# Investigating the Dual Function of the Chloride Intracellular Ion Channel Proteins

Heba Al Khamici

Thesis for the Degree of Doctor of Philosophy

University of Technology, Sydney

2015



University of Technology, Sydney

## **CERTIFICATE OF ORIGINAL AUTHORSHIP**

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

# Dedicated to My Family and all IRAQ with love

### Acknowledgement

I would like to thank my principle supervisor Associate Professor Stella Valenzuela from UTS for her high enthusiasm, dedication and continuous help and support throughout my PhD. Also I would like to express my thankful gratitude to Professor Bruce Cornell from Surgical Diagnostics, Pty, Ltd. I would like to say to Professor Cornell that "without your help I would never come that far with this research study".

I would like to thank Dr Louise Brown from Macquarie University for allowing me to make do perform protein purifications at her lab and also for giving me advices whenever needed. Thanks to Sonia Carne, Dr Charles Cranfield, Dr Hedayat from Surgical Diagnostics, Pty, Ltd, Sydney, Australia. Thanks to Dr Amanda Hudson and Professor Mary Davey for providing reagents, giving help and support in order to get the enzyme assays working.

I would like to thank all academics from the Department of Medical and Molecular Biosciences at UTS for their friendly and supportive attitudes, helpful comments and feedbacks during seminars and presentations. Thanks to all my friends, colleagues, lab managers, officers and technicians at the faculty of science, UTS. Their dedication and continued assistance helped me so much to finish my research work smoothly during this study.

Big thanks to my family: parents Mr Khairallah Al Khamici and Mrs Lamea Al Khamici, my brothers Tony and James and their families for all the help and effort to absorb my stress and anger throughout the PhD years. I would like to say "without you I would have never even survived that long and finished a PhD degree".

## **Publications**

1) Valenzuela, S. M., <u>Alkhamici, H.</u>, Brown, L. J., Almond, O. C., Goodchild, S. C., Carne, S., Curmi, P. M., Holt, S. A., and Cornell, B. A. (2013) Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol. PLoS One 8, e56948.

Alkhamici, H contributed to paper (1) by performing and assisting in the design of all the impedance spectroscopy experiments and all data analysis, providing related figures for the manuscript and proof reading of manuscript.

2) Jiang, L., Phang, J. M., Yu, J., Harrop, S. J., Sokolova, A. V., Duff, A. P., Wilk, K. E., <u>Alkhamici, H.</u>, Valenzuela, S. M. Brown. L. J., Curmi. P., Breit, S. N. (2013) CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: A smoking gun?. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838, 643-657.

Review paper (2): Alkhamici, H contributed directly to the section regarding membrane interactions of CLIC proteins and the role of sterols and proof reading of the manuscript.

3) <u>Al Khamici, H.,</u> Brown, L. J., Khondker. R. H., Hudson. A., Ng, J., Sinclair. A., Hare. J., Cornell, B, A., Curmi. P., Davey. M. D. W. and Valenzuela. S. M. (2014) Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity. PLoS One 10(1), e115699.

*Al Khamici's contribution to paper (3) included designing and performing experiments, data analysis and writing of the paper.* 

### **Conference Oral Presentations**

 <u>Al Khamici. H.,</u> Hussain. R. H., Danial. E., Hudson. A., Davey. M., Brown. L. J., Valenzuela. S. M. Chloride Intracellular Channel Proteins Resemble The Glutaredoxin Enzymatic Activity. The New Horizon, Sydney, Australia. 2013.

 <u>Al Khamici. H.,</u> Hussain. R. H., Danial. E., Hudson. A., Davey. M., Brown. L. J., Valenzuela. S. M. Chloride Intracellular Channel Proteins Resemble The Glutaredoxin Enzymatic Activity. Novel Enzymes Conference, Ghent, Beglium, 2014.

#### **Conference Poster Presentations**

1) <u>Al Khamici. H.,</u> Carne. S., Hare. J., Brown. L. J, Cornell. B. A., Valenzuela. S. M. The Characterisation of Ion channel Proteins using Tethered Bilayer Lipid Membranes and Impedance Spectroscopy. Scientific Research Meeting, Sydney, Australia. 2011.

 Cornell. B. A., <u>Al Khamici. H.</u>, Brown. L. J., Carne. S., Goodchild. S., Valenzuela. S.
 M. Ion Channels Proteins that Spontaneously Insert into Lipid Bilayer Membranes: An Impedance Spectroscopy Study Employing Tethered Membranes. Biophysics International Meeting, USA. 2011.

3) <u>Al Khamici. H.,</u> Carne. S., Brown. L. J., Cornell. B. A., Valenzuela. S. M. The Metamorphic CLIC1 Protein Requires Cholesterol for Optimal Conduction In Membranes. ComBio Conference, Adelaide, Australia. 2012.

4) Cranfield. C. G., Carne. S., <u>Alkhamici. H.</u>, Duckworth. P., Lacey. E., Martinac. B., Cornell. B. A. Screening the Insertion of Microbial Metabolites into Tethered Bilayer Lipid Membranes (tBLMs). Biophysics Society Meeting, Sydney, Australia. 2013. 5) <u>Al Khamici. H.</u>, Carne. S., Khondker. R. H., Brown. L. J., Cornell. B. A., Valenzuela. S. M. CLIC1 Channel Conductance is Regulated by the Sterol Content of Lipid Bilayer Membranes. Australian Biophysics Society Meeting, Sydney, Australia. 2013.

# **Table of Contents**

| Chapter 1                                                                                                                            | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| Literature Review                                                                                                                    | -  |
| 1.1 Introduction                                                                                                                     | 2  |
| 1.2 Chloride Ion Channels                                                                                                            | 3  |
| 1.2.1 CLIC Proteins                                                                                                                  | 5  |
| 1.2.2 CLIC Proteins are Part of GST Structural Superfamily                                                                           | 8  |
| 1.3 Putative Enzymatic Function of CLIC Proteins                                                                                     | 10 |
| 1.4 CLIC Proteins are Metamorphic and Form Chloride Ion Channels                                                                     | 12 |
| 1.4.1 Structural Changes of CLIC1 under Redox Control                                                                                | 16 |
| 1.4.2 The CLICs as Spontaneously Membrane Inserting proteins                                                                         | 19 |
| 1.5 Aims of This Research Project                                                                                                    | 21 |
| Chapter 2                                                                                                                            |    |
| Tethered Bilayer Lipid Membranes and Impedance Spectroscopy<br>to Characterise Functions of Membrane Inserting Drugs and<br>Proteins | 25 |
| 2.1 Membrane Lipids and Sterols Affect the Function and Activity of Membrane<br>Proteins                                             | 26 |
| 2.2 Membrane Models: Tethered Bilayer Lipid Membrane and Impedance<br>Spectroscopy System                                            | 30 |
| <b>Chapter 2 Materials and Methods</b>                                                                                               | 39 |
| 2.3 Chemicals                                                                                                                        | 40 |
| 2.4 2xYT Media for Bacterial Growth                                                                                                  | 40 |

| 2.5 CLIC1- Transformed Bacterial Glycerol Stocks                                      | 40 |
|---------------------------------------------------------------------------------------|----|
| 2.6 Preparation of Recombinant Monomeric CLIC1 Protein                                | 41 |
| 2.6.1 Small Scale Culture                                                             | 41 |
| 2.6.2 Large Scale Culture and Induction of Protein Expression                         | 41 |
| 2.6.3 Harvesting E-coli CLIC1-Transformed Bacterial Cells                             | 41 |
| 2.6.4 Lysing of <i>E-coli</i> Cells                                                   | 41 |
| 2.7 Purification of Monomeric CLIC1 Protein                                           | 42 |
| 2.7.1 His-tagged Protein Purification using Ni <sup>2+</sup> NTA (Ni-NTA) Resin       | 42 |
| 2.8 Size Exclusion Chromatography (SEC)                                               | 43 |
| 2.9 Protein Quantification                                                            | 44 |
| 2.9.1 UV-Vis Spectrophotometer                                                        | 44 |
| 2.9.2 BCA Protein Assay                                                               | 44 |
| 2.10 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)            | 45 |
| 2.11 Measuring the Conductance of CLIC proteins with tBLMs and Impedance Spectroscopy | 47 |
| 2.11.1 Formation of Tethered Bilayer Lipid Membranes (tBLM)                           | 47 |
| 2.11.2 Formation of tBLM using Yeast and Bacterial Lipids                             | 48 |
| 2.11.3 Alternating Current (ac) Impedance Spectroscopy                                | 49 |
| 2.11.4 Incorporation of CLIC1 Reduced Monomeric Protein into tBLMs                    | 51 |
| 2.11.5 Incorporation of $\alpha$ -Hemolysin into tBLMs                                | 51 |
| 2.11.6 Incorporation of Listeriolysin-O into tBLMs                                    | 52 |
| 2.11.7 Incorporation of Antifungal Drugs into tBLMs                                   | 52 |
| 2.12 Dialysing DTT from CLIC1 Protein in Solution                                     | 53 |

| Chapter 2 Results                                                                                                                             | 54 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.13 Characterization of Varying Lipid Sterol Composition in tBLMs                                                                            | 55 |
| 2.14 Characterising the Function of Antifungal Drugs using tBLM and Impedance<br>Spectroscopy System                                          | 57 |
| 2.15 Conductance Properties of the Bacterial Toxins $\alpha$ -Hemolysin and Listeriolysin-<br>O Using tBLMs and Impedance Spectroscopy System | 62 |
| 2.16 Conductance Properties of CLIC1 Monomeric (WT) Protein in tBLMs                                                                          | 64 |
| Chapter 2 Discussion                                                                                                                          | 67 |
| 2.17 Cholesterol and Ergosterol affect the Conductance and Capacitance of tBLMs                                                               | 68 |
| 2.18 Conductance of Antifungal Drugs and Toxins in tBLMs                                                                                      | 70 |
| 2.19 Conductance and Properties of Pore Forming Toxins in tBLMs                                                                               | 73 |
| 2.22 Conductance of CLIC1 in tBLMs                                                                                                            | 74 |
| Chapter 3                                                                                                                                     |    |
| Sterols are Required for the Optimal Conductance of CLIC1 in<br>Tethered Bilayer Lipid Membranes                                              | 78 |
| 3.1 Introduction                                                                                                                              | 79 |
| <b>Chapter 3 Materials and Methods</b>                                                                                                        | 81 |
| 3.2 Recombinant CLIC1 Dimeric Protein                                                                                                         | 82 |
| 3.3 Preparation of Recombinant CLIC1-C24A and C59A                                                                                            | 82 |
| 3.4 Preparation of Recombinant EXC-4 and CLIC1-C24S by GST Gene Fusion System                                                                 | 82 |
| 3.5 Incorporation of CLIC1 and EXC-4 into tBLMs Containing Cholesterol                                                                        | 84 |
| 3.6 Addition of Boiled CLIC1 to Membranes with 25mol% Cholesterol                                                                             | 84 |
| 3.7 Pre-incubation of CLIC1 with Cholesterol or Ergosterol                                                                                    | 85 |

| 3.8 Pre-incubation of Listeriolysin-O with Cholesterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Chapter 3 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86                                                                                                                              |
| 3.9 CLIC1 Conductance in tBLM Containing Cholesterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87                                                                                                                              |
| 3.10 Conductance of CLIC1 in tBLMs Containing Ergosterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92                                                                                                                              |
| 3.11 Pre-incubated with Sterols Inhibits the Conductance of CLIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95                                                                                                                              |
| 3.12 Conductance of CLIC1 Mutants and EXC-4 in tBLMs Containing Cholesterol                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98                                                                                                                              |
| <b>Chapter 3 Discussion</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                             |
| 3.13 Conductance of CLIC1 is Dependent on Cholesterol in tBLMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                             |
| 3.14 CLIC1 Possesses Higher Conductance in tBLMs Containing Ergosterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107                                                                                                                             |
| 3.15 Inhibition of Ion Channel Activity of CLIC1 by Free Sterols                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108                                                                                                                             |
| 3.16 Role of Critical Cysteine Residues in CLIC1 Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |
| Chapter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                                                                                                                             |
| Chapter 4<br>CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114                                                                                                                             |
| Chapter 4<br>CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity<br>4.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114<br>115                                                                                                                      |
| Chapter 4<br>CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity<br>4.1 Introduction<br>Chapter 4 Materials and Methods                                                                                                                                                                                                                                                                                                                                                                                                    | 114<br>115<br>121                                                                                                               |
| Chapter 4<br>CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity<br>4.1 Introduction<br>Chapter 4 Materials and Methods<br>4.2 Chemicals and Reagents                                                                                                                                                                                                                                                                                                                                                                      | <ul><li>114</li><li>115</li><li>121</li><li>122</li></ul>                                                                       |
| Chapter 4         CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity         4.1 Introduction         Chapter 4 Materials and Methods         4.2 Chemicals and Reagents         4.3 Expression and Purification of Recombinant Wild-type CLIC1, CLIC2, CLIC4, Dimeric CLIC1, HcTrx-5 and CLIC1 Mutant Proteins                                                                                                                                                                                                           | <ul><li>114</li><li>115</li><li>121</li><li>122</li><li>122</li></ul>                                                           |
| Chapter 4CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity4.1 IntroductionChapter 4 Materials and Methods4.2 Chemicals and Reagents4.3 Expression and Purification of Recombinant Wild-type CLIC1, CLIC2, CLIC4,<br>Dimeric CLIC1, HcTrx-5 and CLIC1 Mutant Proteins4.4 Preparation of Recombinant HcTrx-5 Protein                                                                                                                                                                                                       | <ul> <li>114</li> <li>115</li> <li>121</li> <li>122</li> <li>122</li> <li>123</li> </ul>                                        |
| Chapter 4         CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity         4.1 Introduction         Chapter 4 Materials and Methods         4.2 Chemicals and Reagents         4.3 Expression and Purification of Recombinant Wild-type CLIC1, CLIC2, CLIC4, Dimeric CLIC1, HcTrx-5 and CLIC1 Mutant Proteins         4.4 Preparation of Recombinant HcTrx-5 Protein         4.1 Small Scale Cultures                                                                                                                   | <ul> <li>114</li> <li>115</li> <li>121</li> <li>122</li> <li>122</li> <li>123</li> <li>123</li> </ul>                           |
| Chapter 4         CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity         4.1 Introduction         Chapter 4 Materials and Methods         4.2 Chemicals and Reagents         4.3 Expression and Purification of Recombinant Wild-type CLIC1, CLIC2, CLIC4, Dimeric CLIC1, HcTrx-5 and CLIC1 Mutant Proteins         4.4 Preparation of Recombinant HcTrx-5 Protein         4.4.1 Small Scale Cultures         4.4.2 Large Scale Culture and Induction of HcTrx-5 Protein Expression                                   | <ul> <li>114</li> <li>115</li> <li>121</li> <li>122</li> <li>122</li> <li>123</li> <li>123</li> <li>123</li> </ul>              |
| Chapter 4<br>CLIC Proteins Demonstrate Glutaredoxin-Like Enzymatic Activity<br>4.1 Introduction<br>Chapter 4 Materials and Methods<br>4.2 Chemicals and Reagents<br>4.3 Expression and Purification of Recombinant Wild-type CLIC1, CLIC2, CLIC4,<br>bimeric CLIC1, HcTrx-5 and CLIC1 Mutant Proteins<br>4.4 Preparation of Recombinant HcTrx-5 Protein<br>4.4.1 Small Scale Cultures<br>4.4.2 Large Scale Culture and Induction of HcTrx-5 Protein Expression<br>4.4.3 Harvesting and lysing HcTrx-5-transformed <i>E-coli</i> Cells | <ul> <li>114</li> <li>115</li> <li>121</li> <li>122</li> <li>122</li> <li>123</li> <li>123</li> <li>123</li> <li>124</li> </ul> |

| 4.5 Condition for Enzyme Assays                                                                          | 124 |
|----------------------------------------------------------------------------------------------------------|-----|
| 4.6 HEDS Enzyme Assay                                                                                    | 125 |
| 4.7 HEDS Enzyme Assay for CLIC Proteins in the Presence of Thioredoxin Reductase                         | 125 |
| 4.8 Insulin Disulfide Reductase Assay                                                                    | 125 |
| 4.9 Glutaredoxin-like Activity of CLIC1 using Sodium Selenite                                            | 126 |
| 4.10 Assays for Dehydroascorbic Acid Reductase (DHAR) Activity of CLIC1                                  | 126 |
| 4.11 Pre-incubating CLIC1 with Ion Channel Blocker Drug and Cholesterol                                  | 126 |
| Chapter 4 Results                                                                                        | 128 |
| 4.12 Investigating the Enzymatic Activity of CLIC Proteins in the HEDS Assay                             | 129 |
| 4.13 CLIC Proteins Demonstrate Glutathione-Dependent Enzymatic Activity                                  | 130 |
| 4.14 Cysteine-24 Residue is Essential For the Enzymatic Activity of CLIC1                                | 132 |
| 4.15 Sodium Selenite and Dehydroascorbic Acid are Substrates for CLIC1                                   | 135 |
| 4.16 Inhibition of CLIC1 Enzymatic Activity by Chloride Ion Channel Blocker<br>Drugs But Not Cholesterol | 139 |
| <b>Chapter 4 Discussion</b>                                                                              | 142 |
| 4.17 CLIC Proteins Demonstrate Oxidoreductase Enzymatic Function                                         | 143 |
| 4.17.1 CLIC Proteins Oxidoreductase Activity is Specific to Glutathione and Glutathione Reductase        | 147 |
| 4.18 Cysteine-24 Residue is Essential for the Enzymatic Activity of CLIC1                                | 148 |
| 4.19 CLIC1 Aids Selenite Metabolism                                                                      | 150 |
| 4.20 DHA Acts As a Substrate for CLIC1                                                                   | 151 |
| 4.21 Chloride Ion Channel Blockers Inhibit the Enzymatic Activity of CLIC1                               | 154 |

XII

| Chapter 5                                                                                                                     |     |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Discussion and Future Directions</b>                                                                                       | 157 |
| 5.1 Sterols are Essential for the Ion Channel Activity of CLIC1 Protein                                                       | 158 |
| 5.2 The Residue Cysteine-24 Residue is Not Essential for the Ion Channel Activity of CLIC1in Membranes Containing Cholesterol | 161 |
| 5.3 Glutaredoxin-like Enzymatic Activity of the CLIC Proteins                                                                 | 163 |
| 5.4 Future Directions                                                                                                         | 165 |
| 5.4.1 Investigating the Role of CLIC Proteins in Disease States                                                               | 167 |
| References                                                                                                                    | 170 |

# **List of Abbreviation**

| λ                 | Wavelength                                                     |
|-------------------|----------------------------------------------------------------|
| А                 | Absorbance                                                     |
| AA                | Ascorbic acid                                                  |
| A9C               | Anthracene-9-carboxylic acid                                   |
| ΑβΡ               | Amyloid β-protein                                              |
| ABS               | Ammonium persulfate                                            |
| ac                | Alternating current                                            |
| Ala               | Alanine amino acid                                             |
| AM199             | Zwitterionine lipids                                           |
| Arg               | Arginine amino acid                                            |
| Asp               | Asparagine amino acid                                          |
| BCA               | Bicinchoninic acid assay                                       |
| AFM               | Atomic Force Microscopy                                        |
| BLM               | Black lipid membrane                                           |
| BSA               | Bovine serum albumin                                           |
| °C                | Degree celsius                                                 |
| CaCl <sub>2</sub> | Calcium chloride                                               |
| CDC               | Cholesterol-dependent cytolysin                                |
| CFTR              | Cystic fibrosis transmembrane conductance regulator            |
| CHO-K1            | Chinese hamster ovary cells                                    |
| CIC               | Chloride ion channel                                           |
| Cl                | Chloride ion                                                   |
| CLIC1 (WT)        | Chloride intracellular ion channel protein (wild- type)        |
| Cm                | Capacitance                                                    |
| CRAC              | Identification of cholesterol recognition amino acid consensus |
| Cs                | Counter electrode capacitance                                  |
| Cu <sup>+1</sup>  | Cuprous cation                                                 |
| Cu <sup>+2</sup>  | Cupric ion                                                     |
| Cys               | Cysteine                                                       |

| DDT                                  | Dithiothreitol                                   |
|--------------------------------------|--------------------------------------------------|
| DHA                                  | Dehydroascorbate                                 |
| DHAR                                 | Dehydroascorbic acid reductase                   |
| DIDS                                 | 4,4`-diisothiocyano-2,2`stilbene-disulfonic acid |
| DmCLIC                               | Drosophila- melanogaster CLIC protein            |
| DNA                                  | Deoxyribonucleotides acid                        |
| Е                                    | Glutamic amino acid                              |
| E-coli                               | Escherichia coli                                 |
| EDTA                                 | Ethylenediaminetetraacetic acid                  |
| EIS                                  | Electrochemical impedance spectroscopy           |
| ER                                   | Endoplasmic reticulum                            |
| ERK7                                 | Extracellular signal-regulated kinase 7          |
| EXC                                  | Excretory canal abnormality                      |
| EXL                                  | EXC4-like                                        |
| f                                    | Frequency                                        |
| G                                    | Glycine amino acid                               |
| G-site                               | Glutathione binding site                         |
| GABA                                 | Gamma-aminobutyric acid                          |
| GS-Se-SG                             | Selenodiglutathione                              |
| Grx                                  | Glutaredoxin                                     |
| Grx-1, 2 to 5                        | Glutaredoxin-1, 2 to 5                           |
| GPx                                  | Glutathione peroxidase                           |
| GR                                   | Glutathione reductase                            |
| GSH                                  | Reduced glutathione                              |
| GSSG                                 | Oxidised glutathione                             |
| GST                                  | Glutathione-S-transferase                        |
| GST-β                                | Glutathione-S-transferase beta class             |
| GST-Ω                                | Glutathione-S-transferase omega class            |
| GST-Ω1                               | Glutathione-S-transferase omega group 1          |
| GST-π                                | Glutathione-S-transferase pi class               |
| H-site                               | Hydrophobic region                               |
| HSe <sup>-</sup> or RSe <sup>-</sup> | Selenide                                         |
| $H_2O_2$                             | Hydrogen peroxide                                |

| HCSK                             | High conductance channels with slow kinetics              |
|----------------------------------|-----------------------------------------------------------|
| HcTrx-5                          | Thioredoxin-related protein in Haemonchus contortus       |
| HEDS                             | 2-hydroxyethyl disulfide                                  |
| HEPES                            | N-2-hydroxyethylpiperazine-n'-2-ethanesulfonic acid       |
| His                              | Histidine                                                 |
| ld                               | Liquid disordered phase                                   |
| LLO                              | Listeriolysin-O                                           |
| lo                               | Liquid ordered phase                                      |
| IAA                              | Indanyloxyacetic acid                                     |
| ILY                              | Intermedilysin                                            |
| IPTG                             | Isopropyl-β-thiogalactopyranoside                         |
| $K^+$                            | Potassium ion                                             |
| KCl                              | Potassium cholride                                        |
| kDa                              | KiloDalton(s)                                             |
| Km                               | Dissociation constant of the enzyme-substrate complex     |
| LB                               | Luria-Bertani medium                                      |
| М                                | Molar                                                     |
| MAPK                             | Mitogen-activated protein kinase                          |
| mg                               | Milligram                                                 |
| min                              | Minute                                                    |
| MLP                              | Mobile lipid phase                                        |
| mМ                               | Millimolar                                                |
| mV                               | Millivolt                                                 |
| Ν                                | Amino                                                     |
| NaCl                             | Sodium chloride                                           |
| NADH                             | Nicotinamide adenine dinucleotide (NAD) + hydrogen<br>(H) |
| NADPH                            | Nicotinamide adenine dinucleotide phosphate hydrogen      |
| NaN <sub>3</sub>                 | Sodium Azide                                              |
| Na <sub>2</sub> SeO <sub>3</sub> | Sodium selenite                                           |
| NCC27                            | Nuclear chloride channel protein-27kDa                    |
| N-domain                         | Amino terminal domain                                     |
| NEM                              | N-Ethylmaleimide                                          |
| nF                               | Nano-faraday                                              |

| NIH                                | National Institutes of Health                                  |
|------------------------------------|----------------------------------------------------------------|
| nm                                 | Nanometer                                                      |
| nM                                 | Nanomolar                                                      |
| OD                                 | Optical density                                                |
| P64                                | Bovine chloride channel protein -64kDa                         |
| PBS                                | Potassium buffered saline                                      |
| PC                                 | Phosphotidylcholine                                            |
| PE                                 | Phosphotidylethanolamine                                       |
| PFO                                | Perfringolysin-O                                               |
| PFT                                | Pore forming toxin                                             |
| Phe                                | Phenylalanine amino acid                                       |
| POPC                               | 1-palmitoyl-2-oleoylphosphatidylcholine                        |
| POPE                               | 1-palmitoyl-2-oleoylphosphatidylethanolamine                   |
| POPS                               | 1-palmitoyl-2-oleoylphosphatidylserine                         |
| Pro                                | Proline amino acid                                             |
| PTMD                               | Putative transmembrane domain                                  |
| PtoDHAR2                           | Dehydroascorbic acid reductase-2 from <i>Populus</i> tomentosa |
| QCM                                | Quartz Crystal Microbalance                                    |
| Rm                                 | Resistance                                                     |
| RNR                                | Ribonucleotide reductase                                       |
| ROS                                | Reactive oxygen species                                        |
| RyR                                | Ryanodine receptor                                             |
| S                                  | Second                                                         |
| SAM                                | Self- assembled monolayer                                      |
| SAXS                               | Small-angle X-ray scattering                                   |
| SCSK                               | Small conductance channels with slow kinetics                  |
| S.E                                | Standard error                                                 |
| Se <sup>0</sup>                    | Metallic selenium                                              |
| SEC                                | Size exclusion chromatography                                  |
| SeCys                              | Seleno amino acids                                             |
| SeMet                              | Selenomethionine                                               |
| SeO(OH) <sub>2</sub>               | Selenite                                                       |
| SeO <sub>2</sub> (OH) <sub>2</sub> | Selenate                                                       |

| Ser               | Serine amino acid                                          |
|-------------------|------------------------------------------------------------|
| SDS               | Sodium dodecyl sulphate polyacrylamide gel electrophoresis |
| SLB               | Supported lipid bilayer                                    |
| SLO               | Streptolysin-O                                             |
| SO                | Solid ordered phase                                        |
| SOH               | Sulfenic acid                                              |
| $SO_2H$           | Sulfinic acid                                              |
| SO <sub>3</sub> H | Sulfonic acid                                              |
| SPR               | Surface Plasmon Resonance                                  |
| STOML             | Stomatin- Like proteins in mammals                         |
| tBLM              | Tethered bilayer lipid membrane                            |
| ТСЕР              | Tris(2-carboxyethyl)phosphine                              |
| TEMED             | N,N,N,N',N-tetramethylenediamine                           |
| Tris              | Tris[hydroxymethyl]aminomethane                            |
| Triton-X100       | Octylphenyl-nonaoxyethylene                                |
| Trp35             | Tryptophan residue number 35                               |
| Trx-1             | Thioredoxins-1                                             |
| TrxR              | Thioredoxin reductase                                      |
| Trxs              | Thioredoxins                                               |
| Tween-20          | Polyoxyethylene-sorbitan monolaurate                       |
| Tyr               | Tyrosine amino acid                                        |
| μg                | Microgram                                                  |
| μΜ                | Micromolar                                                 |
| μS                | Microsiemens                                               |
| UV                | Ultraviolet                                                |
| Val               | Valine amino acid                                          |
| WT                | Wild type                                                  |
| Х                 | Any amino acid                                             |
| Ζ                 | Impedance                                                  |

## **List of Figures**

| 1.1 Cell plasma membrane                                                                                              | 3  |
|-----------------------------------------------------------------------------------------------------------------------|----|
| 1.2 CLIC proteins are structurally related to GSTs                                                                    | 9  |
| 1.3 G-site or GSH binding site of CLIC proteins                                                                       | 11 |
| 1.4 Putative transmembrane domain region of the CLIC proteins                                                         | 15 |
| 1.5 Structural rearrangement of CLIC1                                                                                 | 17 |
| 1.6 Proposed membrane docking structure of CLIC1                                                                      | 18 |
| 1.7 Amino acid sequence alignment of human CLIC proteins and EXC-4 from the nematode, Caenorhabditis elegans          | 18 |
| 2.1 Structures of cholesterol and ergosterol                                                                          | 28 |
| 2.2 A Schematic of Black Lipid Membrane (BLM) System                                                                  | 32 |
| 2.3 A Representation of Supported Lipid Bilayer (SLB) Membrane                                                        | 33 |
| 2.4 A Schematic representation of tethered bilayer lipid membrane (tBLM)                                              | 36 |
| 2.5 Representation of tBLM and impedance spectroscopy as a circuit-like model                                         | 38 |
| 2.6 Representative profile of the eluted monomeric CLIC1 (WT) protein purified by Size Exclusion Chromatography (SEC) | 43 |
| 2.7 SDS-PAGE of CLIC1 (WT) protein expression and purification                                                        | 46 |
| 2.8 Tethered Bilayer Membrane (tBLM) structure                                                                        | 48 |
| 2.9 Traces of impedance magnitude                                                                                     | 49 |
| 2.10 Electrical equivalent circuit used to interpret the impedance spectroscopy data                                  | 50 |
| 2.11 Conductance and capacitance of membranes containing different concentrations of cholesterol or ergosterol        | 56 |
| 2.12 A Representative impedance spectroscopy recording of the effect of methanol on the conductance of tBLMs          | 58 |
| 2.13 Conductance of Amphotericin B and Nystatin A in tBLM containing 20mol% ergosterol                                | 59 |
| 2.14 Conductance of Amphotericin B and Nystatin A in tBLM containing biological lipid extracts                        | 60 |

| 2.15 Representative impedance spectroscopy recording of Amphotericin B and Nystatin A activity in tBLM containing yeast lipid extracts        | 61  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.16 Conductance of $\alpha$ -Hemolysin and Listeriolysin-O in tethered bilayer lipid membranes and impedance spectroscopy system             | 63  |
| 2.17 A representative impedance spectroscopy recording of DTT, TCEP or $\rm H_2O_2$ effect on tBLMs                                           | 65  |
| 2.18 A representative impedance spectroscopy recording of CLIC1 monomeric protein conductance in tBLMs containing zwitterioninc lipids        | 66  |
| 2.19 Chemical structures of Amphotericin B and Nystatin A                                                                                     | 71  |
| 3.1 Conductance of CLIC1 in tBLMs containing cholesterol                                                                                      | 88  |
| 3.2 Conductance of CLIC1 in tBLMs containing 25mol% cholesterol                                                                               | 89  |
| 3.3 Conductance of different concentrations of CLIC1 in tBLMs containing 25mol% cholesterol                                                   | 89  |
| 3.4 Capacitance of tBLMs containing 25mol% cholesterol and CLIC1                                                                              | 91  |
| 3.5 Representative impedance spectroscopy recording of boiled CLIC1 in tBLMs containing 25mol% cholesterol                                    | 92  |
| 3.6 Conductance of CLIC1 in tBLMs containing 25mol% ergosterol                                                                                | 93  |
| 3.7 Representative impedance spectroscopy recording of CLIC1 added to tBLMs with 25mol% ergosterol                                            | 94  |
| 3.8 Conductance of CLIC1 monomer in tBLMs containing yeast ( <i>saccharomyces cerevisiae</i> ) or bacterial ( <i>E-coli</i> ) lipid extracts. | 95  |
| 3.9 Conduction of pre-incubated CLIC1 monomer with sterols in tBLMs containing 50mol% cholesterol or ergosterol                               | 96  |
| 3.10 Capacitance of tBLMs containing 25mol% cholesterol or ergosterol with CLIC1 pre-incubated with sterols                                   | 97  |
| 3.11 Conductance of CLIC1 mutants and EXC-4 in membranes containing 25 mol% cholesterol                                                       | 99  |
| 3.12 Amino Acid Sequence Alignment of Human CLIC proteins showing the CARC motif                                                              | 106 |
| 4.1 The Thioredoxin System                                                                                                                    | 116 |
| 4.2 The monothiol mechanism of glutaredoxins                                                                                                  | 117 |
| 4.3 Dithiol mechanism of Glutaredoxins                                                                                                        | 118 |
| 4.4 Activity of the CLIC proteins in the HEDS enzyme assay                                                                                    | 130 |

| 4.5 Thioredoxin activity of CLIC protein                                                                        | 131 |
|-----------------------------------------------------------------------------------------------------------------|-----|
| 4.6 Insulin reductase activity of CLIC1                                                                         | 132 |
| 4.7 Comparison of the oxidoreductase activity of CLIC1 (WT) monomer and CLIC1-Cys mutants                       | 133 |
| 4.8 Michaelis menten plot of CLIC1 and CLIC1-C59A mutant in the presence of HEDS                                | 134 |
| 4.9 HEDS enzyme assay for CLIC1 monomer and dimer proteins                                                      | 135 |
| 4.10 Enzyme assay of CLIC1 in the presence of sodium selenite                                                   | 136 |
| 4.11 Michaelis Menten plot of CLIC1 and sodium selenite                                                         | 137 |
| 4.12 Dehydroascorbic acid as a substrate for CLIC1                                                              | 138 |
| 4.13 Michaelis Menten plot of CLIC1 and dehydroascorbic acid (DHA)                                              | 139 |
| 4.14 Effect of chloride ion channel inhibitor drugs on the enzymatic activity of CLIC1 in the HEDS enzyme assay | 140 |
| 4.15 HEDS enzyme assay for pre-incubated CLIC1 with cholesterol                                                 | 141 |
| 4.16 Glutaredoxins activity in the HEDS enzyme assay                                                            | 144 |
| 4.17 A schematic diagram showing some of the residues in CLIC1 and GST- $\Omega$ that                           | 146 |
| 4.18 Reduction of DHA to AA via GSH involving the Grxs                                                          | 152 |

# **List of Tables**

| Table 1.1 Summary of human CLIC protein functions.                                                                                   | 7   |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 3.1: Tukey's test results comparing the activity of CLIC1 (WT), EXC-4 and CLIC1 mutants in tBLMs containing 25mol% cholesterol | 100 |

## Abstract

The Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans, CLIC1-CLIC6. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 in particular has challenged the widely held view that most proteins adopt one stable native structure essential for their biological function. In contrast, CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable soluble structural conformation.

CLIC1 was also found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being soluble into a membrane bound protein have yet to be adequately described. Thus, the first objective of this thesis was to identify factors that are involved in CLIC1's insertion and assembly into membranes using tethered bilayer lipid membranes and impedance spectroscopy as a novel system for the study of ion channel activity.

Our findings demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1's acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1's membrane structure. Furthermore, our impedance spectroscopy results of CLIC1 mutants, suggest that residue Cys24 is not essential for CLIC1's ion channel function however it is important

for its optimal activity in membranes. Therefore oxidation and reduction may not be the only regulators of the ion channel activity of CLIC1.

Structural studies have revealed that, soluble CLIC proteins adopt a glutathione S-transferase fold with a conserved glutaredoxin–like active site motif, similar to the GST- $\Omega$  class. Therefore the second aim of this project was to investigate the function of the soluble CLICs.

Using the 2-hydroxyethyl disulfide enzyme assay, we have demonstrated for the first time that CLIC1, CLIC2 and CLIC4 possess "glutaredoxin-like" oxidoreductase activity. CLIC1 was found to catalyse the metabolism of the typical glutaredoxin substrates, sodium selenite and dehydroascrobic acid. As expected, the active site Cys24 was detected to be essential for the enzymatic activity of CLIC1 *in vitro*. Most importantly, indanyloxyacetic acid-94 and anthracene-9-carboxylic acid were found to also inhibit the enzymatic activity of CLIC1.

Members of the CLIC protein family can now be classified as "moonlighting proteins" as they exhibit two independent functions; one as ion channels when in their membrane bound form and the other as oxidoreductase soluble enzymes.