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ABSTRACT 
    Rechargeable energy storage devices are being seen as having a crucial role in the 

powering of myriad portable electronic devices, electrical vehicles and hybrid electrical 

vehicles. The properties of electrode materials are of extreme significance for the 

electrochemical performances of both lithium-ion (Li-ion) batteries and lithium-sulfur (Li-S) 

batteries.  

    Tin-graphene nanocomposites were prepared by a combination of microwave 

hydrothermal and one-step hydrogen gas reduction. When applied as an anode material in 

Li-ion batteries, tin-graphene nanocomposite exhibited a high lithium storage capacity of 

1407 mAh g-1. The materials also demonstrated an excellent high rate capacity and a stable 

cycle performance. Graphene-carbon nanotube hybrid materials were successfully prepared 

that demonstrated high reversible lithium storage capacity, high Coulombic efficiency and 

excellent cyclability. Fe2O3-CNT-graphene nanosheet hybrid materials were synthesized 

using a chemical vapor deposition method, exhibiting a high specific capacity of 984 

mAh·g-1 with a superior cycling stability and high rate capabilities.  

    High quality single crystalline graphene sheets were prepared by the ambient pressure 

chemical vapor deposition method using acetylene as the carbon source and coral-like iron 

with body-centered-cubic structure as the catalyst. It showed high lithium storage capacity 

and excellent cyclability. Hierarchical three-dimensional carbon-coated mesoporous Si 

nanospheres@graphene foam nanoarchitectures were successfully synthesized by a thermal 

bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. 

The materials exhibited superior electrochemical performances, including a high specific 

capacity of 1200 mAh/g at the current density of 1 A/g, excellent high rate capabilities and 

outstanding cyclability. 

Mesoporous Co3O4 nanoflakes with interconnected architecture were successfully 

synthesized by means of a microwave-assisted hydrothermal and low-temperature 

conversion method. Co3O4 nanoflakes delivered a high specific capacity of 883 mAh/g at 

0.1 C current rate and stable cycling performances even at higher current rates as anodes of 

Li-ion batteries.  

The synthesis of graphitic hyperbranched hollow carbon nanorods encapsulated sulfur 

composites were employed as cathode materials for Li-S batteries. The sulfur composite 
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cathodes delivered a high specific capacity of 1378 mAh/g at 0.1 C current rate and 

exhibited a stable cycling performance.  

Multi-shelled hollow carbon nanospheres-sulfur composites with a high percentage of 

sulfur loading (86 wt. %) were synthesized by an aqueous emulsion approach and in-situ 

sulfur impregnation, delivering a high specific capacity of 1350 mAh/g and excellent 

capacity retention. By adopting a dual confinement strategy, poly(3,4-

ethylenedioxythiophene) (PEDOT) coated micro/mesoporous carbon nanocube 

encapsulated sulfur (P@CNC-S) composites were synthesized. The P@CNC-S composites 

exhibited superior performances, including a high specific capacity, extended cycle life and 

outstanding rate capabilities. 
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