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Adaptive Sampling for Spatial Prediction in Wireless Sensor Networks

by Van Linh NGUYEN

Networks of wireless sensors are increasingly exploited in crucial applications of mon-

itoring spatially correlated environmental phenomena such as temperature, rainfall,

soil ingredients, and air pollution. Such networks enable efficient monitoring and

measurements can be included in developing models of the environmental fields even

at unobserved locations. This requires determining the number of sensors and their

sampling locations which minimize the uncertainty of predictions. Therefore, the

aim of this thesis is to present novel, efficient and practically feasible approaches

to sample the environments, so that the uncertainties at unobserved locations are

minimized. Gaussian process (GP) is utilized to statistically model the spatial field.

This thesis includes both stationary wireless sensor networks (SWSNs) and mobile

robotic wireless sensor networks (MRWSNs), and thus the issues are correspond-

ingly formulated into sensor selection and sensor placement problems, respectively.

In the first part of the thesis, a novel performance metric for the sensor selection in

the SWSNs, named average root mean square error, which reflects the average un-

certainty of each predicted location, is proposed. In order to minimize this NP-hard



Abstract

and combinatorial optimization problem, a simulated annealing based algorithm is

proposed; and the sensor selection problem is effectively addressed. Particularly,

when considering the sensor selection in constrained environments, e.g. gas phase

hydrogen sulphide in a sewage system, a modified GP with an improved covari-

ance function is developed. An efficient mutual information maximization criterion

suitable for this particular scenario is also presented to select the most informative

gaseous sensor locations along the sewer system. The second part of this thesis

introduces centralized and distributed methods for spatial prediction over time in

the MRWSNs. For the purpose of finding the optimal sampling paths of the mobile

wireless sensors to take the most informative observations at each time iteration, a

sampling strategy is proposed based on minimizing the uncertainty at all unobserved

locations. A novel and very efficient optimality criterion for the adaptive sampling

problem is then presented so that the minimization can be addressed by a greedy

algorithm in polynomial time. The solution is proven to be bounded; and compu-

tational time of the proposed algorithm is illustrated to be practically feasible for

the resource-constrained MRWSNs. In order to enhance the issue of computational

complexity, Gaussian Markov random field (GMRF) is utilized to model the spatial

field exploiting sparsity of the precision matrix. A new GMRF optimality criterion

for the adaptive navigation problem is also proposed such that computational com-

plexity of a greedy algorithm to solve the resulting optimization is deterministic even

with increasing number of measurements. Based on the realistic simulations con-

ducted using the pre-published data sets, it has shown that the proposed algorithms

are superior with appealing results.
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