 7.1	6 - 16.7	4.4 - 9.7	76 - 151	0 - 1	0 - 0.15	0	0	0 - 25	40 - 40	6.2 - 6.8	7.1 - 17.5	3 - 14.4
Vestern A	ustralia												
64	7.2 - 8	15.4 - 23	5.2 - 11.1	485 - 694	0.15 - 1	0 - 1	0 - 1	0	120 - 120	40 - 180	7 - 7.8	12.8 - 21.7	5.2 - 75.8
65	7.4 - 7.7	16.7 - 22.4	3.3 - 10.1	394 - 905	0.15 - 2	0 - 1	0	0	50 - 120	80 - 240	6.2 - 7.2	11.9 - 22.1	0 - 64.1
66	7.2 - 9.2	15.2 - 26.6	5.6 - 13	107 - 1282	0 - 1.5	0 - 1	0	0	120 - 250	80 - 120	7.2 - 7.2	12.8 - 21.7	5.2 - 75.8
67	7.3 - 9.2	16 - 29.4	8.1 - 16.4	148 - 767	0.3 - 1	1 - 2	0	0	120 - 120	80 - 180	7.2 - 7.2	12.4 - 21.7	5.2 - 154.4
68	7.1 - 8.2	12.5 - 21.4	7.9 - 10.1	225 - 314	0 - 2	0 - 1	0	0	50 - 120	40 - 40	6.8 - 7.2	11.8 - 22.1	0 - 156.9
69	7.1 - 7.5	19.9 - 26.7	4.5 - 10.8	146 - 865	0 - 2	0 - 1	0	0	50 - 250 🔪	80 - 240	6.2 - 7.8	14.6 - 25.5	0 - 33.2
70	6.9 - 7.9	18.6 - 26.5	2.1 - 8.5	547 - 696	0 - 1	0 - 1	0	0	120 - 120	40 - 80	6.2 - 7.2	14.9 - 25.3	0 - 29.4
71	6.9 - 7.6	19.8 - 27.5	6.1 - 7.6	434 - 918	0.15 - 2	0 - 1	0	0	25 - 425	80 - 180	7.2 - 7.8	14.9 - 25.3	0 - 35.6
72	7.3 - 7.9	19.3 - 25.4	7 - 7.3	146 - 665	0 - 1	0.15 - 1	0	0	50 - 120	40 - 120	6.8 - 7.2	14.6 - 24.1	0 - 33.2
73	7 - 8	12.2 - 21.7	6 - 10.6	248 - 309	0.15 - 5	0 - 1	0	0	3 - 50	40 - 40	6.8 - 7.2	12.1 - 21.7	6.7 - 70
aboratory	Blank												

Table S3.	Transition	for	compounds	using	ESI	positive mode.

Compound	Precursor Ion (m/z)	Product Ion (m/z)
Atenolol 1	267.2	145.1
Atenolol 2	267.2	190.2
Atenolol-D7	274.1	145.1
Paracetamol	152.1	110.1
Paracetamol- ¹⁵ N ¹³ C	155	111
Sulfamethoxazole 1	254	156.1
Sulfamethoxazole 2	254	92
Sulfamethoxazole-D4	258.1	160.1
Caffeine 1	195	138.1
Caffeine 2	195	110.1
Caffeine-D9	204.1	144.2
Trimethoprim 1	291.1	230.2
Trimethoprim 2	291.1	261.1
Trimethoprim-D9	300.3	234.2
tris(2-Chloroethyl) phosphate (TCEP) 1	284.9	223
tris(2-Chloroethyl) phosphate (TCEP) 2	284.9	62.9
Phenytoin 1	253.1	182.1
Phenytoin 2	253.1	104.1
Phenytoin -D10	263.1	192.2
Carbamazepine 1	237	194.2
Carbamazepine 2	237	192.1
Carbamazepine-D10	247.1	204.3
Fluoxetine 1	310	44.1
Fluoxetine 2	310	148.2
Fluoxetine-D5	315.1	44.2
Enalapril 1	377.1	234.1
Enalapril 2	377.1	91.1
Enalapril-D5	382.2	239.2
Risperidone 1	411.1	191.2
Risperidone 2	411.3	110
Risperidone-D4	415.1	195.2
Atrazine 1	216	174.2
Atrazine 2	216	96.1
Atrazine-D5	221.3	179.1
Linuron 1	249	182.2
Linuron 2	249	160.1
Linuron-D6	255	160.1
Atorvastatin 1	559.1	440.1
Atorvastatin 2	559.1	250.3
Atorvastatin-D5	564.2	445.4
o-Hydroxy atorvastatin 1	575.2	440.2
o-Hydroxy atorvastatin 2	575.2	466.1
o-Hydroxy atorvastatin D5	580.2	445.1

Compound	Precursor Ion	Product Ion
	(m/z)	(m/z)
p-Hydroxy atorvastatin 1	575.2	440.2
p-Hydroxy atorvastatin 2	575.2	466.1
p-Hydroxy atorvastatin D5	580.2	445.1
Omeprazole 1	346.2	198.2
Omeprazole 2	346.2	136.1
Omeprazole D3	349.2	198
Clozapine 1	327.1	270.2
Clozapine 2	327.1	192.1
Clozapine_D4	331.2	272
Amtriptyline 1	278.2	233
Amtriptyline 2	278.2	117.1
Amtriptyline-D6	284.4	233.1
DEET 1	192.2	119
DEET 2	192.2	108.9
DEET-D7	199.2	126.1
Primidone 1	219.2	162.2
Primidone 2	219.2	102.2
Primidone-D5	219.2	167
Verapamil 1		
	455.4	165.1
Verapamil 2	455.4	150
Verapamil-D6	461.4	165.2
Triamterene 1	254.2	237
Triamterene 2	254.2	104
Triamterene-D5	259.2	242.2
Propylparaben 1	181.2	139.1
Propylparaben 2	181.2	121
Meprobamate 1	218.9	158.2
Meprobamate 2	218.9	115.1
Meprobamate-D3	221.9	161.2
Hydroxyzine 1	375.3	201.1
Hydroxyzine 2	375.3	165.1
Hydroxyzine-D8	383.3	201.1
Methotraxate 1	455.2	308.2
Methotraxate 2	455.2	175
Chlorpyrifos 1	349.9	197.9
Chlorpyrifos 2	349.9	115
Diazinon 1		
	305.1	169.1
Diazinon 2	305.1	115
Simazine 1	202.1	132.1
Simazine 2	202.1	124.1
Simazine-D10	212.2	137.1
Trifluralin 1	336.2	236.1
	226.2	251.8
Trifluralin 2	336.2	231.0
Trifluralin 2 Trifluralin-D14	350.2	231.8

Compound	Precursor Ion (m/z)	Product Ion (m/z)
Diazepam 2	285.1	154.2
Diazepam-D5	290.1	198.1

Compound	Precursor Ion	Product Ion
•	(m/z)	(m/z)
Ketoprofen	252.8	208.8
Ketoprofen-D3	255.6	211.7
Naproxen 1	228.9	184.6
Naproxen 2	228.9	169.8
Naproxen-D3	231.9	187.8
Ibuprofen 1	204.9	160.8
Ibuprofen 2	204.9	158.8
Ibuprofen-D3	208	163.9
Gemfibrozil 1	248.9	120.8
Gemfibrozil 2	248.9	126.8
Gemfibrozil-D6	254.9	120.9
Triclosan	286.6	35
Triclosan-D3	289.7	34.9
Simvastatin-hydroxyacid 1	435.1	318.9
Simvastatin-hydroxyacid 2	435.1	114.9
Simvastatin-hydroxyacid-D6	441.1	319
Simvastatin 1	399	114.9
Simvastatin 2	399	282.8
Simvastatin-D6	405.4	121.1
Salicilic acid 1	136.9	92.8
Salicilic acid 2	136.9	65
Salicilic acid-D6	140.9	96.9
Triclocarban 1	312.9	159.8
Triclocarban 2	312.9	125.7
Triclocarban-D4	317	159.8
Propylparaben 1	179	135.7
Propylparaben 2	179	136.9
2-Phenylphenol 1	168.9	114.8
2-Phenylphenol 2	168.9	140.8

 Table S4. Transitions for compounds using ESI negative mode.