NOVEL NANOMATERIALS FOR LITHIUM ION BATTERIES AND LITHIUM SULFUR BATTERIES

A thesis presented for the award of the degree of

Doctor of Philosophy

From

University of Technology, Sydney

Faculty of Science

By Shuangqiang Chen, B. Sc., M. Eng.

December 2014

DEDICATION

This thesis is dedicated to my beloved wife, my parents, my brother and sister. With your concerns and helps, I have sufficient energy and strengths to fulfill my PhD research.

CERTIFICATION

I, Shuangqiang Chen, declare that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also declare that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis has been acknowledged. In addition, I declare that all information sources and literature used are indicated in the thesis.

Signature of student Shuangqiang Chen

26-09-2014

Signature of supervisor

Professor Guoxiu Wang

ACKNOWLEDGEMENTS

I would like to convey my deeply appreciations to my respect supervisor, Prof. Guoxiu Wang, for his encouragements, understandings, invaluable advice, and constant supportings during my study at University of Technology, Sydney (UTS). I appreciate his constant motivation throughout this period and his support in professional careers.

I have my thanks to many people for constantly rendering helps during this research activity. Dr. Hao Liu, Dr. Bing Sun, Dr. Bei Wang, Dr. Ying Wang, Dr. Dawei Su, Dr. Xiaodan Huang, Dr. Zhimin Ao, Mr. Kefei Li, Mr. Jinqiang Zhang, Ms. Yufei Zhao and Mr. Anjon Kumar Mondal. Specical thanks go to Dr. Yueping (Jane) Yao for her support in many ways, letting me have enough time to complete those experiments.

I also wish to thank A/Prof. Alison Ung, Dr. Ronald Shimmon and Dr. Linda Xiao in Chemistry and Forensic Science for their friendly support and kind discussions during my study. I am very grateful to Dr. Waikong Yeoh from The University of Sydney for his assists on TEM analysis. I would to give my thanks to Prof. Shixue Dou, Prof. Huakun Liu, in University of Wollongong. I take this chance to mention my cordial thanks to China Scholarship Council (CSC) and Australian Research Council (ARC) through the ARC Linkage project (LP0989134), ARC Discovery Project (DP1093855) and Future Fellowship project (FT110100800) for financing my researches.

Finally, I would like to reserve my special and heartfelt thanks to my beloved wife Ms. Lingli Xu, a soul mate of my life. Her sweet loves and meticulous concerns give me endless strength and fearless courage to face many difficulties. She is the reason for my eternal happiness. I also would like to convey my significant thanks to my father, Mr. Liudang Chen, and my mother, Ms. Yin Jin, for their understanding, moral support and continuous encouragement throughout my life. The secret of my success is hidden in the hard work they did to financially support my education and live. I feel myself extremely fortunate to have such kind parents.

There is an active and passive role of many people who helped me to arrive at this milestone. I may have forgotten to mention their names, but the help they offered has certainly made a home in my heart.

TABLE OF CONTENTS

DEDICATION	i
CERTIFICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	ix
LIST OF TABLES	xxiv
LIST OF ABBRIEVIATIONS	XXV
LIST OF PUBLICATION	xxvi
ABSTRACT	xxxi
INTRODUCTION	1
CHAPTER 1 LITERATURE REVIEW	5
1.1 Renewable energy storage	5
1.2 Lithium ion batteries	5
1.2.1 Cathodes	7
1.2.2 Anodes	10
1.3 Lithium sulfur batteries	14
1.3.1 Challenges and opportunities	14
1.3.2 Cathodes	16
1.3.3 Anodes	18
CHAPTER 2 EXPERIMENTAL METHODE AND CHARACTERIZATION	19
2.1 Overview	19
2.2 Material preparations	22
2.3 Material characterizations	
2.4 Electrode preparation and batteries assembly	
2.4.1 Lithium ion batteries	

2.4.2 Lithium sulfur batteries	34
2.5 Electrochemical performance characterization	34
2.5.1 Galanostatic charge and discharge	35
2.5.2 Cyclic voltammetry	35
2.5.3 Electrochemical impedance spectroscopy	36
CHAPTER 3 TIN-GRAPHENE NANOCOMPOSITES FOR LITHIUM ION BATTE	RIES
	37
3.1 Introduction	37
3.2 Experimental	39
3.2.1 Preparation of Sn-Graphene nanocomposites	39
3.2.2 Characterization of Sn-Graphene nanocomposites	39
3.2.3 Electrochemical measurements	39
3.3 Results and discussion	40
3.4 Conclusions	49
CHAPTER 4 GRAPHENE-CARBON NANOTUBES HYBRID MATERIALS	FOR
LITHIUM ION BATTERIES	50
4.1 Introduction	50
4.2 Experimental	51
4.2.1 Preparation of Graphene-CNT nanocomposites	51
4.2.2 Characterization of Graphene-CNT nanocomposites	52
4.2.3 Electrochemical measurements	52
4.3 Results and discussion	53
4.4 Conclusions	64
CHAPTER 5 Fe ₂ O ₃ -CARBON NANOTUBE-GRAPHENE HYBRID NANOMATER	IALS
WITH AN OPEN THREE DIMENSIONAL FEATURE FOR LITHIUM	ION
BATTERIES	65

5.1 Introduction	65
5.2 Experimental	66
5.2.1 Synthesis and characterizations	66
5.2.2Electrochemical measurements	66
5.3 Results and discussion	67
5.4 Conclusions	81
CHAPTER 6 LARGE-SCALE AND LOW-COST SYNTHESIS OF GRAPHENE ANODE FOR LITHIUM ION BATTERIES	
6.1 Introduction	82
6.2 Experimental	84
6.2.1 Preparation of catalysts	84
6.2.2 Synthesis of graphene	84
6.2.3 Materials characterisation	84
6.2.4 Electrochemical measurements	85
6.3 Results and discussion	86
6.4 Conclusions	104
CHAPTER 7 HIERACHICAL 3D MESOPOROUS SILICON@GRAPHI	ene
NANOARCHITECTURE FOR LITHIUM ION BATTERIES	105
7.1 Introduction	105
7.2 Experimental	106
7.2.1 Preparation of graphene foam	106
7.2.2 Preparation of C@Si@GF nanocomposites	107
7.2.3 Materials characterization	107
7.2.4 Electrochemical measurements	107
7.3 Results and discussion	108

7.4 Conclusions	117
CHAPTER 8 MICROWAVE-ASSISTED SYNTHESIS OF Co ₃ O ₄ NANOFLAKES	FOR
LITHIUM ION BATTERIES	118
8.1 Introduction	118
8.2 Experimental	119
8.2.1 Preparation of mesoporous Co ₃ O ₄ with microwave-assited method	119
8.2.2 Materials characterization	120
8.2.3 Electrochemical measurements	120
8.3 Results and discussions	121
8.4 Conclusions	134
CHAPTER 9 3D HYPERBRANCHED CARBON NANORODS ENCAPSUL	ATED
SULFUR COMPOSITES FOR LITHIUM SULFUR BATTERIES	135
9.1 Introduction	135
9.2 Experimental	137
9.2.1 Preparation of hyperbranched MgO with maze-like structure	137
9.2.2 Preparation of hyperbranched hollow carbon nanorods with max	ze-like
hierarchical structure	137
9.2.3 Preparation of hyperbranched carbon nanorods/sulfur composites	138
9.2.4 Materials characterization	138
9.2.5 Electrochemical measurements	138
9.3 Results and discussions	139
9.4 Conclusions	154
CHAPTER 10 MULTI-SHELLED HOLLOW CARBON NANOSPHERES	FOR
LITHIUM-SULFUR BATTERIES	155
10.1 Introduction	155
10.2 Experimental	156

10.2.1 Preparation of resol precursors.	156
10.2.2 Synthesis of multi-shelled hollow carbon nanospheres.	156
10.2.3 Preparation of multi-shelled hollow carbon nanosphere-sulfur composi	tes:157
10.2.4 Structural and phase characterization.	157
10.2.5 Electrochemical measurements	158
10.3 Results and discussion	158
10.4 Conclusions	171
CHAPTER 11 MESOPOROUS RUBIK'S CARBON NANOCUBES AS CARRIES FOR LITHIUM SULFUR BATTERIES	
11.1 Introduction	172
11.2 Experimental Section	173
11.2.1 Preparation of mesoporous MnO nanocube template and mesoporou nanocube:	
11.2.2 Preparation of P@CNC-S nanocomposites:	173
11.2.3 Structural and phase characterization:	174
11.2.4 Electrochemical measurement:	174
11.3 Results and discussion	175
11.4 Conclusions	
CHAPTER 12 CONCLUSIONS	199
12.1 Graphene and Graphene Nanocomposites as Anode Materials for Li Batteries	
12.2 Nanostructure Transition Metal Oxides for Lithium-Ion Batteries	201
12.3 Novel Carbon Nanomaterials as Sulfur Carriers for Lithium-Sulfur Batterie	es201
12.4 Outlook	203
REFERENCES	205

LIST OF FIGURES

Figure 1-1 Schematic illustration for the first commercial Li-ion battery $(LiCoO_2/Li^+)$
electrolyte/graphite)
Figure 1-2 Voltage (V) versus capacity (Ah/kg) for positive and negative electrode
materials7
Figure 1-3 Schematic illustration of layered LiMO ₂ crystal structure (blue: transition metal
ions; red: Li-ions)
Figure 1-4 Schematic illustration of olivine-type LiMPO ₄ crystal structure (blue: transition
metal ions; red: Li-ions; yellow: P ions)
Figure 1-5 Schematic illustration of spinel LiM_2O_4 crystal structure (blue: M_2O_4 transition
metal oxides; red: Li-ions)10
Figure 1-6 Schematic illustration of intercalation mechanism of Li ions and carbon based
materials11
Figure 1-7 A scheme diagram of graphene with capabilities of rolling into fullene, carbon
nanotube or stacking as graphite
Figure 1-8 The theoretical specific capacities and capacity densities for anode materials. 13
Figure 1-9 A schematic illustration of Li-S batteries
Figure 1-10 The electrochemical charge/discharge profiles of Li-S batteries and the shuttle
effect
Figure 2-1 Schematic illustration for materials preparations, characterizations and
applications
Figure 2- 2 The scheme for chemical vapor deposition with different gases supply and
special furnace design
Figure 2-3 The quartz tube furnace with additional gas routes and cooling system
Figure 2-4 Muffle furnace
Figure 2- 5 Single-mode microwave synthesizer with pressure and temperature controllers
Figure 2- 6 Scheme for the theory of Bragg's Law
Figure 2- 7 Siemens D5000 diffractometer for XRD measurements
Figure 2-8 The 3 Flex surface characterization analyser instrument produced by

Micromeritics
Figure 2-9 The Renishaw inVia Raman microscope equipped with a Leica DMLB
microscope (Wetzlar, Germany) and a 17 mW at 633 nm Renishaw helium neon laser.
Figure 2-10 The field emission scanning electron microscopy in a mode of Supera 55 VP
produced by Zeiss and equipped with EDS detector
Figure 2- 11 TEM instrument (JEM-2010FS) equipped with EDX detector
Figure 2-12 Schematic illustration for the components for lithium ion batteries
Figure 2-13 The argon-filled glove box (Mbraun, Unilab, Germany)
Figure 2- 14 The computer-controlled Neware battery test system
Figure 2-15 The CH instruments (CHI 660D) for CV and EIS testing
Figure 3- 1 Powder X-ray diffraction (XRD) patterns of graphite oxide (GO), SnO ₂ -
graphene oxide (SnO ₂ -GO), Sn-graphene nanosheets (Sn-GNS-1), Sn-graphene
nanosheets (Sn-GNS-2)
Figure 3- 2 A schematic illustration for the preparation process of Sn-graphene nanosheets
(Sn-GNS) nanocomposites
Figure 3- 3 SEM images of Sn-graphene nanosheets nanocomposites: (a) Sn-graphene
nanosheets (Sn-GNS-1), (b) Sn-graphene nanosheets (Sn-GNS-2)
Figure 3- 4 (a) TEM image of graphene nanosheets (GNS), (b) HRTEM image of graphene
nanosheets (GNS), (c-d) TEM images of Sn-graphene nanosheets (Sn-GNS-1), (e-f)
TEM images of Sn-graphene nanosheets (Sn-GNS-2)
Figure 3- 5 Electrochemical performances of graphene nanosheets and Sn-graphene
nanosheets nanocomposites, (a) The first cycle discharge (lithium insertion) and charge
(lithium extraction) curves of the three materials, (b) Cycling performances at 0.1 C of
GNS, Sn-GNS-1 and Sn-GNS-2, (c) Cycling performance at stepwise current densities
of Sn-GNS-2
Figure 3- 6 The first cycle discharge and charge curves at large current densities of 0.5 C, 1
C, 2 C and 5 C of Sn-GNS-2, (f) Cycling performances at large current densities of Sn-
GNS-2
Eisen 2, 7 (a) The TEM increase from any hear and the state (See CNIC 1) after any line test

Figure 3-7 (a) The TEM image of Sn-graphene nanosheets (Sn-GNS-1) after cycling test,

Figure 4- 1 A schematic illustration of the formation process of GNS-CNTs hybrid
materials
Figure 4-2 (a) XRD patterns of graphene oxide (GO), graphene nanosheets (GNS), Multi-
walled carbon nanotubes (MWCNTs), GNS-CNT-1 and GNS-CNT-2, (b) Raman
spectra of GNS, MWCNTs, GNS-CNT-1 and GNS-CNT-2
Figure 4-3 (a) UV/Vis absorption spectra of MWCNT, GO, GO-CNT-1 and GO-CNT-2,
(b) Nitrogen adsorption-desorption isotherm and insert image is pore size distribution
of GNS-CNT-2
Figure 4- 4 Low and high magnification SEM images of GNS-CNT-1 (a, b) and GNS-
CNT-2 (c, d)
Figure 4- 5 Low and High resolution TEM images of GNS-CNT-1(a, b) and GNS-CNT-2
(c, d)
Figure 4- 6 (a) Charge-discharge profiles of the electrodes in the 1 st and 100 th cycles (a)
GNS, (b) GNS-CNT-1 and (c) GNS-CNT-2. Current density: 74.4 mA g ⁻¹ 61
Figure 4-7 (a) Cycling performances of the GNS, GNS-CNT-1 and GNS-CNT-2 electrodes
in the 100 cycles, (b) Charge/discharge cycling performances of the GNS-CNT-2
electrodes at different current densities (0.5 C and 1 C) and the Coulombic efficiencies
at current density of 372 mA g^{-1}
Figure 5- 1 A schematic diagram for the preparation of Fe ₂ O ₃ -CNT-GNS hybrid materials
Figure 5-2 (a) X-Ray diffraction (XRD) patterns of GO, GNS, Fe ₂ O ₃ , Fe ₂ O ₃ -CNT-GNS-1
and Fe ₂ O ₃ -CNT-GNS-2. (b) Raman spectra of as-prepared GNS, Fe ₂ O ₃ -CNT-GNS-1
and Fe ₂ O ₃ -CNT-GNS-2
Figure 5- 3 Low and high magnification SEM images showing morphologies of Fe ₂ O ₃ -
CNT-GNS-1 (a, b) and Fe ₂ O ₃ -CNT-GNS-2 (c, d). (b) and (d) are the magnified views,
marked by a white square in (a) and (c), respectively
Figure 5- 4 Low and high magnification SEM images showing the typical morphologies of
GNS (a, b) and Fe ₂ O ₃ nanoparticles (c, d)

- Figure 5- 8 TEM image of Fe₂O₃-CNT-GNS-2 (a) and corresponding elemental mapping images (b, c, d and e). (f) The corresponding EDX spectrum of Fe₂O₃-CNT-GNS-2.74
- Figure 5- 10 The electrochemical performances of bare GNS, bare Fe₂O₃ nanoparticles, Fe₂O₃-CNT-GNS-1 and Fe₂O₃-CNT-GNS-2 electrodes: (a) Charge/discharge profiles of GNS, Fe₂O₃, Fe₂O₃-CNT-GNS-1 and Fe₂O₃-CNT-GNS-2 at a current density of 74.4 mA·g⁻¹, (b) Cycle performances of GNS, Fe₂O₃, Fe₂O₃-CNT-GNS-1 and Fe₂O₃-CNT-GNS-1 and Fe₂O₃-CNT-GNS-2 at a current density of 74.4 mA·g⁻¹.
- Figure 5- 11(a) SEM image of pure Fe₂O₃ after cycling test. (b) SEM image of Fe₂O₃-CNT-GNS-2 hybrid materials after cycling test. Low and high magnification TEM images showing structures of electrodes after cycling test. Pure Fe₂O₃ electrode after cycling test are shown in images (c, d) and Fe₂O₃-CNT-GNS-2 hybrid materials after cycling

- Figure 6- 1 (a) Example of graphene in large quantity (about 1 g) produced by CVD method using C₂H₂ as the carbon source and Fe as the catalyst. (b) A luminous light-emitting diode powered by three coincells cells connected in series with graphene electrode as the anode material. (c) FESEM images of the as-prepared graphene sheets with coral-like Fe particles. (d) Graphene sheets after the removal of iron catalysts... 87

- Figure 6- 4 Different products obtained by CVD at different temperatures. (a) Carbon nanofibers (550 °C). (b) Carbon nanotubes (650 °C). (c) Vertical carbon nanotubes (750 °C). (d) Graphene fragments (950 °C).

Figure 6- 5 High and low magnifications of TEM images (a-b) of CNF obtained at 550°C, followed with "tip-growth" mechanism. High and low magnifications of TEM images (c-d) of end-opened CNTs obtained at 650 °C, followed with "tip-growth" mechanism.

Figure 6- 6 High and low magnifications of TEM images (a-b) of vertical batched CNTs

- Figure 6- 9 X-Ray diffraction pattern of a series of samples: (1) Fe₂O₃ obtained by urea-assistant homogenous precipitation method. (2) Fe particles reduced by H₂ at 850 °C. (3) Fe-CNF (carbon nanofiber) hybrid materials obtained at 550 °C. (4) Fe-CNT hybrid materials obtained at 650 °C. (5) Vertically batched CNT and Fe hybrid materials obtained at 750 °C. (6) Graphene and coral-like Fe nanoparticles synthetized at 850 °C. (7) Multi-layer graphene sheets and molten Fe particles obtained at 950 °C. The Fe₂O₃ particles show the hematite state, which accords with JCPDS No. 33-0664 with space group at R-3c (167). The as-synthesised Fe nanoparticles at 850 °C agree well with Synthesis alpha iron (JCPDS No. 06-0696, with the space group at Im-2m (229)). And Fe nanoparticles at 950 °C transfered to austenite which agrees well the JCPDS No. 52-0513, with the space group at Fm-3m (225). The followed samples with CNTs are

- Figure 6- 11 TEM images of graphene sheets grown by APCVD at 850 °C with varied growth time. The inset images are the corresponding SAED patterns of graphene sheets. (a) Graphene with wrinkles obtained by APCVD growth for 5 min, pointed by black arrows. (b) Graphene with wrinkles obtained by APCVD growth for 10 min, pointed by black arrows. (c) Graphene with folds obtained by APCVD growth for 30 min, marked by black arrows. The monolayer graphene sheets are labeled by white arrows. (d) Graphene obtained by APCVD growth for 120 min. The folded graphene sheets are annotated by black arrows and monolayer graphene sheets are labeled by white arrows.

- Figure 6- 14 HRTEM images of graphene sheets produced by APCVD at 850 °C in different growth times. (a) Graphene sheets with different number of layers and their corresponding SAED patterns. The hexagonal SAED pattern of bilayer graphene shows a rotation in stacking of 30° between two layers and pattern of triple layers graphene exhibits a rotation in stacking of 3°. (b-e) HRTEM images of fine structures of carbon atoms on the basal plane of graphene sheets produced by different APCVD deposition times (b: 5 min, c: 10 min, d: 30 min, e: 120 min), demonstrating improved

- Figure 6- 16 X-ray photoelectron spectroscopy spectrum (a) of graphene obtained at 850 °C grown for 30 min. Insert: Peak comes from carbon atoms. The atomic concentration of carbon is more than 99.3%. Nitrogen adsorption/desorption analysis (b) of graphene obtained at 850 °C grown for 30 min. The insert in (b) is the pore size distribution of graphene.
 101

- Figure 7- 3 Electrochemical performance of the C@Si@GF composite electrode (sample V): (a–b) Galvanostatic charge-discharge profiles and cycling performances of Si and C@Si@GF nanocomposites with cut-voltage between 5 mV and 2V respectively (C = Specific capacity, N = Cycle number).
- Figure 7- 4 (a) Step-wise rate performance of C@Si@GF composites (sample V) at different current densities. (b) Cycling performances at high current densities....... 115

Figure 8- 1 Schematic illustration of microwave-assisted hydrothermal synthesis of
mesoporous Co_3O_4 nanoflakes
Figure 8- 2 (a) X-ray diffraction pattern of intermediate $Co(CO_3)_{0.5}(OH)_{0.11}H_2O$ and Co_3O_4 .
(b) Raman spectrum of Co ₃ O ₄ . (c) Nitrogen adsorption and desorption isotherms of
mesoporous Co ₃ O ₄ nanoflakes with insert plot of pore size distribution 123
Figure 8- 3 Low and high magnification of field-emission scanning electron microscopy
(FESEM) images of $Co(OH)_2$ (a and b). Low and high magnification FESEM images
of Co ₃ O ₄ with mesoporous structure (c and d) 125
Figure 8-4. (a) Low magnification TEM image and (b) high resolution TEM (HR-TEM)
image of mesoporous $\mathrm{Co}_3\mathrm{O}_4$ nanoflakes with an enlarged view. (c) HR-TEM image
and the corresponding lattice profile of (220) plane and its corresponding simulation
scheme, respectively. (d) The relevant fast Fourier transform (FFT) pattern 126
Figure 8- 5 The cyclic voltammetry of mesoporous Co_3O_4 nanoflakes at the scan rate of 0.5
mV/s

- Figure 8- 6 The electrochemical performance of mesoporous Co₃O₄ nanoflakes electrode.
 (a) Galvanostatic charge/discharge profiles cycled at 1st, 100th and 300th between 0.01 and 3 V (vs Li⁺/Li) at a current density of 89 mA/g (0.1 C). (b) Cycling performance of mesoporous Co₃O₄ nanoflakes electrode and its Coulombic efficiency at 0.1 C as insert image.

Figure 8- 9 Low and high magnification of mesoporous Co_3O_4 electrode after 300 cycles.

- Figure 9- 1 The schematic illustration for the synthesis route of 3D hyperbranched hollow carbon nanorod-sulfur (CNR-S) nanocomposites. (a) Hyperbranched MgO nanorods template. (b) Carbon coated MgO nanorods. (c) Hollow carbon nanorods with a new maze-like architecture. (d) Carbon nanorod encapsulated sulfur nanocomposites. ... 140

- Figure 9- 4 TEM image of MgO template (a) and selected area electron diffraction (SAED) pattern (b). TEM images of hollow carbon nanorods with hyperbranched and open-

ended structure (c-d). 142

Figure 9- 5 (a) The XRD patterns of hyperbranched MgO, C@MgO, hyperbranched carbon nanorods, pure sulfur and CNR-S composites, respectively. (b)Raman spectra of sulfur, carbon nanorod and CNR-S composites.

Figure 9- 6 The morphologies of hyperbranched hierarchical MgO and C@MgO nanocomposites. (a and b) FESEM images of hyperbranched hierarchical MgO. (c) FESEM image of C@MgO composites. (d) TEM elemental mapping image of one C@MgO nanorod.

Figure 9- 10 Electrochemical performance of CNR-S electrodes. (a) Typical charge/discharge profiles of CNR-S nanocomposites at the 1st and 500th cycles at 1 C (1 C = 1673 mA/g). (b) The charge/discharge profiles of pure S at 1st and 500th cycle at 1 C. (c) Cycling performances of CNR-S nanocomposites and pure S at 1 C with testing voltages between 1.7 V and 2.6V. Insert image: Coulombic efficiency of CNR-S nanocomposites.

Figure 9- 11 (a) Cycling performance of CNR-S nanocomposites at step-wise rates. (b) Typical charge/discharge profiles of CNR-S electrodes at 0.5 C, 5 C and 10 C in the

first cycle, respectively. (C) Cycle lifes	of CNR-S nanocomposites at higher	current
densities (0.5 C, 5 C and 10 C)		152

Figure 9- 12 (a) SEM image of CNR-S nanocomposite after 500 cycles with insert image of the schematic illustration of nanorod structure (S was indicated by green arrows). (b)
Electrochemical impedance spectra of CNR-S composites before and after 500 cycles.
Insert image shows the details.

Figure 10- 3 Specific surface areas and pore size distributions of multi-shelled hollow carbon nanospheres-SiO₂, multi-shelled hollow carbon nanospheres, and multi-shelled hollow carbon nanospheres-sulfur composites. (a₁ and a₂) Specific surface area and pore size distribution of multi-shelled hollow carbon nanospheres-SiO₂. (b₁ and b₂) Specific surface area and pore size distribution of multi-shelled hollow nanocarbon spheres. (c₁ and c₂) Specific surface area and pore size distribution of multi-shelled not multi-shelled hollow nanocarbon spheres. (c₁ and c₂) Specific surface area and pore size distribution of multi-shelled not mul

- Figure 10- 4 (a) Low magnification FESEM image of MHCS composites. (b) High magnification FESEM image of MHCS composites with an insert image of an enlarged view. (c) TEM image of MHCS composites. The inset is a HRTEM image of MHCS composites. (d) Elemental mapping SEM images of sulfur (red) and carbon (green) in MHCS composites. The insets are TEM elemental mapping of carbon (green) and sulfur (red) the scale bar is 100 nm.

Figure 10- 6 Thermogravimetric analysis of pure sulfur and MHCS composites (The

- Figure 10- 10 Elemental distribution and energy dispersive X-ray spectrum of MHCS electrode after cycling. (a-c) Elemental distributions of sulfur and carbon in MHCS electrode after cycling. (d) Energy dispersive X-ray spectrum of MHCS electrode after cycling. 170
- Figure 10- 11 (a) Electrochemical impedance spectra of MHCS electrode before and after cycling. (b) The corresponding equivalent circuit (R_{Ω} : Ohm resistance; Rct: Charge transfer resistance; Zw: Warburg diffusion process; CPE: constant-phase element). 170

Figure	11-	1	А	schematic	illustration	for	preparing	PEDOT	coated	Rubik's
mi	cro/m	esop	oro	us carbon na	nocube-sulfu	r con	nposites			176
Figure	11-2	(a)	X-ra	ay diffraction	n patterns of	MnO	, CNC, CN	C-S, P@C	NC-S an	d bare S.
(b)	Ram	an	spec	tra of CNC	, CNC-S, P(@CN	C-S and ba	re S. (c)	Fourier t	ransform
inf	rared	spec	etra	of CNC, CN	C-S, P@CNC	C-S a	nd bare S			177
Figure	11-3	(a-d) Lo	w and high	magnification	n SEN	A images of	rhombic N	/InCO ₃ na	nocubes.
										179

Figure 11- 5 Nitrogen absorption-desorption isotherm plots and pore size distribution

information of mesoporous MnO nanocubes 180
Figure 11- 6 (a-d) Low and high magnification SEM images of carbon coated MnO
nanocubes
Figure 11- 7 (a) Scanning electron microscopy (SEM) image of mesoporous carbon
nanocubes. (b) Transmission electron microscopy (TEM) image of mesoporous CNC.
(c-d) High-resolution TEM images of CNC with a thickness profile image of CNC in
(d). (e) Nitrogen adsorption-desorption isotherm and pore size distribution (insert
image) of micro/mesoporous carbon nanocubes
Figure 11- 8 (a-d) Low and high magnification SEM images of mesoporous hollow carbon
nanocubes
Figure 11-9 (a) SEM images of CNC-S composites. (b) TEM image of CNC-S composites.
(c) Elemental mapping image of CNC-S composites. (d) SEM images of P@CNC-S
composites
Figure 11- 10 (a-d) Low and high magnification SEM images of hollow carbon nanocubes
with vast mesopores encapsulated sulfur into individual small hollow carbon
nanocubes. Sulfur is labeled with white arrows in the image c and d
Figure 11- 11 Low and high magnification SEM images of PEDOT coated CNC-S
composites. Mesopores on CNC-S composites were covered by PEDOT conductive
polymers
Figure 11- 12 (a) TEM images of rhombic CNC-S composites in which sulfur was
encapsulated. (b) TEM images of PEDOT coated CNC-S composites 186
Figure 11- 13 (a-d) Elemental mapping TEM images of CNC-S composites. (e) Energy
dispersive X-ray (EDX) spectrum of CNC-S composites
Figure 11- 14 (a-c) High resolution elemental mapping images of P@CNC-S composites.
(d) The corresponding EDX spectrum. 187
Figure 11- 15 Thermogravimetric analysis of bare sulfur, CNC-S and P@CNC-S
composites
Figure 11- 16 Cyclic voltammogram (CV) plots of CNC-S (a) and P@CNC-S (b)
composites. The charge/discharge profiles of CNC-S (c) and P@CNC-S (d)
composites in 1 st and 1000 th cycles at 1 C current rate. (e) Cycling performances of
CNC-S and P@CNC-S composites at 1 C for 1000 cycles (1 C = 1673 mA/g) 189

LIST OF TABLES

Table 2- 1 Materials and chemicals used in the research project. 20
Table 3- 1 The comparison of electrochemical performances of different Sn-graphene basd materials 48
Table 4- 1 The specific BET surface areas and average pore size of GNS, GNS-CNT-1,GNS-CNT-2 and MWCNTs.57
Table 4- 2 The comparison of electrochemical performances of different graphene basd materials
Table 5- 1 The comparison of electrochemical performances of different graphene basd materials. 80
Table 6-1 The electrochemical performance comparison of graphene based materials 104
Table 7-1 The electrochemical performances of Si/GNS hybrid materials are compared.115
Table 8- 1 The electrochemical performances of mesoporous Co ₃ O ₄ nanoflakes hybrid materials are compared with other Co ₃ O ₄ materials
Table 9- 1 The electrochemical performances of CNR-S materials are compared with other carbon-sulfur based materials 152
Table 10- 1 The comparisons of sulfur loading and electrochemical performances of different carbon-sulfur composite electrodes 167
Table 11- 1 The electrochemical performances of P@CNC-S materials are compared with other carbon-sulfur based materials. 195

Abbreviation	Full name
a.u.	Arbitrary unit
BET	Brunauer Emmett Teller
C rate	Current rate
CB	Carbon black
cm	Centimeter
EIS	Electrochemical impedance spectroscopy
EC	Ethylene carbonate
Eq.	Equation
FESEM	Field emission scanning electron microscopy
FT-IR	Fourier transform inferior red spectroscopy
EV	Electric vehicle
HEV	Hybrid electric vehicle
JCPDS	Joint committee on powder diffraction standards
nm	Nanometer
NMP	1-methyl-2-pyrrolidinone
PC	Propylene carbonate
PTFE	Polytetrafluoroethylene
PVDF	Polyvinylidene fluoride
SAED	Selected area electron diffraction
SEI	Solid electrolyte interphase
SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
TGA	Thermogravimetric analysis
XRD	X-ray diffraction

LIST OF ABBRIEVIATIONS

LIST OF PUBLICATION

- [1] Shuangqiang, Chen; Xiaodan, Huang; Hao, Liu; Bing, Sun; Waikong, Yeoh; Kefei, Li; Jinqiang, Zhang; Guoxiu, Wang; 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries. *Advanced Energy Materials* 2014, 4 (8), 1301761. Impact factor: 14.385. (Selected as Frontispiece image, and reported by Materials Views China at June 12, 2014, VILEY). Essencial science indicator (ESI) highly cited paper.
- [2] Bing Sun, Xiaodan Huang, Shuangqiang Chen, Paul, Munroe and Guoxiu, Wang; Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life and high capacity lithium-oxygen batteries. *Nano letters*, 2014. 14 (6), 3145– 3152. Impact factor: 12.2. (Top 10, most downloaded papers, May-June, 2014)
- [3] Shuangqiang, Chen; Peite, Bao; Xiaodan, Huang; Bing, Sun; Guoxiu, Wang; Hierarchical 3D mesoporous silicon@ graphene nanoarchitectures for lithium ion batteries with superior performance *Nano Research* 2014, 7, 85-94. Impact factor: 6.89. ESI highly cited paper.
- [4] Shuangqiang, Chen; Peite, Bao; Linda, Xiao; Guoxiu, Wang; Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries *Carbon* 2013, 64, 158-169. Impact factor: 6.16
- [5] Shuangqiang, Chen; Peite, Bao; Guoxiu, Wang; Synthesis of Fe₂O₃-CNT–graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage *Nano Energy* 2013, 2, 425-434. Impact factor: 10.22.
- [6] Shuangqiang, Chen; Xiaodan, Huang; Bing, Sun; Jinqiang, Zhang; Hao, Liu; Guoxiu, Wang; Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances *Journal of Materials Chemistry A*, 2014, 2, 16199-16207.
 (Top 10, most downloaded papers, August-September 2014)
- [7] Shuangqiang, Chen; Waikong, Yeoh; Qi, Liu; Guoxiu, Wang; Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries *Carbon* 2012, 50, 4557-4565. Impact factor: 6.16.

- [8] Shuangqiang, Chen; Yong, Wang; Hyojun, Ahn; Guoxiu, Wang; Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries *Journal of Power Sources* 2012, 216, 22-27. Impact factor: 4.67. 27 Citations. <u>ESI highly cited paper.</u>
- [9] Shuangqiang, Chen; Peng, Chen; Yong, Wang; Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries *Nanoscale* 2011, 3, 4323-4329. Impact factor: 6.9.
- [10] Shuang Qiang, Chen; Yong, Wang; Microwave-assisted synthesis of a Co₃O₄-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries *Journal of Materials Chemistry* 2010, 20, 9735-9739. Impact factor: 6.6. 133 Citations ESI highly cited paper.
- [11] Shuangqiang, Chen; Peng, Chen; Minghong, Wu; Dengyu, Pan; Yong, Wang; Graphene supported Sn–Sb@ carbon core-shell particles as a superior anode for lithium ion batteries *Electrochemistry Communications* 2010, 12, 1302-1306. Impact factor: 4.2. 79 Citations
- [12] Shuangqiang, Chen; Bing, Sun; Xiaodan Huang; Waikong, Yeoh; Simon, Ringer; Guoxiu, Wang; Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life *Nano Energy*, 2015, Accepted. Impact factor: 10.22
- [13] Shuangqiang Chen; Yufei, Zhao; Zhimin, Ao; Bing, Sun, Xiaodan, Huang; Xiuqiang, Xie; Guoxiu, Wang. Microwave-assisted synthesis of mesoporous Co₃O₄ nanoflakes for applications in lithium ion batteries and oxygen evolution reactions *ACS Applied Materials & Interfaces* 2015, 7 (5), 3306–3313. Impact factor: 5.9
- [14] Shuangqiang Chen; Bing Sun; Xiuqiang Xie; Hao Liu; Jinqiang Zhang; Yufei Zhao; Katja Kretschmer; Guoxiu Wang. Volume expansion controlled of Sn nanoparticles by mesoporous carbon nanocube for both lithium-ion batteries and sodium ion batteries. Under preparation.
- [15] Shuangqiang Chen; Bing Sun, Yufei Zhao, Jinqiang Zhang; Xiuqiang Xie; Hao Liu; Katja Kretschmer; Guoxiu Wang. The free-standing and homogenous xxvii

CNT@Tin@Porous graphene composites with controllable CNT length and inner voids for both lithium-ion batteries and sodium ion batteries. Under preparation.

- [16] Anjon Kumar Mondal, Dawei Su, Shuangqiang Chen, Xiuqiang Xie, and Guoxiu Wang; Highly Porous NiCo₂O₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability ACS Applied Materials & Interfaces 2014 6 (17), 14827-14835. Impact factor: 5.9.
- [17] Xiaoyu, Cao; Shuangqiang, Chen; Guoxiu, Wang; Porous Carbon Particles Derived from Natural Peanut Shells as Lithium Ion Battery Anode and Its Electrochemical Properties *Electronic Material Letters* 2014, 10(4): 819-826. Impact factor: 3.977.
- [18] Song, Bai; Shuangqiang, Chen; Xiaoping, Shen; Guoxing, Zhu; Guoxiu, Wang; Nanocomposites of hematite (α-Fe₂O₃) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries *RSC Advances* 2012, 2, 10977-10984. Impact factor: 3.7.
- [19] Yiying, Wei; Shuangqiang, Chen; Dawei, Su; Bing, Sun; Jianguo, Zhu; Guoxiu, Wang; 3D mesoporous hybrid NiCo₂O₄@ graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances *Journal of Materials Chemistry A* 2014, 2 (21), 8103-8109. Impact factor: 6.6.
- [20] Xiaodan, Huang; Bing, Sun; Kefei, Li; Shuangqiang, Chen; Guoxiu, Wang; Mesoporous graphene paper immobilized sulfur as a flexible electrode for lithium– sulfur batteries *Journal of Materials Chemistry A* 2013, 1, 13484-13489. Impact factor: 6.6.
- [21] Anjon Kumar, Mondal; Dawei, Su; Ying, Wang; Shuangqiang, Chen; Guoxiu, Wang; Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithium-Ion Batteries and Supercapacitors with Excellent Performance *Chemistry, an Asian journal* 2013, 8, 2828. Impact factor: 4.572
- [22] Xiaodan, Huang; Bing, Sun; Shuangqiang, Chen; Guoxiu, Wang; Self-Assembling Synthesis of Free-standing Nanoporous Graphene–Transition-Metal Oxide Flexible Electrodes for High-Performance Lithium-Ion Batteries and Supercapacitors xxviii

Chemistry–An Asian Journal 2014, 9, 206-211. Impact factor: 3.93 ESI, highly cited paper.

- [23] Bing, Sun; Xiaodan, Huang; Shuangqiang, Chen; Jinqiang, Zhang; Guoxiu, Wang; An optimized LiNO₃/DMSO electrolyte for high-performance rechargeable Li-O₂ batteries *RSC Advances* 2014. Impact factor: 3.7
- [24] Anjon Kumar, Mondal; Dawei, Su; Ying, Wang; Shuangqiang, Chen; Qi, Liu; Guoxiu, Wang; Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances *Journal of Alloys and Compounds* 2014, 582, 522-527. Impact factor: 2.39. <u>ESI highly cited paper.</u>
- [25] Anjon Kumar, Mondal; Bei, Wang; Dawei, Su; Ying, Wang; Shuangqiang, Chen; Xiaogang, Zhang; Guoxiu, Wang; Graphene/MnO₂ hybrid nanosheets as high performance electrode materials for supercapacitors *Materials Chemistry and Physics* 2014, 143, 740-746. Impact factor: 2.13
- [26] Anjon Kumar, Mondal; Shuangqiang, Chen; Dawei, Su; Hao, Liu; Guoxiu, Wang; Fabrication and enhanced electrochemical performances of MoO₃/graphene composite as anode material for lithium-ion batteries. *International Journal of Smart Grid and Clean Energy* 2013.
- [27] Anjon Kumar, Mondal; Dawei, Su; Shuangqiang, Chen; Bing, Sun; Kefei, Li; Guoxiu, Wang; A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance *RSC Advances* 2014, 4 (37), 19476-19481. Impact factor: 3.7.
- [28] Xiuqiang, Xie; Dawei, Su; Shuangqiang, Chen; Jinqiang, Zhang; Shixue, Dou; Guoxiu, Wang; SnS₂ Nanoplatelet@Graphene Nanocomposites as High-Capacity Anode Materials for Sodium-Ion Batteries *Chemistry–An Asian Journal* 2014, 9 (6), 1611–1617. Impact factor: 3.93.
- [29]Bing, Sun; Xiaodan, Huang; Shuangqiang, Chen; Yufei, Zhao; Jinqiang, Zhang; Paul, Munroe; Guoxiu, Wang; Hierarchical macroporous/mesoporous NiCo₂O₄ nanosheets

as cathode catalysts for rechargeable Li-O₂ batteries. *Journal of Materials Chemistry A*, 2014, **2**, 12053-12059. Impact factor 6.6.

- [30] Jinqiang, Zhang; Bing, Sun; Xiaodan, Huang; Shuangqiang, Chen; Guoxiu, Wang; Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. *Scientific Reports* 2014, 4. 6007. Impact factor: 5.078
- [31] Yufei, Zhao; Shuangqiang, Chen; Bing, Sun; Dawei, Su; Xiaodan, Huang; Hao, Liu; Yiming, Yan; Kening, Sun; Guoxiu, Wang; Graphene-Co₃O₄ nanocomposites as electrocatalysts with high performance for oxygen evolution reaction. *Scientific Reports* 2014, 5, 7629. Impact factor: 5.078
- [32] Jinqiang Zhang, Shuangqiang Chen, Xiuqiang Xie, Katja Kretschmer, Xiaodan Huang, Bing Sun, Guoxiu Wang Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. *Journal of Membrane Science* 2014, 472: 133–140. Impact factor: 4.09
- [33] Anjon Kumar, Mondal; Shuangqiang, Chen; Dawei, Su; Xiuqiang, Xie; Guoxiu, Wang; A facile microwave synthesis of mesoporous NiCo₂O₄ nanosheets as electrode materials for lithium ion batteries and supercapacitors. *ChemPhysChem 2015*, 16, 169-175. Impact factor: 3.36
- [34] Anjon Kumar, Mondal; Dawei, Su; Shuangqiang, Chen; Xiuqiang, Xie; Guoxiu, Wang; Mesoporous MnCo₂O₄ with a flake-like structure as advanced electrode materials for lithium ion batteries and supercapacitors. *Chemistry - A European Journal*, 2015, 21, 1526-1532. Impact factor: 5.696
- [35] Xie X., Su D., Zhang J., Chen S., Mondal A., Wang G.; A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO₂/graphene for sodium-ion batteries. *Nanoscale* 2015, 7(7), 3164-72. Impact factor: 6.9

ABSTRACT

Rechargeable energy storage devices are being seen as having a crucial role in the powering of myriad portable electronic devices, electrical vehicles and hybrid electrical vehicles. The properties of electrode materials are of extreme significance for the electrochemical performances of both lithium-ion (Li-ion) batteries and lithium-sulfur (Li-S) batteries.

Tin-graphene nanocomposites were prepared by a combination of microwave hydrothermal and one-step hydrogen gas reduction. When applied as an anode material in Li-ion batteries, tin-graphene nanocomposite exhibited a high lithium storage capacity of 1407 mAh g⁻¹. The materials also demonstrated an excellent high rate capacity and a stable cycle performance. Graphene-carbon nanotube hybrid materials were successfully prepared that demonstrated high reversible lithium storage capacity, high Coulombic efficiency and excellent cyclability. Fe₂O₃-CNT-graphene nanosheet hybrid materials were synthesized using a chemical vapor deposition method, exhibiting a high specific capacity of 984 mAh·g⁻¹ with a superior cycling stability and high rate capabilities.

High quality single crystalline graphene sheets were prepared by the ambient pressure chemical vapor deposition method using acetylene as the carbon source and coral-like iron with body-centered-cubic structure as the catalyst. It showed high lithium storage capacity and excellent cyclability. Hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The materials exhibited superior electrochemical performances, including a high specific capacity of 1200 mAh/g at the current density of 1 A/g, excellent high rate capabilities and outstanding cyclability.

Mesoporous Co_3O_4 nanoflakes with interconnected architecture were successfully synthesized by means of a microwave-assisted hydrothermal and low-temperature conversion method. Co_3O_4 nanoflakes delivered a high specific capacity of 883 mAh/g at 0.1 C current rate and stable cycling performances even at higher current rates as anodes of Li-ion batteries.

The synthesis of graphitic hyperbranched hollow carbon nanorods encapsulated sulfur composites were employed as cathode materials for Li-S batteries. The sulfur composite

cathodes delivered a high specific capacity of 1378 mAh/g at 0.1 C current rate and exhibited a stable cycling performance.

Multi-shelled hollow carbon nanospheres-sulfur composites with a high percentage of sulfur loading (86 wt. %) were synthesized by an aqueous emulsion approach and in-situ sulfur impregnation, delivering a high specific capacity of 1350 mAh/g and excellent capacity retention. By adopting dual confinement strategy, poly(3,4а ethylenedioxythiophene) (PEDOT) coated micro/mesoporous carbon nanocube encapsulated sulfur (P@CNC-S) composites were synthesized. The P@CNC-S composites exhibited superior performances, including a high specific capacity, extended cycle life and outstanding rate capabilities.