

Improvement in Seismic Performance of Stone Masonry Using Galvanized Steel Wire

Rudra Pun

A Thesis submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy

School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney

April 2015

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Rudra Pun

April 2015

In the Memory of Precious Lives Lost in Earthquakes

Abstract

This research is about using either freely available natural stone or rubble left behind earthquake disasters to build a seismic resistant house. The bottom line of this research is to develop a simple and effective technique for building a stone masonry house that will not collapse during the seismic event.

Traditionally constructed stone masonry houses are highly vulnerable to seismic loadings. In the past, most of the un-reinforced stone masonry buildings had collapsed causing many casualties during the earthquake events. In order to address this problem, various options have been recommended by the researchers for reinforcing new stone masonry buildings as well as strengthening existing buildings. However, developing an economically viable and socially acceptable option for improving seismic performance of the residential stone masonry houses is still remaining a great challenge.

In this context, a system of reinforcing rubble masonry using galvanized steel wire (GSW) mesh has been proposed in this research. A gabion like technique is adopted for wrapping the wall with a mesh. It is a simple technique, which can be easily learnt by the users and applied to build their houses. This method is suitable even in remote and isolated areas, where access to the technical inputs is not available. In addition, this technique seems to be useful during reconstruction phase after the earthquake disaster, for clearing up sites and building safer houses side by side.

The performance of the proposed reinforcement system was investigated both experimentally and analytically under static and dynamic loadings. Suitable materials for this research were identified and the required materials were collected. All specimens were prepared and cured in the laboratory environment. Wall specimens were constructed with due considerations to the owner builder construction mode, where owners themselves construct their houses. Both unreinforced and reinforced wall specimens were prepared for static test as well as shake table testing simulating strong earthquakes.

Two types of reinforcement schemes have been proposed in this research. In the first method, reinforcement mesh is woven around the wall using steel wire, whereas in the second method, pre-fabricated meshes are used.

Developing connecting techniques between adjacent meshes are some of the significant contributions of this investigation. This method makes this reinforcement system practicable using pre-fabricated meshes. Moreover, a simple method for tightening the mesh has been developed in this research. This tightening technique makes the proposed reinforcement system more effective in seismic performance than other types of external mesh by allowing limited deformation of the building during ground motions.

Most of the testing procedures required for this research were not covered in the existing standard methods. Therefore, several additional techniques required for preparing the specimens and testing have been developed during this research, which are given in the relevant sections. Two terminologies have been proposed for describing the strength of rubble wall in flexure.

Materials were tested for some basic properties as well as few reference parameters, which can be used for comparing the results of this research to the relevant cases. Static tests on unreinforced wall specimens have provided the basic strength properties of the wall, whereas testing on reinforced specimens have indicated potential effectiveness of the proposed scheme under dynamic loading. This has been verified by shake table testing.

A theory has been proposed for explanation of the behaviour of an externally reinforced beam and some relations have been derived. Deformation characteristics of a hexagonal mesh have been derived so that the theory developed for externally reinforced beam could be applied to the GSW reinforced wall. A set of analytical procedures have been developed and applied for the assessment of a single storey and two storey buildings.

Acknowledgements

I would like to extend my sincere gratitude to the University of Technology Sydney and all individuals whose direct or indirect contributions have made it possible to accomplish this research.

In particular, I am very grateful to my supervisor Prof. Bijan Samali for providing comprehensive support, guidance, and encouragement throughout the whole period. My deep appreciation goes to my co-supervisor Dr. Hamid Valipour for his kind guidance during this research.

I would also like to thank Mr. Rami Haddad for managing experimental activities in the laboratory, Mr. David Hooper for arranging the materials, Mr. David Dicker for assisting in preparing accessories, setting up and testing, Mr. Peter Brown and Mr. Mulugheta Hailu for technical advice and supports during testing, Mr. Antonio Reyno for assisting in soils laboratory. I also appreciate the efforts of all other laboratory staff for assisting during the experimental phase of my works.

My sincere thanks go to A/Prof. Robert J Wheen, Ms Penny Rosier, and Mr. Ian Brumby for sharing their expertise and concept in the field of gabion system. I am also thankful to A/Prof. Jianchun Li, and Dr. Kirk Vessalas for their helpful comments and suggestions.

I am truly indebted to my friend Dr. Binod Shrestha for helping in various occasions of the research activities. I also appreciate the help from my friends and colleagues for assisting in one or another form during this research. I am grateful to National Society for Earthquake Technology-Nepal (NSET), Dr. Ulrike Dackermann and Mr. Shambhu Raj Kandel for few photographs used in this thesis. I am thankful to all authors and institutions whose contributions towards the knowledge have been referred in this research.

I wish to express my sincere gratitude to my mum and other family members for their loving support. Finally, I would like to express appreciation to my wife Tika for her love, encouragement, patience and support throughout the journey.

Table of Contents

Cer	tificate	e of original authorship	iii
Abs	stract		vii
Ack	nowle	dgements	xi
List	of Figu	ures	xxi
List	of Tab	oles	xxxiii
Abl	breviat	ions and Acronyms	xxxv
Puk	olicatio	ns	xxxvii
1.	Intro	oduction	1
Ĺ	1.1	General	1
Ĺ	1.2	Objectives of the research	5
Ĺ	1.3	Scope of the study	6
Ļ	1.4	Research methodology	6
2.	Liter	ature Review	9
ź	2.1	Building Materials	9
	2.1.1	Natural building stone	9
	2.1.2	2 Mud mortar	11
	2.1.3	Galvanized steel wire	12
ź	2.2	Walling types	
	2.2.1	Ashlar walling	

2.2.	.2	Rubble walling15
2	2.2.2	.1 Random rubble15
2	2.2.2	.2 Squared rubble16
2	2.2.2	.3 Miscellaneous rubble walling
2.3	Сс	ommon seismic deficiencies and modes of failure in traditional stone masonry houses 19
2.3.	.1	De-lamination
2.3.	.2	Out of plane bending failure
2.3.	.3	In-plane shear or bending failure22
2.3.	.4	Corner or junction separation23
2.4	Se	ismic performance improving methods for new stone masonry
2.4.	.1	A system of reinforcements at critical locations and limits on openings25
2.4.	.2	Internal galvanized wire-mesh reinforcement27
2.4.	.3	Polymeric grids
2.4.	.4	External bamboo reinforcement with internal chicken wire mesh
2.4.	.5	Low cost techniques for seismic base isolation
2.5	St	rengthening options for existing stone masonry34
2.5.	.1	Grout injection
2.5.	.2	Jacketing35
2.5.	.3	Externally bonded fibre reinforced polymer35
2.5.	.4	Post tensioning
2.5.	.5	Polypropylene band mesh
2.6	Cr	itical analysis of the existing reinforcing and strengthening options
2.7	Br	ief description of relevant testing methods44
2.7.	.1	Testing methods on natural building stone44
2.7.	.2	Testing methods on mud mortar soil45
2.7.	.3	Testing methods on wet mud mortar46 xiv

2.7.4	Testing methods on dried mud mortar	46
2.7.5	Testing methods on galvanized steel wire	47
2.7.6	Testing methods on rubble masonry with mud mortar	47
2.8	Existing trend of testing on soil and mud mortar	54
2.9	Research on static testing of stone masonry	55
2.9.1	Behaviour of rubble masonry with mud mortar	55
2.9.2	Experiments on rubble masonry with lime mortar	58
2.9.3	Ashlar masonry in static testing	61
2.10	Research on shake table testing of stone masonry	72
2.11	Research on numerical modelling of random stone masonry	81
2.12	Summary	
. Propo	osed Reinforcing System	87
3.1	Background	87
3.2	Concept development	
3.3	Details of the reinforcement scheme	95
3.4	Advantages of GSW	
3.5	Governing principles of GSW reinforcement system	97
3.6	Performance of GSW in reducing the seismic deficiencies	
3.6.1	Reducing the effect of de-lamination	99
3.6.2	Improvement on out of plane behaviour of the wall	101
3.6.3	Performance of in-plane behaviour of wall	
3.6.4	Improvement of integrity of corner or junction	103
3.7	Summary	

4.	Ехр	er	erimental Investigation: Part I	
	4.1		Collection of materials	
	4.2	1	Preparation of specimens	
	4.2.	1	1 Mortar specimens	
	4.2.	2	2 Stone specimens for compression test	
	4.2.	3	3 Stone specimens for flexure test	
	4.2.	4	4 Specimens for galvanized steel wire	
	4.3		Material testing	
	4.3.	1	1 Plastic limit and liquid limit test of mortar soil	115
	4.3.	2	2 Sedimentation test of mortar soil	
	4.3.	3	3 Sieve Analysis of mortar soil	
	4.3.	4	4 Flexural strength of mud mortar	
	4.3.	5	5 Compressive strength of mud mortar	
	4.3.	6	5 Compressive strength of stone samples	
	4.3.	7	7 Flexure strength of stone samples	
	4.3.	8	3 Tensile strength of galvanized steel wire	
	4.4		Summary	
5.	Ехр	er	erimental Investigation: Part II	
	5.1		Wall specimens for static test	
	5.1.	1	1 Wall specimens for compression test	141
	5.1.	2	2 Wall specimens for bending test in vertical span	143
	5.1.	3	3 Wall specimens for bending test in lateral span	
	5.2		Specimens for dynamic test	
	5.3		Testing on walls	
	5.3.	1	1 Static testsxvi	

5.3.	1.1 Compressive strength of walls	176
5.3.	1.2 Bending test of walls in vertical span	
5.3.	1.3 Bending test of wall specimens in lateral span	
5.3.2	Dynamic tests	191
5.3.	2.1 Earthquake Loading	191
5.3.	2.2 Capacity of the testing facility	
5.3.	2.3 Shake table tests on unreinforced wall specimens	
5.3.	2.4 Shake table test on reinforced wall specimen	
5.4 S	ummary	
6. Analyt	ical and Numerical Studies	209
6.1 T	heory of externally wrapped reinforcement	209
6.2 D	Deformation characteristics of a hexagonal wire mesh	222
6.2.1	Deformation along the vertical direction	224
6.2.2	Deformation along the horizontal direction	231
6.2.3	Effect of cell size on the overall deformation of a mesh	
6.3 U	Iltimate strength of a mesh	
6.3.1	Ultimate strength along the vertical direction	237
6.3.2	Ultimate strength along the horizontal direction	
64 6	ame useful narameters of a house on al mach	241
6.4 5	Deformation and write bright on length of a mesh	241
6.4.1	Deformation per unit neight or length of a mesh	
6.4.2	Equivalent stress strain curve of a mesh	246
6.5 C	Contribution of external mesh	249
6.5.1	Bending behaviour along the lateral span	249
6.5.2	Contribution in resisting the corner separation	250
6.5.3	Bending behaviour along the vertical direction	250

	6.6	Contribution of horizontally inserted mesh	250
	6.6.1	1 Along the lateral span	250
	6.6.2	2 Around the junction	256
	6.6.3	3 Along the vertical span	258
	6.7	Experimental verification	258
	6.8	Performance of reinforced wall in lateral loading	260
	6.8.1	1 Deflection in lateral span	260
	6.8.2	2 Deflection in vertical span	262
	6.9	Step by step procedures for calculating the deflection	263
	6.10	Few examples on checking the adequacy of reinforcement	267
	6.10	.1 Single storey building	267
	6.10	.2 Double storey building	274
	6.10	.3 Maximum length of a wall	284
	6.11	Summary	285
7.	Disc	ussions	289
	7.1	Mud mortar properties	290
	7.2	Stone specimens properties	295
	7.3	Wall specimens - compression tests	297
	7.4	Wall specimens - vertical flexural tests	301
	7.5	Wall specimens - horizontal flexural tests	306
	7.6	Wall specimens - shake table tests	307
	7.7	Moisture content	308
	7.8	Analytical modelling and numerical studies	308

8.	Conc	lusions and Recommendations for Future Research	.313
	8.1	Summary and conclusions	. 313
	8.2	Recommendation for future research	. 319
Re	ference	s	.321

List of Figures

Figure 1.1 Stone masonry building in Sydney
Figure 1.2 A stone masonry house in developing region. (Photo: S. Kandel)
Figure 1.3 Damaged Cathedral in Christchurch Earthquake (Stuff 2011)4
Figure 2.1 Natural sources of building stones10
Figure 2.2 Plain ashlar masonry14
Figure 2.3 Ashlar masonry based on exposed face (IS 1597.2 : 1992)14
Figure 2.4 Random rubble masonry (IS 1597.1 : 1992)16
Figure 2.5 Squared rubble masonry (IS 1597.1 : 1992)17
Figure 2.6 Polygonal rubble walling (IS 1597.1 : 1992)18
Figure 2.7 Miscellaneous rubble walling (Photo S. Kandel)
Figure 2.8 De-lamination of stone masonry (Photo: NSET)
Figure 2.9 Out of plane bending failure21
Figure 2.10 In-plane shear failure and corner separation23
Figure 2.11 Damage along the corner (<i>Photo NSET</i>)24
Figure 2.12 Reinforced concrete bands and vertical reinforcement (IAEE 1986)26
Figure 2.13 Wooden band (IAEE 1986)26
Figure 2.14 Recommended openings in rubble masonry (IAEE 1986)27

Figure 2.15 Internally applied galvanized steel wire (Nienhuys 1999)	8
Figure 2.16 Polymeric grids in horizontal layer (Bairrão & Falcão Silva 2009)29	9
Figure 2.17 Geo-mesh reinforcement (Blondet, Vargas & Rubiños 2009)	0
Figure 2.18 External bamboo reinforcement (Dowling, Samali & Li 2005)	2
Figure 2.19 Scraped tyre pads used as a base isolator (Turer & Özden 2008)	3
Figure 2.20 Sliding type stone isolators (Yamaguchi et al. 2008)	3
Figure 2.21 Splint and bandage technique (IS 13935: 1993)	5
Figure 2.22 Scrap rubber tyre chain (Turer, Korkmaz & Korkmaz 2007)	7
Figure 2.23 Scrap tyre strips reinforcement system (Charleson 2011)	8
Figure 2.24 PP-band mesh (Mayorca and Meguro 2004)	9
Figure 2.25 Partial damage of rubble wall with wooden bands in an earthquake42	1
Figure 2.26 Static testing set up (Spence & Coburn 1992)56	6
Figure 2.27 Load deflection curves for midpoint of a wall (Spence & Coburn 1992)57	7
Figure 2.28 Panels for diagonal compression test (Milosevic et al. 2013)60	0
Figure 2.29 Specimen for direct shear test (Vasconcelos & Lourenço 2009)65	5
Figure 2.30 Masonry prisms for compression test (Vasconcelos & Lourenço 2009)66	6
Figure 2.31 Stress-strain diagram of stone prisms (Vasconcelos & Lourenço 2009)67	7
Figure 2.32 Wall specimen for compression test (Zeng 2010)69	9

Figure 2.33 Three leaf stone masonry specimen (Binda et al. 2006)70
Figure 2.34 A stone masonry building model (Benedetti, Carydis & Pezzoli 1998)75
Figure 2.35 Polymeric grids reinforcement (Bairrão & Falcão Silva 2009)76
Figure 2.36 Specimen before fixing clay tiles (Magenes, Penna & Galasco 2010)78
Figure 2.37 Schematic diagram of tested model (Meguro et al. 2012)
Figure 2.38 Typical shape of input loading (Meguro et al. 2012)80
Figure 2.39 Dry stone masonry model (Smoljanović, Živaljić & Nikolić 2013)83
Figure 2.40 Multi-layer masonry model (Milani 2010)84
Figure 3.1 Schematic diagram of earthquake disaster cycle without intervention
Figure 3.2 Performance of gabion wall in Atico earthquake (Koseki et al. 2002)
Figure 3.3 Initially proposed model93
Figure 3.4 Gabion basket with separate side and top cover93
Figure 3.5 Gabion wall during construction (Photo: U. Dackermann)
Figure 3.6 Localised damage of a wall during a seismic event (<i>Photo: NSET</i>)
Figure 3.7 Failure mechanism of rubble masonry (Bothara & Hiçyılmaz 2008)100
Figure 3.8 GSW reducing the effect of de-lamination100
Figure 3.9 Out of plane bending failure of wall101
Figure 3.10 In-plane behaviour of wall102

Figure 3.11 Reinforcement improves corner separation	3
Figure 4.1 Major construction materials used in this research	16
Figure 4.2 Mud mortar specimens for flexure test10	18
Figure 4.3 Undulation on the top surface of mortar prism10	19
Figure 4.4 Preparation for removing uneven part on top surface of mortar prism	.0
Figure 4.5 Mud mortar prism with a smooth top surface11	2
Figure 4.6 Stone samples for compression test11	.3
Figure 4.7 Stone specimens for flexure test11	.4
Figure 4.8 Figure Soil specimen during plastic limit test11	.6
Figure 4.9 Soil specimen during liquid limit test11	7
Figure 4.10 Liquid limit test result11	.8
Figure 4.11 Sedimentation test11	.9
Figure 4.12 Sieves under mechanical shaker	0
Figure 4.13 Particle Size Distribution Curve12	2
Figure 4.14 Mud mortar beam under flexure test12	3
Figure 4.15 Load deflection curve of mortar prisms12	5
Figure 4.16 Mortar specimen under compression test	6
Figure 4.17 Stress strain diagram of mud mortar prisms in compression testing	27

Figure 4.18 Stone cube under compression test	129
Figure 4.19 Specimen after failure	130
Figure 4.20 Stress strain curve for two stone samples	132
Figure 4.21 Bending test of a stone specimen	133
Figure 4.22 Tensile strength testing of steel wire	135
Figure 5.1 Prepared stone blocks	140
Figure 5.2 Wall specimens for compression test	143
Figure 5.3 Wall specimen during construction	145
Figure 5.4 Specimen for flexure test in vertical span	145
Figure 5.5 Wire wrapped around two handles	147
Figure 5.6 Wire net at the bottom of wall	147
Figure 5.7 Reinforcement fabrication by direct weaving method	149
Figure 5.8 Reinforced wall specimen prepared by direct weaving method	150
Figure 5.9 Alignment of bottom mesh	151
Figure 5.10 Steps for connecting meshes at the bottom	153
Figure 5.11 Connection of two meshes along the top of a wall	155
Figure 5.12 Connection of meshes along the side of a wall	155
Figure 5.13 Reinforced wall specimen using prefabricated mesh	156

Figure 5.14 A spherical roller support with a nut-bolt system157
Figure 5.15 A base for supporting wall specimen for bending test in lateral span
Figure 5.16 Fixed base on the top of roller supported base159
Figure 5.17 Bases under constant loading for conditioning160
Figure 5.18 Wall specimens for bending test in lateral span160
Figure 5.19 Schematic diagram of a shake table model162
Figure 5.20 U-shaped platform for preparing a specimen for shake table test
Figure 5.21 Close up view of U-Shaped platform164
Figure 5.22 Un-reinforced specimen for shake table testing165
Figure 5.23 Clamping system at the bottom of the specimen166
Figure 5.24 Additional anchorage provided to the specimen
Figure 5.25 Twin wires from inserted mesh for tying the outer mesh
Figure 5.26 Meshes after connecting at the top169
Figure 5.27 Connection along the top170
Figure 5.28 Details of reinforcement around a window172
Figure 5.29 Cell collapsing technique for increasing tightness
Figure 5.30 Reinforced shake table specimen176
Figure 5.31 Wall specimen during compression testing

Figure 5.32 Stress strain curves of masonry specimens in compression	178
Figure 5.33 Wall specimen on the verge of collapse	179
Figure 5.34 Behaviour of masonry specimen in compression	180
Figure 5.35 Wall specimen under bending test in vertical span	181
Figure 5.36 Schematic diagram of flexural test in vertical span	182
Figure 5.37 Crack in unreinforced wall specimen (Bending in vertical span)	184
Figure 5.38 Crack in reinforced wall specimen (Bending in vertical span)	184
Figure 5.39 A typical load deflection curve (Bending in vertical span)	185
Figure 5.40 Arrangement for holding vertical loading arm	186
Figure 5.41 Bending test of a wall specimen in lateral span	187
Figure 5.42 Cracks in unreinforced wall (Bending in lateral span)	188
Figure 5.43 Crack on reinforced wall specimen (Bending in lateral span)	189
Figure 5.44 Load deflection curves (bending in lateral span)	190
Figure 5.45 Ground motion recording during 1940 El Centro Earthquake	191
Figure 5.46 Locations of measured points	192
Figure 5.47 Initial sine sweep test	193
Figure 5.48 Frequency contents of input excitations	194
Figure 5.49 Mid span displacement of the wall at the top (100% intensity)	195

Figure 5.50 Mid span displacement of the wall at the top (200% intensity)195
Figure 5.51 Profile of main wall at mid span at various loading intensities
Figure 5.52 Profile of the main wall at the corner at various loading intensities
Figure 5.53 Cracks on the specimen
Figure 5.54 Reinforced wall specimen during testing199
Figure 5.55 Initial sine sweep test of reinforced specimen
Figure 5.56 Mid-span top displacement of reinforced wall (100% intensity)201
Figure 5.57 Comparison of profile of main wall at mid span at 100% intensity
Figure 5.58 Joint unwoven at 375% loading intensity203
Figure 5.59 Profile of main wall at mid span (Reinforced specimen) 203
Figure 5.60 Profile of main wall at corner (Reinforced wall)
Figure 5.61 Response of the wall specimen before and after cracking
Figure 5.62 Cracks in the main wall after 400% loading intensity205
Figure 6.1 A simply supported ideal beam210
Figure 6.2 An externally wrapped beam after cracking210
Figure 6.3 Variation of stable angle of rotation212
Figure 6.4 Variation of strain with rotation for different span
Figure 6.5 A beam with a tie link at middle span214

Figure 6.6 Variation of strain with rotation for a beam with a tie link at mid span216
Figure 6.7 Overlapped strain variation curves217
Figure 6.8 A beam with 3 tie links218
Figure 6.9 Strain variation for multi-link beam219
Figure 6.10 Strain variation for multi-link beam (Below 10 ⁰)
Figure 6.11 A wall with a horizontally inserted mesh (Plan view)
Figure 6.12 A wall reinforced with inserted mesh and external mesh (Plan view)222
Figure 6.13 Numbering pattern of corner points223
Figure 6.14 A single mesh with unrestrained sides under vertical loading
Figure 6.15 Vertical deformation of a single mesh with restrained sides
Figure 6.16 Vertical load deformation curve of a mesh with a single cell
Figure 6.17 A single column model with two cells along the vertical direction226
Figure 6.18 Vertical deformation of a mesh at various stress level
Figure 6.19 Variation of elastic deformation ratio (mesh/wire) along the height228
Figure 6.20 A multi-column mesh model with restrained sides
Figure 6.21 Deformation of a mesh of constant height with varying length230
Figure 6.22 Horizontal deformation of hexagonal mesh with restrained sides231
Figure 6.23 A single row mesh model with two cells232

Figure 6.24 Horizontal deformation of a mesh at various stress levels233
Figure 6.25 Variation of elastic deformation ratio (mesh/wire) along the height233
Figure 6.26 Deformation of a mesh under horizontal and vertical loading234
Figure 6.27 Deformation of a mesh of a constant length with varying height235
Figure 6.28 Comparison of deformation of mesh with different cell size
Figure 6.29 A hexagonal mesh with a single cell loaded in vertical direction237
Figure 6.30 A hexagonal mesh with a single cell loaded in horizontal direction
Figure 6.31 Vertical load-deformation curve (Mesh 50 mm, ϕ 1 mm)242
Figure 6.32 Vertical load-deformation curve (Mesh 100 mm, ϕ 2 mm)243
Figure 6.33 Horizontal load-deformation curve (Mesh 50 mm, ϕ 1 mm)244
Figure 6.34 Horizontal load-deformation curve (Mesh 100 mm, ϕ 2 mm)245
Figure 6.35 Equivalent stress strain curve of a mesh in vertical direction247
Figure 6.36 Equivalent stress strain curve of a mesh in horizontal direction
Figure 6.37 A portion of a wall near the cracked section (Plan View)
Figure 6.38 Moment at mid span due to inserted mesh (Mesh 50 mm, ϕ 1 mm)253
Figure 6.39 Moment at mid span due to inserted mesh (Mesh100 mm, ϕ 2 mm)255
Figure 6.40 Moment at corner due to inserted mesh (Mesh 50 mm, ϕ 1 mm)256
Figure 6.41 Moment at corner due to inserted mesh (Mesh 100 mm, φ 2 mm)257

Figure 6.42 Most probable failure mechanism of wall in lateral load (Top View)260
Figure 6.43 A single storey building
Figure 6.44 A double storey building274
Figure 7.1 Plasticity chart (Budhu 2011)291
Figure 7.2 Bending test results of mortar prisms294
Figure 7.3 Compressive strength test results of mortar prisms
Figure 7.4 Compressive strengths of stone cubes296
Figure 7.5 Flexural strength of stone prisms296
Figure 7.6 Compressive strength of wall specimen297
Figure 7.7 Comparison of compressive strength of stone, mortar and wall
Figure 7.8 Close up view of mortar joint in rubble masonry
Figure 7.9 Variation of flexural stress in the stone along the mortar joint
Figure 7.10 Comparison of flexural strengths of wall and its components
Figure 7.11 Flexural strength of walls (Vertical Span)
Figure 7.12 Comparison of load at initial crack and ultimate load (Vertical Span)
Figure 7.13 Flexural strength of reinforced and unreinforced walls (Lateral Span)

List of Tables

Table 2.1 Aspect ratio factor, k _a (AS 3700 - 2011)	50
Table 2.2 Specimen sizes for compressive strength test (BS EN1052-1:1999)	51
Table 2.3 Similitude requirements for dynamic conditions	73
Table 3.1 Disastrous earthquakes from 2005 to 2013 (USGS)	89
Table 4.1 Sedimentation test results	119
Table 4.2 Wet sieve analysis results	121
Table 4.3 Flexural strength of mud mortar	123
Table 4.4 Compressive strength of mud mortar	127
Table 4.5 Moisture content of mortar samples	128
Table 4.6 Compressive strength of stone	130
Table 4.7 Moisture content of stone sample	131
Table 4.8 Flexural strength of stone samples	133
Table 4.9 Moisture content of stone specimens for bending test	134
Table 4.10 Tensile strength of galvanized wire specimens	135
Table 5.1 Compressive strength of wall specimens	177
Table 5.2 Moisture content of mortar after compression testing of wall	
Table 5.3 Flexure strength of unreinforced wall specimens (vertical span)	183

Table 5.4 Flexure strength of reinforced wall specimens (vertical span) 183
Table 5.5 Moisture content of unreinforced wall (flexural test vertical span) 185
Table 5.6 Moisture content of reinforced wall (flexural test vertical span) 186
Table 5.7 Flexural strength of unreinforced masonry specimen in lateral span
Table 5.8 Flexural strength of reinforced masonry specimen in lateral span
Table 5.9 Moisture content of unreinforced wall specimens (flexural test lateral span) 190
Table 5.10 Moisture content of reinforced wall specimens (flexural test lateral span)190
Table 5.11 Moisture content of unreinforced shake table specimen
Table 5.12 Moisture content of reinforced shake table specimen
Table 6.1 Vertical distribution of base shear 276
Table 7.1 Comparison of physical parameters of soil 292
Table 7.2 Comparison of composition of mud mortar soil 293
Table 7.3 Comparison of mud mortar properties 294
Table 7.4 Compressive strength of stone wall with strengths of its components

Abbreviations and Acronyms

А	Cross-sectional Area
AEM	Applied Element Method
A_h	Design Horizontal Seismic Coefficient
AS	Australian Standard
ASTM	American Society for Testing and Materials
В	Breadth
BS	British Standard
CFRP	Carbon Fibre Reinforced Polymer
cm	Centimetre
D	Depth of beam / thickness of wall
DEM	Discrete Element Method
E	Modulus of Elasticity
3	Strain
F	Failure Load
$\mathbf{f}_{\mathbf{a}}$	Axial Stress
\mathbf{f}_{b}	Bending Stress
f_c	Compressive Stress
FEM	Finite Element Method
f_s	Shear Strength
G	Modulus of Rigidity
g	Acceleration due to Gravity
GFRP	Glass Fibre Reinforced Polymer
GPa	Gigapascal
GSW	Galvanized Steel Wire
h, H	Height
HB	Hand Book
Hz	Hertz
Ι	Second Moment of Area, Importance Factor
IAEE	International Association for Earthquake Engineering
IS	Indian Standard
kg	Kilogram
kPa	Kilopascal
L	Length
1	Span
LL	Liquid Limit
LS	Lateral Span
LVDT	Linear Variable Differential Transformer
m	Metre
М	Moment
min	Minute

mm	Millimetre
MMI	Modified Mercalli Intensity
MPa	Megapascal
Ν	Newton
NBC	Nepal National Building Code
NSET	National Society of Earthquake Technology-Nepal
NSW	New South Wales
Р	Point Load
PI	Plasticity Index
PL	Plastic Limit
PP	Polypropylene
R	Response Reduction Factor
RC	Reinforced Concrete
S	Second
S _m	Strain mobilising length
STP	Scrap Tyre Pads
Ta	Approximate Time Period
USGS	Unites States Geological Survey
UTS	University of Technology, Sydney
V_{B}	Design Base Shear
VS	Vertical Span
Ζ	Zone Factor
ν	Poisson's Ratio

Publications

- Pun, R., Samali, B. & Shreshta, B. 2010, 'Major factors in reinforcing stone masonry for sustainable construction practice', 21st Australasian Conference on the Mechanics of Structurers and Materials, Melbourne, Australia, pp. 547-552.
- Pun, R., Samali, B. & Valipour, H. 2012a, 'Flexural strength of stone wall in mud mortar', Australasian Structural Engineering Conference 2012, Perth, Australia.
- Pun, R., Samali, B. & Valipour, H. 2012b, 'Seismic performance improvement of stone masonry buildings in mud mortar', 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, New South Wales, Australia, pp. 479-484.

xxxviii