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Abstract

As the traditional machine learning setting assumes that the data are iden-
tically and independently distributed (i.i.d), this is quite like a perfect con-
ditioned vacuum and seldom a real case in practical applications. Thus, the
non-i.i.d learning (Cao, Ou, Yu & Wei 2010)(Cao, Ou & Yu 2012)(Cao 2014)
has emerged as a powerful tool in describing the fundamental phenomena in
the real world, as more factors to be well catered in this modelling. One crit-
ical factor in the non-i.i.d. learning is the relations among the data, ranging
from the feature information, node partitioning to the correlation of the out-
come, which is referred to as the coupling relation in the non-i.i.d. learning.
In our work, we aim at uncovering this coupling relation with the nonpara-
metric Bayesian relational models, that is, the data points in our work are
supposed to be coupled with each other, and it is this coupling relation we are
interested in for further investigation. The coupling relation is widely seen
and motivated in real world applications, for example, the hidden structure
learning in social networks for link prediction and structure understanding,
the fraud detection in the transactional stock market, the protein interaction

modelling in biology.

In this thesis, we are particularly interested in the learning and inferenc-
ing on the relational data, which is to further discover the coupling relation
between the corresponding points. For the detail modelling perspective, we
have focused on the framework of mixed-membership stochastic blockmodel,
in which membership indicator and mized-membership distribution are noted

to represent the nodes’ belonging community for one relation and the his-

Xix



ABSTRACT

togram of all the belonging communities for one node. More specifically, we
are trying to model the coupling relation through three different aspects: 1)
the mixed-membership distributions’ coupling relation across the time. In
this work, the coupling relation is reflected in the sticky phenomenon be-
tween the mixed-membership distributions in two consecutive time; 2) the
membership indicators’ coupling relation, in which the Copula function is
utilized to depict the coupling relation; 3) the node information and mixed-
membership distribution’s coupling relation. This is achieved by the new
proposal transform for the node information’s integration. As these three
aspects describe the critical parts of the nodes’ interaction with the commu-
nities, we are hoping the complex hidden structures can thus be well studied.

In all of the above extensions, we set the number of the communities
in a nonparametric Bayesian prior (mainly Hierarchical Dirichlet Process),
instead of fixing it as in the previous classical models. In such a way, the
complexity of our model can grow along with the data size. That is to say,
while we have more data, our model can have a larger amount of communities
to account for them. This appealing property enables our models to fit the
data better. Moreover, the nice formalization of the Hierarchical Dirichlet
Process facilitates us to some benefits, such as the conjugate prior. Thus, this
nonparametric Bayesian prior has introduced new elements to the coupling
relations’ learning.

Under this varying backgrounds and scenarios, we have shown our pro-
posed models and frameworks for learning the coupling relations are evi-
denced to outperform the state-of-the-art methods via literature explanation
and empirical results. The outcomes are sequentially accepted by top jour-
nals. Therefore, the nonparametric Bayesian models in learning the coupling
relations presents high research value and would still be attractive opportu-

nities for further exploration and exploit.
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