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ABSTRACT 

In today’s safety-critical systems such as process and manufacturing plants, operators are 

often moved to a control room far away from the physical environment, and increasing 

amounts of information are passed to them via automated systems, they therefore need a 

greater level of support to control and maintain the facilities in a safe condition. This is 

especially important when operators confront abnormal situations in which the information 

flow is quite high and poor decisions may lead to serious consequences. Therefore, they 

need to be supported from a cognitive perspective to reduce their workload, stress, and 

consequent error rate. Of the various cognitive activities, a correct understanding of the 

situation, that is situation awareness (SA), has been found to be a crucial factor in improving 

performance and reducing error. However, existing system safety researches focus mainly 

on technical issues and often neglect SA. 

This research reviews the role of SA in accidents of safety-critical environments and 

introduces a clear definition for abnormal situations based on risk indicators. It then relies 

on mental models that embody stored long-term knowledge about the systems, and 

develops an abnormal situations modelling (ASM) method, that exploits the specific 

capabilities of Bayesian networks (BNs). In this sense, it is assumed that the operator’s 

mental model can be modelled using BNs as a representation of static cause–effect 

relationships between objects in the situation. Following this, the research presents an 

innovative cognition-driven decision support system called the situation awareness support 

system (SASS) to manage abnormal situations in safety-critical environments in which the 

effect of situational complexity on human decision-makers is a concern. The SASS consists 

of five major components: (1) a knowledge–base that contains the abnormal situation 

models of the intended environment developed by the ASM method, (2) a situation data 

collection component that provides the current state of the observable variables based on 

online conditions and monitoring systems, (3) a situation assessment component that uses 

risk indicators and a fuzzy logic system to generate the assessment result, (4) a situation 
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recovery component that provides a basis for decision-making to reduce the risk level of 

situations to an acceptable level, and (5) a human-computer interface. The performance of 

the SASS is demonstrated by three cases investigated by the US Chemical Safety Board in 

which poor operators’ SA has created industrial disasters in recent US history. The results of 

performance demonstrate that the SASS provides a useful graphical, mathematically 

consistent system for dealing with incomplete and uncertain information to help operators 

maintain the risk of dynamic situations at an acceptable level.  

The SASS is partially evaluated by a sensitivity analysis, which is carried out to validate 

the BN-based situation models, and a multi-perspective evaluation approach is proposed 

based on SA measures to determine the degree to which the SASS improves not degrades 

the operator’s SA. The approach consists of three SA metrics: the Situation Awareness 

Global Assessment Technique, the Situation Awareness Rating Technique, and the NASA 

Task Load Index. The first two metrics are used for direct objective and subjective 

measurement of SA, while the third is used to estimate the workload of operators. The 

approach is applied in a safety-critical environment, and ten operators participate in two 

40-minute simulation trials using a virtual plant user interface, both with and without the 

support of the SASS. The results indicate that the SASS improves operators’ SA, and 

specifically has benefits for SA levels 2 and 3. No significant correlations between the 

participants’ SA scores have been found. In addition, it is concluded that the SASS reduces 

the workload of operators, although further investigations in different environments with a 

larger number of participants have been suggested. 
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Chapter 1:  

INTRODUCTION 

1.1 BACKGROUND 

Safety-critical environments are those domains in which hardware failure or poor or late 

decision-making by operators could result in loss of life, significant property damage, or 

environmental pollution. In many safety-critical environments today, the role of the 

operator shifts from a person who controls a process manually to a supervisor or decision-

maker, and includes extensive cognitive tasks (Ha & Seong 2009) including information 

gathering, planning, decision–making, demonstrating that the facility is fit for its intended 

purpose, and ensuring that the risks associated with its operation are sufficiently low 

(Melchers 2001). In abnormal situations, a well-trained operator should comprehend a 

malfunction in real time by analyzing alarms, assessing values, and recognizing unusual 

trends associated with multiple instruments. When confronted with a complex abnormal 

situation, many alarms from different systems may sound at the same time, making it 

difficult for operators to judge within a short period of time which situation should be 

given priority. To return operational units to normal conditions, operators must respond 

quickly and make rapid decisions, but the mental workload of operators under these 

circumstances rises sharply, and a mental workload that is too high may increase the rate of 
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error (Hsieh et al. 2012). Paradoxically, several researches show that the focus of most 

human-system studies is on the technical elements, and human factors are often neglected 

(Niu et al. 2013). This is due to well understood hardware reliability techniques, whereas 

the handling of human factors, by contrast, is difficult. These problems highlight the urgent 

need to discover cognitive decision support systems to manage abnormal situations that will 

lower operator workload and stress and consequently reduce the rate of errors made by 

operators.  

Decision support systems (DSSs) are envisioned as “executive mind-support systems” 

that are expected to support decision-making from a human cognition perspective (Chen & 

Lee 2003). Over the years, some types of DSS, such as model-driven and data-driven DSSs, 

have achieved increased popularity in various domains. Model-driven DSSs emphasize the 

creation and manipulation of statistical, financial, optimization, or simulation models that 

require decision makers to specify model parameters according to their decision problems. 

The functionality of data-driven DSSs results from access to, and manipulation of, a large 

database of structured data, and their outputs are based on perceiving and comprehending 

the integrated information (Power & Sharda 2007). Unlike model-driven and data-driven 

DSSs, cognitive DSSs have not been researched, albeit they have long been recognized as 

being worthy of consideration (Chen & Lee 2003). Just as a cognitive process refers to an 

act of human information processing, so a cognition-driven decision support system refers 

to assisting operators in their decision–making from a human cognition perspective, using 

such attributes as sensing, comprehending and projecting (Niu et al. 2013). Of these 

cognitive aspects, an operator’s situation awareness (SA) is considered to be the most 

important prerequisite for decision–making. Situation awareness comprises the perception 

of elements in the environment, the understanding of their meaning, and the projection of 

the status of that environment in the near future (Endsley 1995b). Situation awareness is 

likely to be at the root of many accidents in safety-critical environments where multiple 

goals must be pursued simultaneously, multiple tasks require the operator’s attention, 
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operator performance is under high time stress, and negative consequences associated with 

poor performance are anticipated (Kaber & Endsley 1998).  

For example, on 23 March 2005, at the Texas City, TX BP Amoco Refinery explosion, 

15 workers were killed and 170 injured when a column was overfilled, overheated, and 

over-pressurized on start-up. A key problem identified in this catastrophic event was the 

difficulty experienced by the operator in maintaining an accurate awareness of the situation 

while monitoring a complex, fast moving environment (Pridmore 2007). Several other 

studies of accidents throughout many industries have found that loss of, or poor operator 

SA, was related to accidents classified as human error. For instance, loss of SA has been 

associated with 88% of major air carrier accidents that involved pilot errors and 58.6% of 

operational error in air traffic control operations (Endsley 1995a).  

Based on above mentioned issues, the main objective of this research is to develop a 

cognition-driven DSS, called the situation awareness support system (SASS), to assist 

operators when they when they are confronted with abnormal situations in safety-critical 

environments.  

1.2 RESEARCH PROBLEMS 

This section explains main issues which significantly motivates this study and presents 

the research questions: 

(1) In most human-system studies, safety has been considered from a technical perspective. 

Only hazards that arise through hardware failure have been considered, despite the fact 

that human failure is a more common factor in safety-critical systems (Endsley 2006; 

Endsley & Connors 2008; Papadopoulos & McDermid 2001). Therefore, to develop 

any new support system, two important aspects, namely addressing hazards that result 

from hardware failure and reducing human error through decision–making should be 

considered.  

(2) Safety supervisory is one of those domains that the information flow is quite high, and 

poor decisions may lead to serious consequences. Therefore, operators are usually 
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stressed by quick and proper decision making in a short time. Most of operator support 

systems focus on the deviation of the process from an acceptable range of operation, the 

identification of operation faults (Qian et al. 2008) or the prediction of process variables 

(Juricek, Seborg & Larimore 2001) that will violate an emergency limit in the future. 

Therefore quantitative knowledge and hardware failures have been relied on 

significantly; however, when faults occur, human operators have to rely on their 

experience under working pressure to understand what is going on and to contribute a 

solution (Klashner & Sabet 2007). These problems also highlight the urgency of 

cognitive human factors in the development of operator support systems to lower 

workload, stress and consequent error rates of operators. 

(3) Situation awareness, among human factors, has been found to be the most important 

prerequisite for decision-making (Endsley 1995b; Niu et al. 2013). Despite having its 

roots in aviation, it has been suggested that the concept is equally applicable to human 

supervisory control for land based industries. Several other studies of accidents 

throughout many industries have found that loss of, or poor operators’ SA, was related 

to accidents classified as human error (Endsley 1995a). Due to the severity of the 

accidents that have occurred over the last ten years, SA has become the focus of 

research that aims to understand operator performance in critical, dynamic 

environments (Garland, Wise & Hopkin 1999). It is also argued that problems in 

human supervisory control may be due to poor SA (Stanton, Chambers & Piggott 

2001), such as: 1) failure to detect critical cues regarding the state of the system; 2) 

failure to interpret the meaning of information perceived via Supervisory Control and 

Data Acquisition (SCADA) technology; 3) failure to understand individual task 

responsibilities and the responsibilities of others; 4) failure to communicate with other 

operators in the team; and 5) failure to communicate with other teams.  

(4) In complex systems, SA level 1 is highly supported through the various heterogeneous 

sensors and appropriate signal-processing methods to extract as much information as 

possible about the dynamic environment and its elements, but regarding SA levels 2 
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and 3, there is still a need for appropriate and effective methods to support operators to 

infer real situations and to project their status in the near future (Fischer, Bauer & 

Beyerer 2011; Jones, Connors & Endsley 2011). 

Based on the above mentioned issues, the research questions of this study are determined 

as follows: 

 Research Question 1: What should be the goal of a decision support system to 

assist operators in handling abnormal situations? 

 Research Question 2: What are the requirements for such operator decision 

support system and how they can be achieved? 

 Research Question 3: How could abnormal situations be defined and modelled 

in safety-critical environments? 

 Research Question 4: How could a situation assessment method be developed 

and implemented in safety-critical environments? 

 Research Question 5: What is a practical model of an operator decision support 

system to manage abnormal situations and what sub-systems should be included? 

 Research Question 6: How could the proposed system be implemented in 

safety-critical environments? 

 Research Question 7: How could the performance of the proposed system be 

evaluated in a dynamic and complex environment? 

1.3 RESEARCH OBJECTIVES 

This research has seven objectives based on the research problems, which are explained 

as follows: 

Research Objective 1: The first research objective corresponding to research question 1 is 

to determine the goal of the decision support system that aims to assist operators in 

managing abnormal situations in safety-critical environments. Nowadays, maintaining 

complex and dynamic systems in safe conditions, i.e. keeping the risks below the 

acceptance criteria, is a critical challenge because situations change dynamically and every 
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decision has a significant social, economic and environmental impact on society. The key 

focus must be on keeping the human operator aware of the situation, showing the risk level 

of hazardous situations and providing a base to reduce risks until they reach a level that is As 

Low as Reasonably Practicable (ALARP). According to ALARP, it is necessary for 

operators and intending operators of a potentially hazardous facility to demonstrate that (a) 

the facility is fit for its intended purpose, (b) the risks associated with its functioning are 

sufficiently low, and (c) sufficient safety and emergency measures have been instituted (or 

are proposed) (Melchers 2001). 

Research Objective 2: The second research objective is to determine the requirements of 

the proposed operator DSS. This objective corresponds to research question 2. To 

determine the aspects of the situation that are important for an operator’s SA, a cognitive 

methodology called the Goal-Directed Task Analysis (GDTA) is utilized. The elements of 

GDTA include goal, sub-goals, decisions, and the SA requirements. The GDTA hierarchy 

is not attached to a fixed timeline, and is thus able to represent the workflow experienced in 

many dynamic systems. The GDTA hierarchy is also independent of the technology being 

used to perform a task (i.e. it is not tied to how tasks are done with a given system, but to 

what information is really needed). The analysis is not only focused on what data people 

need, but on how the data is to be combined and integrated to support decision making and 

goal attainment. 

Research Objective 3: Corresponding to research question 3, the third research objective 

is to define abnormal situations and propose a method for their modelling based on 

operators’ mental models. Mental models refer to mechanisms whereby humans are able to 

generate descriptions of system purpose and explanations of system functioning (Endsley 

2000b). Mental models embody stored long-term knowledge about the systems that can be 

called upon for interaction with the relevant system when needed. In this sense, the current 

research presents a novel abnormal situation definition and develops a new method that is 

able to model the operator’s mental models using the capabilities of object oriented 



Chapter 1: Introduction   7 
 

 

 

Bayesian networks. Bayesian networks (BNs) are used as a representation of static cause–

effect relationships between objects in abnormal situations. 

Research Objective 4: The forth research objective corresponding to research question 4 

is to develop a new situation assessment model. The research assumes that operators are able 

to form rules for every situation to assess risks, and those rules are an important part of their 

mental model. Therefore, the research develops a situation assessment model to resemble 

their thinking when confronting abnormal situations. Fuzzy logic and fuzzy logic systems, 

which mathematically emulate human reasoning and allow an operator to express his/her 

knowledge in the form of related imprecise inputs and outputs in terms of linguistic 

variables, are used to resemble human thinking when they are confronted with abnormal 

situations.  

Research Objective 5: The fifth research objective is to develop a novel DSS model 

corresponding to research question 5. Previous researches in the field of systems safety have 

only considered developing scenarios for specific undesirable events from an engineering 

perspective, whereas in today’s safety-critical systems, operators face several hazards from 

different subsystems which dynamically threaten the system, and they have to comprehend 

both the current state and the near future state to make correct decisions. A human-centric 

system is therefore needed to support operators in understanding and assessing the current 

state of a situation and to assist them to take appropriate actions in abnormal situations. To 

this end, a new DSS model as shown in Figure 1.1 is proposed to support operators’ SA. 

Information  
Fusion 

Situation 
Assessment 

Objects 
Relations  

Conditions 

SA/ GUI 

Causes 
Consequences 

Options 
Data 

Human  
Operator 

Alarms 
Current Risk Levels  

Actions 
Future Risk Levels 

Figure  1.1: The DSS general model 
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Research Objective 6: The sixth research objective backs to research questions 1, 2, 3, 4 

and 5 and aims to develop a system prototype based on the proposed models during this 

study. The prototype is developed based on the determined requirements, and models 

proposed in research objectives 3, 4, and 5. To demonstrate the performance of the DSS, 

three case studies taken from the US Chemical Safety Board investigation reports 

(www.csb.gov) are used: (1) a residue treater unit at a methomyl unit (CSB 2011), (2) a tank 

equipped with steam coils at a chemical plant (CSB 2007), and (3) an ink vehicle insulated 

mix tank at a paint manufacturing company (CSB 2008). 

Research Objective 7: The seventh research objectives aims to evaluate the developed 

DSS. Evaluation is an important aspect of every methodology because it provides a 

reasonable amount of confidence in the results of the model. Two evaluation methods are 

relied in this research to validate the performance of the proposed DSS. First a sensitivity 

analysis is used to evaluate the BN-based situation models. Second a multi-perspective 

evaluation approach is proposed for full validation of the proposed system. 

1.4 RESEARCH CONTRIBUTIONS 

According to the research objectives, several research contributions of this study are 

summarized as follows: 

(1) First and foremost among contributions is that this research considers safety in safety-

critical environments resulting in human protection from harm and loss of life. In most 

human-system studies, safety has been considered from a technical perspective. Only 

hazards that arise through hardware failure have been considered, despite the fact that 

human failure is a more common factor in safety-critical systems. To develop the 

system in this study, two important aspects, namely addressing hazards that result from 

hardware failure and reducing human error through decision–making, have been 

considered. A situation modelling process based on hardware and human failure is 

proposed to model hazardous situations, and a situation assessment model is developed 

to support operators to achieve and maintain SA, and to make correct decisions. 
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(2) This research develops a cognitive DSS for managing abnormal situations in safety-

critical environments in which the degree of automation and complexity continues to 

increase and the number of operators decreases, and where each operator must be able 

to comprehend and respond to a growing amount of risky status and alert information. 

The proposed DSS assists operators to avoid unforeseen risks in the operation system 

and to determine appropriate ways to eliminate or control hazards until their risk level 

falls as low as reasonably practicable, thus ensuring that the proposed system conforms 

to ALARP.  

(3) The proposed situation assessment component employs BNs, which have certain 

advantages over other situation assessment methods that use artificial intelligence tools 

such as expert systems (Naderpour & Lu 2012a) and neural networks (Naderpour & Lu 

2012b). First, it includes nodes and directed arcs to express the knowledge, and new 

information can be transmitted by directed arcs between nodes. Second, knowledge in 

the component can be updated, whereas updating knowledge in expert systems is 

difficult. Third, it already has expert knowledge encoded in its construction, while 

neural networks must learn knowledge via datasets, assuming training data are available. 

Lastly, the cumulative effect of situations based on new evidence is very suitable for SA 

continuity, whereas this feature does not exist in other artificial intelligence tools (Su et 

al. 2011). The proposed situation assessment model can be applied to other related 

domains if the risk indicators for any measurement are appropriate. 

(4) There were too many alarms and they were poorly prioritized. The control room 

displays did not help the operators to understand what was happening. These two 

quotes from an HSE report on a major accident in a chemical process plant clearly 

indicate that at least not all process control systems represent the state of the art in 

ergonomics (Nachreiner, Nickel & Meyer 2006). The proposed DSS is able to generate 

risk levels for every hazardous situation to show whether a situation is abnormal (i.e. its 

risk level is unacceptable), and to help operators to understand the hierarchy of 
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investigations (i.e. a situation with a higher risk has priority over other situations to be 

investigated). 

(5) The proposed human-centric DSS does not control the manner of implementing 

actions and allows individual discretion in the choice of human action for the specific 

context. It has been shown that increased automation does not necessarily result in 

improved capability, because approaches that focus solely on automated features 

disconnect the operator from the system and alienate them from the production process 

(Brannon et al. 2009). Therefore, the DSS keeps operators in the loop of decision–

making and action–taking. 

1.5 RESEARCH METHODOLOGY 

Research methodology is the “collections of problem solving methods governed by a set 

of principles and a common philosophy for solving targeted problems” (Gallupe 2007). 

Several research methodologies such as case study, field study, design research, field 

experiment, laboratory experiment, survey, and action research have been proposed and 

applied in the domain of information systems. The methodology of this research is planned 

according to the practice of design research (Niu, Lu & Zhang 2009), which has been 

proposed and applied in information systems, and is based on an SA-oriented design process 

(Endsley 2006), which has been established to guide the development of systems that 

support SA.  

1.5.1 GENERAL METHODOLOGY 

The design research methodology as presented in Figure 1.2 includes five basic stages 

(Niu, Lu & Zhang 2009): 

(1) Awareness of problem: This is the first step where limitations of existing 

applications are analysed and significant research problems are acknowledged. The 

research problems reflect a gap between existing applications and the expected status. 

Research problems can be identified from different sources: industry experience, 

observations on practical applications and literature review. A clear definition of the 
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research problem provides a focus for the research throughout the development 

process. The output of this phase is a research proposal for new research effort.  

(2) Suggestion: This phase follows immediately behind the identification of research 

problems where a tentative design is suggested. The tentative design describes what 

the prospective artefacts will be and how they can be developed. Suggestion is a 

creative process during which new concepts, models and functions of artefacts are 

demonstrated. The resulting tentative design of this step is usually one part of the 

research proposal.  

(3) Development: This phase considers the implementation of the suggested tentative 

design artefacts. The techniques for implementation will be based on the artefact to 

be constructed. The implementation itself can be simple and does not need to 

involve novelty; the novelty is primarily in the design not the construction of the 

artefact. The development process is often an iterative process in which an initial 

prototype is first built and then evolves as the researcher has deeper comprehension 

of research problems. Thus, the output of the suggestion step is also feedback of the 

first step, whereby the research proposal can be revised. This step includes the 

following sub-steps to create the prototype (Niu, Lu & Zhang 2009): a) planning, b) 

analysis, c) design, d) development, e) testing, f) implementation, and g) 

maintenance. 

(4) Evaluation: This phase consider the evaluation of the implemented artefacts. The 

artefacts performance can be evaluated according to criteria defined in the research 

proposal and the suggested design. The evaluation results, which might or not meet 

the expectations, are fed back to the first two steps. Accordingly, the proposal and 

design might be revised and the artefacts might be improved. 
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(5) Conclusion: This is the final phase of a design research effort. Typically, it is the 

result of satisfaction with the evaluation results of the developed artefacts. However, 

there are still deviations in the behaviour between the suggested proposal and the 

artefacts that are actually developed. A design research effort concludes as long as the 

developed artefacts are considered as ‘good enough’ wherein the anomalous 

behaviour may well serve as the subject of further research. 

Figure  1.2: The general methodology of research 

1.5.2 SA-ORIENTED DESIGN PROCESS  

The SA-oriented design process as shown in Figure 1.3 incorporates SA considerations, 

including the determination of SA requirements, design principles for SA enhancement, 

and the measurement of SA in design evaluation. SA oriented design principles include (1) 

general guidelines for supporting SA, (2) guidelines for coping with automation and 

complexity, (3) guidelines for the design of alarm systems, and (4) guidelines for the 

presentation of information uncertainty. Some of the general principles include the 

following: (1) Direct presentation of higher-level SA needs (comprehension and projection) 

is recommended, rather than supplying only low-level data that operators must integrate 

and interpret manually; (2) goal-oriented information displays should be provided and 

organized so that the information needed for a particular goal is collected and answers 

directly the major decisions associated with the goal; (3) support for global SA is critical, 

providing an overview of the situation across the operator’s goals at all times (with detailed 
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information for goals of current interest) and enabling efficient and timely goal switching 

and projection; (4) critical cues related to key features of schemata need to be determined 

and made salient in the interface design (in particular, those cues that will indicate the 

presence of prototypical situations will be of prime importance and will facilitate goal 

switching in critical conditions); (5) extraneous information not related to SA needs should 

be removed (while carefully ensuring that such information is not needed for broader SA 

needs); and (6) support for parallel processing, such as multimodal displays, should be 

provided in data-rich environments. SA-oriented design is applicable to a wide variety of 

system designs. It has been used successfully as a design philosophy for systems involving 

operations, medical systems, flexible manufacturing cells, and command and control for 

distributed teams (Endsley 2006; Endsley, Bolté & Jones 2003). 

1.5.3 RESEARCH PLAN 

Considering design research and SA-oriented design methodologies, the research plan 

of this study consisted of the following steps:  

Step 1: Select a topic: The choice of a research topic can arise from personal interest, 

from observation, or from the literatures describing previous theory and research 

in the area, from social concern or as the outcome of some currently popular 

issues. The topic of this research was chosen from the previous literature and 

research and also the author’s observation and experience in the process industry. 

Step 2: Review the literature: Irrespective of the reason for choosing a particular topic, a 

literature review of previous research in the topic area is an essential component 

of the research process. Existing literature was retrieved and critically reviewed. 

Figure  1.3: SA-oriented design process  

SA Requirements 
Analysis 

SA-Oriented Design 
Principles SA Measurement 

SA-Oriented Design 
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Step 3: Finalize research problems: The results of the literature review helped to define 

the specific research questions for this research. The research questions were 

directly addressed in this research project. 

Step 4: Determine SA requirements: To identify the aspects of a situation that are 

important for an operator’s SA, GDTA methodology, which is a form of 

cognitive task analysis, was used. GDTA focuses on determining the operator’s 

data and information needs (Level 1), combining the information to provide 

understanding (Level 2) and projecting future events (Level 3) (Jones et al. 2011). 

In this analysis, the major goals and sub-goals of a particular job were initially 

identified, after which important decisions that need to be made were 

determined. The SA requirements for making these decisions and achieving each 

sub-goal were then identified. GDTA is not task-based analysis because in many 

environments the goals, not the tasks, form the basis for decision-making 

(Endsley 2006).  

Step 5: Develop a modelling method to represent operators’ mental models: The 

abnormal situations were defined using risk indicators and were modelled using 

BNs. Bayesian networks are able to visually represent all the relationships 

between the objects in the situation with connecting arcs. It is easy to recognize 

the dependence and independence between various objects and situations. They 

can handle situations where the data set is incomplete since the model accounts 

for dependencies between all variables. 

Step 6: Develop a situation assessment method: Situation awareness as a product of 

situation assessment process provides input to the decision-making procedure. 

Therefore, it is an important part of the DSS model. A situation assessment 

method was proposed that exploits the capabilities of fuzzy logic systems. 

Step 7: Develop the situation awareness support system (SASS) model: A cognition-

driven DSS called the SASS was developed that consisted of five major 
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components. It included a knowledge-base that contained abnormal situation 

models that were developed based on the proposed method in Step 5. It needs 

the related data of a situation (for example sensors) to be collected from the 

operation area, so the SASS includes a component to provide updated values of 

observable variables. Then it contains a situation assessment component based on 

the proposed method on Step 6 to dynamically show the risk level of situations of 

interests. If the risk level of a situation is not acceptable (that is the situation is 

abnormal), appropriate actions will be suggested to the operator through a 

recovery component. Ultimately, following appropriate decision-making by the 

operator, the abnormal situation will be rectified and the system will be updated 

in line with the new data collected from the environment. Useful information 

related to situations, objects, and observable variables will be presented in a 

human-computer interface, and all these issues will be taken into consideration 

in the development of the SASS model. 

Step 8: Design and implement the proposed SASS: The SASS prototype system is 

designed and implemented in this step according to the proposed model and SA-

oriented design principles. This step includes the following sub-steps to create 

the prototype (Niu, Lu & Zhang 2009): 

 Planning: Define the system to be developed. Set the scope and define high-

level system requirements. Develop the project plan and establish milestones 

including tasks and resources, and identify critical success factors which 

requires end users and experts to work together to develop system 

requirements. 

 Analysis: Design the technical architecture required to support the system 

models and algorithms that are developed in previous steps 

 Design: Build a technical blueprint of how the system will function. 

Technical architecture defines the hardware and software equipment required 
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to run the system. The design phase uses models and graphical representation 

of designs including the GUI. 

 Development: During this phase the design is developed into a functional 

system by developing the technical architecture, database and programs. 

 Testing: This phase involves writing the test conditions, developing detailed 

steps the system must perform along with the expected results of each step. 

The system is tested to verify that it actually works and meets all of the 

requirements defined. End-user acceptance testing is performed to duplicate 

actual use. Testing should be done under conditions as close to operational as 

possible. 

 Implementation: Implementation includes making the system operational, 

writing detailed user documentation, and providing training for the systems 

end users. 

 Maintenance: Monitor system to ensure it continues to function. Establishes a 

help report to support system end users and provides an environment to 

support system changes and upgrades. 

Step 9: Demonstrate the performance of the proposed SASS through case studies: The 

literature provides many examples of incidents and accidents that could have 

been avoided if operators had recognized the situation in time. Therefore, three 

investigated cases related to SA are chosen to demonstrate the performance of the 

SASS. 

Step 10: Evaluate the proposed SASS: This step considers the evaluation of the 

implemented prototype according to several criteria. The evaluation results, 

which might or might not meet expectations, will be fed back to the two 

previous steps to revise and improve the system. As BNs are utilized to develop 

the situation models, the sensitivity analysis can therefore be used for the partial 

evaluation of the SASS. In addition, a multi-perspective evaluation approach 

based on SA measures is proposed for full evaluation of the SASS.  
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1.6 THESIS STRUCTURE 

This thesis contains nine chapters as shown in Figure 1.4. Chapter 1 presented the 

research background, challenges, objectives, contributions, methodology, and is presenting 

the thesis structure.  

Chapter 2 reviews the literature in regard with SA, situation assessment, SA 

measurements, BNs theory, and fuzzy systems. Chapter 3 analyses three major accidents in 

recent US history and highlights the role of SA in their occurrence. Chapter 4 introduces a 

Figure  1.4: Thesis structure 

Introduction Chapter 1 

SA in accidents of safety-critical systems Chapter 3 

Literature review Chapter 2 

An abnormal situation modelling method Chapter 4 An intelligent SA support system Chapter 5 

Conclusion and future work Chapter 9 

A multi-perspective SA evaluation approach Chapter 8 

Modelling SA in mixing  tanks  Chapter 7 

Modelling SA at a residue treater Chapter 6 
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novel abnormal situation modelling method. Chapter 5 describes the SASS and its 

component in details. Chapters 6 and 7 present the performance of the proposed SASS in 

three safety-critical environments. Chapter 8 shows the multi-perspective evaluation 

approach for validating the SASS. Chapter 9 presents the conclusion and future research 

directions of this study.  

1.7 PUBLICATIONS AND AWARDS OF THIS RESEARCH 

Some chapters of the thesis are based on articles that were published in the peer-

reviewed scientific literature during my Ph.D. education. In addition, the research study 

has gained several awards. The details are as follows: 
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(ERA Tier A* Journal). 

(2) M. Naderpour, J. Lu, G. Zhang, “The Explosion at Institute: Modeling and Analyzing 

the Situation Awareness Factor”, Accident Analysis and Prevention 73 (2014) 209-224 

(ERA Tier A* Journal). 

(3) M. Naderpour, J. Lu, G. Zhang, “Modeling Abnormal Situations in Safety-Critical 

Systems to Support Operators’ Situation Awareness”, Reliability Engineering & 

System Safety 133 (2015) 33-47 (ERA Tier A Journal). 

(4) M. Naderpour, J. Lu, G. Zhang, “A Situation Risk Awareness Approach for Process 

Systems Safety”, Safety Science 64 (2014) 173-189 (ERA Tier A Journal). 

(5) M. Naderpour, J. Lu, “A Situation Analysis Decision Support System Based on 

Dynamic Object Oriented Bayesian Networks”, Journal of Software 9 (8) (2014) 

2194-2199 (ERA Tier B Journal). 

(6) M. Naderpour, J. Lu, G. Zhang, “A Multi-Perspective Approach for Evaluating a 

Situation Awareness Support System in a Safety-Critical Environment”, Submitted to 

Applied Ergonomics, 2014 (ERA Tier A* Journal). 
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the 17th Pacific Asia Conference on Information Systems (PACIS), 2013, Jeju Island, 

Korea (ERA Tier A Conference). 

(9) M. Naderpour, J. Lu, G. Zhang, “A Fuzzy Dynamic Bayesian Network-Based 

Situation Assessment Approach”, the 22nd IEEE International Conference on Fuzzy 

Systems (FUZZ-IEEE), 2013, Hyderabad, India (ERA Tier A Conference). 

(10) M. Naderpour, J. Lu, “A Fuzzy Dual Expert System for Managing Situation 

Awareness in a Safety Supervisory System”, the 21st IEEE International Conference on 
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(11) M. Naderpour, J. Lu, “Supporting Situation Awareness Using Neural Networks and 

Expert Systems”, the 10th International FLINS Conference on Uncertainty Modeling 
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(12) M. Naderpour, J. Lu, E. Kerre, “A Conceptual Model for Risk-based Situation 

Awareness”, the 6th International Conference on Intelligent Systems and Knowledge 

Engineering (ISKE), 2011, Shanghai, China (ERA Tier B Conference). 

(13) J. Lu, M. Naderpour, “Reducing Human Error in Abnormal Situations: A Situation 
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2013, Stuttgart, Germany. 
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Chapter 2: 

LITERATURE REVIEW 

2.1 INTRODUCTION 

To get a better understanding of this thesis, this chapter explains important background 

information regarding situation awareness (SA), Bayesian networks (BNs), and fuzzy 

systems. Sections 2.2 to 2.7 describe the theories of SA and related concepts, explain the 

importance of the concept with respect to human decision making and describe how to 

measure it. Section 2.8 gives an overview of BNs. Section 2.9 provides the preliminary 

concepts of fuzzy systems. 

2.2 THEORY OF SITUATION AWARENESS 

The concept of SA was identified by Oswald Boelke who realized the importance of 

gaining an awareness of the enemy before the enemy gained a similar awareness, and 

devised methods for accomplishing this (Stanton, Chambers & Piggott 2001). The primary 

research into SA came from the aviation industry, where the importance of SA in 

maintaining safe control of an aircraft is obvious. One review of over 200 aircraft accidents 

found that poor SA was the main causal factor (Endsley 1997). A review in other domains, 

such as the nuclear power industry, showed that this is not a problem limited to aviation, 

but one faced by many complex systems where combining and presenting the vast amounts 
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of data available from many technological systems in order to provide true SA, is a challenge 

whether it is for a pilot, a physician, a business manager, or an automobile driver (Endsley 

2006). Studies of accidents throughout many industries have found that loss of, or poor 

operator’s SA, was related to accidents classified as human error.  

Situation awareness is knowing and understanding what is going on around you and 

predicting how things will change (Vincenzi, Mouloua & Hancock 2004). To date, several 

SA models, such as Bendy and Meister (1999), Smith and Hancock’s (1995) and Endsley 

(1995) have been developed as a consequence of the difficulty of defining SA; however, 

Endsley’s model has undoubtedly received the most attention. This section presents three 

main SA theoretical approaches including the activity approach, the ecological approach, 

and the information processing approach. 

2.2.1 INTERACTIVE SUB-SYSTEMS 

This approach is based on a functional model of orientation activity that comprises eight 

main function blocks. The approach does not specify processes that are traditional to 

cognitive psychology, such as perception, memory, thinking, and action execution. Instead 

it proposes that the extent to which processes are involved is dependent on the nature of 

the task and the goals of the individual (Bedny & Meister 1999). The model shows eight 

functional blocks connected through feed-forwards and feedback loops, as illustrated in 

Figure 2.1. Each function block has a specific task in the development of SA and structure 

of activity, and depends upon the nature of the dynamic situation. A summary of the role of 

each block is presented in Table 2.1. 

As can be seen from Figure 2.1, new information arrives via the sensory-perceptual 

systems to function block 1 to be interpreted through the individuals conceptual model of 

the world (function block 8), their ‘image’ of the purpose of the task goals (function block 

2) and their orientation about what type of activity is required (function block 5). This 

interpretation then informs the person’s pure image of the task goals (function block 2). 

The individual determines which features of the world are pertinent in function block 3 on 
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the basis of the significance and motivation toward the task goals (function block 4) as well 

as their engagement with the world (function block 5). The extent to which they engage 

the task goals is determined in function block 2, which in turn is influenced by the criteria 

developed for evaluation (function block 6) and the current state of the world (function 

block 3). The outcome of this evaluation directs performance and the person’s engagement 

with the work (function block 5) from which further criteria are developed (function block 

6). Interaction with the world is stored as experience (function block 7) and informs the 

individuals stored representation of the world (function block 8). As the interactive model 

shows, information from the person’s actions and their conceptual model (function blocks 5 

and 8) feed forward into the new interpretation of information from the world (function 

block 1). 

 
As a systems theory of activity, the model looks incomplete. Two glaring problems seem 

to be the lack of feed-forward from function block 2 (for example a direct link to function 

block 4) and no link to the world from function block 5. Despite this, the interacting sub-

systems present an appealing description of human cognition (Stanton, Chambers & Piggott 

2001). 

Figure  2.1: The interactive sub-systems approach to situation awareness 
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Table  2.1: Summary of the role and inputs to function blocks 

Block Function Input block Summary of role 
1 Meaning 0,2,5,7 Interpretation of information from world 
2 Image 1,4,5,8 Conceptual ‘image’ of information–task–goal 
3 Conditions 4,5 Dynamic reflection of situation and task 
4 Evaluation 3,6 Comparing motivation and performance 
5 Performance 3,4 Interacting with the world 
6 Criteria 4,5 Determining relevant criteria for evaluation 
7 Experience 6 Modify experience to interpret new information 
8 Model 7 Modify world model to interpret new information 

2.2.2 THE PERCEPTUAL CYCLE 

 Smith and Hancock’s (1995) ecological approach takes a more holistic stance, viewing 

SA as a “generative process of knowledge creation and informed action taking”. Their 

description is based upon Niesser’s (1976) perceptual cycle model, which describes an 

individual’s interaction with the world and the influential role of schemata in these 

interactions. According to the perceptual cycle model, one’s interaction with the world 

(termed ‘explorations’) is directed by internally held schemata. The outcome of interaction 

modifies the original schemata, which in turn directs further exploration. This process of 

directed interaction and modification continues in an infinite cyclical nature. 

Using this model, Smith and Hancock (1995) suggest that SA is neither resident in the 

world nor in the person, but resides through the interaction of the person with the world. 

They describe SA as: ‘externally, directed consciousness’ that is an ‘invariant component in 

an adaptive cycle of knowledge, action and information’. They believe that the process of 

achieving and maintaining SA revolves around internally held mental models, which 

contain information regarding certain situations. These mental models facilitate the 

anticipation of situational events, directing an individual’s attention to cues in the 

environment and directing their eventual course of action. An individual then conducts 

checks to confirm that the evolving situation conforms to their expectations. Any 

unexpected events serve to prompt further search and explanation, which in turn modifies 

the operator’s existing model (Salmon et al. 2008). The perceptual cycle can be used to 

explain human information processing in control rooms. For example, assume that the 
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control room engineers have the correct knowledge of the system that they are controlling, 

therefore, their mental models enable them to anticipate events such as the morning and 

evening peaks in demand, search for confirmatory evidence, direct a course of action and 

continually check that the outcome is as expected. If they uncover some data they do not 

expect (such as a rise or fall in pressures not in line with those anticipated) they are required 

to source a wider knowledge of the world to consider possible explanations that direct 

future search activities. The completeness of the model is in the description of process (the 

cyclical nature of sampling the world) and product (the updating of the world model at any 

point in time) (Stanton, Chambers & Piggott 2001). 

Adams et al. (1995) argue that process–product dichotomy of SA embraced in differing 

degrees by the theorists can be taken in context through consideration of a theory of human 

information processing. Process refers to the perceptual and cognitive activities involved in 

revising the state of SA whereas product refers to the state of SA with regard to available 

information and knowledge. An illustration of the perceptual cycle is shown in Figure 2.2. 

  

Figure  2.2: The perceptual cycle model of situation awareness 
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2.2.3 INFORMATION PROCESSING MODEL 

Endsley (1995b) describes SA as “the perception of the elements in the environment 

within a volume of time and space, the comprehension of their meaning and the projection 

of their status in the near future”. This SA model follows an information processing chain 

from perception, through comprehension, to projection as shown in Figure 2.3. From the 

lowest to the highest, the levels of SA are as follows (Endsley 1995b; Sneddon, Mearns & 

Flin 2006; Stanton, Chambers & Piggott 2001):  

 Perception: Perception involves the sensory detection of significant environmental 

cues. It means in order to achieve SA, the work environment should be continually 

monitored to encode sensory information and to detect changes in significant 

stimuli. Attentional processing is intrinsically linked to the theory of SA, but 

attention is bound by the limits of the working memory system. This means that 

workers are unable to pay close attention to every single detail of their environment. 

Consequently, attention is selective, and critical elements may be missed or ignored 

in the perception stage. 

 Comprehension: Comprehension involves the combination, interpretation, storage, 

and retention of the incoming information to form a picture of the situation 

whereby the significance of objects/events is understood essentially as a derivation of 

meaning from the elements perceived. This is partly driven by mental models 

(representations of objects, people, and tasks) already stored in long-term memory. 

The degree of comprehension that is achieved will vary from person to person, and 

the level attained is an indication of the skill and expertise (richness and accessibility 

of mental models) held by the operator.  
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 Projection: The final level is projection, which occurs as a result of the combination 

of levels 1 and 2. This stage consists of extrapolating information forward in time to 

determine how it will affect future states of the operating environment. The higher 

levels of SA allow operators to function in a timely and effective manner, even with 

very complex and challenging tasks. 

McGuinness and Foy (2000) extend Endsley’s model by adding a fourth level, which is 

called Resolution. This level provides awareness of the best path to follow to achieve the 

desired outcome to the situation. They believe that for any successful fusion, it must be 

flexible and dynamic. It must also address the entire process; from data acquisition to 

awareness, prediction and the ability to request elaboration or additional data. Roy (2001) 

proposed a situation analysis process to provide and maintain a state of SA. Salerno et al.  

(2004) have proposed a framework for SA under the title of data fusion. The concept of 

situation management in dynamic systems proposed by Jakobson et al. (2007) includes not 

only the processes of perceiving and recognizing situations, but also the analysis of past 

situations and the prediction of future situations. 

Situation Awareness 
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Decision Performance 
of Actions 
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Figure  2.3: The information processing model of situation awareness  
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The concept that was established by Endsley, has been more or less accepted by the 

information fusion community. Moreover, this model has been used in various studies as a 

justification for structuring the computer-supported SA process (Kokar, Matheus & 

Baclawski 2009). Her model has been used in a variety of complex environments such as air 

traffic controllers, nuclear power plant operators, anesthesiologists, military commanders, 

electronic warfare tacticians, automobile drivers, power plant, and so on (Banbury & 

Tremblay 2004; Endsley 2006; Endsley & Connors 2008; Endsley & Garland 2000).  

2.2.4 SUMMARY OF SA THEORIES 

Apart from the three SA theories presented above, there are several other theories that 

try to underpin individual SA. In this research the information processing model developed 

by Endsley (1995b) is relied upon. Table 2.2 shows the summery of some theories (Salmon 

et al. 2008; Stanton, Chambers & Piggott 2001). 
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Table  2.2: Summary of situation awareness theories 

Theory Applications Strengths Weaknesses 

Three Level Model  
(Endsley, 1995) 

Military,  
Air Traffic 
Control, 
Aviation,  
Driving,  
Nuclear Power 

1- Simple intuitive of SA 
2- Division of SA into 

levels is neat and permits 
simplistic measurement 
using SAGAT 

3- Holistic approach that 
considers factors such as 
system and interface 
design, workload and 
training 

1- Fails to clear for dynamic 
nature of SA 

2- SA process oriented 
definition is 
contradictory to the 
description of SA as a 
product comprising three 
levels 

3- Based on ill defined and 
poorly understood 
psychological models  

Perceptual Cycle Model  
(Smith & Hancock, 1995) 

Air Traffic 
Control 

1- Dynamic description of 
SA acquisition, 
maintenance and update 
of schema 

2- Sound theoretical 
underpinning 

3- Completeness of model 
is attractive i.e. it 
describes both the 
process of acquiring SA 
and the product of SA 

1- Dose not translate easily 
to SA description and 
measurement 

2- Limited applications 
3- The actual correlation 

between SA and 
performance is complex 
and not yet fully 
understood 

Theory of Activity  
(Bedny  & Meister, 1999) 

- 

1- Models offer a more 
complete, dynamic 
description of SA than 
the three level model 

2- Clear description of 
each functional blocks 
role in SA acquisition 
and maintenance is 
useful 

3- Sound theoretical 
underpinning 

1- Very limited application 
and model lacks 
supporting empirical 
evidence 

2- Not measurement 
approach suggested 

3- Individual approach that 
does not attempt to 
describe team SA 

Sarter & Woods (1991) Aviation 

1- Focus on the temporal 
dimensions of SA 

2- Emphasize the 
differences between SA, 
mental models and 
situation assessment 

1- Very limited application 
and model lacks 
supporting empirical 
evidence 

Adams, Tenney & Pew 
(1995) 

Aviation 

1- Describe how SA is 
dynamically acquired, 
maintained and updated 

2- Use logically the model 
to explain anticipation 

1- Measuring the construct 
in accordance with the 
perceptual cycle 
description is very 
difficult 
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2.3 SITUATION ASSESSMENT 

Situation awareness is a state of knowledge that has to be distinguished from the 

processes underlying the achievement of SA, which should be more properly termed 

‘situation assessment’ (Endsley 1995b). Situation assessment models describe basic principles 

and general features about how people process information or interact with the 

environment to attain their SA. In fact, awareness information for a situation is derived as a 

result of situation assessment. There is a rich literature on SA, ranging from SA system 

modelling to cognitive workload assessment and support. However, the majority of them 

to date have focused on the development of situation assessment models, rather than the 

implementation of SA systems. Since SA is a dynamic and collaborative process, assessing a 

situation requires data integration with the support of computer-based intelligent 

techniques. In addition, as SA aims to predict the status of a situation in the near future, 

which is the third level of the SA model, effective situation assessment approaches and the 

right tools are needed to conduct the prediction.  

Many studies have reported that machine learning techniques can provide an effective 

method of intelligent prediction by extracting rules from previous data to generate new 

assessment results. For instance, Lu et al. (2008) developed a support vector machine-based 

assessment approach which has the ability to learn the rules from previous assessment results 

and generate the necessary warnings for a situation. They used a synthesized, artificially 

generated dataset to illustrate the effectiveness of their proposed situation assessment 

approach. In another study, a fuzzy least squares support vector machine technique for 

situation assessment using the integration of information obtained from related data sources 

was proposed. An artificially generated dataset to show the accuracy of the technique was 

utilized (Lu, Yang & Zhang 2008). A neural network-based situation assessment module 

was developed by Brannon et al. (2009) to provide a high level of SA for decision makers in 

force protection. Despite the usefulness of machine learning techniques for situation 
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assessment, their use in real environments is very limited because of the lack of appropriate 

SA training data (Brannon et al. 2009).  

Kim and Seong (2006a) developed an analytic mathematical model for situation 

assessment based on BNs for the operators of a nuclear power plant (NPP). In their 

proposed model, operator knowledge (i.e. mental models) is elicited to assign to the CPTs 

of a network, and when operators receive information from indicators, the probabilities of 

the states of the environment (i.e. multiple accidents) are updated. They extended their 

proposed approach by considering the interdependency of instrumentation and control 

systems and the operators in the NPP (Kim & Seong 2006b). Other than in NPPs, Bayesian 

theory has been widely considered in the situation assessment configuration of command 

and control domains. For instance, Chai and Wang (2011) developed a hierarchical BN-

based situation assessment model that includes two layers: the top layer, which serves as a 

fusion centre, and the bottom layer, which provides the discretization of continuous data. A 

distributed approach to battlefield situation assessment based on level 2 of JDL fusion 

processing was presented by Das et al. (2002) to enhance inference efficiency and allow 

computation at various levels of abstraction suitable for hierarchical military organizations. 

In the field of process safety, Naderpour and Lu (2012a) developed a dual  expert system for 

situation assessment in a chemical plant and extended it to incorporate the ability of neural 

networks to project the state of the environment in the near future (Naderpour & Lu 

2012b). However, because of the lack of appropriate data for abnormal situations, it could 

not be implemented in the real world. 

2.4 SITUATION AWARENESS SUPPORT SYSTEMS 

The three-level model of SA has been used in a number of studies as the justification for 

structuring a computer-supported SA system in different domains. Two SA support systems 

for maritime security have been developed. In the first, a system was developed to improve 

maritime threat detection capability by combining sensor-based information, context 

information, and intelligence from various sources based on domain ontologies. The system 
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has the ability to recognize any deviance from normal behaviour (Van den Broek et al. 

2011). In the second, a model-driven situation analysis decision support system was 

developed based on abstract state machine modelling and CoreASM tool support for the 

purpose of infrastructure protection and emergency response (Farahbod et al. 2011). In 

military services, there are several SA systems, such as systems developed by Ghanea-

Hercock et al. (2007) and Smart et al. (2007), that are able to collect, filter and present 

different sources of data, and also support some form of low-level data fusion and analysis. 

However, these systems are not able to provide a deep, semantic modelling of the domain 

and are consequently unable to generate conclusions. Their users therefore have to 

integrate information by themselves to assess and predict a future situations, so a system 

architecture has been developed by Baader et al. (2009) that focuses on using formal logic 

and an automated theorem to build a SA system in a more useful way. A SA system for 

force protection that combines humans and neural networks was proposed by Brannon et 

al. (2009) and includes a calculation engine for operation in three learning modes: 

supervised for initial training and known updating, reinforcement for online operational 

improvement, and unsupervised in the absence of all external signalling. The system can 

switch between the three learning types using an architecture based on adaptive resonance 

theory. In the aviation domain, a SA system called the tactile situation awareness system 

(TSAS) has been developed by Kim and Hoffmann (2003) to improve the SA of pilots in 

simulated rotorcraft under high-load working conditions. Rather than presenting visual or 

aural information for the efficient delivery of SA, this system relies on a wearable suit 

equipped with a tactile device that provides an intuitive human computer interface with 

three-dimensional space (Kim & Hoffmann 2003). 

Although the majority of SA systems modelling studies are related to command and 

control fields, they are not limited to them. In business intelligence systems, for instance, a 

cognitive decision support system called FACETS was developed and evaluated based on a 

situation retrieval model (Niu et al. 2013). The goal of FACETS is to assist managers in ill-
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structured decision situations to develop and enrich their SA for decision-making. The 

system allows managers to describe their SA in the form of English; it parses a manager’s SA 

and constructs data warehouse queries that allow the retrieved situation information to be 

presented according to the navigation knowledge extracted from the manager’s experience.  

Although the application of SASSs is not limited to the above domains, its application in 

safety-critical environments is very rare. Most prior system safety studies in these 

environments focus on the deviation of the process from an acceptable range of operation. 

Therefore, in the development of operator DSSs, the use of quantitative knowledge and 

hardware failures has been relied on significantly. Most of these research studies focus on 

the identification of operation faults (Qian et al. 2008) or the prediction of process variables 

(Juricek, Seborg & Larimore 2001) that will violate an emergency limit in the future; 

however, some research shows that when faults occur, human operators have to rely on 

their experience under working pressure to understand what is going on and to contribute a 

solution. Designing and integrating appropriate approaches to develop DSSs for complex 

domains is therefore highly recommended (Klashner & Sabet 2007).  

2.5 SITUATION AWARENESS IN COLLABORATIVE SYSTEMS 

Today, in safety-critical systems the overall performance of systems depends on 

coordinated work among individuals that have responsibility for different subsets of goals, 

different access to data, and different situation perspectives. Therefore, there is a growing 

interest in understanding the cognitive and collaborative factors that enable such teams to 

work effectively (Roth, Multer & Raslear 2006). Thus, the concepts of team SA and shared 

SA are equally important in this regard. The degree to which every team member possesses 

SA on these elements for task performance is team SA (Kaber & Endsley 1998). Therefore, 

the success or failure of a team depends on the success or failure of each of its team 

members. In contrast, shared SA is defined as the degree to which team members possess 

the same SA on shared SA requirements (Endsley & Jones 2001). Shared SA allows team 

members to efficiently coordinate work by enabling them to understand what is going on 
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with the task, interpret what others are doing, and anticipate what will happen next. It 

enables team members to anticipate the information and support needs of other team 

members, resulting in reduced need for explicit communication and improved action 

coordination (Roth, Multer & Raslear 2006). However, Stanton et al. (2006) showed that 

because of complexity of current socio-technical systems and the increasing presence of 

teams, the concept of shared SA is not able to explain appropriately the interactions 

between agents (i.e. both human and non-human) in subsystems. Therefore, the concept of 

compatible SA has emerged. Rather than possess shared SA, the new Distributed SA (DSA) 

based on compatible SA suggests that team members possess unique, but compatible, 

portions of awareness. The distributive nature of process plants, the importance and 

necessity of coordination and communication among various team members, located at 

different locations, the co-existence of technical and non-technical personnel within 

different units/sections of the plant call for a greater appreciation of DSA. Generally, 

operators are expected to monitor recurrently the dynamics of the process and to make 

timely correct decisions based on their mutual comprehension deduced from the available 

information that is changing dynamically. Team members experience a situation in different 

ways, as defined by their own personal experience, goals, roles, tasks, training, skills and so 

on. So whilst some of the information required by two different team members may be 

‘shared’ in the sense that they both need to attend to it as part of their job, their resultant 

understanding and use of it is different. Ultimately, the picture developed by each team 

member is unique to themselves. Compatible awareness is therefore the phenomenon that 

holds distributed systems together (Salmon, Stanton, Walker, Jenkins & Rafferty 2009). 

The first effort to use the DSA in improving safety in safety-critical environments has been 

conducted by Nazir et al. (2014). They explain how the ultimate consequences of abnormal 

situations depend on the shared understanding, compatibility, and effective communication 

among operators. They also highlight the importance of a shared mental model and joint 

cognition to facilitate communication and the subsequently necessary actions. 
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2.6 SITUATION AWARENESS REPRESENTATION 

A methodology called Goal-Directed Task Analysis (GDTA) is used to determine the 

aspects of a situation that are important for a particular user’s SA requirements. This 

methodology is a specific form of cognitive task analysis that focuses on identifying goals 

and critical information needs in a task context. The GDTA process forms an exemplary 

template for incorporating human cognition into an actionable model by describing in 

detail not only a user’s information data needs (Level 1), but also how that information 

should be combined to form the comprehension (Level 2) and projection of future events 

(Level 3) that are critical to SA, thereby providing a critical link between the data input and 

the decisions to be made in a goal-directed environment (Jones et al. 2011). In this analysis, 

the major goals of a particular job class are identified, along with the major sub-goals 

necessary for meeting each goal. The major decisions that need to be made in association 

with each sub-goal are then identified. The SA requirements for making these decisions 

and carrying out each sub-goal is identified (Figure 2.4). 

 These requirements focus not only on what data the operator needs, but also on how 

that information is integrated, or combined, to address each decision. This type of analysis is 

based on goals or objectives, not tasks. This is because goals form the basis for decision-

making in many complex environments. Conducting such an analysis is usually carried out 

Figure  2.4: Goal-directed task analysis hierarchy 
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using a combination of cognitive engineering procedures such as expert elicitation, 

observation of operator performance and analysis of documentation (Endsley 2006). 

2.7 SITUATION AWARENESS MEASUREMENT 

Stanton et al. (2010) identified three approaches to describe the different contexts, in 

which the SA concept was developed and measured over the years. These approaches can 

be categorized as: (a) physiological, (b) engineering, and (c) ergonomics, and they were 

developed in parallel to social, technical, and socio-technical systems accordingly. In 

practice, different SA measurement techniques are rooted in these three approaches that 

correspond to researchers’ different perceptions of SA: individual, technical, or systemic 

endeavour (Chatzimichailidou, Protopapas & Dokas 2015). 

The first approach perceives SA as an individual psychological phenomenon. It has 

gained the interest of many researchers, such as Endsley, who consider SA as a cognitive in-

the-head process, without taking into account that human reasoning is usually affected by 

outer stimuli, owing to their communication with their environment, whether it consists of 

human or nonhuman elements. The second approach, i.e. the engineering one, describes 

the “world view” of SA. In this approach, SA is considered to be affected mostly by 

information possession and flow, as well as by technical infrastructure, for example 

computers, displays, information systems. The way in which information is presented by 

artefacts influences SA by determining how much information can be acquired, how 

accurately it can be acquired, and to what degree it is compatible with SA needs. The third 

approach is based on the idea that SA is distributed and it emerges from the interactions 

between human and nonhuman system elements, because the system is viewed as a whole. 

All in all, the DSA aspect combines the view of SA in the mind and SA in the world 

(Salmon, Stanton, Walker & Jenkins 2009). 

A recent review by Stanton (2005) has identified over thirty different SA measurement 

approaches. These can be categorized into the following types of SA measures: (1) freeze 

probe techniques, (2) real-time probe techniques, (3) self-rating techniques, (4) observer 
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rating techniques, (5) performance measures, (6) process indices, as well as into three 

categories, and shared SA: (1) team probe-recall techniques, (2) observer rating team SA, 

and (3) team task performance-based SA measurement techniques. 

Endsley’s research shows that the direct SA measurements, including subjective and 

objective measures, are the best way to evaluate a system design (Endsley, Bolté & Jones 

2003); however, even the most successful measures are not able to assess operators’ SA 

during real operations (Jones & Endsley 2004). This section reviews the common direct 

including subjective and objective measures of SA, and provides some information about 

indirect measures. 

2.7.1 SUBJECTIVE MEASURES 

In subjective measures, SA is assessed by either an expert observer or the operator during 

a specified period when they have to rate the quality of the operator’s SA. The rating results 

can then be used to compare the quality of SA in various systems.  

 Self-rating techniques assess their own degree of confidence in SA. In these techniques, 

participants use a rating scale of some sort to provide a subjective rating of their perceived 

SA. The techniques are quick, easy, low cost, and have a non-intrusive nature because 

they are administrated post-trial. However, there are several problems associated with 

post-trial data collection of SA because there is a correlation between SA and 

performance. In addition, there are some issues in regard to their sensitivity (Salmon, 

Stanton, Walker, Jenkins, Ladva, et al. 2009). The Situational Awareness Rating 

Technique (SART) based on Taylor’s SA theory (1990), is a self-rating technique that, at 

the conclusion of an operation, is administered to participants who should subjectively 

rate their SA based on a 10-dimensional bipolar scale. The participants’ ratings on each of 

the 10 items are combined to form a rating for each of the three major categories, 

including understanding, attention demand, and attention supply, as well as an overall 

rating. Although SART effectively provides information regarding participants’ 

confidence in their SA, it can be influenced by performance outcome, because a person 



Chapter 2: Literature Review   38 
 

 

 

who successfully performs the task may rate SA higher based on the positive outcome of 

an event, or by memory decay where it is taken at the end of the event. More 

importantly, people do not know what they do not know, and thus, may be poor at 

accurately assessing their own SA (Jones & Endsley 2004). Most SART applications have 

been reported in the domain of air traffic control (Endsley, Selcon, et al. 1998b; Jones & 

Endsley 2004; Pierce, Strybel & Vu 2008). Another self-rating approach is the Situation 

Awareness-Subjective Workload Dominance Technique (SA-SWORD), which requires 

operators to perform a comparative evaluation of systems based on a nine-point scale. 

Each level of the scale represents the person’s belief in the amount of SA that is provided 

by each system. Further evaluation studies are needed to prove the effectiveness and 

accuracy of SA-SWORD (Endsley, Bolté & Jones 2003).  

 Observer rating approaches include observing participants during task performance by 

subject matter experts (SMEs) who then rate the participants’ SA. Typically, the SA 

ratings are provided based on pre-defined observable SA related behaviours that 

participants display during task performance. Observer rating techniques have some 

advantages. They can be used during real world activities and have no impact on the task 

being performed. However, they need more scientific reviews because their validity is 

between doubt and certainty (Salmon, Stanton, Walker, Jenkins, Ladva, et al. 2009). The 

Situation Awareness Behavioural Rating Scale (SABARS) is an observer rating approach 

that has been developed to assess infantry SA in field training exercises (Matthews et al. 

2005). The Situational Awareness Rating Scale (SARS) represents another observer 

rating technique that consists of 31 behavioural elements in eight categories. Pilots use a 

six-point scale to complete the SARS measure for themselves and others in their units by 

providing a rating on each element (Waag & Houck 1994). The usefulness of SARS is 

very limited because it only considers a particular type of aircraft, flight skill and mission, 

and therefore, is not easy to use in other domains. 
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2.7.2 OBJECTIVE MEASURES 

Objective measures attempt to evaluate SA by conducting a direct comparison between 

operators’ SA and reality. This comparison is often concluded either offline or online/real 

time during a process of querying operators about some aspects of an environment and 

determining the accuracy of responses by comparing them with reality. 

 Freeze probe techniques administer online SA queries during freezes in a simulation 

environment of tasks under analysis. The simulation is frozen and suspended at randomly 

selected times, user interfaces are then blanked, and the operator is asked to quickly 

answer questions about his or her current understanding of the situation. An overall SA 

score is calculated at the end of the trial by comparing the participant’s responses with the 

real state of the system at the freeze time (Salmon, Stanton, Walker, Jenkins, Ladva, et al. 

2009). Freeze probe techniques have no issues associated with collecting SA data post 

trial. However, they measure SA via information in working memory as operators do not 

have access to displays when answering the queries (Paige Bacon & Strybel 2013). 

Situation Awareness Global Assessment Technique (SAGAT) is the most popular freeze 

probe technique; it was developed to assess pilots’ SA based on Endsley’s three level 

model (Endsley & Garland 2000). It has been widely used in a variety of domains, such as 

air traffic control (Endsley 2000a), commercial and military aviation (Endsley, Farley, et 

al. 1998), nuclear power plant operations (Jenkins, Stanton & Walker 2012), and 

simulated air traffic management (Paige Bacon & Strybel 2013). 

 Real-time probe techniques, unlike freeze probe techniques, involve the administration 

of SA related queries on-line with no-freeze of the task under analysis. The queries are 

developed by SMEs prior to the task or during task performance, and administered when 

the participant is performing the task. Response content and response time are used to 

conclude a measure of the participant’s SA. Since no-freeze of the task is required in 

real-time probe techniques, therefore their level of intrusiveness is less than freeze probe 

approaches (Endsley, Bolté & Jones 2003). The Situation Present Assessment Method 
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(SPAM) is a real-time probe technique developed for SA assessment of air traffic 

controllers (Durso, Dattel & Banbury 2004). SPAM has been developed on the basis of 

this theory that operators who have good SA answer the probes more quickly because 

they know where to look to find a particular piece of information in the environment. 

To use SPAM, questions are concurrently asked of operators while they are performing 

activities and have an access to their displays in full view. Response time is considered as 

a measure of operators’ SA. 

2.7.3 INDIRECT MEASURES 

Indirect measures try to infer how much SA a person has by measuring the cognitive 

processes involved in developing SA or by measuring performance issues related to the 

operator’s interaction with the system. Process measures and behavioural and performance 

measures are sometimes used to infer SA in this manner (Endsley, Bolté & Jones 2003). 

 Performance measures are utilized for measuring relevant aspects of participant 

performance during the task under analysis. Depending upon the task, certain aspects of 

performance are recorded in order to determine an indirect measure of SA (Salmon, 

Stanton, Walker, Jenkins, Ladva, et al. 2009). For example, when assessing driver SA, 

hazard detection, blocking car detection, and crash avoidance during a simulated driving 

task might be measured. 

 Process indices involve recording the processes that participants use in order to develop 

SA during the task under analysis. Examples of SA-related process indices include the use 

of eye tracking devices to measure participant eye movements during task performance, 

the results of which can then be used to determine how the participant’s attention was 

allocated during task performance, and concurrent verbal protocol analysis, which 

involves creating a written transcript of operator behaviour as they perform the task 

under analysis. The transcript is based upon the operator ‘thinking aloud’ as he conducts 

the task under analysis. Verbal protocol analysis is used as a means of gaining an insight 
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into the cognitive aspects of complex behaviours and is often used to indicate operator 

SA during task performance (Salmon, Stanton, Walker, Jenkins, Ladva, et al. 2009). 

2.8 BAYESIAN NETWORKS  

A Bayesian network (BN) is a mathematical graphical representation method that 

provides an opportunity to model a causal process with uncertainty. Each node represents a 

variable and the arcs show direct probabilistic relations between the connected nodes. 

Dynamic BNs (DBNs) allow time to be taken into account by defining different variables at 

different time slices.   

2.8.1 BAYESIAN NETWORK NOTATIONS 

A BN usually involves a directed acyclic graph (DAG) that represents the network 

structure, and a set of conditional probability tables (CPTs), which are the network 

parameters (Hu et al. 2013). Three common ways to construct a BN are to: (1) manually 

specify the DAG and CPTs by expert opinion; (2) automatically learn the DAG and CPTs 

using various algorithms based on observational data; and (3) manually construct the DAG 

by expert opinion or automatically learn the DAG using expert opinions as structural 

constraints/restrictions, and then to learn the CPTs from observational data (Hu et al. 2013). 

In this study, a conventional BN can be considered as a representation of static cause–effect 

relations between objects in a situation. Based on the conditional independence resulting 

from the d-separation concept, and the chain rule, BN represents the joint probability 

distribution  of variables , included in the network as (Khakzad, Khan 

& Amyotte 2012): 

 

where  is the parent set of  for any . If is an empty set, then  

is a root node and denotes its prior probability. Bayesian networks 

use Bayes’ theorem to update the prior occurrence probability of objects given new 
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information. This new information, called evidence E, is usually obtained during system 

operation, including the occurrence or non-occurrence of the objects: 

 

This equation will be used for probability prediction or probability updating in a given 

network. In predictive analysis, the conditional probabilities of the form P(situation|object) 

are calculated which show the occurrence probability of a particular situation given the 

occurrence or non-occurrence of a certain primary object. In updating analysis, the 

conditional probabilities of the form P(object|situation) are assessed, indicating the 

occurrence probability of a particular object given the occurrence of a certain situation. 

2.8.2 DYNAMIC BAYESIAN NETWORKS 

A DBN model can be obtained from a static BN by introducing relevant temporal 

dependencies among variables to describe the behaviour of a particular system at different 

times. A DBN usually has two types of dependency: non-contemporaneous and 

contemporaneous. Non-contemporaneous dependencies are arcs between nodes that 

represent variables at different times. Contemporaneous dependencies are arcs between 

nodes that represent variables within the same time period (Murphy 2002). A DBN is 

defined as a pair  where B1 is a BN that defines the prior distribution P(X1) and 

2TBN is a two-slice temporal BN with 

 

where  is a node at time slice t and is the set of parent nodes that can be in 

time slice t or in time slice t-1. In the first slice of a 2TBN, the nodes have no parameters, 

but in the second slice each node has an associated CPT for discrete variables or conditional 

probability distribution (CPD) for continuous variables, which defines  for 

all . The arcs between slices reflect the causal flow of time. The node  is called 

persistent if there is an arc from  to . The arcs within a slice are arbitrary, and 

directed arcs represent “instantaneous” causation. The semantics of a DBN can be defined 
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by “unrolling” the 2TBN until there are T time-slices. The resulting joint distribution is 

then given by (Murphy 2002): 

 

 

2.8.3 OBJECT ORIENTED BAYESIAN NETWORKS 

Modelling systems containing an important number of variables with BNs generally lead 

to complex models. To avoid this, Object Oriented BNs (OOBNs) have been defined that 

comprise both instance nodes and usual nodes (Bangso & Wuillemin 2000). An instance 

node is a sub-network, representing another BN. Using OOBNs, a large complex BN can 

be constructed as a hierarchy of sub-networks with desired levels of abstraction. This 

representation method allows the decentralization and structure of the knowledge within 

BNs of reduced size. Therefore, model construction is facilitated and communication 

between the model’s sub-networks is performed more effectively (Khakzad, Khan & 

Amyotte 2013). 

An OOBN class is a BN fragment containing output, input, and protected (or 

encapsulated) nodes. The input and output variables form the interface of the class. The 

interface encapsulates the internal variables of the class, d-separating them from the rest of 

the network. All communication with other instances is formulated in terms of probability 

statements over the instance’s interface. Further, the tedious task of repeating identical 

structured fragments and probability tables is alleviated. Instance nodes are connected to 

other nodes through interface nodes, including input and output nodes. Input nodes accept 

the same probability values as their immediate parents. Thus, no input node can have more 

than one parent. In contrast, output nodes are ordinary nodes, conveying their probability 

values to other input nodes or affecting the probabilities of other usual nodes. Therefore, 

each output node can have more than one child. Figure 2.5 illustrates how a BN can be 

developed using a hierarchy of smaller and simpler BNs (Khakzad, Khan & Amyotte 2013). 
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Therefore, a class is a BN fragment containing three sets of nodes (Naderpour & Lu 

2014): 

 O is a set of output nodes. Output nodes can be referenced outside the class, hence 

they can be parents of nodes outside instances of the class; 

 I is a set of input nodes. Input nodes represent nodes that are actually not in the 

class; they act as place-holders for parents of nodes inside instances of the class. 

Input nodes cannot have parents within the class; 

 P is a set of protected nodes, i.e. nodes that can only have parents and children 

inside the class itself. 

A class encapsulates nodes and restricts the visibility of its nodes to the interior; in order 

to use a class it must be instantiated. When an instantiation of a class is created, it can be 

linked to the rest of the network by a reference link. In this study, the class definition is 

used to develop similar situations. 

2.8.4 INFERENCE IN BAYESIAN NETWORKS 

As explained, belief updating or probabilistic inference is the basic task for any BN 

including the computation of the posterior probability distribution for a set of query nodes, 

Figure  2.5: Modularize BN into sub-networks using OOBN 
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given values for some evidence nodes. Inference in BNs is very flexible, as evidence can be 

entered about any node while beliefs in any other nodes are updated. There are several 

major classes of inference algorithms including exact and approximate algorithms that have 

been developed over the past 20 years.  

As a matter of fact, different algorithms are suited to different network structures and 

performance requirements. Networks that are simple chains merely require repeated 

application of Bayes’ theorem. Inference in simple tree structures can be done using local 

computations and message passing between nodes. When pairs of nodes in the BN are 

connected by multiple paths the inference algorithms become more complex. For some 

networks, exact inference becomes computationally infeasible, in which case approximate 

inference algorithms must be used. In general, both exact and approximate inference are 

NP-hard problem (Korb & Nicholson 2003).  

Apart from belief updating, given a Bayesian over variables X, which induces a 

probability distribution P, one can pose a number of fundamental queries with respect to 

the distribution P: 

 Most Probable Explanation (MPE): The most likely instantiation of network 

variables X, given some evidence e: 

                                         (2.5) 

 Maximum a Posteriori Hypothesis (MAP): The most likely instantiation of some 

network variables M, given some evidence e: 

                                      (2.6) 

These problems are also difficult and are known to be NP-complete, and NPPP-

complete, respectively. The exact approaches include structure-based algorithms, inference 

with local parametric structure, solving MAP and MPE by search, compiling BNs, 

inference by reduction to logicc (Darwiche 2008). Some approximation algorithms can also 

be used, such as clustering, unrolled junction tree, and the forward-backward algorithm. 
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 INFERENCE BY TREE CLUSTERING 

Tree clustering is an algorithm for exact inference, which is also known as the junction 

tree algorithm. The idea is to organize the given set of factors into a tree structure, using a 

junction tree for the given BN. Figure 2.6 depicts a BN, a corresponding junction tree, and 

assignment of the factors to the junction tree clusters. 

The junction tree algorithm provides a methodical and efficient method of clustering, 

versions of which are implemented in the main BN software packages. The junction tree 

clustering algorithm is as follows (Korb & Nicholson 2003): 

Step 1. Moralize: Connect all parents and remove arrows; this produces a so-called moral 

graph. 

Step 2. Triangulate: Add arcs so that every cycle of length > 3 has a chord (i.e., so there is 

a sub-cycle composed of exactly three of its nodes); this produces a triangulated 

graph. 

Step 3. Create new structure: Identify maximal cliques in the triangulated graph to 

become new compound nodes, then connect to form the so-called junction tree. 

Step 4. Create separators: Each arc on the junction tree has an attached separator, which 

consists of the intersection of adjacent nodes. 

Step 5. Compute new parameters: Each node and separator in the junction tree has an 

associated table over the configurations of its constituent variables. These are all a 

table of ‘ones’ to start with: 

A 

B C 

D E 

BCD 

ABC CE 

Figure  2.6: A Bayesian network and corresponding junction tree 
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For each node  in the original network, 

a. Choose one node  in the junction tree that contains  and all of ’s 

parents, 

b. Multiply  on ’s table. 

Step 6. Belief updating: Evidence is added and propagated using a message passing 

algorithm. 

2.9 FUZZY SETS AND SYSTEMS 

Fuzzy logic is a concept to deal with uncertainty, vagueness, or imprecise problems that 

uses membership functions with values between 0 and 1. Fuzzy set theory, which is based 

on fuzzy logic, was first proposed by Zadeh in 1965. In fuzzy set theory unlike 

conventional set theory based on Boolean logic, a particular object or variable has a degree 

of membership in a given set that may be anywhere in the range of 0 (completely not in the 

set) to 1 (completely in the set) (Zadeh 1965). 

2.9.1 FUZZY SETS AND NUMBERS 

Definition 1 (Fuzzy set): A fuzzy set  is defined in terms of a universal set  by a 

membership function that assigns to each element  a value  in the interval [0,1], 

i.e.  (Zadeh 1965). 

Definition 2 (Support of a fuzzy set): The support of a fuzzy set A in the universe of 

discourse  is a set that contains all the elements of  that have nonzero membership values 

in , that is,  

                                           (2.7) 

where denotes the support of fuzzy set . 

Definition 3 (α-cut): Let A be a fuzzy set in the universe X, . The α-cut or α-

level set of the fuzzy set A is the set  defined by (Shapiro 2009): 

 (2.8) 

Figure 2.7 shows an example of an α-cut in which the domain under consideration is 

limited to a set of elements with a degree of membership of at least alpha. The support of 
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fuzzy set A is all x such that , and its α-cut is from  to . Values 

outside the interval are considered as insignificant values that should be excluded from 

consideration i.e. this is cut out. 

Definition 4 (Fuzzy number): A fuzzy set  in  satisfies the following conditions (Dubois 

& Prade 1978):  

  is normal 

  is a closed interval for every  

 The support of  is bounded 

Figure 2.7 represents the general characteristic of a fuzzy number A where  

denotes the membership function of x in the fuzzy set. This shape of fuzzy number is 

referred to as a “triangular” fuzzy number, and is denoted by the triple .  

Definition 5 (Fuzzy random variable): Let  be a probability space,  the set of 

fuzzy numbers in  with compact supports and  is a mapping . Then  is a 

fuzzy random variable if and only if given ,  is a random interval for any 

 where  is a -level set of the fuzzy set  (Kwakernaak 1978). 

Note: A subset of Euclidean space  is called compact if it is closed and bounded. For 

example, in , the closed unit interval  is compact. 

Definition 6 (Fuzzy state): Let the crisp state set  consist of the states . Then, 

each fuzzy state can be written as a vector , where . This way, 

each fuzzy state can be considered as a possibility distribution or alternatively as a fuzzy set 

, (  the set of all fuzzy subsets defined for ) determining the degree  by 

 

   

 

  

 

 

Figure  2.7: A fuzzy number 

Support 
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which the system participates in each crisp state , provided it is in the current fuzzy state q 

(Schmidt & Boutalis 2012). 

Definition 7 (Linguistic variable): Linguistic variable is a variable whose values are words 

or sentences in a natural or artificial language (Zadeh 1975). Linguistic variable is 

characterized by (X, T, U, M) where: 

 X is the name of the linguistic variable (Weather temperature) 

 T is the set of linguistic values that X can take (T = {Cold, Pleasant, Hot}) 

 U is the actual physical domain in which the linguistic variable X takes its 

quantitative (crisp) values (U = [−20, 40] °C). 

 M is a semantic rule that relates each linguistic value in T with a fuzzy set in U; (M 

relates ‘Cold’, ‘Pleasant’, and ‘Hot’ with the membership functions shown in 

Figure 2.8). 

 
Let x, y be linguistic variables in the physical domains U, V, and A, B be fuzzy sets in U, 

V: 

 Connective ‘And’ x is A and y is B use fuzzy intersection: 

  
  is any t-conorm that for  satisfies the 

following four axioms (Wang 1999): 

o  (commutativity), 

o  (associativity), 

o  whenever  (monotonicity), 

 

  

Cold  Hot 

  

Pleasant 

  

Figure  2.8: Membership function of weather temperature 
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o  (boundary condition). 

 Connective ‘Or’ x is A or y is B use fuzzy union: 

  
  is any s-norm that for  satisfies the following 

four axioms (Wang 1999): 

o  (boundary condition), 

o  (commutative), 

o If and then  (nondecreasing), 

o  (associative). 

 Connective ‘Not’ x is not A use fuzzy complements 

2.9.2 FUZZY LOGIC SYSTEMS 

A fuzzy logic system (FLS) as shown in Figure 2.9 includes three parts: fuzzification, 

fuzzy inference engine and defuzzification. In the fuzzification process, the fuzzy sets are 

formed for all input variables. The fuzzy inference engine takes into account the input 

variables and the logic relations between them, and uses fuzzy logic operations to generate 

the output. In the defuzzification process, the output fuzzy set is converted into a crisp 

value (Markowski et al. 2011). 

There are several inference methods, however, Mamdani (1977) and  Takagi and 

Sugeno (1985) methods are most commonly used in industrial and fuzzy software tools. 

Figure  2.9: A fuzzy logic system 

Crisp input 

Fuzzification 

Crisp output 

Defuzzification 

Knowledge base 

“IF-THEN” Rules 

Inference process 

Fuzzy logic operations 

Inference Engine 
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The characteristic of Mamdani’s model also known as the Max-Min fuzzy rule based 

inference are presented in Table 2.3.  

Table  2.3: Characteristics of the Mamdani model 

Operation Operator Formula 
Union (OR) MAX  
Intersection (AND) MIN  
Implication  MIN  
Aggregation MAX  

Defuzzification CENTROID   

value of the resultant membership function. 
 = value of the membership function where the input belongs to the fuzzy set A. 

z = abscissa value, (  is the ordinate). 

In summary, Figure 2.10 shows a Mamdani fuzzy inference system with two rules. It 

fuzzifies the two inputs by finding the intersection of the crisp input value with the input 

membership function. It uses the minimum operator to compute the fuzzy AND for 

combining the two fuzzified inputs to obtain a rule strength. It clips the output membership 

function at the rule strength. Finally, it uses the maximum operator to compute the fuzzy 

OR for combining the outputs of the two rules. 

Figure  2.10: Mamdani fuzzy inference system for two inputs and single output 
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The Sugeno fuzzy inference method is quite similar to the Mamdani’s, however the 

difference is that the output consequence is not computed by clipping an output 

membership function at the rule strength. In fact, in the Sugeno’s model there is no output 

membership function at all. Instead the output is a crisp number computed by multiplying 

each input by a constant and then adding up the results. 

 2.10 SUMMARY 

This chapter reviews the background and related literature of this research. First, the SA 

theories including interactive sub-systems, the perceptual cycle, and the information 

processing model, and related concepts are described. It is worth noting that the 

information processing model of Endsley (1995b) is relied on throughout this research as a 

justification for structuring the computer-supported SA support system. Second, the 

chapter presents the theory of Bayesian networks, and the preliminary introduction of fuzzy 

systems to provide a strong foundation for the subsequent analysis, methods, and systems 

presented in later chapters.  
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Chapter 3: 

SITUATION AWARENESS IN ACCIDENTS OF 

SAFETY-CRITICAL SYSTEMS 
 

 

3.1 INTRODUCTION 

In the early morning hours of 3 December 1984, more than 40 metric tons of methyl 

isocyanate (MIC) gas leaked into the air from a pesticide plant located in the region of 

Bhopal, central India causing one of the worst industrial disasters in history. Several 

hundred thousand people in towns nearby were exposed to the chemicals, and 

approximately 3,800 were killed immediately, at least 600,000 were injured, and at least 

6,000 have died since (Broughton 2005). Three decades after the disaster, still high levels of 

contamination of toxic organic chemicals are found in the soil and water samples. 

The investigation of the disaster showed that on account of a series of mechanical and 

human errors in the production plant, water entered a tank containing a large amount of 

MIC, reacted exothermically and increased the temperature and pressure inside the tank, 

resulting in the release of MIC into the atmosphere. Although multiple factors including 

poor maintenance, the failure of safety systems, and the missing substandard operating 

procedure have been identified as the underlying causes of the accident, the accident was 
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officially blamed on human error as workers did not close the critical isolation valve before 

pipes were flushed with water and did not shut down the flare (Shrivastava 1992). 

The tragic event at Bhopal provides an extreme example of accidents in large-scale 

technological systems that have been attributed to human error. There are also several other 

accidents that show the difficulties of operators in working with complex systems or facing 

data overload. In fact, the majority of these accidents are caused by a combination of many 

factors which can be found in the lack of human factor considerations, particularly SA 

which is the most important factor for decision–making (Endsley 1995b; Kaber & Endsley 

1998; Niu, Lu & Zhang 2009; Niu et al. 2013). Situation awareness describes how 

operators in dynamic complex systems develop and maintain a sufficient awareness of ‘what 

is going on’ in order to perform tasks successfully. Therefore, SA is likely to be at the root 

of many accidents in safety-critical systems, where multiple goals must be pursued 

simultaneously, multiple tasks require the operator’s attention, operator performance is 

under high time stress, and negative consequences associated with poor performance are 

anticipated (Naderpour, Lu & Zhang 2014b). The analysis of offshore drilling accidents has 

revealed that more than 40% of such accidents are related to SA, and that the majority of 

those SA errors (67%) occurred at the perceptual level, 20% concerned comprehension, and 

13% arose during projection (Sneddon, Mearns & Flin 2013). Nazir et al. (2012) highlight 

the importance and significance of SA for Field Operators and Control-Room Operators in 

the process sector and identify the major factors that influence their SA.  

Today in many large-scale technological systems, the automated systems and their over-

deployment have changed the nature of operators work. In the past, the systems were 

analogue and a casual visit to the plant site was sufficient to monitor the progress and 

production of plants (Nazir et al. 2014). This approach is no longer feasible and operators 

must stay alert to monitor, assess, and understand the incoming information from various 

sources and act/react accordingly. The decisions made by operators define the outcomes of 

possible abnormal situations, near misses, or even accidents. A recent report shows that the 
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loss of abnormal situations cost 20 billion USD for US process plants every year. Among the 

attributes triggering these abnormal situations the contribution of human errors has been 

found to be 50% (Walker et al. 2011).  

This chapter highlights the role of the SA factor in three catastrophic accidents in recent 

US history, and presents certain requirements for developing operator support systems. 

3.2 THE ROLE OF SITUATION AWARENESS IN PROCESS ACCIDENTS  

Loss of SA, poor SA and lack of SA as identified causal factors are now popular terms in 

accident investigation reports among several domains including aviation, nuclear industry, 

power plants, military, and process industry (Salmon & Stanton 2013). Although SA itself is 

not the only cause of accidents, it plays an important role in operators’ decision making in 

time- and safety-critical situations.  

3.2.1 THE EXPLOSION AT INSTITUTE, WEST VIRGINIA 

On 28 August 2008 a runaway chemical reaction occurred at a methomyl production 

facility in Institute, West Virginia, USA. Highly flammable solvent sprayed from a 4,500 

gallon pressure vessel known as a residue treater and immediately ignited, killing two 

employees and injuring eight fire fighters and contractors. The intense fire burned for more 

than four hours, more than 40,000 residents were evacuated to shelter-in-place for over 

three hours, and the highway was closed for hours because of smoke disruption to traffic 

(CSB 2011). Figure 3.1 shows the facility damage and aerial view of reported damaged 

properties. This case will be investigated further as a case study in Chapter 6. 

 PROCESS DESCRIPTION 

Methyl isocyanate (MIC) is one of the key chemicals used to make methomyl. The 

methomyl production process begins by reacting aldoxime with chlorine to make 

chloroacetaldoxime, which reacts with sodium methyl mercaptide to produce 

methylthioacetaldoxime (MSAO). MSAO reacts with methyl isocyanate to produce 

methomyl. Excess MIC is removed from the methomyl-solvent solution and the solution is 
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then pumped to the crystallizers where an anti-solvent is added to cause the methomyl to 

crystallize. Finally, the crystallized methomyl is separated from the solvents in the 

centrifuges and the methomyl cake is removed, dried, cooled, packaged in drums, and 

moved to the warehouse. Distillation separates the solvents in solvent recovery flashers and 

recycles the solvents to the start of the process. The unvaporized solvents and impurities, 

including up to 22% methomyl, accumulate in the bottom of the flasher. The residue 

treater dilutes the incoming flasher bottoms to decompose the methomyl in the flasher 

bottoms stream to below 0.5% by weight (CSB 2011). 

 ACCIDENT ANALYSIS 

The Chemical Safety Board (CSB) investigation team determined that the runaway 

chemical reaction and loss of containment of the flammable and toxic chemicals was the 

Figure  3.1: Methomyl facility damage and aerial view of reported damaged properties 
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result of deviation from the written start-up procedures and included the bypassing of 

critical safety devices intended to prevent such a condition occurring. In addition, CSB 

indicates that inadequate Distributed Control System1 (DCS) checkout and a poor Human-

System Interface (HSI) prevented the operators from achieving correct operating conditions 

and adequate SA. New display screens designed to mimic the process flow incorporated 

automated icons for critical equipment to show operating status and other parameters, 

included a mouse user interface, and featured improved HSI. The new control system 

significantly changed the interactions between the board operators and the DCS interface. 

It contained features intended to minimize human error such as graphical display screens 

that simulated process flow and icons to display process variables. However, the increased 

complexities of the new operating system challenged operators as they had to familiarize 

themselves with the system and units of measurement for process variables that differed 

from those in the previous system (Naderpour, Lu & Zhang 2014a). 

Human interactions with computers are cognitive. New visual displays and modified 

command entry methods, such as changing from a keyboard to a mouse, can influence the 

usability of the HSI and impair human performance (Kaber & Endsley 2004). In this case, it 

has been expected that the automation of tasks in the control room would help to decrease 

operators’ mental workload, enhance SA, and improve the whole system performance. 

However, the reality showed that human factor approaches in the modernization of 

analogue instrumentation and control system of the plant have not been considered 

sufficiently and appropriately. Further investigation has revealed that the detailed process 

equipment displays in the DCS were difficult to navigate and routine activities like starting 

a reaction or troubleshooting alarms would require operators to move between multiple 

screens to complete a task, which degraded operator awareness and response times. In this 

case, information was correctly perceived, but its significance or meaning was not 

                                                           
1 DCS is a dedicated system used to control manufacturing processes; it is connected to sensors and actuators, 
and uses set point controls to control process variables 
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comprehended. This error corresponds to level 2 SA errors that might have occurred due to 

lack of a good mental model, most frequently associated with an automated system. It is also 

worth noting that the wrong mental model or the mental model of a similar system, i.e. the 

methomyl unit, might be used to interpret information, leading to an incorrect diagnosis or 

understanding of the situation. In addition, over-reliance on defaults in the mental models 

might be another problem. These defaults could be thought of as general expectations 

about how parts of the system function that might be used in the absence of real time data. 

In addition, perhaps several pieces of information were not properly integrated because of 

working memory limitations or other unknown cognitive lapses.  

Apart from individual SA errors, another important contributing factor can be related to 

inadequate SA among night shift and day shift operators. Night shift outside and board 

operators did not inform the day shift crew that they had started filling the residue treater 

with flasher bottoms, and the methomyl unit day shift operator neglected to inform the 

incoming night shift operator that the lab results from the scheduled flasher bottoms sample 

identified excessively high methomyl concentration. This can be attributed to loss of 

Distributed SA (DSA) as the lack of communication among the agents, which are different 

teams in this case, resulted/enabled the accident.  

3.2.2 THE EXPLOSION AT BELLWOOD, ILLINOIS 

On 14 June 2006, the ignition of a vapour cloud generated by mixing and heating a 

flammable liquid in an open top tank located in a chemical plant in Bellwood, Illinois, a 

suburb of Chicago, killed one contractor and injured two employees, and caused a 

significant business interruption. The accident occurred when an operator was mixing and 

heating a flammable mixture of heptane and mineral spirits in a 2,200-gallon tank equipped 

with steam coils. The finished product, “Super Clean and Tilt”, is a proprietary mixture 

which is applied to cured concrete surfaces to prevent bonding with wet concrete (CSB 

2007). This case will be investigated further as a case study in Chapter 7. 
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 PROCESS DESCRIPTION 

The process for making Super Clean and Tilt required several hours of mixing and 

heating. To begin heating, the operator manually opened the steam valves to the tank 

heating coils and adjusted the temperature controller to maintain the temperature at 73°C. 

When the batch process was completed, the operator closed the steam valves and allowed 

the mixture to cool. The mixing tank was not equipped with a temperature display or high 

temperature alarm, and there was no backup shutoff device. The procedure for this mixture 

required the operator to verify the temperature by climbing the stairs to the upper level to 

measure it using a hand-held infrared thermometer, monitor the situation and conducts 

appropriate actions when necessary (CSB 2007). 

On the day of the accident, when the operator was adding an ingredient to the batch, he 

observed a “dense fog” accumulating on the floor below the tank.  He immediately notified 

a senior operator who helped him shut down the operation. They both exited the building 

and advised workers in adjoining areas to leave. As the vapour cloud spread throughout the 

mixing area and surrounding workspaces, other employees exited the building. Within 

about 10 minutes after the operator first observed the vapour cloud, most employees who 

were working in the area had evacuated before the cloud ignited. The pressure created by 

the ignition blew the doors open to an adjacent area, killing a contracted delivery driver 

Figure  3.2: Chemical mixing area damage 
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and injuring two employees. The Bellwood Fire Department battled a fire confined to a 

bagged resin storage area for about three and one-half hours. The fire and pressure from the 

initial ignition produced moderate damage to the structure and interrupted operations for 

one month. 

 ACCIDENT ANALYSIS 

The most important contributing factor to the accident was associated with the physical 

environment, i.e. the temperature controller malfunctioned, that allowed the steam valve 

to remain open and heat the mixture to its boiling point. In addition, at the basic level, 

important information i.e. the inside of the tank temperature was not available to the 

operator, due to a failure of the system design. Furthermore, the system lack of a high 

temperature alarm, made it difficult for the operator to perceive important information 

therefore contributed to the operator’s reduced SA, resulting in the overflow of vapour 

from the tank. As the operator was responsible to verify the temperature during the 

production cycle, another hypothesis is that the information was available via infrared 

thermometer, but for various reasons, was not observed by the operator. This is due to 

several factors, including simple omission, attentional narrowing and external distractions 

that prevent the individuals from attending to important information. High task-load, even 

momentary, is another factor that prevents important information from being attended to. 

It is also probable that the operator attended to the temperature, but misperceived due to 

the influence of prior expectations, i.e. seeing what was expected rather that what was 

there. Finally, it is possible that the operator initially perceived information then forgot 

about it due to high workload. In summary, this accident accounts for level 1 SA error, 

failure to correctly perceive the situation. 

3.2.3 THE EXPLOSION AT ONTARIO, CALIFORNIA 

On 19 August 2004, an explosion inside an air pollution control device and medical 

products sterilization chamber at an Ethylene Oxide (EO) sterilization facility in Ontario, 

California, injured four workers and severely damaged the facility (Figure 3.3). 
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Neighbouring businesses were evacuated for several hours and operations at the facility 

were disrupted for nine months (CSB 2006). 

 PROCESS DESCRIPTION 

Ethylene Oxide possesses an exposure hazard in addition to its high flammability. It kills 

microbes by disrupting life-sustaining molecules. Cycle variables include EO 

concentration, duration of exposure, temperature, humidity, vacuum applied during 

sterilization, and gas washing and aeration required to remove residual EO. Pre-

conditioning is the first stage of the medical product sterilization process. It lasts from 6 to 

24 hours and involves subjecting products to high levels of humidity, and temperatures 

between 27 and 49°C. Operators use forklifts to move products to the sterilization 

chambers. The sterilization process begins by placing pallets of products inside a large 

stainless steel chamber, applying a vacuum, and injecting pure EO to achieve a sterilizing 

concentration of approximately 400,000 ppm. At the end of this phase, the chamber gas 

mixture is evacuated to the acid scrubber that removes EO. Despite efforts to remove all of 

the EO from sterilized products, potentially toxic levels of EO remain in the chamber after 

gas washing. To purge this remaining EO, operators open the sterilizer door to 

approximately six inches, which automatically opens a ventilation duct located in the rear 

of the chamber. Operators leave the door in this position for several minutes to ventilate the 

chamber so that employees can safely enter to remove sterilized products. Air exhausted 

Figure  3.3: Ethylene oxide sterilization facility damage 
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through the back-vent flows to the oxidizer, which removes the remaining EO from the 

airstream. After ventilating the chamber, operators completely open the sterilizer door and 

use forklifts to move products to the aeration rooms. Circulating air in the aeration rooms, 

also vented to the oxidizer, removes any remaining residual EO (CSB 2006).  

The sterilization cycle is monitored and controlled from a computerized process control 

system located at the west end of the facility. The system automatically controls levels of 

humidity, temperature, pressure, EO and dwell time. Facility management staff program 

cycle parameters and event sequencing into the system during the cycle design phase, based 

on specifications to achieve FDA1-mandated sterilization parameters. The system then 

controls the sequencing of that cycle from start to finish. Taking actions to manually 

intervene (advance or interrupt) a cycle sequence may present a considerable safety hazard 

because there is no monitoring or detection equipment to warn employees that an 

explosive concentration remains in the chamber (Nazir, Kluge & Manca 2014). If an 

unrecoverable problem occurs during the sterilization cycle, operators can immediately 

abort the cycle by activating a button located on the control room console. This initiates a 

pump that removes the high concentration gas from the sterilization chamber, followed by 

a sequence of gas washes that removes the remaining EO (CSB 2006). 

 ACCIDENT TIMELINE 

On the day of the accident, at approximately 1:30, the control system alerted operators 

of an EO injection failure during a cycle in Chamber 7. The operator immediately ran 

several routine system checks in the control room to determine that the alert was accurate, 

but was unable to identify any problems. The supervisor then decided to abort the cycle. In 

accordance with company protocol, they used the cycle abort button on the control room 

console. Upon completion of the abort cycle, operators removed the chamber contents to 

an aeration room, and the chamber was left open awaiting maintenance personnel. The 

maintenance supervisor arrived at the plant at approximately 7:30 and immediately assigned 

                                                           
1 Food and Drug Administration 
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two technicians to work on the gas injection problem. He allowed maintenance personnel 

to enter a password to override computer safeguards, resulting in premature opening of the 

sterilizer door. Soon after that, the lower explosion limit alarm in the chamber was 

triggered, indicating the release of EO. The ignition of EO-air mixture took place before 

the oxidizer could be shut down (CSB 2006). 

 ACCIDENT ANALYSIS 

A deeper look into the events reveals that the operators had difficulties in understanding 

the behaviour and limitations of the automated system, which thus induced incorrect 

assumptions and led to wrong actions. The automation failure combined with operators’ 

incorrect SA resulted in the accident. A further drawback of improperly designed 

automated systems is the progressive reduction of process understanding by the operators as 

they spend more time in passive vigilance instead of taking active decisions/actions. 

Consequently, they are unable to perform correctly when the system calls for 

unconventional and even manual actions under abnormal situations (Nazir, Kluge & Manca 

2014). As a matter of fact, this particular accident resulted because of the loss of SA levels 2 

and 3 of the operators. They were unable to identify the source of the problem and were 

not aware of the possible consequences of their decisions. In some cases, individuals may be 

fully aware of what is going on, but be unable to correctly project what that means for the 

future. This could be due to a poor mental model or due to over-projecting current trends. 

Generally, mental projection is a very demanding task at which people are poor.  The CSB 

report also explicitly suggests that the training methods were inadequately designed and the 

job-specific maintenance-training was completely missed. 

3.3 PROMOTING OPERATORS’ SITUATION AWARENESS 

Promoting SA is now an important design objective for safety-critical systems which 

employ digital instrumentation, control systems and computer-based HSIs. In their 

operations, operators need a greater level of support to control and maintain the facilities in 

safe condition due to an increasing amount of information that is passed to them through 
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automated systems. In fact, operators have to face both data overload and the challenge of 

working with a complex system. They are drilled with long lists of procedures and 

checklists designed to cope with some of these difficulties, but from time to time they are 

apt to fail. Operators generally have no difficulty in performing their tasks physically, and 

no difficulty in knowing what is the correct thing to do, but they are stressed by the task of 

understanding what is going on in the situations, particularly when they are confronted 

with abnormal situations (Burkolter & Kluge 2012; Naderpour, Lu & Kerre 2011). 

Traditionally, there are two approaches to prevent human error during operation of 

safety-critical systems that are aimed at the provision of better training programs for 

operators, and the improvement of operator support systems (Lee & Seong 2014). 

However, it has been shown that in abnormal time pressure situations, ordinary training 

does not improve the quality of decision making (Zakay & Wooler 1984), therefore the 

role of cognitive support systems to assist operators in such situations is highlighted. 

Usually, large-scale technological systems contain multilevel control loops and 

interconnections, which need to be monitored and supervised for normal operations. Once 

the system becomes unstable, the conditions are referred to as an abnormal situation, which 

can lead to near misses and possible accidents with both economic and human loss. In the 

last two decades, the technological systems have experienced a significant increase in 

multidimensional automation that has significantly increased the complexity and sensitivity 

of the role of operators and their teams. However, the operators lack of ability to intervene 

or tackle abnormal situations as they are usually designed for routine operating conditions 

(Nazir, Kluge & Manca 2014). Therefore, any attempt to develop operator support systems 

should consider both normal and abnormal situations.  

Generally, operators perform two types of tasks to carry out their roles and 

responsibilities: Primary tasks and Secondary tasks. As illustrated in Figure 3.4, primary tasks 

consist of several cognitive tasks including monitoring and detection, situation assessment, 

response planning, and response implementation (O’Hara & Persensky 2011). Any 
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breakdown in generic primary tasks can lead to a human error. Therefore, a balanced 

automated system that avoids an excessive workload for the operators and keeps them in the 

loop of decision-making, taking action, and updating the related information would benefit 

the process industry. The activities involved in extracting information from the 

environment are referred to monitoring and detection. In current systems, this task is highly 

supported through various heterogeneous sensors and appropriate signal-processing 

methods that are used to extract as much information as possible about the dynamic 

environment. Good monitoring results in operators’ perception or SA level 1.  

Situation assessment is the evaluation of current conditions to determine that they are 

acceptable or to determine the underlying causes of abnormalities. Situation assessment 

which underlies the achievement of SA is therefore critical to taking proper human action. 

Thus, the HSI besides providing alarms and displays that are used to obtain information to 

support situation assessment must provide additional support for assessing the situation. This 

development corresponds to SA levels 2 and 3 that support operators to infer real situations 

and to project their status in the near future.  

Response planning refers to deciding upon a course of action to address the current 

situation. In general, response planning involves operators using their situation model to 

identify goal states and the transformations required to achieve them. 

Response implementation is performing the actions specified by response planning. 

These actions include selecting a control, providing control input, and monitoring the 

system and process response (O’Hara & Persensky 2011). 

Generic Primary Tasks 

Situation 
Assessment 

Monitoring 
and Detection 

Response 
Planning 

Response 
Implementation 

Figure  3.4: General primary tasks  
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Apart from primary tasks, operators perform other kinds of tasks that are referred to as 

secondary tasks or “interface management tasks” such as navigating, configuring and 

arranging that assist operators to perform the primary tasks successfully. Secondary tasks 

create workload and may take much attention away from the primary task performance and 

generate a “keyhole effect” (Seong 2009) thus affecting operators’ SA, which makes the 

operator out-of-the-loop. Thus, secondary tasks should be carefully addressed in design 

reviews as well. 

In actual plant operation, individual operators typically do not perform these tasks alone; 

tasks are accomplished by the coordinated activity of multi-person teams. Therefore, the 

design of technology needs to consider not only individual performance but also team 

performance.  

3.4 SUMMARY  

Many attempts were made over the past 20 years to reduce human error in safety-critical 

systems such as process plants. The main conclusion is that few errors represent random 

events; instead, most human errors can be explained by human cognitive mechanisms. 

Among cognitive mechanisms, operators’ SA is the most important pre-requisite for 

decision–making, especially in time-, safety-critical abnormal situations. Today, in control 

rooms, operators are supposed to manage large amounts of data, and deal with process 

details, control systems, set points and the delicate balance between safety and production. 

During the failure of automated systems and under abnormal situations, the urgency and 

sensitivity of decisions increase manifold. Effective solutions need to go beyond the delivery 

of more data and advanced technology for the operator. Establishing effective operations 

practices that enable high individual and distributed SA are important to effectively 

preventing and responding to abnormal situations and improving process safety 

performance. Therefore, the goals and activities of interactive systems should be well 

designed to support operators’ SA and also should be optimized for abnormal situations. 
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This chapter reviews the role of SA in three accidents in the process sector and analysed 

the SA related errors. It also highlights the urgent need to discover cognitive support 

systems to manage abnormal situations in order to lower operator workload and stress and 

consequently human errors. In addition, as different bits of information are distributed 

among several operators/supervisors, artefacts, and technological tools, the implication of 

team SA, shared SA, or distributed SA are also highlighted. 
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Chapter 4: 

AN ABNORMAL SITUATION MODELLING 

METHOD 

4.1 INTRODUCTION 

In abnormal situations, a well-trained operator should comprehend a malfunction in real 

time by analyzing alarms, assessing values, and recognizing unusual trends indicated by 

multiple instruments. In such a situation, many alarms from different systems are frequently 

triggered at the same time, making it difficult for the operator to make a decision within a 

very short time frame. If several abnormal situations occur at once, decisions have to be 

made in even less time. Operators are usually unable to judge which situation should be 

given priority when confronted with complex abnormal situations such as these (Hsieh et 

al. 2012; Jou et al. 2011). To return operational units to normal conditions, operators must 

respond quickly and make rapid decisions, but under these circumstances, the mental 

workload of operators rises sharply, and a mental workload that is too high may increase the 

rate of error. 

When an abnormal situation occurs in a safety-critical system, operators firstly recognize 

it by an alarm, and secondly, need to perform a situation assessment which means that they 

try to understand what is happening in the plant. During the situation assessment process, 
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operators receive information from observable variables or other operators and process the 

information to establish situation models based on their mental models (Kim & Seong 

2006a).  

In the context of automation systems, an operator’s mental model will be greatly 

influenced by the system design being employed especially now since they are physically 

removed from the process. The visible aspects of the system, the actions that seem 

approachable and prior experience of the operator together form the mental model of how 

the process works. The degree to which the operator’s mental model accurately reflects 

how the process truly does work has a significant effect on the operator’s ability to use the 

automation system (Pridmore 2007). 

This chapter provides the concept of mental models in Section 4.2, presents a new 

abnormal situation definition based on risk in Section 4.3, and develops an abnormal 

situation modelling (ASM) method in Section 4.4 based on this assumption that the 

operator’s mental model can be modelled using BNs as a representation of static cause–

effect relationships between objects in the situation. Section 4.5 reviews the sensitivity 

analysis for evaluating situation models. 

4.2 SITUATION AWARENESS AND MENTAL MODELS 

Mental models refer to mechanisms whereby humans are able to generate descriptions of 

system purpose and explanations of system functioning (Endsley 2000b). Mental models 

embody stored long-term knowledge about the systems that can be called upon interaction 

with the relevant system when needed. These internally developed models aid in efficiently 

directing limited attention. They provide a way to integrate information without 

overloading working memory. The use of mental models in achieving SA is believed to be 

dependent on the individual’s ability to pattern match critical cues in the environment with 

elements in their mental model, and being able to incorporate the use of these models into 

SA can provide the operator with quick retrieval of actions from memory (Pridmore 2007). 
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The concept of mental models has a very long tradition in applied cognition. It has often 

been used in studies trying to model, amongst others, human control of various processes. 

Rouse and Morris (1986) define mental models as “mechanisms whereby humans are able 

to generate descriptions of system purpose and form, explanations of system functioning 

and observed system states, and predictions of future states”. They believe that mental 

models are multi-purpose mental devices. The three basic functions: (1) Description of 

system and form (2) Explanation of system functioning and observed system states and (3) 

Predictions of future system state, are all compatible with the three-level SA model. 

However, they believe that mental models are not a state but are sets of processes. Endsley’s 

representations provide a context for some form of judgment and contribute to SA in the 

form of references to prior experience. Her approach presents mental models as default 

information that helps to form higher levels of SA even when needed data is missing or 

incomplete. Features in the environment are mapped to mental models in the operator’s 

mind, and the models facilitate the development of SA. Mental models (formed by training 

and experience) are used to facilitate the achievement of SA by directing attention to critical 

elements in the environment (level 1), integrating the elements to aid understanding of 

their meaning (level 2) and generating possible future states and events (level 3) (Salmon et 

al. 2008).  

As shown in Figure 4.1, a situation model can be developed not only by observing the 

world, but also is influenced by underlying mental models that the operator has. These 

mental models can help to determine what information is attended to, how that 

information is interpreted and integrated, and what projections are made about what will 

happen to the system in the near future. In this sense, the situation model is the current 

instantiation of the mental model which is more general in nature (Endsley 2000b). 

Therefore, it can be concluded that the situation model provides a useful window on the 

broader mental model. For example, an engineer may perceive several dynamics in the flow 

lines (considered to be important elements per the mental model) recognized as hydrate 
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forming conditions based on critical cues (perception). By pattern-matching to prototypes 

in memory, these separate pieces of information may be classified as a particular recognized 

hydrate formation (comprehension). According to an internally held mental model, the 

engineer is able to generate probable scenarios for this type of condition (projection). Based 

on this high-level SA, the engineer is then able to select suitable actions that will prevent 

their formation. 

 

4.3 ABNORMAL SITUATION DEFINITION 

A situation is defined as a set of circumstance in which a number of objects may have 

relationships with one another and the environment. Any variety of relations – physical, 

organizational, informational, and perceptual – can be considered as being appropriate to 

the given information system’s mission. Figure 4.2 enables a clear understanding of the 

definition of both ‘situation’ and ‘SA’. It shows four planes, each of which refers to a 

different level of abstraction. The bottom layer shows the world, which includes physical or 

conceptual things, or both. To the right of the world plane, a human head depicts the fact 

that SA is a state of knowledge which takes place in the human brain. The human is unable 

to observe all aspects of the world, and therefore has to obtain inputs from the computer for 

better appreciation (i.e. the arrow between the computer and the human head). The dots 

Figure  4.1: Relationship between situation awareness and mental models 



Chapter 4: An Abnormal Situation Modelling Method  72 
 

 

 

on the next layer (i.e. Perception) represent the objects from the world that are observed 

through sensors and represented in computer memory. The arrow pointing from the world 

plane to the radar icon represents the sensory process, which then feeds the computer.  

The emphasis in situation definition is on relationships which are described from the 

point of view of a thing (i.e. focal object), and how other things in the surroundings are 

related to it. This plane represents Comprehension. The top layer illustrates the Projection, 

and this layer is defined as the ability to anticipate future events and their implications 

(Kokar, Matheus & Baclawski 2009). 

Based on above description, a hazardous situation is defined as a possible circumstance 

immediately before harm is produced by a hazard. Therefore, an abnormal situation is 

defined as a hazardous situation if its risk is not acceptable. The hazardous situations are 

categorized in two groups based on contributing objects:  

 Independent situations: A hazardous situation is an independent situation if only its 

objects and their interactions create a hazardous condition; 

 Dependent situations: A hazardous situation is a dependent situation if its objects 

and their interactions with other situations create a hazardous condition.  

 

Figure  4.2: Situation and situation awareness  
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4.4 ABNORMAL SITUATION MODELLING 

Mental models are a type of tacit knowledge which can be elicited from people’s minds 

using cognitive mapping methods. This research applies BNs for this purpose and presents 

the ASM method as illustrated in Figure 4.3, which contains several steps that are explained 

as follows: 

Step 1: Identify the situations of interest: To find hazardous situations, an analysis is carried 

out using a combination of cognitive engineering procedures and hazard 

identification methods. Observation of operator performance, analysis of written 

materials and documentation, expert elicitation and formal questionnaires may be 

used to conduct the analysis (Endsley 2006). Previous hazard identification 

documents may help with this analysis. The identified situations should have clear 

operational meaning to the modeller, the domain experts and the users. Where 

possible, this process should be undertaken in a participatory environment to 

ensure that the breadth of issues and potential inputs to the models are identified. 

Step 2: Identify the contributing objects: The contributing objects (both physical and 

conceptual) can be obtained through several methods. In many areas, hazardous 

situations are obtained through the design and implementation phases, and various 

models are developed to identify their contributing objects. For example, 

HAZOP is one of the most powerful methods available and has been well 

Identify the 
situations of interest 

Identify the 
contributing objects 

Develop BN models 

Describe the model 
variables states 

Parameterize the 
quantitative model 

Evaluate the 
situational network 

Figure  4.3: A cycle to describe the ASM method 

Develop a 
situational network 
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described in the literature, and fault tree, event tree, and bow-tie can be adopted 

as knowledge acquisition techniques which can provide proper materials to 

determine the contributing objects (Naderpour & Lu 2012a). 

Step 3: Develop BN models: The situation model usually begins with root nodes, which 

are the basic objects, followed by intermediate nodes, a pivot node and leaf nodes. 

The pivot node is the focal object that delegates the situation, and relations 

between the root nodes and the pivot node define the relationships between the 

objects. The leaf nodes may be safety barriers that are physical objects in the 

environment that will connect to one another if there is a relationship between 

their performances. In addition, one of the leaf nodes may be a consequence node 

that has some states, and shows the possible accidents in this situation. If the 

situation is inferred by one or more observable variables, the focal object is 

connected to the observable variables. Figure 4.4 shows the situation A where the 

node A is focal and other nodes are related to it. There may be several situations 

that can only be inferred by observing the operational life of a system over a period 

of time. Although all situations are characterized by information collected over a 

time-period, they only exist at a specific point in time. Their existence in the next 

time-point has to be verified again. 

Step 4: Describe the states of model variables: The states of basic and intermediate objects 

and safety barriers are defined as Boolean (i.e. success and failure), which refers to 

A 

O1 

O7 
O3 

O2 
O6 

O8 
O4 

O5 

S2 

C 

S1 

Figure  4.4: A static situation model 
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the objects working well (success) or not working (failure). The focal node, which 

delegates the situation, has two states, i.e. safe and hazardous. The states of 

consequence nodes are usually determined by consequence analysis, which 

concerns what may follow the occurrence of an abnormal situation. Indeed, such 

an occurrence may lead to a wide range of consequences, some of which will 

probably be undesirable events. The states of observables are determined in terms 

of operation, six sigma quality and safety set-points. As the observable variables 

extracted from sensors are continuous, a discretization process is required to use 

them in BNs. In general, mapping a continuous variable to a discrete variable can 

be achieved with a set or a fuzzy set. As the concept of fuzzy set theory can 

provide a smoother structured means, the states of observable variables are 

determined using a fuzzy partitioning method and fuzzy states definition that be 

elaborated in the next chapter. 

Step 5: Parameterize the quantitative model: The prior probability of basic objects (nodes 

without parents) can be obtained through failure probability datasets such as the 

Center for Chemical Process Safety (CCPS 1989), and the Offshore Reliability 

Data Handbook (OREDA 2002), and if the failure probability is not available, 

expert judgment can be used. The CPTs of intermediate and focal nodes are set 

based on the “OR gate” or “AND gate” definition, as described in (Bobbio et al. 

A 

C 

B 

OR Node 

AND Node 

Figure  4.5: The OR and AND gates in BN representation 

A 

C 

B 

P{C=failure |A=failure, B=failure}=1 
P{C=failure |A=failure, B=success}=1 
P{C=failure |A=success, B=failure}=1 
P{C=failure |A= success, B= success}=0 

P{C=failure |A=failure, B=failure}=1 
P{C=failure |A=failure, B=success}=0 
P{C=failure |A=success, B=failure}=0 
P{C=failure |A= success, B= success}=0 
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2001) and represented in Figure 4.5. The CPTs of observable variables are 

determined by domain experts. The elicitation process is carried out with the 

recursive technique (e.g. Delphi method) to guarantee the convergence of the 

results. The final results are commented on and adjusted again during further 

interviews (Li et al. 2012). The CPTs of consequence nodes are determined by 0 

and 1 values corresponding to appropriate states. 

Step 6: Develop a situational network: Several situations can exist in parallel, or the 

existence of one situation can exclude the existence of another situation. Figure 

4.6 shows an example network of situations. As can be seen, the situations A and B 

can be inferred directly from objects O1, O2 and O3 while the existence of 

situations C and D are dependent on the existence of lower level situations. The 

temporal dependencies are illustrated by dashed lines. The complete modelling of 

the dependencies results in a network of situations. As a result of this modelling, 

the existence of a situation is inferred based on information in the world, i.e. the 

observable variables and objects of configuration space. This also includes temporal 

dependencies, i.e. that the existence probability of an inferred situation in future 

can be supported by the earlier existence of the situation itself. 

Figure  4.6: A dynamic situational network 
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Step 7: Evaluate the situational network: Evaluation of the situational network requires 

the assessment of model behaviour to ensure that the model demonstrates 

acceptable behaviour. The evaluation can be undertaken at several levels. The first 

level is to ensure that key objects and their relationships have been represented in 

the network, and the second level should review the determined states to ensure 

that they have been defined unambiguously. The third level considers evaluating 

the model performance by conducting some validation methods as well as by 

testing how the model behaves when analyzing well-known scenarios.  

There are three evaluation methods to validate the performance of a BN: sensitivity 

analysis, data-based evaluation and non-quantitative evaluation of model outputs using 

experts. The next section presents the sensitivity analysis in detail.  

4.5 SITUATION MODELS EVALUATION 

In the event that large data sets are not available, and the probabilities must be elicited 

from domain experts, the sensitivity analysis technique is often used to investigate the effect 

of probability parameter changes on the performance of BNs. This analysis investigates the 

influence of variation in the model inputs on outcomes, where inputs can be real inputs (i.e. 

values of observable nodes) or the parameters (i.e. values of conditional probabilities). The 

output of sensitivity analysis requires evaluation by experts (Pollino et al. 2007). 

Sensitivity to findings based on the d-separation concept determines whether evidence 

about one variable may influence belief in a query variable. Using sensitivity to findings, it 

is possible to rank evidence nodes that allow the expert to identify whether a variable is 

sensitive or insensitive to other variables in particular contexts. This helps to identify errors 

in either the network structure or the CPTs. In this regard, entropy is a common measure 

that assesses the average information required in addition to the current knowledge to 

specify a particular alternative. The entropy of a distribution over variable X is defined as 

follows: 



Chapter 4: An Abnormal Situation Modelling Method  78 
 

 

 

                                            (4.1) 

and mutual information is used to measure the effect of one variable (X) on another (Y): 

                                                (4.2) 

where  is the mutual information between variables. This measure reports the 

expected degree to which the joint probability of X and Y diverges from what it would be 

if X were independent of Y (Pollino et al. 2007). 

Sensitivity to parameters considers altering each of the parameters of query nodes and 

observing the related changes in the posterior probabilities of the query node. Most such 

sensitivity analyses are one-dimensional therefore they only vary one parameter at a time. If 

models are unaffected by the precision of either the model or the input numbers, they may 

still be sensitive to changes in combinations of parameters. However, testing all possible 

combinations of parameters is exponentially complex (Korb & Nicholson 2003). The one-

dimensional sensitivity analysis can be conducted by a sensitivity function for the output 

probability  when x is being varied. This sensitivity function is defined as follows 

(Laskey 1995): 

                                                           (4.3) 

where , , ,  and they are constants built from parameters which are fixed. The 

sensitivity value of the parameter x and the target probability can be obtained by taking the 

first derivative from the sensitivity as follows (Laskey 1995):  

                                                        (4.4) 

In some cases, finding parameter changes that satisfy constraints on probabilistic queries 

are required. The most common types of query constraints, given some value k are: 

                                                          (4.5) 

                                                          (4.6) 

                                                    (4.7) 
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                                                           (4.8) 

where evidence e is an instantiation of variables E, and events y and z are values of the 

variables Y and Z respectively. For example, if event y is more likely than event z given 

evidence e, then it can be specified the constraint . Also it is possible 

to make event y at least twice as likely as event z, given evidence e by specifying the 

constraint . For a binary variable X with two values  and , there are 

two parameters  and  for every parent instantiation u. Consider  as a meta-

parameter and assigne , therefore the goal is to determine the amount of change 

that must be applied to  which would load to complementary changes in  and  

that can enforce the query constraint. To satisfy Inequalities 4.5 to 4.8,  should be 

respectively changed by  such that: 

                                      (4.9) 

                                  (4.10) 

                     (4.11) 

                                  (4.12) 

where  and  are the current probabilities of e and (y,e) and the constants  is 

defined as follows (Chan 2005): 

                                            (4.13) 

and , as well as  when applicable, are crucial to the procedure of finding the 

necessary change in  to enforce the query constraint (Chan 2005). The solutions of 

 in Inequalities 10 to 14 are always in one of the following forms: 

 , for some computed , in which case the new value of  must 

be in the interval  where  is the current value of . 

 , for some computed , in which case the new value of  must 

be in the interval  where  is the current value of . 
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Therefore,  is the minimum amount of change in  that can enforce the query 

constraint. The proof of above results can be found in (Chan 2005) as well as extended 

binary variable X to a multi-valued variable. 

4.6 SUMMARY 

The lack of an accurate mental model can cause the operator a lack of understanding, in 

turn making the automation system harder to use (Pridmore 2007). This increases the 

cognitive effort required to accomplish a task or to project future events. With experience, 

an operator might be able to overcome the effects of the automation system with a poorly 

designed mental model. Designing based on a mental model concept could be helpful in 

that it offers a method for directing attention to important aspects of the situation and 

promoting understanding of the relationships within the process. 

This chapter introduces an abnormal situation modelling (ASM) method that tries to 

represent operators’ mental models in regard to abnormal situations. The ASM method 

models the operators’ mental model using BNs to represent these cause–effect relationships 

between objects in a situation. It also describes how the states and CPTs of objects in the 

models should be determined, and how they should be connected to each other to create 

the situational networks. As the situations of interest can be inferred by some observable 

variable distributed in the environment, the ASM method explains how the situations can 

be connected to observable variables. 

The ASM method is reasonable as it provides a basis for modelling the situations that 

might be inclusive, it enables the understanding of situations by providing the contributing 

objects, and it provides the projection of future situations or events. It also has a limitation 

as in the developing of situation models, some data are collected from experts; therefore 

some uncertainty associated with the probability distributions is unavoidable. 
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Chapter 5:  

AN INTELLIGENT SITUATION AWARENESS 

SUPPORT SYSTEM 

5.1 INTRODUCTION 

Maintaining a complex and dynamic system in safe conditions, keeping the risks below 

accepted criteria, is a critical challenge because situations change dynamically and every 

decision has a significant social, economic and environmental impact. The key focus must 

be on keeping the human operator aware of the situation, showing the risk level of 

hazardous situations and providing the base to reduce risks until they reach a level that is 

ALARP. Previous researches in the field of system safety have only considered developing 

scenarios for specific undesirable events from an engineering perspective, whereas in today’s 

safety-critical systems, operators face several hazardous situations from different sub-systems 

which dynamically threaten the system, and they have to comprehend both the current 

state and the near future state to make correct decisions. A human-centric system is 

therefore needed to support operators in understanding and assessing the current state of an 

abnormal situation and to assist them to take appropriate actions. This chapter presents the 

SA requirements for such system and develops the situation awareness support system 

(SASS). 
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5.2 THE GOAL OF SASS 

The ALARP principle, which is now widely applied in safety decision-making, requires 

that those responsible for safety in the workplace- and, indeed, public safety-should reduce 

risks to levels that are “As Low As Reasonably Practicable”. As such, the principle involves 

effective recognition of the fact that, while in most circumstances risk can be reduced, 

beyond some point further risk-reduction is increasingly costly to implement. In the UK, 

the ALARP principle is specified as a regulatory requirement by the Health and Safety at 

Work Act 1974 (HSWA) following recommendations set out in the Robens Report on 

Safety and Health at Work in 1972. In fact the HSWA refers to the principle as ‘So Far As 

Is Reasonably Practicable’ (SFAIRP), but in practice this is treated as being synonymous 

with ALARP, as is the term ‘As Low As Reasonably Achievable’ (ALARA) which is used 

in some other contexts, particularly in the USA (Jones-Lee & Aven 2011). 

Conceptually the ALARP approach can be illustrated as in Figure 5.1. This shows an 

upper limit of risk that can be tolerated in any circumstances and a lower limit below which 

risk is of no practical interest. Indicative numbers for risks are shown only for illustration 

and the precise values are not central to the discussion herein but can be found in relevant 

country-specific documentation. The ALARP approach requires that risks between these 

two limits must be reduced to a level “as low as reasonably practicable”. In relevant 

regulations it is usually required that a detailed justification be given for what is considered 

by the applicant to satisfy this “criterion” (Melchers 2001). 

According to ALARP, it is necessary for operators of a potentially hazardous facility to 

demonstrate that: a) the facility is fit for its intended purpose, b) the risks associated with its 

functioning are sufficiently low, and c) sufficient safety and emergency measures have been 

instituted (or are proposed) (Melchers 2001). Therefore, the main goal of the system is to 

eliminate the risk or reduce it to an acceptable level. The main goal is supported by two 

sub-goals: risk determination and risk reduction. 
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5.3 THE REQUIREMENTS OF SASS 

The SASS requirements are determined by GDTA. The major decisions that need to be 

made in association with each sub-goal are identified, and the SA requirements for making 

these decisions and fulfilling each sub-goal are determined as shown in Table 5.1. 

Table  5.1: Safety goals, decisions and SA requirement. 

Goal: Eliminate or reduce the risks to a level that is as low as reasonably practicable 
Sub-goal 1: Determine the risks 

Decision 1-1: Hazardous situation identification 
 L1: Objects and relationships which contribute to creating a hazardous situation  
 L1: Situations and relationships which contribute to creating a hazardous situation 
 L2: Hazardous situations that threaten the system 

Decision 1-2: Probability determination 
 L1: Objects which are relevant to contributors to the hazardous situation  
 L1: Observable variables which are relevant to the hazardous situation 
 L2: Prior probability of the hazardous situation 
 L3: Posterior probability of the hazardous situation 

Decision 1-3: Severity determination 
 L2: Possible consequences of the hazardous situation 
 L3: Degree of loss 

Decision 1-4: Risk level estimation  
 L2: Probability of the hazardous situation (Decision 1-2) 
 L2: Severity of the hazardous situation (Decision 1-3) 
 L3: Current level of risk  

Sub-goal 2: Reduce the risks 
Decision 2-1: Choosing practical options  

 L2: Available reduction and containment options 
Decision 2-2: Options impact prediction 

 L2: The severity of the abnormal situation 
 L3: Projecting the new probability of the abnormal situation  
 L3: New level of risk 

 L3= Projection of SA; L2= Comprehension of SA; L1= Perception of SA. 
 

Figure  5.1: Levels of risk and ALARP based on UK experience 
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5.4 THE FRAMEWORK OF SASS 

Based on the SA requirements, the proposed SASS considers how situations and objects 

interact with one another based on BN models, how to update the states of a situation based 

on the SCADA1 monitoring system, and how the risk of situations can be reduced to an 

acceptable level. The system’s proposed framework is shown in Figure 5.2. In the following 

sections, the components will be explained in detail and the means of addressing the 

identified decisions to achieve the sub-goals, and subsequently the main goal based on 

identified requirements, will be clarified. 

5.4.1 THE KNOWLEDGE-BASE 

The knowledge-base contains the situation models of the intended safety-critical 

environment developed according to the ASM method presented in Chapter 4. As 

explained, analysis of written materials, observation of operator performance, expert 

elicitation and formal questionnaires would help with knowledge-base design and 

establishment. The knowledge-base is verified in a participatory environment to ensure that 

the breadth of issues is identified. A complete determination and modelling of situations of 

interest covers the SA requirements which are necessary for Decision 1-1 in Table 5.1. 

                                                           
1 Supervisory Control and Data Acquisition 

Situation Data 
Collection Situational Networks Risk Estimation 

Operator KB Data Base Risk Matrix 

Domain  
Experts 

t1 t2 t3 

n0 
n1 
n2 
n3 

SCADA 

Time 

Sensor 
Node 

Situation Recovery 

Human-Computer 
Interface 

Situation Assessment 
n4 

Figure  5.2: The framework of the situation awareness support system 
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5.4.2 THE SITUATION DATA COLLECTION COMPONENT 

The situation data collection component provides the current state of the observable 

variables, which is related to BN models according to the online condition and monitoring 

system. The component stores the data in a database, conducts a discretization process for 

continuous variables and transfers the result to the next component. The observable 

variables will be used as evidence in the situation assessment component. According to the 

condition and process monitoring, each observable variable value may be obtained from 

field sensors based on SCADA systems. As the observable variables extracted from sensors 

are continuous, a discretization process is required to use them in BNs. In general, mapping 

a continuous variable to a discrete variable can be achieved with a set or a fuzzy set. 

Consider a variable such as outside temperature defined on the frame [-10,39]°C, which 

is inherently continuous but has to be represented as discrete when included in a discrete 

BN. It can be discrete to a scheme of three states: Cold, Normal, and Warm corresponding 

to the intervals [-10,10)°C, [10,25)°C, and [25,39]°C, respectively. A thermometer reading 

of 9.9°C would fall under the discrete state ‘cold’, whereas 10°C would be labelled as 

‘normal’. As can be seen, determining a crisp boundary between these states is not 

meaningful, hence the concept of fuzzy sets provides a more structured and smoother way. 

Figure 5.3 shows a fuzzy partition, but non-symmetric fuzzy sets or sets with a different 

shape can be used.  

Figure  5.3: A fuzzy partition 
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If  is a value of a variable  occurring on a domain partitioned as in Figure 5.3, then 

point semantic unification is applied to evaluate the probabilities that 

constitute the distribution corresponding to the value x on the sets . 

Definition 1 (Fuzzy partition): A fuzzy partition on the universe  is a set of fuzzy sets 

 such that: 

(5.1)  

where  is the membership function of  , i.e.  

Definition 2 (Fuzzy state): Let  be a fuzzy partition on the universe , then 

every fuzzy set ,  is defined as a fuzzy state such that: 

(5.2) 

For a particular BN, there are two types of evidence for every node: hard and soft. If a 

node is observed as one of its states, it is called hard evidence, and if the evidence is 

observed with uncertainty, it is called soft evidence. If a node does not have any parents, 

soft evidence is equivalent to modifying its prior probability; otherwise, soft evidence on a 

variable  is represented by a conditional probability vector  for  

where  denotes the hypothesis that the true state is the i-th state. To simplify the 

inference process for a continuous variable , consider the fuzzy partition . 

Define  as hypotheses that  is in fuzzy state . The results of 

membership functions    form the soft evidence vector: 

(5.3) 

The  is considered to be approximately equivalent to the condition probability 

 (Chai & Wang 2011). 

Table 5.2 gives an example showing the temperature limits for a chemical plant 

involving two reactors and two distillation columns, including the limits for the six-sigma 

quality, high alarm and automatic shut-down (Naderpour & Lu 2012a).  
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Table  5.2: Temperature limits of a chemical plant 

Unit 
Operating 

value Six-sigma quality High alarm Automatic shutdown 

Reactor 1 160 165 170 180 
Reactor 2 166 170 175 185 

Distillation 1 186 190 195 200 
Distillation 2 200 205 210 220 

Note: Temperatures are in °C 

The temperature continuous variable of Reactor 1 in terms of operation can be 

partitioned by fuzzy mapping into the fuzzy states including Low, Normal and High, and 

the membership function is defined as follows, as well as being shown in Figure 5.4: 

(5.4) 

(5.5) 

(5.6) 

 

where t1=155°C, t2=160°C and t3=165°C, and ,  and  denote the 

membership function of fuzzy states Low, Normal and High respectively. At time T, the 

temperature inside the Reactor 1 is reported 164°C therefore the soft evidence vector will 

be: e={Low=0 , Normal=0.2 , High=0.8}. 

5.4.3 THE SITUATION ASSESSMENT COMPONENT 

Mathematically, a situation at time t can be modelled using a subset  of the 

configuration space as a statement, which is either hazardous or safe: 

Figure  5.4: The membership function of Reactor 1 temperature 

 

    

Low Normal High  
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(5.7) 

where the  is the current risk level of the situation and is defined as: 

                         (5.8) 

where  is the probability of the situation at a time t and depends on the objects of the 

subset space : 

                       (5.9) 

and  is the severity of the situation. As a result of this modelling, the existence of a 

situation is inferred on the basis of information in the world, i.e. the observable variables 

and objects of configuration space.  

Usually, well trained operators are able to form rules for every situation to assess their 

risks, and those rules are an important part of their mental models. For instance, if an 

operator has this rule, ‘when the probability of the situation of accumulated vapour in the 

production unit is likely and this situation has catastrophic severity, the risk level of this 

situation is not acceptable’, the rule helps the operator to understand that ‘when the risk 

level of the situation of accumulated vapour is increasing, the occurrence of an explosion is 

possible’. In this sense, it is assumed that the operator’s mental model can be tailored using 

the rules for the hazardous situations of the environment. Based on these rules, an operator 

tries to keep the situational risk to as low a level as reasonably practicable. Therefore, to 

resemble and analyse situations behaviour based on operators’ thinking, the situation 

assessment component needs to generate an assessment level of risk for every situation over 

time. The results of this assessment are necessary for the subsequent component, situation 

recovery, in which new actions will be conducted to reduce situational risk to a level as low 

as reasonably practicable. 

Situational risk estimation is highly subjective and is related to inexact and vague 

information, so the application of fuzzy logic is appropriate. Fuzzy logic, which 

mathematically emulates human reasoning, provides an intuitive way of designing function 

blocks for intelligent systems. Fuzzy logic allows an operator to express his/her knowledge 
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in the form of related imprecise inputs and outputs in terms of linguistic variables, which 

simplifies knowledge acquisition and representation, and the knowledge obtained is easy to 

understand and modify. Therefore, to estimate the situational risk level, a process including 

the following steps is utilized:  

 Estimation of the situation probability  

 Estimation of the situation severity  

 Estimation of the situation risk 

5.4.3.1 THE SITUATION PROBABILITY ESTIMATION 

The DBN-based situational networks provide the prior and posterior probabilities 

(Decision 1-2 in Table 5.1). The quantitative analysis can be achieved by two methods: the 

forward method (or probability prediction) and the backward method (or probability 

diagnosis). Both probability prediction and probability diagnosis are used for this analysis. In 

predictive analysis, conditional probabilities of the form  are calculated, indicating 

the occurrence probability of situation  at time t, given current value of observable 

variable . In diagnostic analysis, conditional probabilities of the form  are 

evaluated, showing the occurrence probability of a particular object  given the 

occurrence of situation . It can also be conducted to find the most probable explanation 

(MPE) of the states of the objects leading to abnormal situations or specific consequences. 

5.4.3.2 THE SITUATION SEVERITY ESTIMATION 

The consequence states of a hazardous situation are usually determined by consequence 

analysis, which concerns what may follow the occurrence of a hazardous situation. Such an 

occurrence may lead to a wide range of consequences, some of which will probably be 

undesirable events. To project the degree of loss, the adverse outcomes associated with 

accidents identified through consequence analysis are investigated. Consequences can 

essentially be grouped into three categories; human loss, asset loss, and environmental loss.  

Human loss is measured in ‘fatalities’, ‘injuries with disabilities’, ‘major injuries’, and 

‘minor injuries’. These measurements help experts to aggregate various degrees of harm to a 
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given group of people into an equivalent fatality figure. The convention ratio might be 1: 

0.5: 0.1: 0.005 to respectively aggregate fatality, injury with disability, serious injury and 

minor injury for the estimation of human loss in equivalent fatalities. The degree of loss to 

enterprises can be estimated by considering several potential events such as damage to 

infrastructure and equipment, loss of materials and products, delay in services, loss of 

customers and goodwill and possible legal fines. To generate an estimate for asset loss, all 

the potentials for a specific circumstance predicted by consequence analysis are converted to 

money. Environmental loss mainly focuses on the release and dispersion of harmful 

substances in the environment, and these harmful substances typically consist of any 

combination of oils, liquefied gases, flammable substances, reactive or radio-active materials 

and bio-toxins. As the dispersion of these substances into the atmosphere may contaminate 

the water table, land, or rivers over time, both the immediate effects and potential future 

damage must be investigated. The cost of clean-up operations and emergency services, 

claims by affected parties and fines by government are considered in estimating 

environmental loss (Hessami 2010).  

To provide a coherent view of the totality of loss associated with a hazardous situation, 

all categories must be converted to a common currency. Although asset and environmental 

losses are generally expressed in monetary terms, the human loss forecast in the form of 

equivalent fatalities is converted to an equivalent monetary value by employing the concept 

of Value of Preventing a Fatality (Hessami 2010).  

The above loss analysis is usually conducted through a systemic investigation process by 

a group of experts who are familiar with loss estimation and prevention. In addition, the 

consequence of a hazardous situation is considered to remain constant throughout the 

lifetime of the system. Table 5.3 shows the proposed severity matrix of this study, which 

includes an estimated dollar value of damage for each consequence category (Decision 1-3 

in Table 5.1).  
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Table  5.3: Consequence severity matrix 

Severity 
class 

Monetary 
Value 

Human Loss Asset Loss Environmental Loss 

Negligible <10k One minor injury 
Minor repairs that can be 
done immediately by own 

crew 

Around the area, easy 
recovery 

Minor 10-100k 
One or two minor 

injuries 
Repairs that take several 

days to carry out 
Within the plant, short 
term remediation effort 

Medium 100k-1million 
Multiple major 

injuries 

Damage that takes months 
to repair and causes serious 

consequences 

Minor offsite impact, 
remediation cost will 
be less than 1 million 

Major 1-10 million 
One fatality or 

multiple injuries 
with disabilities 

Very large material 
damage 

Community advisory 
issued, remediation 

cost remains below 10 
million 

Catastrophic >10 million Multiple fatalities 
Significant parts of the 

system 
destroyed 

Community 
evacuation for longer 
period, remediation 
cost in excess of 10 

million 

5.4.3.3 THE SITUATION RISK ESTIMATION 

To estimate the risk level of a situation, a fuzzy logic system (FLS) is used. The selection 

of a membership function for variables essentially depends on the variable characteristics, 

available information and expert knowledge. The shapes of the membership functions can 

be defined using failure mode and effect analysis (FMEA) tool. However, in this study the 

membership functions as shown in Figure 5.5 are defined as a combination of trapezoidal 

and triangular numbers to simplify the operation and increase the sensitivity in a number of 

bounds (Pedrycz 1994). The α level cuts “1” and “0” are used to describe the fuzzy sets for 

each variable as explained in Table 5.5. To achieve this, 25 rules in terms of linguistic 

variables elicited from operators and shown in Table 5.4, are developed. For example, IF 

 is Even AND  is Major THEN  is Not acceptable. To generate the 

output, Mamdani’s fuzzy inference method is used to implicate each single rule and 

aggregate the outcome from all rules into a single output fuzzy set (Mamdani 1977). In the 

defuzzification process, the output fuzzy set of risk is converted into a crisp value, which is 

used for the risk evaluation category (Decision 1-4 in Table 5.1). 
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 Table  5.4: Operator’s rules for assessing situations 

 Severity     

Probability Negligible Minor Medium Major Catastrophic 

Very likely 
Tolerable not 

acceptable 
Tolerable not 

acceptable 
Not acceptable Not acceptable Not acceptable 

Likely 
Tolerable 
acceptable 

Tolerable not 
acceptable 

Tolerable not 
acceptable 

Not acceptable Not acceptable 

Even Acceptable 
Tolerable 
acceptable 

Tolerable not 
acceptable 

Not acceptable Not acceptable 

Unlikely Acceptable Acceptable Acceptable 
Tolerable not 

acceptable 
Tolerable not 

acceptable 
Very 

Unlikely 
Acceptable Acceptable Acceptable 

Tolerable not 
acceptable 

Tolerable not 
acceptable 

 

Figure  5.5: Membership functions of probability, severity, and risk 

Probability 

Risk 

Severity 
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Table  5.5: Fuzzification of input and output variables 

Probability 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

VL Very likely 9E -007, 1 7E -007 
L Likely 7E -007 5E -007, 9E -007 
E Even 5E-007 3E-007, 7E-007 
U Unlikely 3E-007 1E-007, 5E-007 
VU Very Unlikely 0, 1E-007 3E-007 
Universe of discourse: (10-6-1)   

Severity 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

N Negligible 0, 6.25E+05 2.5E+06 
MI Minor 2.5E+06 6.25E+05, 5E+06 
M Medium 5E+06 2.5E+06, 7.5E+06 
MA Major 7.5E+06 5E+06, 9.375E+06 
C Catastrophic 9.375E+06, 1E+07 7.5E+06 
Universe of discourse: (0-107)   

Risk 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

A Acceptable 1 2 
TA Tolerable acceptable 2 1, 3 
TNA Tolerable not acceptable 3 2, 3.85 
NA Not acceptable 3.85, 4 3 
Universe of discourse: (1-4)   

5.4.4 THE SITUATION RECOVERY COMPONENT 

If the estimated risk of the situation is unacceptable, it is necessary to recover the 

situation. Identifying the risk-reducing measures therefore contributes to decisions about 

risk control, mitigation, transfer, elimination, or an appropriate combination thereof. 

However, the situational network does not provide the risk reduction measures; it provides 

the most probable explanation for the given abnormal situation that can be used for making 

appropriate maintenance decisions, and it helps to simulate the impact of risk recovery 

decisions on a situation. A list of available reduction and containment options can be 
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presented as decision rules (i.e. IF Antecedent; THEN Consequent) where ‘antecedent’ is a 

situation, while ‘consequent’ is a suggested action to remove or eliminate the risk and 

recover the situation (Decision 2-1 in Table 5.1). Based on the operator’s response to 

choosing practical options, the situation assessment component has the ability to simulate 

the situation and estimate the new risk level (Decision 2-2 in Table 5.1). The aim is to 

eliminate or reduce the risk level of situations to an acceptable level.  

5.4.5 THE HUMAN-COMPUTER INTERFACE 

A graphical user interface (GUI) for the proposed system is developed based on SA-

oriented design principles and using SMILE (Structural Modelling, Inference, and Learning 

Engine), which is a library of C++ classes for implementing BNs in intelligent systems 

(Laboratory 1998). The proposed system does not control the manner of actions and 

maintains the operator’s involvement in the decision-making process. The development of 

human-computer interactions indicates that, with insufficient automation, operators will 

have an excessive workload, whereas too much automation may disconnect operators from 

the system and alienate them from the production process (Brannon et al. 2009). Therefore, 

keeping operators in the loop of decision-making, taking action, and updating the related 

information are critical issues in designing support systems. 

5.5 COMPARISON WITH OTHER STUDIES AND LIMITATIONS 

To date, several BN-based situation assessment methods have been proposed in the 

literature. This section compares the SASS with another study conducted by Kim and 

Seong (2006a). The differences between the two researches can be summarized as follows:  

 The study by Kim and Seong (KS) does not provide a definition for the situation 

and assumes that the situation is equal to the nuclear power plant (NPP) 

environment in their study. In addition, the authors assume that the occurrences of 

various situations are mutually exclusive. Based on these assumptions, they provided 

very finite states, including four accidents for the environment, to avoid a large BN 

in which the need for essential data increases exponentially or proportionally. The 
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situation in this study is clearly defined, and a situation modelling process proposed 

in which the situations might be inclusive. 

 The KS model does not provide a situation model; it assumes that the situation 

model is the operator’s understanding of the state of the plant. It also assumes that 

the situation can be modelled using the representative states of the plant, meaning 

that the operator only considers those representative states. The KS network 

therefore only includes indicators and sensors, based on which the KS model is 

unable to determine the cause of abnormal situations, nor can it support operators’ 

understanding of such situations. In the KS model, therefore, operators have to rely 

on their knowledge to understand situations. In the study presented in this thesis, 

the most probable causes of any abnormal situation can be obtained from the 

situation models that help operators to understand the situation. 

 Learning, education, training, and other experiences enable operators to form 

mental models of plant dynamics in their long-term memory. The KS model uses 

deterministic rules to describe operators’ mental models for the representative states 

of the environment. The authors incorporate the operators’ mental models into the 

situation assessment model through the CPTs of the BN. In this research, CPTs 

aside, the knowledge is used to encode the objects, relationships and observable 

variables that represent information sources and situations.  

 The KS model only provides a set of probabilities for representative states that 

correspond to accidents or transitions, unlike the proposed system which is able to 

generate risk levels for every hazardous situation to show whether a situation is 

abnormal (its risk level is unacceptable), and to help operators to understand the 

hierarchy of investigations (a situation with a higher risk has priority over other 

situations to be investigated). 

 The authors provide no evaluation method for the KS method. This study suggests 

two evaluation methods for the partial and full validation of the SASS. The partial 
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evaluation is conducted by sensitivity analysis to validate the situation models and 

situational network, and a multi-perspective evaluation approach based on SA 

measures is developed in Chapter 8 for the full evaluation of the SASS. 

The proposed SASS is anticipated to provide adequate support for operators in safety-

critical domains; however, there are several limitations and other important features related 

to human operators that should be taken into account: 

 Human thinking is so complex that no computer program, however sophisticated, 

can ever replace it. This study makes two assumptions to simulate the situation 

assessment process conducted by human operators. First, it is assumed that operators 

use Bayesian inference to process incoming information. As operators do not 

perform mathematical calculations while performing a situation assessment, the 

proposed situation assessment model provides only approximations of operator 

behaviour in the situation assessment process. The proposed model is expected to 

provide the most logical results and therefore can be considered to be optimistic. In 

the real world, the conclusions of a human operator will tend to be more 

conservative than the results of mathematical calculations based on Bayesian 

inference (Kim & Seong 2006a). Second, this study assumes that the proposed FLS 

used to generate the assessment result for every situation is specially structured to 

resemble the human thinking process. Although well-skilled operators who have 

learned or acquired this knowledge by education and experience over a prolonged 

period of time are able to determine the risk level of situations, unskilled or semi-

skilled operators need to consult the FLS.  

 Since SASS is a dynamic system, it needs to have the ability to generate warnings 

when awareness is diminished due to uncertainty or lack of data. Operators may be 

confronted with an abnormal situation in which incorrect information is provided 

by failed sensors, or in which information is simply not available. Experienced 

operators are usually able to correctly recognize an abnormal situation, identify the 
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failed sensors, and extract or deduce the correct information, but less experienced 

operators need to be supported by the proposed system to achieve SA.  

 To develop the situation models, data are collected from domain experts. As the 

probability cannot be elicited perfectly, some uncertainty associated with the 

probability distributions will be unavoidable; therefore the data problem is also an 

important issue for the proposed system. 

5.6 SUMMARY 

During abnormal situations, many alarms from different systems are usually triggered at 

the same time, making it difficult for the operator to make a decision within a very short 

period of time. Operators are frequently unable to judge which situation should be given 

priority in a short timeframe, when confronted with complex abnormal situations. Under 

these circumstances, the mental workload of operators rises sharply and too high mental 

workload possibly increases their error rate (Hsieh et al. 2012; Jou et al. 2011). Therefore, a 

system is needed to support operators’ SA in understanding and assessing the situation and 

to assist them to take appropriate actions. 

This chapter defines the goal of the support system based on ALARP, and presents a set 

of requirements based on GDTA methodology for the development of the SASS to help 

operators in abnormal situations. The proposed ASM method explained in Chapter 4 has 

been used to develop a comprehensive knowledge-base of the system. A situation 

assessment method that uses a fuzzy logic system to resemble operators thinking in assessing 

situations, is developed. A situation recovery component and a human-computer interface 

are designed to complete the SASS creation. The SASS reasoning is carried out using the 

Bayesian theorem that facilitates the inclusion and updating of prior background knowledge 

when new information is available from the SCADA monitoring system. A comparison 

with another study and the limitation of the system are ultimately reviewed. 
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Chapter 6: 

MODELLING SITUATION AWARENESS AT A 

RESIDUE TREATER UNIT  

6.1 INTRODUCTION 

As described in Chapter 3, the explosion at the methomyl production facility in 

Institute, West Virginia killed two employees and injured eight people. The intense fire 

burned for more than four hours, forced many residents to shelter-in-place for over three 

hours, and closed the nearby highway because of smoke disruption to traffic. The CSB 

investigation team determined that the runaway chemical reaction and loss of containment 

of the flammable and toxic chemicals was the result of deviation from the written start-up 

procedures and included the bypassing of critical safety devices intended to prevent such a 

condition occurring. A poor process mimic screen, which could not provide adequate SA 

for the board operator, was another important contributing factor (CSB 2011). The tragic 

event at Institute is an example of the difficulties experienced with regard to loss of SA, 

poor SA or lack of SA, all of which are now popular terms in accident investigation reports. 

However, SA itself is not the only cause of accidents (Dekker 2013).  

This chapter demonstrates the performance of the SASS at the residue treater unit. Two 

kinds of operations for the residue treater can be considered: Start-up and Routine. As 
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described in Chapter 3, the accident happened during the unit start-up after extended 

outage. Therefore, firstly start-up operation is considered and real data collected from the 

unit are used in the SASS. Then, the performance of the SASS is investigated through an 

unreal scenario during routine operation. 

6.2 PLANT DESCRIPTION 

Methomyl is classified as a carbamate insecticide and is a white crystalline solid with a 

slight sulfurous odor that is usually produced from methyl isocyanate (MIC). MIC can cause 

a highly exothermic reaction if mixed with water, therefore it needs to be stored in stainless 

steel or glass containers at temperatures below 40°C. The production process of methomyl 

as illustrated in Figure 6.1 starts with the production of methylthioacetaldoxime (MSAO) 

by reacting chloroacetaldoxime with sodium methyl mercaptide. The MSAO then reacts 

with MIC to produce methomyl.  

The crystallizers remove excess MIC from the methomyl-solvent solution by adding an 

anti-solvent that causes the methomyl becomes crystallized. Lastly, a centrifuge separates 

the crystallized methomyl from the solvents. The methomyl cake is dried, packaged and 

Figure  6.1: Methomyl synthesis process flow 



Chapter 6: Modelling Situation Awareness at a Residue Treater Unit 100 
 

 

 

moved to the warehouse. The liquid residue in the centrifuge contains very small quantities 

of methomyl and other impurities (CSB 2011). 

As can be seen from Figure 6.2, the solvent recovery flasher separates the solvents and 

recycles them to the beginning of the process. The accumulated liquid in the bottom of the 

flasher, which is called “flasher bottoms”, includes unvaporized solvents and impurities 

containing up to 22% methomyl. The flasher bottoms are used as fuel in the facility steam 

boilers after the methomyl concentration has been reduced to less than 0.5% by weight. 

This rate is essential for environmental and processing considerations (CSB 2011).  

The incoming flasher bottoms are diluted in a 4500-gallon pressure vessel (50 psig is the 

maximum allowable operating pressure) called the residue treater, as shown in Figure 6.3. 

The concentration of methomyl in the flasher bottom stream will be below 0.5% by weight 

if the residue treater is operated at a high enough temperature, and with sufficient residence 

time, to decompose the content. An auxiliary fuel tank is used to store the solvent and 

residual waste material and to transfer them to the facility steam boiler where they will be 

used as fuel. Toxic and flammable vapours are removed from vapour generated in the 

methomyl decomposition reaction when it exits through the vent condenser to the process 

vent system (CSB 2011).  

Figure  6.2:  Methomyl centrifuge and solvent recovery process flow 
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6.3 OBSERVABLE VARIABLES 

There are several transmitters in the environment that provide the online condition for 

the residue treater. Discrete states of the observable variables are determined in terms of 

operation and safety set-points as follows: 

 Liquid level: A level transmitter provides the residue treater liquid level (L). The 

routine operation is not started at a level lower than 30%, and the maximum 

permissible level of liquid is 50%. The value range of the liquid level variable is 

divided into three fuzzy states: Low, Normal and High. The membership function 

of L is illustrated in Figure 6.4 and determined as follows:  

(6.1) 

      (6.2) 

      (6.3) 

 

Figure  6.3: Residue treater piping system layout 
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 Recirculation flow: During the operation, a pump provides a steady state of 

recirculation, and a flow transmitter measures the flow of liquid through the 

recirculation pipeline. The measurement is converted to electrical signals and sent 

to the DCS by the flow transmitter. This allows operators to visualize the amount 

of liquid being transferred through the cooling cycle. The value range of the 

recirculation flow (F) is divided into three fuzzy states, Very Low, Low, and 

Normal, as shown in Figure 6.5, and the membership function of F is determined 

as follows: 

(6.4) 

     (6.5) 

      (6.6) 

 
 Temperature: The content of the residue treater should be maintained around 

135°C to decompose the incoming methomyl quickly and prevent the 

accumulation of methomyl at an unsafe concentration inside the residue treater. A 

 

  

Very Low  Normal 

  

Low 

  

Figure  6.5: Membership function of recirculation flow 

 

  

Low High  Normal 

   

Figure  6.4: Membership function of liquid level 
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temperature transmitter provides the residue treater temperature (T). The 

temperature value range is divided into three fuzzy states, Low, Normal, and High, 

as shown in Figure 6.6, and the membership function of T is determined as 

follows: 

(6.7) 

                                  (6.8) 

      (6.9) 

 
 Pressure: The maximum allowable operating pressure of the residue treater is 50 

psig, but it is normally operated at 20 psig. A pressure transmitter provides the 

residue treater pressure (P). The pressure value range is divided into three fuzzy 

states, Normal, High, and Very High, and the membership function of P is 

determined as follows, and as shown in Figure 6.7: 

(6.10) 

                                    (6.11) 

      (6.12) 

 

 

Low High  Normal 

    

Figure  6.6: Membership function of temperature 
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6.4 START-UP OPERATION 

During start-up, the residue treater is manually pre-filled with solvent to a minimum 

level of 30%. This means that the operation will not start at a lower level. The solvent is 

heated by steam that flows through the heater. When the liquid temperature has increased 

to set-point limit, the steam flow valve is closed, recirculation flow is redirected from the 

heater to the cooler, and routine operation is started. 

6.4.1 EVENTS TIMELINE 

At approximately 23:33 on 28 August 2008, the runaway chemical reaction caused a 

violent explosion at the methomyl manufacturing facility. The accident occurred during 

the first methomyl restart after an extended outage to install a new process control system 

and a stainless steel pressure vessel. On the night of the incident, methomyl-containing 

solvent was pumped into the residue treater before the vessel was pre-filled with clean 

solvent and heated to the required minimum operating temperature specified in the 

operating procedure. The emergency vent system was overwhelmed by the evolving gas 

from the runaway decomposition reaction of the methomyl, and the residue treater 

exploded violently (CSB 2011). 

On the day of the accident at approximately 4:00, the outside operator manually opened 

the residue treater feed control valve and began feeding flasher bottoms into the almost 

empty vessel. With a low flow rate of about 1.5 gallons per minute, more than 24 hours 

would be required to fill the residue treater to 50%, the normal operating level. The outside 

 

 

Normal Very High  High 

   

Figure  6.7: Membership function of pressure 
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operator started the recirculation pump at 18:15, as directed by the board operator. The 

residue treater liquid level was approximately 30% (1,300 gallons), the temperature ranged 

between 60°C and 65°C, still significantly below the critical decomposition temperature of 

135°C, and the pressure remained constant at 22 psig. At 18:38, the temperature began to 

steadily rise at a rate of about 0.6 degrees per minute (Figure 6.8). At 22:21, the level was 

51% when the recirculation flow suddenly dropped to zero. In less than three minutes, the 

temperature reached 141°C, rapidly approaching the safe operating limit of 155°C, and was 

climbing at the rate of more than two degrees per minute. At approximately 22:25, the 

residue treater high pressure alarm sounded at the work station. The board operator 

immediately observed that the residue treater pressure was above the maximum operating 

pressure and climbing rapidly but did not understand what was wrong. He therefore asked 

two outside operators to investigate why the pressure in the residue treater was 

unexpectedly increasing. About 10 minutes later, as the two operators approached the 

newly installed residue treater, it suddenly and violently ruptured (CSB 2011). 

Approximately 2,200 gallons of flammable solvents and toxic insecticide residues 

sprayed onto the road and into the unit and immediately erupted in flames as severed 

electrical cables, or sparks from steel debris striking the concrete, ignited the solvent vapour. 

Debris was thrown in all directions, to a distance of some hundreds of feet. The blast over-

pressure moderately damaged the unit control building and other nearby structures. 

Fortunately, a steel blanket protected a 6,700-gallon methyl isocyanate storage tank from 

flying debris and from the radiant heat generated by the nearby fires that burned for more 

than four hours. One employee died at the scene from blunt force trauma and thermal burn 

injuries, and the second employee died 41 days later. Residences, businesses, and vehicles as 

far as seven miles from the explosion epicentre sustained over-pressure damage that 

included minor structural and exterior damage, and broken windows. Acrid, dense smoke 

billowed from the fire into the calm night air for many hours. Smoke drifted over nearby 

roads, forcing many road closures and disrupting highway traffic. Methomyl and solvents 
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were released from the residue treater, and solvents and other toxic chemicals, including 

flammable and toxic MIC, were released from ruptured unit piping. The released chemicals 

rapidly ignited, producing undetermined combustion products (CSB 2011).  

6.4.2 ABNORMAL SITUATIONS 

By consulting a chemical expert who has eight years’ experience in the oil industry and 

analyzing the accident investigation report, several possible abnormal situations in the 

residue treater environment are determined, as follows: 

 Situation of vent condenser failure (SVC) 

 Situation of abnormal liquid level (SAL) 

 Situation of abnormal recirculation (SAR) 

 Situation of high pressure (SHP) 

 Situation of abnormal temperature (SAT) 

 Situation of high concentration of methomyl (SHC) 

 Situation of runaway reaction (SRR) 

Explosion 

Figure  6.8: Residue treater process variables before the explosion 
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The first three situations, SVC, SAL, SAR, are independent situations and are modelled 

based on their objects. The four other situations, SHP, SAT, SHC and SRR are dependent 

situations 

In the following sections, the situations are modelled based on the proposed ASM 

methodology. The CPTs of focal objects, which delegate the situations, are presented, and 

the CPTs of other objects are omitted. The majority of failure probabilities are determined 

based on data recorded by OREDA (2002), and the use of expert judgment in a limited 

number of places. The focal objects are coloured blue, other objects are shown in yellow 

and observable variables are coloured green. It is worth noting that the states of observable 

variables were determined in Section 6.3.  

(1) SITUATION OF VENT CONDENSER FAILURE (SVC) 

A vent condenser is a plume abatement device which cools and condenses the vented 

steam by cold plant water. At the residue treater, vapour generated in the methomyl 

decomposition reaction exits through the vent condenser to the process vent system where 

toxic and flammable vapour are removed. Any problem at the vent condenser will lead to 

an imbalance in the crystallizer solvent ratios and excess MSAO in the flasher bottoms. The 

objects, model, and CPT of SVC are presented in Table 6.1, Figure 6.9, and Table 6.2, 

respectively.  

Table  6.1: Situation of vent condenser failure objects and symbols 

Objects Symbol Failure Probability 
Loss of chilled cooling water supply LCW 3.66E-05 
Cooling water isolation valve is inadvertently closed CWC 2.00E-02 
Cooling water isolation valve is plugged CWP 6.91E-03 

 

 

 

 

 

 

 

 

SVC 

CWC LCW CWP 

Figure  6.9: Situation of vent condenser failure model 
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Table  6.2: CPT of P(SVC| LCW, CWC, CWP) 

Variables States and probabilities 
LCW Failure Success 
CWC Failure Success Failure Success 
CWP Failure Success Failure Success Failure Success Failure Success 

Hazardous 1 1 1 1 1 1 1 0 
Safe 0 0 0 0 0 0 0 1 

(2) SITUATION OF ABNORMAL LIQUID LEVEL (SAL) 

The start-up sequence requires the board operator, with the assistance of an outside 

operator, to manually pre-fill the residue treater with solvent to the minimum level of 

about 30% and to start the pump and achieve steady state recirculation. This is essential for 

safe, controlled methomyl decomposition, and starting routine operation, incoming flasher 

bottoms in the solvent at a lower level will increase the methomyl concentrate. The 

objects, model, and CPT of SAL are presented in Table 6.3, Figure 6.10, and Table 6.4, 

respectively. The level transmitter provides the residue treater liquid level, so SAL can be 

inferred by this variable.  

Table  6.3: Situation of abnormal liquid level objects and symbols. 

Objects Symbol 
Failure 
Probability 

Level transmitter LT 1.40E-04 
Manual level control MLC OR gate 
Manual feed valve MFV 1.40E-01 
Manual discharge valve MDV 1.40E-01 
Failure of outside operator in operating manual valves FOL 2.70E-01 

 

 

Figure  6.10: Situation of abnormal liquid level model 
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Table  6.4: CPT of P(SAL| MLC, LT) 

Variables States and probabilities 
MLC Failure Success 
LT Failure Success Failure Success 

Hazardous 1 1 1 0 
Safe 0 0 0 1 

(3)  SITUATION OF ABNORMAL RECIRCULATION (SAR) 

The residue treater recirculation system is used to heat the solvent at the beginning of a 

new production run, mix the incoming flasher bottoms in the partially filled vessel, and 

remove excess heat generated by the exothermic decomposition of the methomyl inside the 

vessel. During start-up, the control system modulates the recirculation and steam flows 

through the heater. When the liquid temperature increases to the set-point limit, the 

control system closes the steam flow valve, and changes the position of the circulation 

valves to redirect the recirculation flow from the heater to the cooler. The objects, model, 

and CPT of SAR are presented in Table 6.5, Figure 6.11, and Table 6.6, respectively. The 

situation can be inferred by recirculation flow. 

Table  6.5: Situation of abnormal recirculation objects and symbols. 

Objects Symbol Failure Probability 
Flow transmitter FT 7.13E-06 
Recirculation pump RP 4.00E-02 
Temperature sensor in recirculation TS 4.00E-02 
Automatic steam valve ASV 8.68E-06 
Automatic heater system AHS OR gate 
 

SAR 

RP 

AHS FT 

ASV TS 

F 

Figure  6.11: Situation of abnormal recirculation model 
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Table  6.6: CPT of P(SAR| FT, AHS) 

Variables States and probabilities 
FT Failure Success 

AHS Failure Success Failure Success 
Hazardous 1 1 1 0 

Safe 0 0 0 1 

(4) SITUATION OF HIGH PRESSURE (SHP)  

The residue treater includes an automatic pressure control to ensure that process is 

normally operated at 20 psig. The vent condenser at the top of the residue treater, which is 

prone to blockages during unit operation, passes the gases produced by the methomyl 

decomposition reaction to the flare system. The gas flow carries trace amounts of solid 

material into the vent system, which are deposited on the surface of the pipe, and over 

time, accumulated deposits can choke the flow and cause the residue treater pressure to 

climb. The objects, model, and CPT of SHP are presented in Table 6.7, Figure 6.12, and 

Table 6.8 respectively. The situation is connected to node P because it can be inferred from 

the pressure variable.  

Table  6.7: Situation of high pressure objects and symbols. 

Objects Symbol Failure Probability 
Pressure transmitter PT 1.64E-01 
Automatic relief valve (mechanical failure) ARV 3.40E-01 
Automatic pressure control APC OR gate 
Failure of outside operator in operating manual valve FOP 2.70E-01 
Manual relief valve MRV 1.39E-01 
Manual pressure control MPC OR gate 
High pressure protection system HPP AND gate 
Accumulating deposits at vent condenser piping AD 4.95E-06 
Situation of vent condenser failure SVC Independent situation 
Inadequate ventilation IV OR gate 
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Figure  6.12: Situation of high pressure model 
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Table  6.8: CPT of P(SHP| HPP, IV) 

Variables States and probabilities 
HPP Failure Success 
IV Failure Success Failure Success 

Hazardous 1 0 0 0 
Safe 0 1 1 1 

(5) SITUATION OF ABNORMAL TEMPERATURE (SAT) 

A minimum temperature interlock prevents the feed control valve from opening until 

the minimum temperature of the residue treater contents are at, or above, the set-point. 

During start-up, an automatic temperature control system monitors the bulk liquid 

temperature inside the vessel. Steam flows are used to heat the solvent. At normal operating 

conditions, the temperature of the flasher bottoms liquid is kept at about 80°C to prevent 

uncontrolled auto-decomposition of the more highly concentrated methomyl. The 

contents of the residue treater are maintained at approximately 135°C, a temperature that 

ensures that the incoming methomyl will quickly decompose to avoid accumulation to an 

unsafe concentration inside the residue treater. The objects, model, and CPT of SAT are 

presented in Table 6.9, Figure 6.13, and Table 6.10, respectively. The temperature 

transmitter that provides the residue treater temperature, is used for inferring SAT. 

Table  6.9: Situation of abnormal temperature objects and symbols. 

Objects Symbol Failure Probability 
Temperature transmitter TT 6.84E-06 
Situation of abnormal recirculation SAR Independent situation 
Automatic temperature control ATC OR gate 
Failure of outside operator to operate steam valve FOT 1.00E-01 
Manual steam valve MSV 1.39E-06 
Manual temperature control MTC OR gate 

 

 

 

 

SAT 

SAR FOT 

MTC 

MSV TT 

ATC T 

Figure  6.13: Situation of abnormal temperature model 
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Table  6.10: CPT of P(SAT| ATC, MTC). 

Variables States and probabilities 
ATC Failure Success 
MTC Failure Success Failure Success 

Hazardous 1 0 0 0 
Safe 0 1 1 1 

(6) SITUATION OF HIGH CONCENTRATION OF METHOMYL (SHC) 

The methomyl safely decomposes inside the residue treater to a concentration of less 

than 0.5% by weight. If the tank is allowed to cool below 130°C for any reason, it must be 

sampled before being heated up again. In addition, if the tank has a liquid level lower than 

30%, the concentration of methomyl will increase when the flasher bottoms are introduced 

into the residue treater. The objects, model, and CPT of SHC are presented in Table 6.11, 

Figure 6.14, and Table .12, respectively. 

Table  6.11: Situation of high concentration of methomyl objects and symbols 

Objects Symbol Failure Probability 
Situation of abnormal liquid level SAL Independent situation 
Failure of outside operator to understand liquid level FON 1.00E-02 
High concentration of methomyl because of low liquid level HCL AND gate 
Situation of abnormal temperature SAT Independent situation 
Manual concentration control MCC OR gate 
Failure of outside operator in sampling FOS 2.00E-01 
Failure of laboratory in testing the concentration of methomyl FLN 1.00E-02 
High concentration of methomyl because of low temperature HCT AND gate 
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Figure  6.14: Situation of high concentration of methomyl model 
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Table  6.12: CPT of P(SHC| HCT, HCL) 

Variables States and probabilities 
HCT Failure Success 
HCL Failure Success Failure Success 

Hazardous 1 1 1 0 
Safe 0 0 0 1 

(7) SITUATION OF RUNAWAY REACTION (SRR) 

A runaway reaction is a chemical reaction over which control has been lost. The 

reaction speed continues to accelerate until the reaction either runs out of reactants or the 

vessel containing it over-pressurizes and containment is lost. The temporal arcs point to the 

SRR situation because it is assumed that the situation is formed after a time interval. The 

interpretation is that the runaway reaction occurs when a high concentration of methomyl 

exists for a few minutes inside the vessel and a high pressure situation exists in the 

environment. The objects, model, and CPT of SRR are presented in Table 6.13, Figure 

6.15, and Table 6.14, respectively. 

Table  6.13: Situation of runaway reaction objects and symbols 

Objects Symbol  
Situation of high pressure SHP  
Situation of high concentration of methomyl   SHC  

 

Table  6.14: CPT of P(SRR| SHC, SHP, SRR) 

Variables States and probabilities 
SHC Hazardous Safe 
SHP Hazardous Safe Hazardous Safe 
SRR Hazardous Safe Hazardous Safe Hazardous Safe Hazardous Safe 

Hazardous 1 0.99 0.05 0.05 0.4 0.05 0.05 0 
Safe 0 0.01 0.95 0.95 0.6 0.95 0.95 1 

SRR 

SHC SHP 

Figure  6.15: Situation of runaway reaction model 

1 1 
1 
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6.4.3 SITUATIONAL NETWORK DEVELOPMENT 

The environment has a continuous air monitor system, which is located in and around 

the production unit, with 16 stationary sample points to detect fugitive leaks from process 

equipment. It detects concentrations of airborne chemical contaminants and alerts facility 

occupants if air concentration exceeds safe levels (1.0 ppm). In addition, a fire alarm and 

several fire cannons are located in the environment to reduce damage if a fire occurs. The 

air monitor system, alarm, and fire cannons are considered to be safety barriers, as shown in 

Table 6.15. The probability of the existence of spark is also estimated in this table.  

Table  6.15: Safety barriers and chance of spark. 

Objects Symbol Failure Probability 
Air monitor system AM 0.18E-06 
Fire alarm FA 1.30E-03 
Fire cannon FC 4.00E-01 
Spark SP 1.00E-01 

The SRR can have results that range from the boiling over of the reaction mass to large 

increases in temperature and pressure that lead to an explosion. Such violent reactions can 

cause blast and missile damage. If flammable materials are released, fire or secondary 

explosion may result. Hot liquids and toxic materials may contaminate the workplace or 

generate a toxic cloud that may spread off-site. There can be serious risk of injury, even 

death, to plant operators, as well as the general public, and the local environment may be 

harmed. Therefore, SRR has a consequence node whose states are determined using 

consequence analysis, as described in Chapter 5 and presented in Table 6.16.  

Table  6.16: The states of consequences node. 

Consequence Symbol Loss ($) 
Explosion with high death and high property damage C1 1E+07 
Fire with high death and moderate property damage C2 7E+06 
Fire with low death and high property damage C3 5E+06 
Fire with low death and moderate property damage C4 4E+06 
Ruptured vessel with vapour cloud with possibility of ignition C5 3E+06 
Safe evacuation C6 1E+06 
Safe state C7 0E+00 
Note: the safe state indicates the safe state of SRR. 
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The table contains the degree of loss corresponding to every state, which is evaluated by 

the expert. For other situations, the resultant situation is considered to be a consequence of 

the occurrence. The degree of loss in these situations is also calculated and summarized in 

Table 6.17. A situational network for the residue treater is developed and illustrated in 

Figure 6.16. 

Table  6.17: Loss of situations. 

Situation Consequence of occurrence Loss ($) 
SAR SLT 1E+03 
SLT SHC 1E+04 
SLL SHC 1E+04 
SHC SRR 3E+06 
SVC SHP 1E+03 
SHP SRR 3E+06 

Figure  6.16: The start-up operation situational network 
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6.4.4 SITUATIONAL NETWORK EVALUATION 

Application of the sensitivity to findings shows that the query variable, SRR, in the 

absence of other evidence, is most sensitive to SHP, followed by observable variable P. This 

is what the experts expected because SRR results if methomyl is allowed to accumulate in 

the residue treater and the pressure relief system is not working properly. When findings for 

observable variable P (P=High) are entered into the network, the sensitivity measures and 

the ranking of variables are changed. With this evidence, SRR is most sensitive to SHC 

and SAL, followed by observable variable L. Alternatively, when P=High and L=High are 

entered into the network, some of the remaining variables become more influential. These 

observations agreed with the experts understanding of the situational network. 

Sensitivity to parameters was analysed in the CTPs of observable variables which were 

determined by the experts. For instance, scenario S=(SRR, Hazardous, 

E={SHP=Hazardous, T=High}) was investigated in which the hypothesis under 

consideration is SRR=Hazardous, while the parameter in focus is P(T=High| 

SAT=Hazardous). Therefore, the sensitivity function  was defined as follows: 

       (6.13) 

The coefficients of denominator and numerator functions were determined separately. 

Both functions are linear in the parameter t. Thus, the coefficients of each function were 

determined by propagating evidence for two different parameter values. The sensitivity 

function resulted as follows when t0=0.1 and t1=0.2 were used to propagate evidence: 

                                                     (6.14) 

The graph of the sensitivity function  for all possible values of t, values between 

zero and one, is plotted in Figure 6.17. As can be seen, the minimum value of the 

probability of the hypothesis is 0.0001 for t=0, while the maximum value of the probability 

of the hypothesis is 0.887 for t=1. Clearly, the posterior probability of the hypothesis is 

more sensitive to variations in the parameter value when the initial parameter value is in the 

range from 0 to, say, 0.5 than when the initial parameter is in the range from 0.5 to 1. 
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Figure  6.17: The graph of the sensitivity function  = P(SRR= Hazardous| E). 

6.4.5 THE SASS PERFORMANCE 

On the night of the accident, the critical start-up safety prerequisites, pre-startup solvent 

fill and heat-up were omitted from the restart activities. Furthermore, the board operators 

bypassed the minimum operating temperature interlock that prevented adding methomyl 

into the residue treater, as some operators were accustomed to doing. At about 23:45 the 

board operator started to pre-fill the vessel with solvent and heat the content to achieve the 

required minimum operating temperature. At 04:00 on 28 August, the residue treater 

liquid level was approximately 15%, significantly below the critical required solvent level 

(30%), and the temperature was around 65°C, still significantly below 135°C, the critical 

decomposition temperature. The outside operator prematurely opened the residue treater 

feed control valve and began to feed flasher bottoms into the vessel to start a routine 

operation. To simplify the presentation of situational network performance, the last hour 

before the explosion is chosen, from 21:30 to 22:30 on 28 August. The trend of observable 

variables for the period of study is illustrated in Figure 6.18. At 21:30, the residue treater 

liquid level was approximately 50%, the temperature was 130°C raising steadily about 0.5 

degree per minute, and the pressure was 22 psig. At 22:21, the level was 51% when the 

recirculation flow suddenly dropped to zero. In less than three minutes, the temperature 
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reached 141°C, rapidly approaching 155°C, the safe operating limit, and climbed at the rate 

of more than two degrees per minute. 

Figure  6.18: The trend of observable variables. 

The data collection component provides the fuzzy partitioning values of observable 

variables based on the proposed membership functions and assigned them to the situational 

network. The posterior probabilities of the situations are updated and the risk level of each 

situation is projected, as shown in Figure 6.19. As can be seen, the estimated risk level of 

SAT is 2.95 (tolerable not acceptable) at the beginning of the period because the 

temperature was below the safety set-point. It then becomes tolerable not acceptable from 

22:15 as the temperature deviates from the safety set-point. The risk level of SHP is 

acceptable, i.e. 1.65, during the period of study until 22:25 as the pressure increases and 

deviates the safety set-point. The risk level of SHC is unacceptable for the whole period 

under study because the liquid level of the solvent was below the safety set-point (30%), i.e. 

the risk level of SAL is unacceptable, and the operator opened the feed valve without 

considering this fact.  

As can be seen, the risk level of SRR is acceptable, i.e. 1.35, until 22:24, when it 

increases to 3.03, which is unacceptable, immediately after appearing to be an SHP.  

At 22:21 when the risk level of SAR rises, the situational network shows that the most 

probable explanation is the failure of the recirculation pump (RP) with a probability of 0.5. 

At 22:25 when the risk level of SAR increases, the system shows that the most probable 

explanation is the failure of the high pressure protection system (HPP) and the failure of the 

automatic relief valve. The system helps the operator to prevent accidents in abnormal 
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situations, but it can also present the factors that contribute to the creation of an accident or 

a specific consequence. For instance, if at 22:33 a fire with low death and high property 

damage (C3) is reported, the posterior probability updating from this evidence shows that 

the closed cooling water isolation valve (CWC) causes inadequate ventilation, and 

consequently SHP in the residue treater which, with SHC, creates SRR. 

 

 

 

 

 

 

 

Figure  6.19: Projection of situation risk levels. 

6.5 ROUTINE OPERATION 

To prepare for a routine operation, the vessel is filled with solvent and heated. Dissolved 

methomyl and other waste chemicals are fed into the preheated residue treater, which is 

partially filled with solvent.  A normal recirculation loop flow is ensured to mix the 

concentrated methomyl feed with preheated solvent in the residue treater. The methomyl 

safely decomposes inside the residue treater to a concentration of less than 0.5% by weight. 

6.5.1 ABNORMAL SITUATIONS 

Several possible abnormal situations for routine operation are determined as follows: 

 Situation of vent condenser failure (SVC) 

 Situation of high liquid level (SHL) 

 Situation of abnormal recirculation (SAR) 

 Situation of high pressure (SHP) 

 Situation of high temperature (SHT) 
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 Situation of high concentration of methomyl (SHC) 

 Situation of runaway reaction (SRR) 

As can be seen, there are some common situations between Start-up and Routine 

operations, i.e. SVC, SHP, and SAR. The following sections outline the new situations, 

which are modelled based on the proposed ASM method. The CPTs of focal objects that 

delegate the situations are presented, and the CPTs of other objects are omitted. The first 

three situations, i.e. SVC, SHL, SAR, are independent situations and are modelled based 

on their objects. The four other situations, i.e. SHP, SHT, SHC and SRR are dependent 

situations and are modelled based on their objects and the independent situations.  

(1) SITUATION OF HIGH LIQUID LEVEL (SHL) 

Operation at a liquid level higher than 50% of vessel capacity is dangerous. Therefore, 

the residue treater has an automatic level control system and a manual level controller to 

maintain the liquid level at less than 50%. The objects, model, and CPT of SHL are 

presented in Table 6.18, Figure 6.20, and Table 6.19, respectively. This situation can be 

inferred by the liquid level variable. 

Table  6.18: Situation of high liquid level objects and symbols 

Objects Symbol Failure Probability 

Level transmitter LT 1.40E-04 
Automatic feed valve AFV 2.02E-05 
Automatic feed control AFC OR gate 
Automatic discharge valve ADV 2.75E-05 
Automatic discharge control ADC OR gate 
Automatic level control ALC OR gate 
Failure of operator in operating manual valves FOL 2.70E-01 
Manual feed valve MFV 1.40E-01 
Manual discharge valve MDV 1.40E-01 
Manual level control MLC OR gate 
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Table  6.19: CPT of P(SHL| ALC, MLC) 

Variables States and probabilities 

ALC Failure Success 

MLC Failure Success Failure Success 

Hazardous 1 0 0 0 
Safe 0 1 1 1 

(2) SITUATION OF HIGH TEMPERATURE (SHT) 

During routine operation, water flows to remove excess heat generated by the 

exothermic decomposition of the methomyl inside the vessel. The exothermic heat of 

decomposition is controlled by vaporization and condensing of the solvent in the vent 

cooler, supplemented as needed by the recirculation loop cooler. The objects, model, and 

CPT of SHT are presented in Table 6.20, Figure 6.21, and Table 6.21, respectively. SHT is 

also inferred from temperature variable. 

 

Table  6.20: Situation of high temperature objects and symbols 

Objects Symbol Failure Probability 

Temperature transmitter TT 6.84E-06 
Situation of abnormal recirculation SAR Independent situation 
Automatic temperature control ATC OR gate 
Failure of operator to notice temperature change FOT 1.00E-01 
Manual water valve MWV 1.39E-06 
Manual temperature control MTC OR gate 

 

LT 
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Figure  6.20: Situation of high liquid level 
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Table  6.21: CPT of P(SHT| ATC, MTC) 

Variables States and probabilities 
ATC Failure Success 
MTC Failure Success Failure Success 

Hazardous 1 0 0 0 
Safe 0 1 1 1 

(3) SITUATION OF HIGH CONCENTRATION OF METHOMYL  

At normal operating conditions, the temperature of the flasher bottoms liquid is kept at 

about 80 °C to prevent uncontrolled auto-decomposition of the more highly concentrated 

methomyl. The contents of the residue treater are maintained at approximately 135 °C, the 

temperature that ensures that the incoming methomyl quickly decomposes to avoid 

accumulation to an unsafe concentration inside the residue treater. If the tank is allowed to 

cool below 130 °C for any reason, it must be sampled before being heated again. It is 

assumed that operators will sample the residue treater liquid and that appropriate testing will 

be conducted be the laboratory. The objects, model, and CPT of SHC are presented in 

Table 6.22, Figure 6.22, and Table 6.23, respectively. 

Table  6.22: Situation of high concentration of methomyl objects and symbols 

Objects Symbol Description 

Situation of high liquid level SHL Independent situation 
Situation of high temperature  SHT Dependent situation 

 
 
 

SHT 
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MWV TT 

ATC T 

Figure  6.21: Situation of high 
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Table  6.23: CPT of P(SHC| SHL, SHT) 

Variables States and probabilities 

SHL Hazardous Safe 

SHT Hazardous Safe Hazardous Safe 

Hazardous 1 1 1 0 
Safe 0 0 0 1 

(4) SITUATION OF RUNAWAY REACTION 

The runaway reaction results if methomyl is allowed to accumulate in the residue treater 

and a high pressure situation exists in the environment, the relief system is not working 

properly, which leads to a runaway reaction. The objects, model, and CPT of SRR are 

presented in Table 6.24, Figure 6.23, and Table 6.25 respectively. 

Table  6.24: Situation of runaway reaction objects and symbols 

Objects Symbol Description 

Situation of high pressure SHP Dependent situation 
Situation of high concentration of methomyl   SHC Dependent situation 

 
 

 
 
 

SHC 

SHL SHT 

Figure  6.22: Situation of high 

SRR 

SHC SHP 

Figure  6.23: Situation of runaway reaction model 
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Table  6.25: CPT of P(SRR| SHC, SHP) 

Variables States and probabilities 

SHC Hazardous Safe 

SHP Hazardous Safe Hazardous Safe 

Hazardous 1 0 0 0 
Safe 0 1 1 1 

6.5.2 SITUATIONAL NETWORK DEVELOPMENT 

It is assumed that the safety systems are the same as previously explained in Section 6.4.3 

and the states of consequence node are as explained in Table 6.16. A situational network for 

the routine operation is developed and illustrated in Figure 6.24. As there is no situation to 

be inferred during the timeframe, the situational network does not consist of a temporal arc.  

Figure  6.24: The routine operation situational network 
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6.5.3 SITUATIONAL NETWORK EVALUATION 

Application of the sensitivity to findings shows that the query variable, SRR, in the 

absence of other evidence, is most sensitive to SHP followed by observable variable P as 

shown in Table 6.26. This is what the experts have expected because SRR results if 

methomyl is allowed to accumulate in the residue treater and the pressure relief system is 

not working properly. When findings for observable variable P (P=High) are entered into 

the network, the sensitivity measures and the ranking of variables are changed. With this 

evidence, SRR is most sensitive to SHC and SHL followed by observable variable L. 

Alternatively, when P=High and L=High are entered into the network, some of remaining 

variables become more influential. These observations agreed with the experts 

understanding of the situational network. 

Sensitivity to parameters was analysed in the CTPs of observable variables which were 

determined by the experts. A model deficiency was the posterior probability 

P(SAR=Hazardous| F=Low)=0.4333. The experts believed that the probability should be 

no less than 0.65 given this evidence. Therefore, some of the network parameters were 

changed to satisfy this query constraint. The use of SamIam software (UCLA 2004) for any 

solution for every network parameter returned seven suggestions of single parameter 

changes. Four of the parameter changes were ruled out as they were changing the failure 

probabilities of basic objects. The only sensible parameter change was to decrease 

P(F=Low| SAR=Safe) from 0.1 to <=0.01374. 
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Table  6.26: Sensitivity to findings analysis performed on SRR. 

No Evidence P=High P=High, L=High 
P(SRR=Hazardous) 0.00210 0.42300 0.91900 
Entropy of SRR 0.02152   0.9828 0.4060 
Node Mutual Information Mutual Information Mutual Information 
SHP 0.01702 0.06805 0.40595 
P 0.01684 --- ---- 
IV 0.01093 0.06642 0.38678 
SVC 0.01093 0.06572 0.38510 
CWC 0.00702 0.00837 0.00135 
HPP 0.00539 0.05643 0.30601 
MPC 0.00298 0.04205 0.21444 
APC 0.00241 0.03675 0.18410 
MLC 0.00233 0.79470 0.00000 
SHC 0.00233 0.79596 0.00000 
SHL 0.00233 0.79595 0.00000 
CWP 0.00214 0.00119 0.02937 
FOP 0.00136 0.00344 0.04824 
L  0.00121 0.48338 ----- 
ARV 0.00110 0.00310 0.04167 
FOL 0.00066 0.29350 0.00000 
MRV 0.00051 0.00085 0.01506 
PT 0.00036 0.00063 0.01090 
MDV 0.00027 0.12885 0.00000 
MFV 0.00027 0.12885 0.00000 
LCW 0.00011 0.00005 0.38510 
ALC 0.00000 0.00015 0.00000 
AFC 0.00000 0.00013 0.00000 
AFV 0.00000 0.00002 0.00000 
ADC 0.00000 0.00013 0.00000 
ADV 0.00000 0.00002 0.00000 
LT 0.00000 0.00011 0.00000 
SHT 0.00000 0.00000 0.00000 
MTC 0.00000 0.00000 0.00000 
F 0.00000 0.00000 0.00000 
T 0.00000 0.00000 0.00000 
FC 0.00000 0.00000 0.00000 
FA 0.00000 0.00000 0.00000 
IB 0.00000 0.00000 0.00000 
AM 0.00000 0.00000 0.00000 
AD 0.00000 0.00000 0.00002 
FOT 0.00000 0.00000 0.00000 
MWV 0.00000 0.00000 0.00000 
ATC 0.00000 0.00000 0.00000 
TT 0.00000 0.00000 0.00000 
SAR 0.00000 0.00000 0.00000 
ACS 0.00000 0.00000 0.00000 
AWV 0.00000 0.00000 0.00000 
TS 0.00000 0.00000 0.00000 
RP 0.00000 0.00000 0.00000 
FT 0.00000 0.00000 0.00000 
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6.5.4 THE SASS PERFORMANCE 

To prepare for a routine operation, the vessel was filled with solvent and heated. 

Methomyl was added into the residue treater, and a normal recirculation loop flow was 

ensured to mix the concentrated methomyl feed with preheated solvent in the residue 

treater. At approximately 12 pm, the board operator manually opened the residue treater 

feed control valve and began feeding flasher bottoms into the vessel. At normal flow rate, it 

would take approximately 30 minutes to fill the residue treater to 50%, the normal 

operating level. The outside operator started the recirculation pump at 12:30 pm, as 

directed by the board operator. The residue treater liquid level was approximately 50% and 

the temperature ranged between 130 and 135 °C. The pressure remained constant at 22 

psig. The trends of observable variables are illustrated in Figure 6.25. At 12:41 pm, the 

temperature began to rise steadily about 1 degree per minute. At 12:49 pm, the level was 

51% when the recirculation flow suddenly dropped to zero. In less than 3 minutes, the 

temperature was at 147 °C, the highest safe operating limit. 

Figure  6.25: The trend of observable variables 

By assigning fuzzy partitioning values of observable variables after starting the routine 

operation, i.e. after 12:00 pm, to the situational network, the posterior probabilities of the 

situations are calculated, as shown in Figures 6.26 and 6.27. As can be seen, there is a sharp 

increase in the probabilities of SHL at 12:24 pm, SVC and SAR at 12:44 pm, SHC at 12:40 

pm and SHT at 12:43 pm. The posterior probabilities are unable to support the operators’ 

understanding of the current state of the situation. The operators must still rely on their 
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knowledge and mental models to comprehend what is going on; therefore, the use of risk 

indicators and situational models are used to support their comprehension and projection. 

The risk level of situations is calculated and summarized in Figures 6.28 and 6.29. As can be 

seen, the estimated risk level of SAR increases at 12:45 pm from 1.32 (acceptable) to 2.95 

(tolerable not acceptable) which means this hazardous situation is abnormal at present and 

needs to be recovered. The risk level of other independent situations, i.e. SHL and SVC, 

remains acceptable; however, there is a rise in their posterior probabilities. The risk level of 

SHP is steady and acceptable as expected, i.e. the pressure inside the vessel is almost normal. 

The risk level of SHT and SHC increases from acceptable at 12:45 pm, i.e. 1.32 and 1.65, 

respectively, to tolerable not acceptable, i.e. 2.95 and 3, respectively. Likewise, although 

there is an increase in the risk level of SRR, it remains acceptable during the study period, 

which means that this hazardous situation does not threaten the system. 

 

 

 

 

 

Figure  6.26: Posterior probability of independent situations 

Figure  6.27: Posterior probability of dependent situations 
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Figure  6.28: Risk level of independent situations 

Figure  6.29: Risk level of dependent situations 

At 12:45 pm when the risk level of SAR rises, the situational network shows that the 

most probable explanation is the failure of the recirculation pump (RP). The board 

operator immediately contacts the outside operator and directs him to check the 

recirculation pump. The outside operator’s inspection at 12:47 pm determines the valid 

performance of the RP. With new evidence (success of the RP), the board operator 

realized that the failure of the temperature sensor (TS) in the recirculation is the most likely 

factor. Considering the result of the situation assessment, maintenance decisions are made 

to recover the situation. The trend of observable variables after abnormal situation recovery 

is illustrated in Figure 6.30. 

Figure  6.30: The trend of observable variables after abnormal situation recovery. 
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The system helps the operator to prevent accidents in abnormal situations, but it also 

presents the factors that contribute to the creation of an accident, or a specific consequence. 

For instance, if at 12:52 pm a fire with low death and moderate property damage (C4) is 

reported, the posterior probability updating from this evidence shows that the closed 

cooling water isolation valve (CWC) causes inadequate ventilation, and consequently SHP 

in the residue treater which, with SHC, creates SRR. 

6.6 SUMMARY 

This chapter has shown the performance of the SASS in supporting the control room 

operator’ SA in the residue treater unit. As reviewed, the accident happened when a new 

mimic screen installed at the unit. Mimic screen is a simplified graphical representation of a 

process that uses icons to display piping and equipment with color-coded operating status, 

instrumentation with output values and set-point data, and other key equipment and 

information to maintain SA and to control the process. However, in the presence of several 

precursors, the DCS could not support SA. The explosion occurred during start-up 

operation, so real data taken from the CBS report has been used to verify the SASS 

performance. After that, the routine operation has been considered through an unreal 

scenario. 

As has been shown, the SASS provides a useful graphical system that meets the 

requirements of a practical SA system. The BN-based mental models provide the base for 

knowledge-base preparation, and Bayesian inference facilitates the inclusion of prior 

background knowledge and the updating of this knowledge when new information is 

available from the SCADA monitoring system. 
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Chapter 7: 

MODELLING SITUATION AWARENESS IN 

MIXING TANKS 

7.1 INTRODUCTION 

Following on from the previous chapter, this chapter also aims to demonstrate and test 

the performance of the SASS in different chemical plants. Two kind of mixing tanks are 

used: a tank equipped with steam coils at a chemical plant (CSB 2007), and an ink vehicle 

insulated mix tank at a paint manufacturing company (CSB 2008). The presented case 

studies can add a sense of urgency or reality to the proposed system, and shows how the 

system works. In addition, they provide a real application of the proposed system and help 

to validate its performance.  

The first case, as reviewed in Chapter 3, relates to the open top tank located in a 

chemical mixing area in which the ignition of a vapour cloud generated by mixing and 

heating a flammable liquid killed one contractor and injured two employees, and caused a 

significant business interruption. The accident occurred when an operator was mixing and 

heating a flammable mixture of heptane and mineral spirits in a tank equipped with steam 

coils. 
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The second case relates to a paint manufacturing plant in which, following an incident, 

the explosion and subsequent fire destroyed the facility, heavily damaged dozens of nearby 

homes and businesses, and shattered windows as far away as two miles. At least 10 residents 

required hospital treatment for cuts and bruises. Twenty-four homes and six businesses 

were damaged beyond repair. Dozens of boats at a nearby marina were heavily damaged by 

blast overpressure and debris strikes. The explosion was fuelled by vapour released from a 

2000-gallon tank of highly flammable liquid. 

7.2 A TANK EQUIPPED WITH STEAM COILS 

The tank in this case is equipped with steam coils (Figure 7.1) that supply the heat 

required for the mixing process, a temperature controller that includes a temperature sensor 

and a pneumatic control unit, and steam valves, which are operated on the basis of the 

temperature of the mixture. Safety systems include a sprinkler system, an ignition barrier 

and an alarm system. The environment (Figure 7.2) has local and area heating, and exhaust 

ventilation systems that are assumed to have sufficient capacity to collect a huge volume of 

vapour. The sprinkler system and fire alarm system have been designed to reduce damage if 

a fire occurs or vapour accumulates. An operator checks the temperature using an infrared 

thermometer, monitors the environment and conducts appropriate actions when necessary.  

 

Steam Out 

Steam In 

Temperature Controller 

Control Valve 

Steam Coils 

Vent Duct 

Figure  7.1: The tank equipped with steam coils 
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7.2.1 OBSERVABLE VARIABLES 

A sensor reports the tank temperature every minute, as noted above. There is also an 

environment temperature sensor that shows the temperature of the production unit. The 

monitoring system provides update information about these observable variables to the 

situation data collection component, and this information is stored in a database and fuzzily 

prepared as inference evidence for use in the situation assessment component. 

The process for making Super Clean and Tilt involves several hours of mixing and 

heating, with the temperature controller being adjusted to maintain the temperature at 

73ºC. The environmental temperature in normal operation is about 25ºC. The value ranges 

of temperature variables based on expert knowledge and considering the limits for the six-

sigma quality are divided into two fuzzy states, Normal and High, and their membership 

functions are illustrated in Figure 7.3 and determined as follows: 

 Inside tank temperature (ToI): {Normal, High} 

(7.1) 

(7.2) 

Figure  7.2: The open-top tank environment 
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 Temperature of the production building (ToB): {Normal, High} 

(7.3) 

(7.4) 

7.2.2 ABNORMAL SITUATIONS 

There are three possible abnormal situations in the environment: 

 Situation of accumulated vapour in the production building (SAV) 

 Situation of high temperature inside the tank (SHT) 

 Situation of inadequate building ventilation (SIV) 

The first situation is not directly inferable from the objects, i.e. it is a dependent 

situation, and has to be defined by the dependencies on independent situations. The second 

and third situations can be inferred from their contributor objects and observable variables. 

Table 7.1 shows a number of physical and conceptual objects that contribute to these 

situations. The failure probabilities are determined based on data recorded by OREDA 

(2002). 

  

   

Normal High  

(a)  

 
Normal High  

(b) 

   

Figure  7.3: The membership functions of observable variables 
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Table  7.1: The open-top tank situations 

Situation/Object Symbol Failure Probability 
SAV   
High temperature inside the tank  SHT Independent situation 
Inadequate building ventilation  SIV Independent situation 
Ignition Barrier I 0.1000 
Alarm System A 0.0013, 0.2250 
Sprinkler System P 0.04000 
Consequences C NA 
SHT 
Operator O 0.0200 
Infrared Thermometer T 0.0468 
Sensor S 0.0400 
Pneumatic Unit PU 0.2015 
Temperature Measurement System TMS OR gate 
Manual Steam Valve MSV 0.0243 
Automatic Steam Valve ASV 0.0276 
Temperature Control System TCS OR gate 
Manual Temperature Control MTC OR gate 
Automatic Temperature Control ATC OR gate 
SIV 
Belt B 0.0500 
Fan F 0.0100 
Duct Plugging D 0.0010 
Note: the failure probability of the alarm system is affected by the ignition barrier or accumulated vapour. 

The situation models are summarized in Figure 7.4. The figure shows three situations of 

interest in which the dependent situation is coloured red, the independent situations are 

coloured blue, and objects are shown in yellow. The CPTs of SAV, SIV and SHT are 

shown in Tables 7.2-7.4, and other CPTs are omitted.  

Table  7.2: CPT of P(SAV| SAV, SHT, SIV) 

SAV SHT SIV SAV=Hazardous SAV=Safe 
Hazardous Hazardous Hazardous 0.95 0.05 
Hazardous Hazardous Safe 0.6 0.4 
Hazardous Safe Hazardous 0.4 0.6 
Hazardous Safe Safe 0.05 0.95 
Safe Hazardous Hazardous 0.95 0.05 
Safe Hazardous Safe 0.05 0.95 
Safe Safe Hazardous 0.05 0.95 
Safe Safe Safe 0.05 0.95 
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Table  7.3: CPT of P(SHT| MTC, ATC) 

MTC ATC SHT=Hazardous SHT=Safe 
Failure Failure 1 0 
Failure Success 0 1 
Success Failure 0 1 
Success Success 0 1 

 

Table  7.4: CPT of P(SIV| D, F, B) 

D F B SIV=Hazardous SIV=Safe 
Failure Failure Failure 1 0 
Failure Failure Success 1 0 
Failure Success Failure 1 0 
Failure Success Success 1 0 
Success Failure Failure 1 0 
Success Failure Success 1 0 
Success Success Failure 1 0 
Success Success Success 0 1 

7.2.3 SITUATIONAL NETWORK DEVELOPMENT 

Figure 7.4 shows the developed situational network. The temporal arc points to the 

SAV situation, as it is assumed that the situation is formed after a time interval that is longer 

than one minute. The interpretation is that the vapour accumulates when the high 

temperature persists for a few minutes inside the tank and the ventilation system is unable to 

disperse it. The prior probability of the higher level situation, i.e. SAV, is set to 1 for safe 

state and 0 for hazardous state, and it is assumed that the environment is initially safe. The 

states of consequence node is determined as shown in Table 7.5. It is worth noting that, for 

situations SHT and SIV, the accumulated vapour can be considered as their consequence in 

which the degree of loss is about $1E+06. 

Table  7.5: The consequences of SAV 

Consequence Symbol Loss ($) Probability 
Explosion C1 5E+06 2.60E-06 
Fire with low death and high property damage  C2 3E+06 0.0020 
Fire with high death and moderate property damage C3 4E+06 3.90E-06 
Fire with low death and moderate property damage C4 2E+06 0.0030 
Vapour cloud with possibility of ignition C5 1E+06 0.0100 
Safe evacuation (near miss) C6 1E+05 0.0349 
Safe state  C7 0 0.9500 
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7.2.4 SITUATIONAL NETWORK EVALUATION  

To evaluate the situational network, the sensitivity analysis is conducted according to 

the following three axioms (Jones et al. 2010): 

 A slight decrease/increase in the prior probabilities of each parent node should result 

in the effect of a relative decrease/increase of the posterior probabilities of the child 

node. 

 Given the variation of subjective probability distributions of each parent node, the 

magnitude of influence of the parent node on the child node values should remain 

consistent. 

 The magnitude of the total influence of the combination of probability variations 

from x attributes (evidence) on the values should be always greater than the 

probability variations from the set of x-y  attributes (sub-evidence). 

Examination of the model at time t reveals that, when the failure probability of “sensor” 

is set to 1 (i.e. Failure), this results in a revised failure probability of 1 from 0.23 and 0.25 for 

Figure  7.4: The open-top tank situational network  
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TCS and ATC respectively because of OR gate definition, and increases the failure 

probability of SHT from 0.02 to 0.08. Likewise, at time t, when the failure probability of 

the “infrared thermometer” is set to 1 (i.e. Failure), the failure probability of TMS and 

MTC is raised to 1 from 0.06 and 0.08, respectively, and the failure probability of SHT is 

increased to 1 from 0.08. The evidence increases the failure probability 0.1 for SAV from 

0.05 at time t+1 (temporal dependency). Similarly, when at time t the failure probability of 

“fan” is set to 1 (i.e. Failure), this results in a revised failure probability of 1 from 0.06 for 

SIV because of OR gate definition, and failure probability of 0.9 from 0.1 for SAV at time 

t+1. 

7.2.5 THE SASS PERFORMANCE 

On the morning of 14 June 2006, the temperature of the mixing tank and the 

production unit started to increase, with the former deviating from normal value at 9:10 

AM and the latter deviating from normal value at 9:14 AM. The trend of observable 

variables for 60 minutes is illustrated in Figure 7.5 together with the fuzzy partitioning 

values of the variables. This information can be interpreted as ground truth data to evaluate 

the proposed system’s performance. 

 By assigning the primary probabilities to the situation assessment component one 

minute after the start of the period, i.e. 9:01 AM, the probability of SAV is 0.05 and the 

probabilities of the consequence states are calculated as shown in Table 7.5. As can be seen, 

the safe state is the most probable consequence of SAV. The total loss of SAV, i.e. its 

severity, can be calculated by multiplication of the probabilities and loss of consequences, 

which is about $2.56E+04. Therefore, the estimated risk level is 1.3, which means that the 

current risk level of SAV is acceptable. 

By assigning the fuzzy soft evidence that the situation data collection component 

provides for the situation assessment component, the posterior probabilities of the situations 

are updated during the period, as shown in Figure 7.6. As can be seen, the SHT situation is 

hazardous from minutes 16 to 31 and situation SIV becomes hazardous from minutes 24 to 
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28, as is expected as a result of the observable variables. In parallel, the risk level of SHT is 

2.95, i.e. TNA from minutes 16 to 31, and the risk level of SIV is TNA during minutes 24 

to 28, as shown in Figure 7.6. It is assumed that the local and area ventilation systems have 

the ability to evacuate the vapour, thus the risk level of SAV is A from minutes 17 to 25, 

immediately before ventilation system malfunction; its risk level rises from minutes 25 and 

reaches a peak at 3.1, which means it is NA. 

The system is set to trigger an alarm for every situation that has a risk level of more than 

2.5 (i.e. tolerable not acceptable). At 9:16 AM when the risk level of SHT rose, the system 

showed that the most probable explanation was the failure of the pneumatic unit (PU), but 

an inspection at 9:18 AM determined the valid performance of the temperature controller, 

i.e. the PU and the sensor (S). This evidence (success of PU and S) indicates that the failure 

Figure  7.5: The observable variables and their fuzzy partitioning values 
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of the automatic steam valve (ASV) was the most likely factor. Considering the result of the 

situation assessment, maintenance decisions to recover the situation were suggested in the 

situation recovery component. This demonstrates the system’s ability to support the 

operator in finding the most probable explanation for an abnormal situation and 

consequently assist in reducing the risk to an acceptable level. Additionally, the proposed 

system presents the factors that contribute to the creation of an accident or a specific 

consequence. For instance, if at 9:26 AM a fire with low death and moderate property 

damage (C4) is reported, the posterior probability of other nodes as a result of this evidence 

will show that failure of the ASV and belt caused the accumulated vapour, and failure of the 

ignition barrier caused the fire. 

Figure  7.6: The posterior probabilities and risk levels of situations. 
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7.3 AN INK VEHICLE MIX TANK 

The environment includes an ink vehicle mix tank, approximately 3000 gallons in 

capacity, 10 feet tall and eight feet in diameter with a top-mounted mixer and a 12-inch 

diameter access hatch that does not prevent air or vapour from passing through the 

opening. The tank is equipped with a steam heating jacket connected to the steam boiler. 

An operator controls the temperature of the mixture by opening and closing a turn ball 

valve on the steam pipe connected to the tank jacket. The operator accesses the tank top, 

weight and temperature display consoles, mixer control switches, and steam valves from a 

steel-grated mezzanine deck on the north side of the tank. The operator opens the slide 

valve on the dust collector suction line during the addition of dusty materials to the mix 

tank and closes it afterward. There are also eight 500 gallon steel totes in the area for the 

storage of solvents (Figure 7.7). 

The building heating and ventilation system consists of a number of steam-coil fan units 

mounted near the ceiling, a fresh air distribution system and production area exhaust fans to 

remove flammable vapour from around the unsealed ink and paint mixers. It is assumed that 

the ventilation system has sufficient capacity to collect a huge volume of vapour. There are 

also safety systems which include a sprinkler system, an ignition barrier and an alarm system. 

A foam fire suppression sprinkler system is installed in the production area. In the event of a 

fire, fusible plugs on the ½-inch orifice standard sprinkler heads will melt to activate the 

sprinkler head. Water flow in the fire suppression system will trigger the fire alarm box, 

which will send a signal to the fire department. 

7.3.1 OBSERVABLE VARIABLES 

The monitoring system provides update information about these observable variables to 

the evidence preparation component, and they are stored in a database and fuzzily prepared 

as inference evidence for use in the situation assessment component. The process for mixing 

2000-gallons of ink in a tank involves heating for several hours, with the temperature 

controller being adjusted to maintain the temperature at 32ºC (90ºF). 
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The temperature of the production unit in normal operation is about 25ºC and the 

normal interval of the outside temperature is (0,40). The value ranges of the temperature 

variables are divided into fuzzy states as follows and their membership functions are 

illustrated in Figure 7.8: 

Figure  7.7: The ink vehicle mix tank environment 
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 The temperature of the inside of the tank (ToI): {Normal, High} 

                               (7.5) 

(7.6) 

 The temperature of the production unit (ToP): {Normal, High} 

(7.7) 

(7.8) 

 The temperature of the outside environment (ToE): {Low, Normal, High} 

(7.9) 

(7.10) 

(7.11) 

Figure  7.8: The membership functions of the observable variables 
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7.3.2 ABNORMAL SITUATIONS 

There are several possible hazardous situations in the environment which threaten the 

system. To simplify the demonstration, one tank is chosen. As the investigation report 

shows, the important hazardous situations are as follow: 

 Situation of accumulated vapour in the production area (SAV) 

 Situation of high temperature inside the tank (SHT) 

 Situation of building ventilation system malfunction (SBV) 

 Situation of large spill from storage system (SLS) 

The SAV is dependant and has to be defined by dependencies on independent 

situations. First, the independent situations (i.e. SHT, SBV, and SLS), which can be 

inferred from their contributor objects, are modelled. Their contributor objects, which are 

physical or conceptual, are determined as shown in Tables 7.6.  

Table  7.6: The ink vehicle mix tank situations 

Objects Symbol Failure Probability 

SHT   

Sensor S 0.0400 
Pneumatic Unit PU 0.2015 
Temperature Control System TCS OR gate 
Operator O 0.0200 
Manual Steam Valve MSV 0.0243 
Manual Temperature Control MTC OR gate 

SBV   

Belt B 0.0500 
Fan F 0.0100 
Inadequate Ventilation  V 0.0150 
Duct Plugging DP 0.0010 

SLS   

Drain Valve DV 0.0013 
Transfer Piping T 0.0049 
Transfer System TS AND gate 
Leak L 0.0001 
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According to the ASM method, these objects have two states (i.e. failure and success) 

and the prior probabilities of basic objects are determined based on data recorded by the 

CCPS (1989), and OREDA (2002).  

The CPTs of intermediate objects and focal objects are based on AND and OR gates 

definition. The CPTs of SHT, SBV, and SLS are shown in Tables 7.7-7.9; the CPTs of 

intermediate objects are omitted because they are set in a similar way. 

  

Table  7.7: CPT of P(SHT| MTC, TCS). 

MTC TCS SHT=Hazardous SHT=Safe 

Failure Failure 1 0 
Failure Success 0 1 
Success Failure 0 1 
Success Success 0 1 

 
 

Table  7.8: CPT of P(SLS| L, TS) 

L TS SLS=Hazardous SLS=Safe 

Failure Failure 1 0 
Failure Success 1 0 
Success Failure 1 0 
Success Success 0 1 
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Table  7.9: CPT of P(SBV| DP, F, B, V) 

DP F B V SIV=Hazardous SIV=Safe 

Failure Failure Failure Failure 1 0 
Failure Failure Failure Success 1 0 
Failure Failure Success Failure 1 0 
Failure Failure Success Success 1 0 
Failure Success Failure Failure 1 0 
Failure Success Failure Success 1 0 
Failure Success Success Failure 1 0 
Failure Success Success Success 1 0 
Success Failure Failure Failure 1 0 
Success Failure Failure Success 1 0 
Success Failure Success Failure 1 0 
Success Failure Success Success 1 0 
Success Success Failure Failure 1 0 
Success Success Failure Success 1 0 
Success Success Success Failure 1 0 
Success Success Success Success 0 1 

7.3.3 SITUATIONAL NETWORK DEVELOPMENT 

The higher level situation (i.e. SAV), which can be inferred from the independent 

situations, has three physical objects which are safety barriers in the environment, as shown 

in Table 7.10; the states and prior probabilities of these objects are set in the same way as 

the basic objects of the independent situations. In addition, SAV has a consequence node, 

which has several states representing probable accidents, as shown in Table 7.11. Because of 

the lack of historical data, the CPT of SAV is set using expert judgment, as shown in Table 

7.12. The expert judgment has been made by an expert with good knowledge and 

experience in the oil industry. The prior probability of the higher level situation, i.e. SAV, 

is set to 1 for Safe state and 0 for Hazardous state, and it is assumed that the environment is 

initially safe. 

Table  7.10: SAV objects and symbols 

Objects Symbol Failure Probability 

Ignition Barrier I 0.1000 
Alarm System A 0.0013 
Sprinkler System P 0.04000 
Consequences C NA 
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Table  7.11: The consequences of SAV 

Consequence Symbol Loss ($) Probability 

Explosion C1 5E+06 6.76E-08 
Fire with low death and high property damage  C2 3E+06 5.19E-05 
Fire with high death and moderate property damage C3 4E+06 1.62E-06 
Fire with low death and moderate property damage C4 2E+06 0.001246 
Vapour cloud with possibility of ignition C5 1E+05 0.011693 
Safe state  C6 0 0.987008 

 

Table  7.12: CPT of P(SAV| SAV, SBV, SHT, SLS) 

SAV SLS  SBV SHT SAV=Hazardous SAV=Safe 

Hazardous Hazardous Hazardous Hazardous 1 0 
Hazardous Hazardous Hazardous Safe 1 0 
Hazardous Hazardous Safe Hazardous 0.6 0.4 
Hazardous Hazardous Safe Safe 0.05 0.95 
Hazardous Safe Hazardous Hazardous 0.98 0.02 
Hazardous Safe Hazardous Safe 0.6 0.4 
Hazardous Safe Safe Hazardous 0.6 0.4 
Hazardous Safe Safe Safe 0.05 0.95 
Safe Hazardous Hazardous Hazardous 0.98 0.02 
Safe Hazardous Hazardous Safe 0.95 0.05 
Safe Hazardous Safe Hazardous 0.5 0.5 
Safe Hazardous Safe Safe 0.05 0.95 
Safe Safe Hazardous Hazardous 0.95 0.05 
Safe Safe Hazardous Safe 0.05 0.95 
Safe Safe Safe Hazardous 0.5 0.5 
Safe Safe Safe Safe 0.01 0.99 

A temperature controller reports the temperature of the inside of the tank and a 

temperature sensor reports the temperature of the production unit. In addition, there is a 

sensor which shows the temperature of the outside environment. SHT can be inferred by 

the sensor which reports the temperature of the inside of the tank, and SBV can be inferred 

by the sensor which reports the temperature of the production unit; however the 

temperature of the production unit is affected by the outside temperature. Therefore, the 

appropriate connection between situations and observable variables are set as shown in 

Figure 7.9.  
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The situational network illustrated in Figure 7.9 shows that the situations of interest in 

which higher level situations are coloured red and first level situations are coloured blue, 

the objects are shown in yellow, and observable variables are depicted in green. The time 

difference of one time step is set to one minute. The temporal arc points to the SAV 

situation itself, as it is assumed that the situation is formed after a time interval which is 

longer than one minute. The interpretation is that the vapour accumulates when the high 

temperature persists for a while inside the tank, or there is a large spill from the storage 

system and operation of the ventilation system is unable to disperse the vapour. 

7.3.4 SITUATIONAL NETWORK EVALUATION 

The sensitivity analysis is conducted to evaluate the developed situational network. 

Examination of the model at time t reveals that when the failure probability of S is set to 1 

(i.e. failure of sensor), this results in a revised failure probability of 1 from 0.23 for TCS, and 

a hazardous probability of 0.04 from 0.01 for SHT. Similarly, at time t, when the failure 

probability of MSV is set to 1 (i.e. failure), the posterior probability of MTC and SHT is 

Figure  7.9: The ink vehicle mix tank situational network 
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increased to 1 from 0.04 and 0.043 respectively. Both these failures result in a hazardous 

probability of 0.5 from 0.01 for SAV at time t+1 (temporal dependency). Likewise, when at 

time t the failure probability of F is set to 1, this results in an increased hazardous probability 

of 1 from 0.07 for SBV, and in a hazardous probability of 0.95 from 0.5 for SAV at time 

t+1. Equally, when at time t the failure probability of L is set to 1, the probabilities of SLS 

and SAV are increased to 1 and 0.98 from 0.001 and 0.95. 

7.3.5 THE SASS PERFORMANCE 

On 22 November 2006, the temperature of the mixing tank and the production unit 

started to increase; the former deviated from normal value at 9:10 AM and the latter 

deviated from normal value at 9:15 AM. The temperature of the outside environment was 

steady at 12 ºC. The trend of observable variables for 60 minutes is illustrated in Figure 

7.10, together with the fuzzy partitioning values of ToI and ToP. The fuzzy partitioning 

value of ToE is omitted because it was steady in its normal range. These data can be 

interpreted as ground truth data to evaluate the performance of the proposed system. 

Figure  7.10: The observable variables and their fuzzy partitioning values 
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 By assigning the primary probabilities to the DBN-based situational network, one 

minute after the start of the period, i.e. 9:01 AM, the probability of SAV is 0.01 and the 

probabilities of the consequence states are calculated as shown in Table 7.11. As can be 

seen, the safe state is the most probable consequence of SAV. The total loss of SAV, i.e. its 

severity, can be calculated by multiplication of the probabilities and losses of consequence, 

which are about $3.82E+03. Therefore the estimated risk level of SAV is 1.3, which means 

that the current risk level of SAV is acceptable. It is worth noting that for first level 

situations, i.e. SHT, SBV and SLS , the accumulated vapour can be considered as their 

consequence, in which the degree of loss is about $1E+05. 

By assigning the fuzzy soft evidence which the data preparation component provides for 

the situation assessment component, the posterior probabilities of the situations are updated 

during the period as well as their risk levels, as shown in Figure 7.11. As can be seen, the 

risk level of SHT is TNA from minutes 15 to 27 and the risk level of SBV is TNA from 

minutes 20 to 24. The risk level of SLS is acceptable during this period. The risk level of SAV 

is TNA from minutes 22 to 25 exactly after increasing the risk level of SBV, which is because 

Figure  7.11: The posterior probabilities and risk levels of situations 
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of the assumption that the local and area ventilation systems have the ability to disperse the 

vapour. However, there was a one minute delay because of the temporal definition. After 

minutes 24, the risk level of SAV has been reduced to an acceptable level because the risk 

level of SBV has been decreased to an acceptable level. 

The system is set to trigger an alarm for every situation which has a risk level more than 

2.5, i.e. tolerable not acceptable. At 9:16 AM when the risk level of SHT rose, the system 

showed that the most probable explanation was the failure of the pneumatic unit (PU), but 

an inspection at 9:18 AM determined the valid performance of the PU. New evidence 

(success of the PU system) showed that the failure of the tank’s sensor was the most 

probable factor. Considering the result of the situation assessment, maintenance decisions 

were made to recover the situation. The proposed approach helps the operator in hazardous 

situation to prevent accidents, but it can present the factors which contribute to the 

creation of an accident or a specific consequence as well. For instance, if at 9:26 AM a fire 

with low death and moderate property damage (C4) is reported, the posterior probability 

updating from this evidence shows that the tank sensor failure or leakage from the transfer 

piping and belt failure cause the accumulated vapour, and the failure of the ignition barrier 

creates the fire. 

7.4 SUMMARY 

This chapter investigated the performance of the SASS in two chemical mixing tank 

environments in one of which because of poor operator’s SA a tragic explosion killed one 

person, injured two employees, and caused significant assets loss. As has been shown, the 

results demonstrate that the SASS provides a mathematically consistent system for dealing 

with incomplete and uncertain information to help operators maintain the risk of dynamic 

situations at an acceptable level. 
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Chapter 8: 

A MULTI-PERSPECTIVE SITUATION 

AWARENESS EVALUATION APPROACH 

8.1 INTRODUCTION 

As explained in Chapter 4, the SASS has been partially validated by a sensitivity analysis 

technique carried out to evaluate the situation models. The aim of this chapter is to fully 

and systematically evaluate the performance of the SASS based on related SA measures. SA 

measures determine the degree to which design concepts and new technologies improve or 

degrade an operator’s SA (Endsley 1995a). SA measures are therefore a critical part of a 

system and procedural design process, and such evaluation efforts ensure that new systems, 

procedures or interfaces have improved SA rather than degraded it. 

Unfortunately, due to the lack of a universally accepted SA model, there are difficulties 

when trying to measure SA. Measures of SA, in general, try to infer SA from other factors 

that are easier to assess (i.e. indirect measures), or attempt to obtain it directly. Indirect 

measures approach the issue by inferring how much SA an operator has acquired by 

assessing the cognitive processes that contribute to the development and maintenance of 

SA, or by assessing relevant aspects of performance in relation to the interaction between 

operators and systems. Behavioural, performance and process measures may thus be relied 
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on to make these assessments; however, because the quality of decision making and task 

execution, independent of SA, may be influenced by many factors, the use of indirect 

measures alone to assess SA are not recommended (Endsley, Bolté & Jones 2003). Unlike 

indirect measures, direct metrics try to measure SA by comparing operators’ responses with 

the real world, or by asking an expert to assess the quality of operators’ SA during a time 

interval. Endsley believes that workload assessment,  human/system performance analysis, 

and objective SA measurements are the best ways to evaluate system design (Endsley, Bolté 

& Jones 2003); however, even the most successful measures are not able to assess operators’ 

SA during real-time operations (Jones & Endsley 2004). Endsley et al. use SAGAT1, which 

is a direct objective technique, and SART2, which is a direct subjective technique, to assess 

air traffic controllers’ SA using a traditional Air Traffic Control (ATC) display and an 

enhanced ATC display (Endsley & Garland 2000). They then compare the sensitivity and 

validity of both techniques with the results of a real-time probe approach. The results show 

that the on-line probe approach and SART are not sensitive to changes in conditions, 

whereas the SAGAT scores are sensitive to interface changes. In another study, Endsley et 

al. utilize SAGAT and SART in the assessment of fighter pilots’ SA. Because there is no 

correlation between measures, they conclude that the objective SA assessment by SAGAT 

is not related to the subjective SA assessment by SART (Endsley, Selcon, et al. 1998a). 

Salmon et al. also utilize SAGAT and SART to assess participants’ SA during a military 

planning task (Salmon, Stanton, Walker, Jenkins, Ladva, et al. 2009). They conclude that 

different SA measures assess different aspects of SA. The literature review reveals that the 

majority of SA measurement applications are limited to aviation and military domains and 

their usefulness in evaluating safety-critical decision support systems has not been studied 

sufficiently. 

                                                           
1 Situation Awareness Global Assessment Technique 
2 Situation Awareness Rating Technique 
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In this chapter, a multi-perspective evaluation approach considering three SA metrics is 

proposed to address the suitability of the SASS. The approach includes two direct SA 

measures, SAGAT and SART, and one workload measure called NASA-TLX1 which is a 

multi-dimensional scale to estimate the workload of operators. The evaluation process of 

the SASS is conducted through the participation of ten operators who investigate abnormal 

situations in a chemical plant using a virtual plant user interface, both with and without the 

support of the SASS. 

8.2 INTENDED SAFETY-CRITICAL ENVIRONMENT 

The residue treater unit explained in Chapter 6 is considered, and routine operation is 

chosen for the evaluation. The plant has a traditional virtual user interface that it is used for 

leading the operation. In addition, the human-computer interface of the SASS for this plant 

has been developed based on the capabilities of OOBNs. 

8.2.1 VIRTUAL PLANT USER INTERFACE 

The virtual plant user interface, shown in Figure 8.1, displays the necessary information 

for operators to monitor the operation of the residue treater unit and manipulate the 

components. Flow directions are indicated by vertical and horizontal lines between 

components. Instantaneous values, such as pressure, flow rate, liquid level and temperature 

are displayed as gauge values adjacent to their respective components. If the values exceed 

high or low limits, the system triggers an alarm and indicates to the user that the values that 

appeared as a flashing value have fallen outside of their allowable range. By mouse-clicking 

any component, the user interface provides a pop-up window that represents the available 

options to deactivate the alarm or turn the system pumps on and off, as well as offering 

maintenance suggestions. 

                                                           
1 NASA Task Load Index 
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Figure  8.1: Virtual plant user interface. 

8.2.2 THE HUMAN-COMPUTER INTERFACE OF THE SASS  

Because modelling the situational network for the residue treater led to complex 

models, OOBNs were used to develop the SASS interface. Based on OOBN 

characteristics, the situational network is simplified as instance nodes in Figure 8.2, while its 

collapsed form is represented in Figure 8.3. The human-computer interface of the SASS is 

shown in Figure 8.4. 
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Figure  8.2: The residue treater situational network based on OOBN characteristics 
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Mouse-clicking any situation in the interface opens a pop-up window that contains the 

related sub-network, including contributing objects, their failure probabilities, and the 

most probable explanation for the hazardous situation.  

Figure  8.4: The human-computer interface of the SASS 

8.3 A MULTI-PERSPECTIVE SA EVALUATION APPROACH 

Our multi-perspective evaluation approach, illustrated in Figure 8.5, consists of 

SAGAT, SART and NASA-TLX metrics to measure different aspects of an operator’s SA. 
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Figure  8.3: Collapsed form of the residue treater situational network 
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SAGAT is used in this study as an objective means by which to quantify SA. Subjective 

measures of SA are not sufficient because of limitations in the veracity of self-ratings and 

observer ratings of SA. Self-ratings of SA may not be truly representative of actual SA 

because operators are limited to their own perceptions of the task environment and may not 

have an accurate picture of reality by which to judge the completeness or correctness of 

their perceptions (Endsley 1995b). Observer ratings of SA are limited by the fact that 

trained observers often have information about the simulation and reality, but may have 

only limited knowledge of an operator’s concept of a situation. The SAGAT assesses SA by 

comparing the real-time conditions of the environment with the SA reported by the 

operator. Operators are queried about aspects of the environment and their responses are 

compared with reality. To achieve this, operator-in-the-loop simulation exercises are 

managed by a personal computer (PC) that employs the design concepts of interest, in this 

case the virtual user interface alone in one monitor and the human-computer interface of 

the SASS in an adjacent monitor. The simulation activity suspends at randomly selected 

intervals, the displays are blanked, and queries are administered to the participant. Data 

collected by the PC are used to score the participant’s responses as correct or incorrect 

based on what was actually happening in the scenario at that time.  

SART assesses SA by asking operators to rate the quality of their SA during a specified 

period. This rating is then used to compare the quality of SA when the virtual user interface 

is used alone and when it is used with the SASS. The SART is inexpensive, easy to 

perform, simple to analyse, and employable without the performance being disrupted. 

However, it may include inaccuracies due to operator self-reporting as explained before. 

Therefore, the use of SART in conjunction with SAGAT can engender confidence that 

the levels of operator SA provided are accurate.  

In addition to the SAGAT and SART, the approach includes NASA-TLX to represent 

the workload of operators when they are managing situations with both systems. This 

subjective measure of workload was selected because of its demonstrated reliability and 
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sensitivity as an overall workload measure in empirical investigation. It was chosen over 

other potential objective secondary task and physiological measures of workload because of 

concerns regarding the obtrusiveness (primary task interference) and sensitivity of these 

measures. In addition, workload effects must be indirectly inferred from differences 

revealed through physiological measures. To perform this assessment, the operators answer 

questions regarding their experience with the systems. The results are used to determine 

which aspects of the work contribute the most to operators’ perceived workload. 

Computerized SART and NASA-TLX questionnaires are administered post-trial using the 

PC. 
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Figure  8.5: A multi-perspective evaluation approach. 
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8.3.1 PARTICIPANTS 

Ten operators currently involved in the operation of an oil refinery served as 

participants. All participants became familiar with the simulation software and features of 

the SASS used in the present study (M=5.40 yrs, SD=1.42). It is assumed that the operators 

are decision makers in the residue treater unit, where the current states of processing 

components are displayed in the GUI. Based on observed values, they have to identify 

abnormal situations and the actions required to address those abnormal situations. The test 

people are introduced to the characteristics of abnormal situations in the environment 

before the evaluation.  

8.3.2 SCENARIO DEVELOPMENT 

To prepare for a routine operation, the vessel is filled with solvent and heated. 

Methomyl is added to the residue treater and a normal recirculation loop flow is activated 

to mix the concentrated methomyl feed with preheated solvent in the residue treater. The 

operator opens the feed control valve and begins feeding flasher bottoms into the vessel. At 

normal flow rate, it takes approximately 10 minutes to fill the residue treater to 50%, the 

normal operating level. The recirculation pump is then started. Two 40-min scenarios are 

defined. Table 8.1 shows the timeline of Scenario 1. In this scenario, the residue treater 

liquid level reaches approximately 51% after 17 minutes and the temperature ranges 

between 130 and 135 °C. The pressure is 22 psig. The temperature begins to rise steadily 

about 2 degrees per minute when the recirculation flow suddenly drops to zero after 30 

minutes. In less than three minutes, the temperature is at 147 °C, the highest safe operating 

limit. 

 

 

 

 



Chapter 8: A Multi-Perspective Situation Awareness Evaluation Approach 160 
 

 

 

Table  8.1: Scenario 1 timeline. 

Time into 
scenario (min) 

Event 

00:00 Scenario is started 
05:00 Level reaches 30%. 
07:00 Flow is steady at normal rate and temperature is about 130°C. 
09:00 Automatic feed valve is opened and flasher bottoms are introduced into the vessel. 
17:00 Level reaches 51% and the pressure is 22 psig. 
18:00 Automatic feed valve is closed. 
23:00 The temperature begins to rise steadily about 2 degrees per minute. 
30:00 The recirculation flow suddenly drops to zero. 
31:00 The temperature is at 147 °C, the highest safe operating limit. 
31:00 The estimated risk level of SAR increases from 1.32 (acceptable) to 2.95 (tolerable not 

acceptable). 
32:00 The risk level of SHP is steady and acceptable. 
32:00 The risk level of SHT and SHC increases from acceptable (i.e. 1.32 and 1.65 

respectively) to tolerable not acceptable (i.e. 2.95 and 3 respectively). 
37:00 The risk level of SRR remains acceptable. 
39:00 Scenario is ended. 

8.3.3 OBJECTIVE MEASUREMENT 

Situation awareness is first measured applying SAGAT. The operators execute the 

experimental scenarios twice, once using the virtual plant user interface without the SASS 

and once with the SASS. Five freezes occur at randomly selected intervals and they are 

unpredictable by the operators. At the time of the freeze, the displays are blanked and the 

simulations are suspended. Each freeze lasts approximately 2 minutes. The thirteen 

questions summarized in Table 8.2 are derived from the GDTA results shown in Table 5.1.  

Responses to all the queries are collected at each stop via an on-line questionnaire 

system adjacent to the operator’s station. All responses are scored as 1 for a correct answer 

and 0 for an incorrect answer. The total SAGAT scores are calculated by summing all the 

correct responses for each participant, giving a total possible score of 13. Table 8.3 shows 

the SAGAT scores under different interfaces.  
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Table  8.2: Probe questions for Scenario 1. 

Time into 
scenario (min) 

SA 
level 

Question 

07:00 Level 1 What is the current level of temperature? (Low, Normal, High) 
07:00 Level 1 What is the current level of flow? (Very low, Low, Normal) 
18:00 Level 1 Climbing, decreasing, or steady: Which is correct for liquid level?  
24:00 Level 2 Which abnormal situation threatens the unit? (SHL, SVC, SAR) 
24:00 Level 2 What is the most probable explanation? (Failure of the recirculation pump, 

Failure of cooling water isolation valve, Failure of automatic level control) 
24:00 Level 3 What is the current level of risk of the abnormal situation? (Acceptable, 

Tolerable acceptable, Tolerable not acceptable, Not acceptable) 
31:00 Level 1 Climbing, decreasing, or steady: Which is correct for temperature? 
31:00 Level 2 Which abnormal situations threaten the unit? (SHT, SHC, SRR) 
31:00 Level 2 What are the best actions for reduction or containment of risk? 
31:00 Level 3 What will be the level of risk? (Acceptable, Tolerable acceptable, Tolerable 

not acceptable, Not acceptable) 
32:00 Level 3 What are the risk levels of SHT and SHC? (Acceptable, Tolerable acceptable, 

Tolerable not acceptable, Not acceptable) 
32:00 Level 2 What are the best actions for reduction or containment of risk? (Temperature 

transmitter, Manual water valve, Automatic feed valve) 
32:00 Level 3 Is SRR abnormal? (Yes, No) 

 

Table  8.3: The SAGAT scores under different interfaces. 

Virtual system SA level 
 Perception  Comprehension  Projection  Overall 
 M SD  M SD  M SD  M SD 
Virtual plant user interface 3.10 0.76  0.60 0.48  0.80 0.17  4.50 2.27 
Virtual plant user interface plus 
SASS 

3.80 0.17  4.50 0.27  3.30 0.45  11.60 1.37 

The mean total SAGAT score without using SASS is 4.50 (SD =2.27). The highest total 

SAGAT score is 7 and the lowest score is 3. The mean overall SAGAT score for level 1 SA 

probes is 3.10 (SD = 0.76) while it is 0.60 (SD = 0.48) and 0.80 (SD =0.17) for levels 2 and 

3, respectively. As can be seen, the SAGAT scores for levels 2 and 3 are much lower in 

comparison with level 1. The mean total SAGAT score with support of the SASS is 11.60 

(SD =1.37). The highest total SAGAT score is 13 and the lowest SAGAT score is 9. The 

SAGAT score decomposition corresponding to SA levels is 3.80 (SD = 0.17) for level 1, 
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4.50 (SD = 0.27) for level 2, and 3.30 (SD = 0.45) for level 3. Analysis of variance 

(ANOVA) shows that the SAGAT rating of SA is significantly higher with the support of 

SASS than without F(1,18)=137.90 p<0.001. The results particularly indicate the 

improvement of SA in levels 2 and 3 with the support of the SASS. 

8.3.4 SUBJECTIVE MEASUREMENT 

Situation awareness is also measured using the SART. The SART questionnaire 

requires participants to use a 1-7 scale (1=Low and 7=High) and to rate 10 factors (shown in 

Table 8.4) in three categories: understanding of the situation, demand on attention 

resources, and supply of attention resources. Responses to the SART questions result in a 

score for each of the three major factors, as well as an overall score for SA. The overall 

SART score is calculated as SA=U-(D-S) where U is a sum for understanding, D is 

summation of attention demand, and S is the summation of attention supply. 

The SART rating of SA is inferred to be significantly higher with SASS than without it, 

F(1,18)=228.57, p<0.001. The mean overall SART score when using the virtual plant user 

interface alone is 19.2 (SD=1.51) while the mean overall SART score in obtaining support 

of SASS is 27.2 (SD=1.28). The highest and lowest overall SART scores for the former are 

21 and 17, and for the latter, 29 and 24. Participant scores are examined for each SART 

dimension and these show that the result is mainly attributed to differences in subject rating 

of understanding (p<0.001).  
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Table  8.4: The SART factors. 

Domain Construct  Definition 

Understanding Information quantity The amount of knowledge that an operator receives and 
understands 

Information quality The goodness degree of knowledge that an operator gains 
Familiarity with situation The degree of being familiar with the situation 

Attention 
Demand 

Instability of situation  The situation is unstable and likely to change suddenly 
Variability of situation The number of variables in the situation that are changing 
Complexity of situation The situation is complicated or straightforward 

Attention 
Supply 

Arousal The degree of alertness that the operator has for doing the 
activity 

Spare mental capacity The amount of mental ability that the operator has for new 
variables 

Concentration of attention The number of aspects in the situation that demand the 
operator’s concentration 

Division of attention The extent to which the operator’s attention is divided 

8.3.5 WORKLOAD MEASUREMENT 

The NASA-TLX consists of six independent sub-scales: Mental, Physical, Temporal 

Demands, Frustration, Effort, and Performance. Users are asked to rate the perceived 

workload on a continuous scale (one scale per dimension) with three anchors (low, 

medium, and high). The results of these tools can be displayed as individual workload 

dimensions, or as overall workload scores. The five questions shown in Table 8.5 were 

asked. 

Table  8.5: The NASA-TLX questions. 

Domain Question 
Mental Demand How mentally demanding was the task? 
Temporal Demand How temporally demanding was the task?  
Performance How successful were you in accomplishing what you were asked to do? 
Effort How hard did you have to work to accomplish your level of performance? 
Frustration How insecure, discouraged, irritated, stressed, and annoyed were you? 

The participants’ answers are scaled to the range of 0 to 100 as shown in Figure 8.6. As 

can be seen, working with the SASS produces better results than working without it in four 

domains. In just one domain, performance, the results are lower when the operators use the 

support system. The average of the results from the five questions is also depicted in Figure 
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8.6. It can be concluded that working with the proposed SASS for this specific 

environment results in a lower workload for decision makers than when they work without 

it.  

Figure  8.6: NASA Task Load Index results. 

8.3.6 CORRELATION BETWEEN SA MEASURES 

The analysis of the correlation between SAGAT and SART is presented in Table 8.6. 

As can be seen, there are no significant correlations between the participants’ SA scores 

assessed by these two measures. This fact shows that the SART and SAGAT measurements 

evaluate different items in respect of SA during the study. In other words, they view SA 

differently and measure different elements of operator awareness. 

Table  8.6: SAGAT and SART correlations. 

  SART SART U SART D SART S 
SAGAT -0.26681 Not Sig 0.285942 Not Sig -0.1122 Not Sig -0.60033 Not Sig 

SAGAT Level 1 -0.37139 Not Sig 0.149256 Not Sig 0.234261 Not Sig -0.37139 Not Sig 
SAGAT Level 2 -0.37139 Not Sig -0.0995 Not Sig -0.37139 Not Sig -0.37139 Not Sig 
SAGAT Level 3 0.058001 Not Sig 0.481736 Not Sig -0.21951 Not Sig -0.52201 Not Sig 

If α = 0.05 is chosen, the ANOVA analysis reveals that there is no significant effect in the 

use of the virtual plant interface, with or without SASS, for this specific environment. It can 

generally be concluded that to demonstrate that a better workload is produced for 

operators, the SASS should be validated through a variety of scenarios in different 

environments with more participants. In addition, as the results strongly depend on the 
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visualization of the user interface, the system should be evaluated by using a range of 

visualization techniques for the recognized situations. 

8.4 SUMMARY 

The importance of cognitive decision support systems for managing abnormal situations 

in safety-critical environments has been highlighted and the situation awareness support 

system (SASS) that assists operators to understand and project situations in such 

environments has been developed in Chapter 5. In addition, the SASS has been partially 

validated by a sensitivity analysis that is carried out to evaluate the knowledge-base of the 

system. To fully and systematically evaluate the SASS, it needs to be empirically tested to 

identify any unforeseen issues that might negatively impact operator SA. Therefore, 

appropriate measures must be employed to assess the level of operator SA in interaction 

with the SASS. This chapter demonstrated the multi-perspective approach for this purpose. 

The approach consists of two direct SA measurements, SAGAT and SART, and a 

workload metric called NASA-TLX. SAGAT narrowly focuses on questions and is not 

sensitive to SA changes. In contrast, it is sensitive to system manipulation, automation 

manipulation, expertise differences, and changes in task load and factors affecting operator 

attention. SART is also a measure that is sensitive to task difficulty, operator experience and 

SA changes. Ten experienced operators participated in this study to respond to the 

simulation scenarios using a virtual plant user interface, with and without the support of the 

SASS. The results show that the SASS improves operator SA, particularly in levels 2 and 3. 

No significant correlations between the participants’ SA scores have been found. In 

addition, it is concluded that the SASS reduces the workload of operators, although further 

investigations in different environments with a larger number of participants have been 

suggested. 
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Chapter 9: 

CONCLUSION AND FUTURE WORK 

9.1 CONCLUSIONS 

Today, in many safety-critical systems the role of operators has shifted from manual 

controllers to supervisors or decision-makers who are responsible for extensive cognitive 

tasks (Ha & Seong 2009). Operators are often moved to a control room far away from the 

physical process and have to rely on human computer interaction (HCI) principles to 

observe and comprehend the overwhelming amount of rapidly changing data for 

processing. For instance, in the 1970s, a typical operator manually controlled approximately 

45 control valves in one process unit. Today, an operator controls, on average 175 control 

valves through an automation system interface. More specifically, the number of observable 

process variables in the power distribution sector grew from 200,000 to 700,000 between 

the years 1990 and 2000 (Burmester, Komischke & Wust 2000). It is widely accepted that 

more data does not equate to more information. In many cases automation has only 

worsened the problem (Endsley & Kiris 1995), and operators are required to handle more 

data and more responsibility. Although experienced users tend to filter through the over-

abundance of data to generate information and acquire good SA, even the most expert 

operator can become swamped by the excessive amount of data provided by new 



Chapter 9: Conclusion and Future Work  167 
 

 

 

technologies. This has led to a huge gap between the massive amount of data produced and 

disseminated and the operator’s ability to effectively assimilate the required data and to 

make a timely, accurate decision (Endsley & Garland 2000). 

In the presence of all these data, complex interfaces, and dynamic situations, human 

error could be a serious cause of accidents in these environments. It has been found that in 

most industries, 70-90% of accidents are attributed to human error (Isaac, Shorrock & 

Kirwan 2002). Traditionally, there are two approaches to prevent human error during 

operation of safety-critical systems. The first approach focuses on the provision of better 

training programs for operators, and the second one aims to improve operator support 

systems (Lee & Seong 2014). However, it has been shown that in abnormal time pressure 

situations, ordinary training does not improve the quality of decision making (Zakay & 

Wooler 1984), therefore the role of cognitive support systems to assist operators in such 

situations is highlighted (Naderpour, Lu & Zhang 2014b). This study introduced a new 

system for SA enhancement called the Situation Awareness Support System (SASS). This 

chapter summarizes the conclusions of this research and nominates some future research 

directions. 

This research has been motivated by this fact that the SA, a cognitive human factor, has 

been recognized as an important contributing factor in recent accidents of safety-critical 

systems. It has also been realized that the SA is a critical factor in managing abnormal 

situations when operators are under time pressure to make quick and accurate decisions. 

This research makes the following main contributions: 

(1) It proposes a new definition for abnormal situations. It defines the situation as a set 

of circumstance in which a number of objects may have relationships with one 

another and the environment, and a hazardous situation as a possible circumstance 

immediately before harm is produced by a hazard. Therefore, an abnormal situation 

is defined as a hazardous situation if its risk is not acceptable. In abnormal situations, 

a well-trained operator should comprehend a malfunction in real time by analyzing 
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alarms, assessing values, and recognizing unusual trends indicated by multiple 

instruments. In such a situation, many alarms from different systems are frequently 

triggered at the same time, making it difficult for the operator to make a decision 

within a very short time frame. If several abnormal situations occur at once, 

decisions have to be made in even less time. Operators are usually unable to judge 

which situation should be given priority when confronted with complex abnormal 

situations such as these (Hsieh et al. 2012; Jou et al. 2011). Based on the proposed 

definition, a situation is abnormal (i.e. its risk level is unacceptable), and to help 

operators to understand the hierarchy of investigations (i.e. a situation with a higher 

risk has priority over other situations to be investigated). 

(2) It develops an abnormal situation modelling method by exploiting the specific 

capabilities of BNs. The ASM method models the operators’ mental model using 

BNs to represent these cause–effect relationships between objects in a situation. It 

also describes how the states and CPTs of objects in the models should be 

determined, and how they should be connected to each other to create the 

situational networks. As the situations of interest can be inferred by some observable 

variable distributed in the environment, the ASM method explains how the 

situations can be connected to observable variables. 

(3) It develops a situation assessment method that employs a fuzzy logic system to 

resemble human thinking when it assesses a situation. The use of linguistic variables 

allows operators to express their knowledge in the form of related imprecise inputs 

and outputs. As has been shown, the situation assessment component provides a 

framework that is mathematically consistent for dealing with uncertain and 

incomplete information. Its reasoning is carried out using a probabilistic technique 

that generates consistent answers derived from a single multi-dimensional 

distribution. In addition, the Bayesian theorem facilitates the inclusion and updating 



Chapter 9: Conclusion and Future Work  169 
 

 

 

of prior background knowledge when new information is available from the 

SCADA monitoring system. 

(4) It develops a cognition-driven DSS called the Situation Awareness Support System. 

Some types of DSS, such as model-driven, data-driven, communication-driven, 

document-driven, and knowledge-driven have achieved increased popularity in 

various domains. Model-driven DSSs are complex systems that help to analyse 

decisions or choose between different options. Data-driven DSSs are used to query 

a database or data warehouse to seek specific answers for specific purposes. Most 

communications-driven DSSs are targeted at internal teams, including partners. 

Their purpose is to help the conduct of a meeting, or for users to collaborate. 

Document-driven DSSs, which are more common, are utilized to search web pages 

and find documents on a specific set of keywords or search terms. Knowledge-

driven DSSs are a catch-all category covering a broad range of systems covering 

users within the organization setting it up, but may also include others interacting 

with the organization (Niu, Lu & Zhang 2009). Unlike these DSSs, cognitive DSSs 

have not been researched sufficiently, albeit they have long been recognized as 

being worthy of consideration (Chen & Lee 2003). Just as a cognitive process refers 

to an act of human information processing, so a cognition-driven DSS refers to 

assisting operators in their decision–making from a human cognition perspective. 

The SASS consists of five major components: 1) knowledge base, 2) situation data 

collection, 3) situation assessment, 4) situation recovery, and 5) human-computer 

interface. 

(5) It illustrates the performance of the SASS in three safety-critical environments that 

have accidents with grave consequences in US recent history. The case studies 

included: a residue treater at a methomyl production unit, a tank equipped with 

steam coils at a chemical plant, and an ink vehicle insulated mix tank at a paint 

manufacturing company. The use of case studies could add a sense of urgency or 



Chapter 9: Conclusion and Future Work  170 
 

 

 

reality to the proposed system, and showed how the system works. In addition, they 

provided real applications of the proposed system and helped to validate its 

performance. 

(6) It develops a multi-perspective evaluation approach for full and systematic 

validation of the SASS. The approach consists of three SA metrics: the Situation 

Awareness Global Assessment Technique, the Situation Awareness Rating 

Technique, and the NASA Task Load Index. The first two metrics are used for 

direct objective and subjective measurement of SA, while the third is used to 

estimate the workload of operators. A computerized system was developed in order 

to implement the approach. 

9.2 FUTURE WORKS 

Future directions of this research can be summarized in the following perspectives: 

(1) Due to the significant presence of teams in contemporary organizational systems, the 

construct of team SA is currently receiving increased attention from the human 

factors community. A team can be defined as consisting of two or more people, 

dealing with multiple information resources, who work to accomplish some shared 

goal. Distributed teams comprise members interacting over time and space via 

technology mediated communication. Team performance itself comprises two 

components of behaviour, teamwork (team members working together) and task-

work (team members working individually). In many safety-critical systems, the 

safety of the system is supervised by operators and engineers from a range of 

departments who are members of a team. Coordination is accomplished using a 

chain of command and internal communications systems to relay status to the 

appropriate decision makers. These team members have a common goal and 

perform specific roles in their interaction with elements in the task environment. 

The first future direction of the research, therefore, is to extend the proposed system 

to a distributed system that applies the team/distributed situation awareness concept.  
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(2) Most of traditional SA measurement studies are conducted through qualitative 

analysis methods. Qualitative techniques cannot be satisfactorily used to achieve 

quantitative SA measurements; thus, quantitative techniques based on statistical 

models (Kirlik & Strauss 2006) and inference models (Ma & Zhang 2008) have been 

merged. However, a common drawback is that these quantitative techniques 

completely replace qualitative information with numeric values. The existence of 

uncertainty is another reality of most operational human–machine systems. In the 

course of processing information, one applies background knowledge (forms a 

mental model of the situation) and uncertainty reasoning to handle perceptions with 

uncertainty (referred to as situation models). Therefore, in developing any SA 

measurement, two important aspects should be considered: 1) independently 

measuring the contribution of technology to SA, and 2) measuring the contribution 

of environmental uncertainty to SA (Kirlik & Strauss 2006). In addition, research on 

linguistic decision making indicates that using linguistic terms is an efficient way to 

describe uncertain qualitative information. Therefore, in the light of research on 

linguistic information decisions, a SA measurement method that combines a 

qualitative information process and quantitative computation should be developed 

for evaluating SA systems. 

(3) Another future study should consider automation systems with a multiple screen 

design. This research was designed with only one main operating screen. Future 

research is needed with multiple screen processes to further conceptualizations the 

results of the present study, to get a clearer picture of the effect of the SASS on 

operators’ performance. 

(4) Today, in many safety-critical systems, the advanced control rooms are equipped 

with many automated systems; however operators are still responsible for accident 

diagnosis and mitigation. Thus information acquisition and decision making are 

emphasized more than manual manipulation. Therefore HCIs should support them 
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to know and do more effectively and less ambiguously. The poor HCI can bring 

serious consequences, such as occupational accidents and diseases including stress, 

therefore the HCI is recently considered as an emerging risk (Flaspoler et al. 2009; 

Jovanovic & Balos 2012) which may jeopardize safety. Therefore, to design an 

adequate HCI, the specific properties and qualities of human factors as well as the 

working environment must be taken into account. Despite this importance, very 

few methods and tools have as yet been developed to assess this kind of risk in the 

design of HCIs. Another future research direction is to develop a new risk 

assessment method to evaluate HCIs in safety-critical systems. In this sense, the 

operators’ mental models in regard to possible abnormal situations in the simulation 

environment along with operators’ responses when they are working with the 

system can be utilized for proposing a new interface risk assessment methodology. 
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APPENDIX: ABBREVIATIONS 

ALARP As Low As Reasonably Practicable 

ASM Abnormal Situation Modeling 

BN Bayesian Network 

CPT Conditional Probability Tables  

DAG Directed Acyclic Graph 

DAG Directed Acyclic Graph 

DBN Dynamic Bayesian Network 

DCS Distributed Control System 

DSA Distributed Situation Awareness 

DSS Decision Support System 

EO Ethylene Oxide 

FDA Food And Drug Administration 

FLS Fuzzy Logic System 

FMEA Failure Mode and Effect Analysis 

GDTA Goal-Directed Task Analysis 

GUI Graphical User Interface 

HSWA Health and Safety at Work Act 

MIC Methyl Isocyanate 

MSAO Methylthioacetaldoxime 

NASA-TLX NASA Task Load Index 

NPP Nuclear Power Plant 

OOBN Object Oriented Bayesian Network 

SA Situation Awareness 

SABARS Situation Awareness Behavioural Rating Scale 

SAGAT Situation Awareness Global Assessment Technique 
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SAL Situation of Abnormal Liquid Level 

SAR Situation of Abnormal Recirculation 

SARS Situational Awareness Rating Scale 

SART Situation Awareness Rating Technique 

SASS Situation Awareness Support System 

SA-SWORD Situation Awareness-Subjective Workload Dominance Technique 

SAT Situation of Abnormal Temperature 

SAV Situation of Accumulated Vapour in the Production Building 

SBV Situation of Building Ventilation System Malfunction 

SCADA Supervisory Control And Data Acquisition 

SFAIRP So Far As Is Reasonably Practicable 

SHC Situation of High Concentration of Methomyl 

SHP Situation of High Pressure 

SHT Situation of High Temperature Inside the Tank 

SIV Situation of Inadequate Building Ventilation 

SLS Situation of Large Spill from Storage System 

SME Subject Matter Expert 

SPAM Situation Present Assessment Method 

SRR Situation of Runaway Reaction 

SVC Situation of Vent Condenser Failure  
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