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Abstract

As the traditional machine learning setting assumes that the data are iden-

tically and independently distributed (i.i.d), this is quite like a perfect con-

ditioned vacuum and seldom a real case in practical applications. Thus, the

non-i.i.d learning (Cao, Ou, Yu & Wei 2010)(Cao, Ou & Yu 2012)(Cao 2014)

has emerged as a powerful tool in describing the fundamental phenomena in

the real world, as more factors to be well catered in this modelling. One crit-

ical factor in the non-i.i.d. learning is the relations among the data, ranging

from the feature information, node partitioning to the correlation of the out-

come, which is referred to as the coupling relation in the non-i.i.d. learning.

In our work, we aim at uncovering this coupling relation with the nonpara-

metric Bayesian relational models, that is, the data points in our work are

supposed to be coupled with each other, and it is this coupling relation we are

interested in for further investigation. The coupling relation is widely seen

and motivated in real world applications, for example, the hidden structure

learning in social networks for link prediction and structure understanding,

the fraud detection in the transactional stock market, the protein interaction

modelling in biology.

In this thesis, we are particularly interested in the learning and inferenc-

ing on the relational data, which is to further discover the coupling relation

between the corresponding points. For the detail modelling perspective, we

have focused on the framework of mixed-membership stochastic blockmodel,

in which membership indicator and mixed-membership distribution are noted

to represent the nodes’ belonging community for one relation and the his-

xix



ABSTRACT

togram of all the belonging communities for one node. More specifically, we

are trying to model the coupling relation through three different aspects: 1)

the mixed-membership distributions’ coupling relation across the time. In

this work, the coupling relation is reflected in the sticky phenomenon be-

tween the mixed-membership distributions in two consecutive time; 2) the

membership indicators’ coupling relation, in which the Copula function is

utilized to depict the coupling relation; 3) the node information and mixed-

membership distribution’s coupling relation. This is achieved by the new

proposal transform for the node information’s integration. As these three

aspects describe the critical parts of the nodes’ interaction with the commu-

nities, we are hoping the complex hidden structures can thus be well studied.

In all of the above extensions, we set the number of the communities

in a nonparametric Bayesian prior (mainly Hierarchical Dirichlet Process),

instead of fixing it as in the previous classical models. In such a way, the

complexity of our model can grow along with the data size. That is to say,

while we have more data, our model can have a larger amount of communities

to account for them. This appealing property enables our models to fit the

data better. Moreover, the nice formalization of the Hierarchical Dirichlet

Process facilitates us to some benefits, such as the conjugate prior. Thus, this

nonparametric Bayesian prior has introduced new elements to the coupling

relations’ learning.

Under this varying backgrounds and scenarios, we have shown our pro-

posed models and frameworks for learning the coupling relations are evi-

denced to outperform the state-of-the-art methods via literature explanation

and empirical results. The outcomes are sequentially accepted by top jour-

nals. Therefore, the nonparametric Bayesian models in learning the coupling

relations presents high research value and would still be attractive opportu-

nities for further exploration and exploit.

xx



Chapter 1

Introduction

1.1 Problem Statement

There is undoubted evidence that the data analysis and machine learning

have had a tremendous growth in recent decades. Its successful applica-

tions have been found in areas such as the social network analysis, image

processing, speech recognition, and fraud detection under various settings.

However, it should be noted that, most of the existing algorithms, model-

s and even theoretical foundations in these related fields, such as machine

learning, statistics, and data mining, have made an ideal assumption that

data are independently and identically distributed (i.i.d.). This naive as-

sumption helps to simplify the complicated situations we are facing in the

real world. Although impressive performances have been seen in some appli-

cations, this i.i.d assumption does not hold in many of complex real world

problems, such as the social community detection, the stock trading market

and recommendation systems (Cao et al. 2010)(Cao et al. 2012)(Cao 2014)

. In these real-life cases, data points have certain relationships such that

learning these relationships would be a necessary task to promote a better

understanding to them. Thus, there is an emergent need to break this i.i.d.

assumption in analysing the data. That is to say, we need to do the modelling

from the non-i.i.d. perspective.

1



CHAPTER 1. INTRODUCTION

In general, the non-i.i.d. learning covers many important fields, including

the coupling relation learning and heterogeneous data modelling. In this

thesis, there is a focus on the study of the objects’ coupling relations, which

is far more meaningful and complicated than the usual dependency relation.

In real world, the coupling relation can be represented in various forms on

different objects. For instance, one behaviour happens after another (serial

coupling), one behaviour causes the occurrence of another (casual coupling),

two behaviours happen at the same time due to the same reason (synchronous

coupling), different events happen on a mutually exclusive basis (exclusive

coupling) and some behaviors or social events have required dependents such

as prefix or postfix components (dependent coupling) (Cao 2014). Also, the

coupling relation occurs in different levels of the data, ranging from the level

of data attributes value to the level of the whole group construction. All

these real and complicated scenarios require the consideration of the above

coupling relations while trying to model and learn from the data.

The network structure analysis, for instance, is a typical example where

analyzing the coupling relationships become necessary. The classical network

analysis algorithms (from the Bayesian point ) usually involve the element of

the similarity (or distance) matrix, which is often measured within the nodes.

This has greatly correlated to the relations between the nodes. Based on these

descriptions on correlations (which we are referred to as coupling relations),

it is hoped to use network analysis to handle the issues such as: (1) a better

representation of networks, which should be able to integrate different sources

of information in a network; (2) linkage prediction and identification, which

is to fully understand the linkages within the network; (3) discovery of key

nodes, which may represent the centers of the network; (4) the evolvement

of the network with time.

However, as has been found in the literature review, little concern has

been given to the understanding the above issues from the coupling rela-

tions point of view. These coupling relations are closely related in various

levels of the network, including the communities inside the network, the net-

2



CHAPTER 1. INTRODUCTION

work’s nodes and feature information of the nodes. Correspondingly, the

coupling relations are presented within and between these levels, such as the

coupling relation on the dynamic behaviour of communities, the coupling

relation within the communities themselves, the coupling relation on the

communities’ distribution between the nodes and the coupling relation on

nodes’ attribute information to communities. As can be seen, these coupling

relations often present several critical properties among the whole network,

which is usually ignored in the classical models.

Figure 1.1: The network structure.

Table 1.1: Persons’ Information
Person age occupation salary marriage hobby education

Tom 35 salesman middle yes fishing high school

Amy 37 manager high yes fishing university

Jack 43 doctor high yes reading university

Mark 25 student low no football phd

To illustrate these issues more clearly, an example is used, in which Figure

3



CHAPTER 1. INTRODUCTION

1.1 and Table 1.1 display four persons’ social activities during the two consec-

utive months (that is, June and July) and their corresponding profiles, which

include the attribute information of age, occupation, salary, marriage, hobby

and education. In Figure 1.1, the number next to the link represents the two

persons’ communication times in each month and K denotes the community

index. As can be seen, these four persons’ activities change dramatically

across time. From June to July, Tom and Amy reduced their communication

times from 10 to zero, while Tom and Jack started their communications from

none to 13 times in July. Correspondingly, their community memberships

change as Tom transfers from community 2 (that is, the same community

with Amy) to community 1 (that is, the same community with Jack). In the

profile information of Table 1.1, these four people would share both similar-

ities and dissimilarities. For instance, Tom and Amy have the same hobby

and similar ages; however, their salaries and educations are different.

This simple example leaves many crucial questions, some of which are

listed here:

• Why would Tom stop communicating with Amy? Is it due to the

changes in their communities’ memberships or the increased communi-

cations with Jack or his profile information?

• Is this community partition reasonable to characterize the network

structure? Why does Tom and Mark still belong to different com-

munities even if they have stable communications?

• How can the communities’ number be known in advance?

• How does the node profile information affect the nodes’ belonging com-

munities? Can the most relevant information to this be found?

From the coupling relations perspective, these questions individually corre-

spond to the coupling relations between the nodes in the network, between

the communities within the network, within the whole communities’ per-

formance and between the ones profile information and communities. It is
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believed that a proper study in the coupling relations of this network would

no doubt promote a better understanding of the networks.

As shown above, even in this network of merely four people, many chal-

lenges and questions have been raised. In reality, a social network even at a

moderate size may involve hundreds or thousands of people. These issues are

no doubt growing exponentially. Here are summarized several critical issues

which include:

• A proper representation on the data structure. As shown in

the above example, the available information can come in different

forms and there are various concepts needed in the modelling. Thus,

a proper description on the data structure is needed, as well as using

these descriptions to construct the models.

• Coupling relations between objects over time. In the above ex-

ample, Tom behaves significantly in consecutive times. Apart from this

temporal observations’ change, can the node’s membership change be

inferred? Moreover, can the compatibilities’ change among the hidden

communities be identified?

• Coupling relations within the communities of networks. In the

above example, the four persons belong to 3 different communities. Can

the ways of these different communities’ influence on the relation within

themselves be identified? That is to say, can the intra-communities’

coupling relation be efficiently modelled?

• Coupling relations between the node information and their

belonging communities. As all of the four persons Tom, Amy, Jack

and Mark possess sufficient personal information, can it be identified if

this information would promote the network partition? If so, which of

it is more important among them?

• A proper inference on these coupling relations. After the mod-

elling of these coupling relations, their efficient and effective inference

5
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remains a critical issue. Moreover, as this study would like to consid-

er the coupling relations inside the network modelling, their efficient

inference with no or less additional computational cost is a desired

property.

1.2 Research Methods

1.2.1 Relational Models

The relational models can be powerful tools to deal with the challenges men-

tioned above. In general, the relational models aim at the understanding of

the hidden network structure by partitioning the network into several commu-

nities, and these partitions are usually based on the observed relational data.

Among many of its proposed interesting settings, the “mixed-membership

distribution” (that is, the histogram of the node’s belonging communities in

generating the observed relational data) plays a critical role in the modelling

and has facilitated the expressive description of the whole network structure,

as well as the complicated coupling relations among it.

When looking at it more closely, the mixed-membership distribution

bridges between the communities, the node and even the node’s attribute

information. For instance, the node would belong to one or several communi-

ties; this belonging relation is heavily dependent on its attribute information.

Other aspects also cover several aspects of the network structure, including

the hidden partitioning communities, the communities’ behaviour of each

node, the communities’ compatibilities. Based on these practical concepts,

the coupling relation can be carefully described.

Let us first turn back to a brief description of relational models. In

general, the relational models are categorized into two major frameworks:

the latent class model (LCM) and the latent feature model (LFM). Both

of them assume the observed relation is parameterized by an entry from

the community-compatibility matrix (that is, indicating the compatibilities

between the communities). This entry is indexed by the two corresponding
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nodes’ belonging communities. Their main difference is hence in the way this

entry is indexed. For LCM, it is assumed that the indices for each pair of

nodes are derived from the two associated hidden class labels (that is, index

one entry in the role-compatibility matrix), whereas in the case of LFM,

it is assumed that the indices are determined from a set of latent features

associated with the pair of nodes (i.e. index one row and one column in the

role-compatibility matrix).

The mixed-membership distribution has a central role in describing the

coupling relation of objects over time. Through its dynamic behaviour, the

node’s change in its belonging communities can be inferred. Moreover, the

compatibilities between the communities can be observed during the time.

On the coupling relation within the subgroups of networks, this study focus-

es on the dependency between the mixed-membership distributions. In this

way, the two nodes’ relation is not only affected by the compatibilities of

communities, but also influenced by the communities’ themselves. Further,

the mixed-membership distribution can be a bridge to connect the node at-

tribute information with the communities, which is the community-attribute

coupling relation. In this case, the attribute information can be incorporat-

ed to constitute the components of mixed-membership distribution, which

would influence the communities subsequently.

There are two mainstream effective paradigms for the inference of rela-

tional models: Markov Chain Monte Carlo inference (MCMC) and variation-

al inference. The idea of variational inference is to approximate the posterior

distribution with a simple, tractable proposal distribution by minimizing

some criterion, such as the KL-divergence [5]. In MCMC approximation, the

idea is to generate a number of random samples from the posterior distri-

bution and approximate intractable integrals and summations by empirical

averages based on the samples. In this work, the focus is on the MCMC

inference, which is mainly the Gibbs Sampling and Slice Sampling strategy.

As the coupling relations among the relational models have been considered

here, these enhanced points can be technically integrated to the detail infer-
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ence method and thus improve the learning process.

1.2.2 Nonparametric Bayesian Method

The nonparametric Bayesian (NPB) method aims at utilizing the advantages

of both the nonparametric and Bayesian fields. In the nonparametric field,

the model is preferred to grow its complexity while more data is being ob-

served. The growing complexity is achieved with the development of the

stochastic process prior information, which does not need to fix the num-

ber of parameters in apriori. The prior information is further learned in the

Bayesian field. More specifically, this nonparametric prior would combine

with the likelihood to constitute the posterior probability via the Bayes’s

rule. Then, the corresponding model can be learned via markov chain monte

carlo (MCMC) or variational inference.

In the relational model of this thesis, the number of communities or the

number of latent features usually measures the model complexity. While

these statistics are learned from the data itself, the potential benefits out-

weigh the convenience of learning. The expressive representation of the NPB

prior (especially the Dirichlet Process) helps avoid the risk of over-fitting

and under-fitting of the parameters. More importantly, these NPB methods

would provide the following benefits of modelling the coupling relations.

• the NPB method makes the representation on the data structure and

the model more appropriate. More data means more model complexity

presented in this case.

• the NPB method gives prior information on the node’s communities’

distribution, which is usually the key part of the relational model.

Based on this distribution, the coupling relations can be depicted in

a powerful way.

• while the Gibbs sampling is being used to do the inference of the rela-

tional model, these nonparametric Bayesian methods can be efficiently

8



CHAPTER 1. INTRODUCTION

learned. More importantly, several technical skills can be used to speed

up the inference procedure.

1.3 Aims and objectives

The Coupling Relations occur in various levels of the network and have also

been represented in different forms. The aims and objectives of this thesis is

to model the following coupling relations:

• Coupling relations between the mixed-membership distribu-

tions across the time.

• Coupling relations within the communities of networks.

• Coupling relations between the node information and mixed-

membership distribution.

1.4 Research Challenges

Besides the aims listed above, other issues are also highly challenging and

interesting, which can be exemplified as:

• Coupling relations between the communities’ compatibility.

The communities’ coupling relations have different forms, such as hier-

archical, overlapping, exclusive, while they also involve almost all of the

network aspects. Thus, an effective and efficient way to fully represent

this remains an open question.

• Coupling relations within the nodes’ mixed-membership dis-

tribution. The components of the nodes’ mixed-membership distribu-

tion would present several correlations. Some tend to take simultaneous

effect, while some may be repelled from each other. Thus, this study

interested in fully describing these components’ interactions.
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• Coupling relations within the nodes’ profile information. There

are fruitful structures in the form of the nodes’ profile information. An

effective way of using these structure would be challenging.

1.4.1 Coupling relations between the mixed-membership

distributions across time

The serial coupling relation describes the two objects’ relation during the

consecutive times. In this relational models setting, the reference is made to

the mixed-membership distributions’ dynamic behaviour as the serial cou-

pling relation. While the existing work either focuses on the nonparametric

extension or static modelling, the cases are considered in a joint manner.

Several interesting issues involved in this problem can be listed as follows:

• identifying the most common dynamic behaviours in a network setting;

• deciding which modelling method works best in different scenarios;

• checking out the other statistics except the mixed-membership distri-

bution that is very largely affected by the dynamic environment;

• observing the communities’ evolvement during the time.

• comparing various sampling method’s differences in inferencing the

model

1.4.2 Coupling relations within the communities of net-

works

The causal coupling and exclusive coupling relations characterize the two

objects’ positive or negative effects on each other. In this study’s relational

models setting, this is noted as the communities’ influence in generating a

single observation, through the mixed-membership distribution. As all of the

classical models implicitly assume the membership indicator pair is indepen-

dently generated, their strong correlations within the same communities are

10



CHAPTER 1. INTRODUCTION

not well depicted. In more details, the study is trying to solve several issues

as listed:

• characterizing the correlations inside the communities

• incorporating the tool of Copula function to describe the correlation

• identifying the most suitable way to describe the coupling relations

inside the communities

• employing efficient inference methods in learning the model

1.4.3 Coupling relations between the node information

and mixed-membership distribution

The dependent coupling relation is to describe the potential connection be-

tween two objects. In the relational models setting, this study is interest-

ed in learning this dependent coupling relation between the node attribute

information and its mixed-membership distribution. This problem is par-

ticularly interesting and challenging as the previous work either was con-

fined to low inefficient inference or inappropriate modelling (Kim, Hughes &

Sudderth 2012). The details of problems to be addressed in this study are:

• properly integrating the node attribute information into the mixed-

membership distribution

• efficient and effective modelling strategy in the learning process

• the transformation between the parametric and nonparametric cases

• possible extensions to other relational models

1.5 Research Contributions

In addressing the above research issues, the research contributions in this

thesis are summarized below.
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• Proposed generic models that can deal with the dynamic case and in-

finite communities case in mixed-membership stochastic blockmodel

(chapter 3);

• Provided a comprehensive study on using different sampling methods

(that is, Gibbs sampling and slice sampling) in learning the nonpara-

metric Bayesian models (chapter 3);

• Analyzed the convergence behaviours in terms of Gibbs sampling and

slice sampling in the dynamic infinite mixed-membership stochastic

blockmodel (chapter 3) ;

• Described the casual and exclusive coupling relations within the com-

munities of networks (chapter 4 ) ;

• Integrated the Copula function into the generation of membership in-

dicator pair in generating the link data to fully utilize the membership

indicator pair’s correlation (chapter 4 ) ;

• Using the properties of nonparametric Bayesian methods and Copu-

la function, marginalizing out hidden variables and proposed two col-

lapsed models (chapter 4);

• Described the dependent coupling relations between the node attribute

information and its mixed-membership distribution, i.e., incorporated

the node attribute information into the latent class model (Chapter 5);

• Developed a conjugate model in incorporating the node-information in

to the mixed-membership stochastic blockmodel, and further compared

their convergence bahaviour (Chapter 5);

• Naturally extended the nonparametric Bayesian model developed in

this study into the finite community case and also the latent feature

model (Chapter 5)
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1.6 Thesis Structure

The thesis is structured as follows:

Chapter 2 gives background knowledge and related work on several top-

ics specific to this thesis. In here, the nonparametric Bayesian methods are

introduced (which includes the Dirichlet Process, the Hierarchical Dirichlet

Process, the Indian Buffet Process), the Monte Carlo Markov Chain (MCMC)

methods (which includes the Metropolis-Hastings algorithm), as well as the

relational models (which focus on the mixed-membership stochastic block-

model and latent feature relational model). All these introductions serve the

purpose of forming a foundation in understanding the core contributions of

this thesis. In the related work part, sufficient literature reviews on the rela-

tional models (which covers the latent class model, latent feature, dynamic

relational model, and other extensions) and the stick-breaking process are

given.

Chapter 3 introduces a relational model, which targets extending the

current Mixed-Membership Stochastic Blockmodel to the dynamic and infi-

nite state cases. In particular, additional model parameters are introduced

to reflect the degree of persistence between one’s memberships at consecu-

tive time stamps. Under this framework, two specific models, namely the

mixture time variant (MTV) and the mixture time invariant (MTI), are pro-

posed to depict two different time correlation structures, with the first on the

mixed-membership distribution and the later on the membership indicator

alone. On the inference procedure, both the slice sampling and Gibbs sam-

pling schemes are utilized to learn the model. Their sampling behaviours are

deliberately studied through the technique of MCMC analysis.

Chapter 4 tries to incorporate the Copula function in the Mixed-Membership

Stochastic Blockmodel to fully exploit each individual node’s participation

(or membership) in a social network. Despite its powerful representations,

MMSB assumes that the membership indicators of each pair of nodes (that

is, people) are distributed independently. However, such an assumption of-

ten does not hold in real-life social networks, in which certain known groups
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of people may correlate with each other in terms of factors such as their

membership categories. To expand MMSB’s ability to model such depen-

dent relationships, a new framework - Copula Mixed-Membership Stochastic

Blockmodel - is introduced in this thesis for modeling intra-group correla-

tions, namely an individual Copula function which jointly models the mem-

bership pairs of those nodes within the group of interest. This framework

enables various Copula functions to be used on demand, while maintaining

the membership indicator’s marginal distribution needed for modelling mem-

bership indicators with other nodes outside of the group of interest. Sampling

algorithms for both the finite and infinite number of groups are also detailed.

The experimental results show the frameworks’ superior performance in cap-

turing group interactions when compared with the baseline models on both

synthetic and real world datasets.

Chapter 5 proposes a conjugate model in integrating the node-information

in the modelling of the nodes’ mixed-membership distribution. The current

existing models utilise only binary directional link data to recover hidden

network structures. However, the attribute information associated with each

node contains crucial information to help practitioners understand the un-

derlying relationships in a network. For this reason, this study proposes two

models and their solutions, namely the node-information involved mixed-

membership model (niMM) and the node-information involved latent-feature

model (niLF), in an effort to systematically incorporate additional node infor-

mation. To effectively achieve this aim, node information is used to generate

individual sticks of a Stick-Breaking Process. In this way, not only can the

need be avoided to pre-specify the number of communities beforehand, the

algorithm also encourages that nodes exhibiting similar information have a

higher chance of assigning the same community membership. Substantial

efforts have been made towards achieving the appropriateness and efficiency

of these models, including the use of conjugate priors. The framework and

its inference algorithms using real world datasets are evaluated, which shows

the generality and effectiveness of the models in capturing implicit network
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structures.

Chapter 6 concludes the thesis and outlines the scope for future work.

Figure 1.2 shows the research profile of this thesis.

Figure 1.2: The structure of this thesis
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Chapter 2

Preliminaries and Literature

Review

This chapter provides preliminary knowledge on the nonparametric Bayesian

methods, relational models and at the same time, it gives a review on the

recent developments and variations of the probabilistic relational models, as

well as a literature review on the stick-breaking process, which is commonly

used in this thesis. On the introduction to the nonparametric Bayesian meth-

ods, the topics to be covered include the Dirichlet Process, the Hierarchical

Dirichlet Process, the Beta Process and the Indian Buffet Process. While

introducing the relational models, mixed-membership stochastic blockmodel

and latent feature relational model are the two detail elaborating models.

Their corresponding literature review part comes subsequently, with discus-

sions on their advantages and disadvantages.

2.1 Preliminaries of Nonparametric Bayesian

methods

When dealing with a larger size of the dataset in the modelling, it would be

natural to expect that the models’ parameters would increase correspond-

ingly. That is to say, the parameter set is desired to be adaptive with the
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data size and potentially to be infinite when the data size is infinite. To

achieve this goal, the nonparametric Bayesian methods are practical solu-

tions by defining prior distributions on function spaces such as the random

measures. Thus, the unobserved infinite components’ prior can be well de-

fined. Through the classical Monte Carlo Markov Chain (MCMC) inference

or the variational inference, these models can be efficiently learned. some

classes of nonparametric Bayesian methods are briefly discussed here. For a

complete understanding of these methods, refer to (Hjort, Holmes, Müller &

Walker 2010).

2.1.1 Dirichlet Process

A Dirichlet process (DP) belongs to a family of stochastic processes whose

realizations are distributions, in which these realizations are discrete distri-

butions with countable infinite elements. For each DP, it is uniquely deter-

mined by a base measure H and a concentration parameter α, which is to be

denoted as DP (α,H). More formally, the Dirichlet process is defined as:

Theorem 2.1 Let H be a probability distribution on a measurable space Θ,

and α a positive scalar. Consider a finite partition {A1, · · · , Ak} of Θ:

∪K
k=1Ak = Θ, Ak ∩Al = ∅, ∀k, l (2.1)

Based on this definition, we can see that a random probability measure G0 on

Θ is a random draw from a Dirichlet process if its measure on every finite

partition follows a Dirichlet distribution:

(G0(A1), · · · , G0(Ak))|α,H ∼ Dir(αH(A1), · · · , αH(AK)) (2.2)

Theorem 2.2 For the base measure H and concentration parameter α men-

tioned above, there exists a unique stochastic process satisfying the above con-

ditions, which we denote by G0 ∼ DP(α,H).

A practical result upon this definition is that given a set of independent

samples generated from G0, that is, θ1, · · · , θn ∼ G0, according to (Ferguson
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1973), this gives the posterior distribution of G0 that:

G0|θ1, · · · , θn, α,H ∼ DP (α+ n,
α

α + n
H +

n∑
i=1

δθi) (2.3)

where δ· is a dirac function.

Stick-breaking process

(Sethuraman 1994) has proved the discreteness of G0 (that is, G0 is a discrete

distribution) and also provided an explicit construction of G0:

G0 =

∞∑
k=1

βkδθk , βk = β ′
k

k−1∏
l=1

(1− β ′
k), β

′
k ∼ Beta(1, α), θk ∼ H (2.4)

This construction process can be set in a stick-breaking analogy. First, a

unit stick is broken with ratio β ′
1, then on the remaining stick (1− β ′

1), the

breaking will be done recursively with the ratio of β ′
k at the kth step. The

generated sticks represents the elements’ weight in G0. As this process can

take infinite steps, there would be an infinite number of sticks. This stick-

breaking process is also denoted as β ∼ GEM(α),β = (β1, · · · , βK , · · · ).
As seen from Eq. (2.4), we can see the Dirichlet process generates a dis-

crete distribution with infinite number of components. Moreover, it should be

noted that this elegant construction has sparked many interesting variation-

s of the nonparametric Bayesian prior, including the logistic stick-breaking

process (Ren, Du, Carin & Dunson 2011), the probit stick-breaking process

(Rodriguez & Dunson 2011), the kernel stick-breaking process (Dunson &

Park 2008), and the discrete infinite logistic normal process (Paisley, Wang

& Blei 2012), all of which aim at replacing the β ′
k ∼ Beta(1, α) with a new

practical form.

Chinese Restaurant Process

The Chinese Restaurant Process (CRP) aims at describing the predictive

distribution of a newly appeared variable. Its name is derived from the fol-

lowing analogy: there are customers entering a Restaurant with an infinite
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number of tables, and each table is served with a unique dish θk. Each arriv-

ing customer would choose a table, which is denoted as zi, with proportioned

to the number of customer sitting on this table eating the special dish. With

a fixed proportion of α, the customer would choose to sit on a new table

K + 1. Formally speaking, assuming the new customer’s dish assignment is

θnew = θzn+1 (n customers are already in the restaurant), then this gives

Pr(zn+1|{zi}ni=1, α) =
α

α + n
δK+1 +

1

n+ α

K∑
k=1

nkδk (2.5)

Here nk =
∑n

i=1 δ(zi = k), denoting the number of customers eating the dish

k, K + 1 denoting the new served dish.

As can be seen, the CRP does not involve the realization of G0. Actually,

the CRP has integrated this G0 out and uses the posterior distribution to

infer the new coming customer’s eating dish.

Dirichlet Process Mixture Model

As the Dirichlet process generates random discrete distribution, it is naturally

to be used as the weights’ prior information in the mixture modelling. While

this Dirichlet process prior can help to avoid setting the mixtures’ number

in advance, it has attracted considerable attentions in the recent decade. It

is named the Dirichlet process mixture model, and the simplest form of its

generative process is:

θk ∼ H,β ∼ GEM(α), zi ∼ β, yi ∼ f(·|θzi), ∀k, i ∈ N
+ (2.6)

Inferencing the hidden variable {zi}ni=1 in DPMM usually takes a similar

form of the Chinese Restaurant Process:

Pr(zi|z\i, α, θ,H, f) =

{
N−i

k · f(yi|θk); zi = k;

α · ∫
θnew

f(yi|θnew)dH(θnew); zi = new.
(2.7)

Here N−i
k = Nk − δ(zi, k), denoting the number of data points belonging to

the kth mixture while excluding i.
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2.1.2 Hierarchical Dirichlet Process

In many situations, different groups of data are desired to be highly corre-

lated with each other. For instance, in topic modelling, each document is

composed of a set of hidden topics and the topic would subsequently gen-

erate the words. Moreover, the topics range over different documents and

the documents are a mixture of these topic, with different weights. In the

mixture modelling, this is to say that different data would have the same

mixture, while their mixture weights are different. The Hierarchical Dirich-

let Process (Teh, Jordan, Beal & Blei 2006) serves this goal as it takes the

base measure G0 in the Dirichlet Process DP (α,G0) as a realization from

another new Dirichlet Process DP (γ,H). More formally, it is represented as:

G0 ∼ DP (γ,H)

Gj ∼ DP (α,G0), ∀j ∈ N
+

(2.8)

The discreteness of G0 enables the distribution set of {Gj}nj=1 to share

the same component. Actually, since G0 has defined fixed normalized weights

on these components, {Gj}nj=1’s role is to get different normalized weights

on these components and their expected mean weights is to be the G0’s.

Through this way, not only the components’ correlation inside each group

can be depicted (through the normalization), but also the components’ across

groups can also be reflected (they share the same discrete base measure).

Stick-breaking process for HDP

Given the stick-breaking representation for G0 =
∑∞

i=1 βkδθk , where θk ∼
H,β = (βk)

∞
k=1 ∼ GEM(γ), the generated {Gj}nj=1 would have different

weights on these component {θk}∞k=1, which is to be represented as:

Gj =
∞∑
k=1

πjkδθjk , ∀j ∈ N
+ (2.9)

It should be noted that πj = (πjk)
∞
k=1 are independent given the “average”

weight β. Another interesting property is that for any partition of (πjk)
∞
k=1,
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according to Theorem 2.1, gives:(∑
k∈K1

πjk, · · · ,
∑
k∈Kr

πjk

)
∼ Dirichlet(

∑
k∈K1

βk, · · · ,
∑
k∈Kr

βk) (2.10)

where {Kl}rl=1 is a random partition of (πjk)
∞
k=1.

For the detail construction of the (πjk)
∞
k=1, it is to be derived as:

β ′
k ∼ Beta(1, γ), βk = β ′

k

k−1∏
l=1

(1− β ′
l),

π′
jk ∼ Beta(αβk, α(1−

k∑
l=1

βl)), πjk = π′
jk

k−1∏
l=1

(1− π′
jl)

(2.11)

Due to the discreteness of G0, the probability of {Gj}∞j=1 sharing support

points is non-zero. However, if G0 were chosen to be absolute continuous

with respect to the Lebesgue measure, there would be zero probability of the

group-specific distributions having overlap support (Fox, Sudderth, Jordan

& Willsky 2011b).

Chinese Restaurant Franchise

(Teh et al. 2006) has shown that the marginal distribution of Hierarchical

Dirichlet process can be described in an analogy as the Chinese Restaurant

Franchise, which is an extension to the Chinese Restaurant Process. More

specifically, there are J restaurants with an infinite number of the same

dishes in each one. This is to denote the group partitions of πj. Each

customer would correspond to one restaurant to enjoy the dish. For the

dish allocation in each restaurant, there will be table assignments in the

restaurant, and each table serves one dish. The Table distribution here is

referred to as the {πjk}∞k=1 and due to the discreteness of G0, there is non-zero

probability that the two tables in one restaurant would serve the same dish.

When a customer enters one restaurant, he would choose the table to each

the specific dish, proportional to the number of previous customers sitting

on that table, with a fixed proportion to sit on a new table.
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There are multiple ways to represent the marginal distribution of the

customer’s eating dish’s alignment. To be notational convenient, the direct-

assignment case is chosen, which is to integrate out G0, {Gj}Jj=1:

p(zji = k|z−ji,m,β) =

{
(n−ji

j·k + α0βk)f
−ji
k (xji), k is previous used;

α0βuf
−xji

knew (xji), k = knew.

(2.12)

Hierarchical Dirichlet Process-Hidden Markov Model (HDP-HMM)

A direct application of the Hierarchical Dirichlet Process is the prior setting

for the Hidden Markov Model. In a stick-breaking formalism, the genera-

tive process of the HDP-HMM can be described as follows (assuming z0 is

randomly sampled):

1. β ∼ GEM(γ)

2. πk ∼ DP(α0,β), ∀k ∈ N+

3. φk ∼ H, ∀k ∈ N+

4. zt ∼ πzt−1, ∀t = 1, · · · , T.

5. yt ∼ F (φzt)

Here γ, α0 are the two concentration parameters, πk represents the distri-

bution for the kth component, φk represents the likelihood parameter, zt is

the latent label for the tth observation and the tth observation yt is generated

from the likelihood distribution F (φzt).

As can be obviously seen, the time dependency is reflected in Step 4. The

current latent label zt is determined by the distribution, which is indexed by

the previous latent label zt−1. Although this looks quite a simple technique,

it has shown its benefits in following sections.

Practical application of this HDP-HMM often lies in the treatment of

sequence data, including the time-dynamic data and the speaker recognition

data. Also, there are several variants of the HDP-HMM model, including the

22



CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW

sticky-HDP-HMM (Fox, Sudderth, Jordan & Willsky 2008), which models

the practical phenomenon that the current latent label would be more likely

to be kept in the next time.

2.1.3 Beta Process

The Dirichlet process and its hierarchical extension are described in the pre-

vious sections. These processes play an important role in the partition model,

which enables the partition number to grow with the increase in the size of

the dataset. However, in some cases with there is more concern about to

associate a node with binary features to indicate its latent occupied features,

instead of the partition requirement. Actually, the partition model can be

regarded as the latent feature model with only one binary latent feature be-

ing allocated to one data point, while the data point in the Beta Process is

characterized by multiple latent features.

In correspondence to the unbounded number of partitions, the Beta pro-

cess allows for the latent features’s number to be potentially infinite. In

analogy to the Dirichlet process’s Chinese Restaurant process metaphor, the

Beta process promotes an Indian Buffet process to promote the sparse subset

of features’ selection.

Unlike the Dirichlet process’ dependent random measure (due to the

weights’ normalization, actually the Dirichlet process is regarded as normal-

ized Gamma process) basis, the Beta process is set within the framework of

Complete Random Measure. That is to say, the samples on disjoint subsets

are independent of each other. More formally, consider a probability space

Θ, and let B0 be the base measure on Θ with B0(Θ) = α0. While the levy

measure is defined (Wang & Carin 2012) on the product space [0, 1]×Θ:

ν(dω, dθ) = cω−1(1− ω)c−1dωB0(dθ) (2.13)

where c > 0 is the concentration parameter in the Beta process and the Beta

process is denoted as BP (c, B0) and a draw B ∼ BP (c, B0) is represented
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as:

B =

∞∑
i=1

ωkδθk (2.14)

Let qk ∈ (0, 1) denoting the mass measure of the kth atom, its corresponding

weight is sampled as ωk ∼ Beta(cqk, c(1− qk)).

The Beta-Bernoulli conjugacy promotes a Bernoulli process as:

Xi|B ∼ BeP (B) (2.15)

The detail realization of {Xi}∞i=1 is a binary vector, which is often referred to

as the latent feature. With special value of c = 1, this Beta-Bernoulli process

becomes the Indian Buffet Process, which will be elaborated on below.

2.1.4 Indian Buffet Process

As shown by (Teh, Görür & Ghahramani 2007), when c = 1, the Beta-

Bernoulli Process becomes the Indian Buffet Process, which is to marginalize

out B and focus on the predictive task on the latent features.

The Indian Buffet Process analogy can be stated as follows: assuming an

Indian Buffet contains an infinite number of dishes, which are referred to as

latent features. For the first customer, he would choose the first Possion(α)

dishes. Then, the subsequent customers i would choose the previous dish with

the rate of
m−i

k

i
(m−i

k denotes the number of previous customers choosing this

dish excluding customer i), and additional new Poisson(α
i
) new dishes.

The above nonparametric Bayesian methods is the foundation to under-

stand the work in this thesis. Since various ideas have been incorporated in

each of the following chapters, these ideas would be introduced individually

when necessary. The related contents are the hidden Markov model, Copula

function and a more detailed introduction to the stick-breaking process.

There is a rich literature in the stick-breaking construction of the Indi-

an Buffet Process (Griffiths & Ghahramani 2005) and its underlying Be-

ta Process (Thibaux & Jordan 2007)(Paisley, Zaas, Woods, Ginsburg &

Carin 2010). As have already been seen, the underlying representation under
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the Indian Buffet Process is one Beta Process, with the concentration param-

eter specialized to 1. (Teh et al. 2007) gives us a stick-breaking construction

for this specialized beta process as:

G =
∞∑
k

πkδθk , πk =
k∏

l=1

ψl, ψk
iid∼ Beta(γ, 1), θk

iid∼ G0. (2.16)

Regarding this special construction for a simplified beta process, a construc-

tion of a general Beta Process was proposed by (Paisley et al. 2010), which

was later followed by an improved version (Paisley, Blei & Jordan 2012).

2.2 Preliminaries of Markov Chain Monte Car-

lo (MCMC) methods

As stated in the introduction, the variational inference and the Markov Chain

Monte Carlo (MCMC) method are the two mainstream paradigms in infer-

encing the model with nonparametric Bayesian prior, as the nonparametric

Bayesian prior’s inference is usually intractable. This section gives an intro-

duction to the MCMC method, since it is the main method used in this the-

sis. Readers are encouraged to refer to (Müller & Quintana 2004)(Shachter

1998)(Walker, Damien, Laud & Smith 1999) for a complete review on all of

the inference methods.

In general, MCMC methods produce a sequence of samples which is able

to estimate the desired integration f(·). Its estimation is based on a Monte

Carlo integration, which is

1

n

n∑
i=1

f(xi) ≈ Ex [f(x)] =

∫
x∼P

f(x)dx (2.17)

where {xi}ni=1 is the sequence of samples and they are generated from a

constructed Markov Chain; P is x’s distribution. The critical point of the

MCMC methods is that it is not needed to get an analytical form of P,

which is usually impossible to get. Its asymptotic guarantee is provided by

the Strong Law of Large Numbers (Gallager 2009).
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2.2.1 Metropolis-Hastings Sampling

The Metropolis-Hastings (M-H) algorithm represents a generic form for the

constructed markov chain. Its value is depended on the proposal distribution

(denoted as q(·) and the posterior likelihood term (denoted as p(·)) only. Here
an easy-sampled proposal distribution q(·) is used since it would be hard to

sample from the true distribution. From an algorithmic point of view, in

each step τ , suppose x∗ is sampled from proposal distribution q(x) and xτ−1

denotes x’s value in (τ − 1) step, then x∗ would be accepted as xτ with the

ratio Aτ (x
∗, xτ−1), otherwise take xτ = xτ−1. Here the ratio Aτ (x

∗, xτ−1) is

calculated as:

Aτ (x
∗, xτ−1) = min

(
1,

p(x∗)q(xτ−1|x∗)

p(xτ−1)q(x∗|xτ−1)

)
(2.18)

From this acceptance rate, a critical point can be observed that the con-

structed Markov Chain is balanced, which is:

p(x)q(x∗|x)Aτ (x
∗, x) = min (p(x)q(x∗|x), p(x∗)q(x|x∗))

= min (p(x∗)q(x|x∗), p(x)q(x∗|x))
= p(x∗)q(x|x∗)Aτ (x, x

∗)

(2.19)

There is no doubt the choice of proposal distribution q(·) would heavily

influence the acceptance ratio. Low valued acceptance ratio would result in

inefficient inference. This issue leads to the following Gibbs sampling part.

2.2.2 Gibbs Sampling

The Gibbs sampling is a special case of the M-H algorithm, which is proposed

to cater for the proposal distribution’s choice. Consider n random variables

x = (x1, · · · , xn), each step of the Gibbs sampling would sample the variables

{xi, i ∈ {1, · · · , n}} from its conditional posterior distribution given the other

variables (x1, · · · , xi−1, xi+1, · · · , xn) in a sequential or random order. In step
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τ , the sampling proceeds as follows:

xτ
1 ∼ p(x1|xτ−1

2 , · · · , xτ−1
n )

xτ
2 ∼ p(x2|xτ

1 , x
τ−1
3 , · · · , xτ−1

n )

...

xτ
n ∼ p(xn|xτ

1, · · · , xτ
n−1)

(2.20)

where (xτ
1, · · · , xτ

n) denotes the variables in step τ .

It seems the conditional probability in Eq. (2.20) needs the full join-

t distribution of the whole variables x; however, due to the factorization

theorem, only s small subset of the variables (the variables’ neighbours) are

usually needed for each of {xi, i ∈ {1, · · · , n}}. Also, while taking this con-

ditional distribution as the proposal distribution for the M-H algorithm, the

acceptance ratio is obtained as (∀i ∈ {1, · · · , n}):

Aτ (x
∗, xτ−1) =min

(
1,

p(x∗)q(xτ−1|x∗)

p(xτ−1)q(x∗|xτ−1)

)
=min

(
1,

p(x∗
i |x\i)p(x

τ−1
i |x\i)

p(xτ−1
i |x\i)p(x

∗
i |x\i)

)
=1.

(2.21)

Eq. (2.21) shows that every sample of the Gibbs sampling is accepted.

Thus, the steps in Eq. (2.20) can be regarded as the M-H algorithm with

acceptance ratio equal to 1.

The M-H algorithm and Gibbs sampling are the standard sampling method

in inferencing the model. Apart from these two, there are numerous sam-

pling methods in improving its efficiency, such as auxiliary sampling (that

is, adding extra variables to facilitate efficient sampling), collapse sampling

(that is, marginalizing out some hidden variables), block sampling (that is,

sampling a bunch of variables together), and slice sampling (that is, adding

a uniform variable to restrain the component number in the nonparametric

Bayesian prior). Interested readers in these methods are encouraged to re-

fer to (Andrieu, De Freitas, Doucet & Jordan 2003)(Bishop et al. 2006) for

further understanding.
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2.3 Preliminaries & Literature Review of Re-

lational Models

The probabilistic graphical model has provided powerful tools in analyzing

the relational data. Introductions are specially given to the latent class model

and latent feature model for the basis of the coupling relations learning.

2.3.1 Latent Class model

The simplest case of the latent class model can be referred to as the Gaussian

Mixture Model, in which each data point is assumed to be generated from

one of the Gaussian distributions in these mixtures. The corresponding task

is to infer each data point’s indicator to the Gaussian distribution and the

parameters of these Gaussian distributions. While extended to the relational

data, the infinite relational model (Kemp, Tenenbaum, Griffiths, Yamada

& Ueda 2006) is one benchmark model. Since its assumption of one node

possesses only one role is usually insufficient for modelling the real world,

its advanced derivative of the mixed-membership stochastic blockmodel is

introduced here.

The mixed-membership stochastic blockmodel (MMSB) (Airoldi, Blei,

Fienberg & Xing 2008) aims to model each node’s individual mixed-membership

distribution. In MMSB, each interaction eij corresponds to two membership

indicators: sij from the sender i and rij to the receiver j. (without loss of

generality, it is assumed sij = k, rij = l). The interaction’s value is de-

termined by the compatibility of two corresponding communities k and l.

Figure 2.1 shows the graphical model, and the detailed generative process

can be described as:

• ∀{k, l} ∈ N > 0, draw the communities’ compatibility values Wk,l ∼
Beta(λ1, λ2), k, l refer to the communities’ index

• ∀i ∈ {1, · · · , n}, draw node i’s mixed-membership distribution πi ∼
Dirichlet(β)
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• ∀{i, j} ∈ {1, · · · , n}2, for interaction eij

– sender’s membership indicator sij ∼ Multinomial(πi)

– receiver’s membership indicator rij ∼ Multinomial(πj)

– the interaction eij ∼ Bernoulli(Wsij ,rij)

β

πi πj

sij rij

eij W

λ1

λ2

Figure 2.1: The mixed-membership stochastic blockmodel (MMSB) Model

It should be noted that each πi is responsible for generating both the

sender’s labels {sij}nj=1 from node i and the receiver’s labels {rji}nj=1 to node

i.

W is the communities’ compatibility matrix as described previously. The

prior P (W ) is element-wise Beta distributed, which is conjugate to the

Bernoulli distribution P (eij|W, sij, rij). Therefore, a marginal distribution of

P (eij), i.e.,
∫
W
p(eij|W )p(W )d(W ) can be obtained analytically, and hence

there is no need to explicitly sample the values of W .
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2.3.2 Latent Feature Model

The latent feature model (LFM) (Miller, Jordan & Griffiths 2009) provides

an alternative point of view as to how to model the node’s binary latent

features, instead of its latent classes. Compared to the LCM, the LFM uses

all of one node’s occupied latent features in generating all its relations with

other nodes. In other words, the LFM model assumes each node has links

with others under one single binary vector, and this vector indicates the

hidden features to which it occupies.

As shown in the graphical model of Figure 2.2, the detailed generative

process can be described as:

• ∀{k, l} ∈ N > 0, draw the communities’ compatibility values Wk,l ∼
Normal(0, 1)

• ∀i ∈ {1, · · · , n}, draw node i’s stick-breaking representation πi ∼
Dirichlet(β)

• ∀i ∈ {1, · · · , n}, draw node i’s binary latent feature vector zi ∼ Bernoulli(πi)

• ∀{i, j} ∈ {1, · · · , n}2, for link data eij

– the link data eij ∼ Bernoulli( 1
1+exp(−ziWzj)

)

2.3.3 Literature Review of the relational models

A detail literature review on the current state-of-the-art in relational models

is provided here, including the latent class model (LCM), the latent feature

model (LFM) and some other variants such as latent hierarchical model,

dynamic relational models. For sufficient elaborations of these models, the

interested readers are referred to (Schmidt & Morup 2013).

In general, the stochastic blockmodel (Nowicki & Snijders 2001) repre-

sents the baseline model in the relational model literature, in which it assumes

that each node has a latent variable that directly represents its community
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β π

zjzi

eij W

λ1

λ2

Figure 2.2: The graphical model for latent feature model (LFM).

membership. Each of the fixed number of communities is associated with

a weight, and the whole weight vector can be seen as a draw from a K-

dimensional Dirichlet distribution. Naturally, the community memberships

are realized from the multinomial distribution parameterized by this weight

vector. The binary link data between two nodes is determined by the com-

munities to which they belong. This model has been extended to an infinite

K community, i.e., infinite relational model (IRM) (Kemp et al. 2006) where

the Dirichlet distribution has been replaced by a Dirichlet process.

Latent Class Model

On the LCM front, the classical approach is the mixed-membership stochas-

tic blockmodel (MMSB) which enables each node to associate with multiple

membership indicators, and an interaction is formed using one of these in-

dicators, details of which are elaborated on in Section 2.3.1. Several repre-

sentative works can be categorized into this LCM framework, including the

infinite relational model. An attempt is made here to analyze them according

to their various concentrations.

On the link data generation, the classic models include (Hofman &Wiggins

2008), which is to simplify the communities’ compatibilities into 2 cases:
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within-group probability (i.e. the membership indicators are the same) and

between-group probability (i.e. the membership indicators are different).

(Mørup & Schmidt 2012) further uses different within-group probabilities

to generate the link, while keeping the between-group probability the same.

Actually, the above two can be regarded as simplifications on treating the

diagonal and off-diagonal values of the compatibility matrix. (Ishiguro, Ueda

& Sawada 2012) uses an extra hidden noisy-indicator variable to handle the

noisy relations.

On various extensions of MMSB, (Koutsourelakis & Eliassi-Rad 2008)

extends the MMSB into the infinite communities case, by using the Chinese

Restaurant Process to indicate the partition. (Ho, Parikh & Xing 2012) uses

the nested Chinese Restaurant Process (Blei, Griffiths & Jordan 2010) to

build the communities’ hierarchical structure. (Kim et al. 2012) incorporates

the node’s attribute information into its membership indicator construction

in MMSB.

Latent Feature Model

A representative work for the LFM is the latent feature relational model

(LFRM) (Miller et al. 2009), which utilizes a latent feature matrix and a

corresponding link generative function to define the model, as elaborated

in detail in Section 2.3.2. To account for the variable number of features

associated with each node, it uses the Indian Buffet Process (Griffiths &

Ghahramani 2011)(Teh et al. 2007) as a prior. In the LFM, the compatibility

matrix values may be negative for the generation of link data, that is, it

prohibits the relation.

Several extensions on the LFM includes the max-margin latent feature

relational model (Med-LFRM) (Zhu 2012), who uses the maximum entropy

discrimination (MED) (Jebara 2004) technique to minimize the hinge loss,

which is to measure the quality of link prediction. The infinite latent at-

tribute (ILA) model (Palla, Ghahramani & Knowles 2012) uses a Dirichlet

Process to construct a sub-structure within each feature and all the features
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are utilized through the LFRM model. The infinite multiple-membership

relational model (Morup, Schmidt & Hansen 2011) tries to alleviate the

computational cost by assuming the link is generated independently giv-

en the (multiple) features that both of the two nodes occupy. (Knowles &

Ghahramani 2007)(Hoff 2009) separately model the present indicator and the

contribution of features, which leads to a nonparametric sparsity promoting

prior.

Dynamic case

Like any data modeling problem, interaction data can also change across

time, therefore, the dynamic extensions are found in both the LCM and LFM

frameworks. Examples such as work on the time-varied relational model, for

instance, the stochastic blockmodel is used to capture the evolving commu-

nity’s behavior across time (Yang, Chi, Zhu, Gong & Jin 2011), which is

addressed in (Ishiguro, Iwata, Ueda & Tenenbaum 2010) by incorporating a

time-varied Infinite Relational model. (Sarkar & Moore 2005)(Sarkar, Siddiqi

& Gordon 2007) describe the time dependency by using Gaussian linear mo-

tion models. The dynamic relational infinite feature model (DRIFT) (Foulds,

DuBois, Asuncion, Butts & Smyth 2011), which employs an independent

Markov dynamic transition matrix to correlate consecutive time interaction

data, is a natural extension of the latent feature relational model (LFRM).

Latent feature propagation (LFP) (Heaukulani & Ghahramani 2013) direct-

ly integrates observed interactions, rather than the latent feature matrix, in

the current time to model the distribution of latent features at the next time

stamp. On the dynamic setting of mixed-membership stochastic blockmod-

el (MMSB), (Fu, Song & Xing 2009)(Xing, Fu & Song 2010) place a “pa-

rameter” (the mean) dependent Gaussian distribution to consider the time

correlation, while (Ho, Song & Xing 2011) considers hierarchical communi-

ties modeling that evolves. However, as both of these two models require

pre-definition of the number of communities, additional techniques, such as

Cross-Validation, are necessary when choosing the number of communities.
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Furthermore, their implicit description of the time dependency may not be

sufficiently intuitive.

Other extensions

Apart from the above extensions, many of the networks are believed to be

under a hierarchical setting. In modelling the hierarchical network structure,

(Clauset, Moore & Newman 2008) defines a uniform prior over all binary

trees, in which the probability of generating a link between two nodes is

parameterized at the level of their nearest common ancestor in the binary

tree. (Herlau, Morup, Schmidt & Hansen 2012) replaces the uniform prior

over binary tree with a uniform prior over multifurcating trees and the leaves

of the trees is generated from a Chinese Restaurant Process prior. (Roy,

Kemp, Mansinghka & Tenenbaum 2007) assumes that each edge in the tree

has an associated weight that defined the propensity in which the network

compiles with the given split. The Mondrian Process (Roy & Teh 2009) splits

the set of nodes into two parts at the first step, and continues this splitting

until a stopping criterion is met. This can be regarded as a distribution

over a k-dimensional tree. (Schmidt, Herlau & Mørup 2013) uses the Gibbs

fragmentation tree as a prior over multifurcating trees, which is closely related

to the two parameter nested Chinese Restaurant Process (Aldous 1985).

On utilizing multiple data source, (Kemp et al. 2006) and (Xu, Tresp, Yu

& Kriegel 2006) extend the IRM model to both model dyadic relationships

as well as side information, such that the partition of the nodes and the

available side-information are equal. (Miller et al. 2009) incorporates the

node attribute information directly for modelling the link, while (Kim et al.

2012) tries to use this information to uncover the hidden structure of the

network.
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2.4 Literature Review of Coupling Relations

Learning

The real applications of data analysis often exhibit strong coupling relations

and heterogeneities between the objects. This can not be intuitively sim-

plified by the independently and identically distributed (i.i.d.) assumption.

Correspondingly, studying this coupling relations ( or non-i.i.d. learning) has

emerged as a crucial problem, which is partially but not systematically pro-

posed by (Zhang, Song, Gretton & Smola 2009)(Guo & Shi 2011)(Mohri

& Rostamizadeh 2009)(Mohri & Rostamizadeh 2010) (Chazottes, Collet,

Külske & Redig 2007).

The coupling relations learning, as well as non-i.i.d. learning, are par-

ticularly driven by the issues of (Cao 2013)(Wang & Cao 2012)(Cao, Dai &

Zhou 2009)(Cao, Zhang & Zhou 2008) (Cao, Luo & Zhang 2009)(Cao 2010).

These works discuss the complexities of the problem from several aspects,

including openness (exchange between energy, information and materials),

scalability (big data issue), dynamic (time related), sufficient (fruitful profile

information), heterogeneity (different representation forms of the data). Un-

der this emergent need, the coupling relations are systematically proposed

by (Cao 2014).

There have been several case studies in exploring these coupling rela-

tionships. (Wang, Cao, Wang, Li, Wei & Ou 2011) and (Wang, She &

Cao 2013a) are focusing on the coupled similarity description, which in turn

has improved the performance comparing to the previous methods. (Wang,

She & Cao 2013b) further uses the idea into the ensemble learning, based

on existing clustering or classification results. Other interesting extensions

include (Li, Wang, Cao & Yu n.d.), who uses a coupled pattern mining to

deal with the imbalanced data problem, (Yu, Wang, Gao, Cao & Chen 2013),

who considers the coupling relations in recommendation system and (Cheng,

Miao, Wang & Cao 2013) by applying this coupling idea in the document

clustering problem. However, none of these works are focusing on the prob-
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abilistic relational model perspective, and the analysis of social network is

also absent.

2.4.1 Limitation of the coupling Relational Learning

As should be emphasized, the current work in the coupling relational learning

does not consider the communities’ behaviour. Especially, the influence of

communities and the simultaneous behaviour within the same communities

is largely been overlooked. In terms of this disadvantages, this thesis has

focused on using the community relational modelling method to simultane-

ously learn the coupling relations. More specifically, the major work of the

thesis can be divided into three parts.

Nodes’ dynamic coupling behaviour with different communities.

As the serial coupling relation focus on the dynamic behaviour, Chapter 3

discusses this serial coupling relation from the communities’ point of view.

The nodes’ mixed-membership distribution is studied as the basis for the this

study.

The within communities’ coupling behaviour As the casual and ex-

clusive coupling relations characterize the positive and negative effects on

each other, their potential implications within the communities are of high

importance. Chapter 4 uses the concept of Copula function to describe these

casual and exclusive coupling relations, which receives quite interesting re-

sults.

The coupling interaction between the nodes’ information and the

communities As the dependent coupling relation is to describe the poten-

tial connection between two objects, Chapter 5 efficiently discusses on the

coupling relation between the nodes’ information and the communities.
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Chapter 3

Dynamic Infinite

Mixed-Membership Stochastic

Blockmodel

3.1 Introduction

Networking applications with dynamic settings (i.e. networks observed over

time) are widely seen in real world environments, such as link prediction

and community detection in social networks, social media interactions, capi-

tal market movements, and recommender systems. In this dynamic case, the

objects usually have strong correlations between the consecutive times, which

we denote them as the coupling relations along the time (or serial coupling

relations.) A deep understanding of such dynamic network mechanisms

relies on latent relation analysis and latent variable modeling of dynamic

network interactions and structures. This presents both challenges and op-

portunities to existing learning theories. The intricacy associated with the

time-varying attributes makes learning and inference a difficult task, while

at the same time, one can explore the evolutionary behavior of a network

structure more realistically in this time varying setting. The various dy-

namic characteristics of such a network can therefore be revealed in real
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application.

A number of researchers have recently attempted to address this issue.

Some notable earlier examples include stochastic blockmodel (Nowicki &

Snijders 2001) and its infinite community case infinite relational model (IR-

M) (Kemp et al. 2006) where the aim is to partition a network of nodes into

different groups based on their pairwise and directional binary interactions.

It was extended by (Yang et al. 2011) to infer the evolving community’s be-

havior over time. Their work assumes that a fixed number of K communities

exists to which one node can potentially belong. However, in many applica-

tions, an accurate guess of K beforehand may be impractical and its value

may also vary during the time stamps.

The dynamic infinite relational model (dIRM) (Ishiguro et al. 2010) is an

alternative way to address the same problem, where K can be inferred from

the data itself. However, just as in (Kemp et al. 2006), its drawback is that

the model assumes each node i must belong to only one single community.

Therefore, an interaction between nodes i and j can only be determined from

their community indicators. This approach can be inflexible in many scenar-

ios, such as the monastery example depicted in (Airoldi et al. 2008), where

one monk can belong to different communities. To this end, the authors

in (Airoldi et al. 2008) introduced the concept of mixed-membership, where

they assume each node i might belong to multiple communities. The mem-

bership indicators of one’s interaction are no longer a fixed value of special

community. Instead, they are sampled from the nodes’ mixed-membership

distributions.

The above-mentioned works address some aspects (infinite, dynamic,

mixed-membership and data-driven inference) of relational modeling respec-

tively. An emergent need is to effectively unify these models to provide a

flexible and generalised framework which can encapsulate the advantages of

most of these works and address multiple aspects of complexities in one mod-

el. This is certainly not an easy thing to do because of the need to understand

the relations between aspects and build a seamless approach to aggregate the
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challenges. Accordingly, we propose the dynamic infinite mixed-membership

stochastic blockmodel (DIM3).

DIM3 has the following features: firstly, it allows a network to have an

infinite number of latent communities; secondly, it allows mixed-membership

associated with each node; thirdly, the model extends to dynamic settings

and the number of communities varies with the time; lastly, it is apparent that

in many social networking applications, a node’s membership may become

consistent (i.e. unchanged) over consecutive time stamps, for example, a

person’s opinion of a peer is more likely to be consistent in two consecutive

time stamps.

To model this persistence, we devise two different implementations. The

first is to have a single mixed-membership distribution for each node at d-

ifferent time intervals. The persistence factor is dependent on the statistics

of each node’s interactions with the rest of the nodes. The second imple-

mentation is to allow a set of mixed-membership distributions to associate

with each node, and they are time-invariant. The number of elements in the

set varies non-parametrically, similar to (Fox et al. 2008). The persistence

factor is dependent on the value of the membership indicator at the previous

time stamp.

Two effective sampling algorithms are consequently designed for our pro-

posed models, using either the Gibbs or Slice sampling technique for efficient

model inference. Their convergence behavior and mixing rate are analyzed

and displayed in the first part of the experiment. In the experimental analy-

sis, we show that we can assess the nodes’ position in the network and their

developing trends, predict unknown links according to the current struc-

ture, understand the network structure and identify the change point. The

techniques proposed can be used for forecasting the political tendencies of

senators (Ho et al. 2011), predicting the function of a protein in biology (Xing

et al. 2010), and tracking authors’ community cooperation in academic circles

(Heaukulani & Ghahramani 2013), etc.

The rest of the chapter is organised as follows. Section 3.2 details our
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main framework and explains how it can incorporate infinite communities in

a dynamic setting. The inference schemes for the two models are detailed in

Section 3.3. In Section 3.4, we show the experimental results of the proposed

models using both synthetic and real-world social network data. Conclusions

and future works can be found in Section 3.5.

3.2 The dynamic infinite mixed-membership

stochastic blockmodel (DIM3)

3.2.1 The general settings

In our DIM3 model, we allow each node’s membership indicators to change

across time. Additionally, it is imperative that these indicators should con-

tain the time-persistence property with past values, through which the reality

of social behavior can be reflected. Here, we use the strategy of incorporating

a sticky parameter κ into the mixed-membership distributions to approach

this issue (Fox et al. 2008)(Fox, Sudderth, Jordan & Willsky 2011a). Differ-

ent detailed designs are proposed for the following two models, however, the

idea that the current mixed-membership distributions are influenced by the

corresponding distributions at the previous time is shared.

Once the current mixed-membership distributions have been selected, the

interaction data is generated in the same way as MMSB. Thus, this pa-

per is focused on the details of mixed-membership distribution constructions

following the main route of the Hierarchical Dirichlet Process (HDP) (Teh

et al. 2006). Also, we should note that the intermediate variable β is identical

for both models, representing the “significance” of all the communities across

time, and its construction is the same as the stick-breaking construction in

Section 2.3.1.
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3.2.2 The mixture time variant (MTV) Model

In Figure 3.1, we illustrate the graphical model of the MTV model. Here

we only show all the variables involved for time t, and omit the other times,

where the structure is identical at any other time τ 
= t.

βγ

πt
i

πt
j

stij rtij

etij

α

W

i, j = 1 : n
t = 1 : T

λ1

λ2

κ

N
t−1

i·

N
t−1

j·

Figure 3.1: The mixture time variant (MTV) Model

Let us focus on the mixed-membership distribution’s construction in the

MTV model, which is:

πt
i ∼ DP

(
α+ κ,

αβ + κ
2n

·∑k N
t−1
ik δk

α + κ

)
(3.1)

stij ∼ πt
i, r

t
ij ∼ πt

j, ∀i, j ∈ N , t ≥ 1. (3.2)

The mixed-membership distribution {πt
i}1:T1:n is sampled from the Dirich-

let Process with a concentration parameter (α + κ) and a base measure
αβ+ κ

2n

∑
k Nt−1

ik
δk

α+κ
. There will be N × T of these distributions. They jointly

describe each node’s activities.

In the base measure, the introduced sticky parameter κ stands for each

node’s time influence on its mixed-membership distribution. In other words,

we assume that each node’s mixed-membership distribution at time t will be
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largely influenced by its activities at time t−1. This is reflected in the hidden

label’s multinomial distribution whereby the previous explicit activities will

occupy a fixed proportion κ
α+κ

of the current distribution. The larger the

value of κ, the more weight the activities at t− 1 will have at time t.

As our method is largely based on the HDP framework, we will use the

popular “Chinese Restaurant Franchise (CRF)” (Teh et al. 2006)(Fox et al.

2008) analogy to explain our model. Using the CRF analogy, the mixed-

membership distribution associated with a node i at time t can be seen as

a restaurant πt
i, with its dishes representing the communities. If a customer

stij(or r
t
ji) eats the dish k at the ith restaurant at time t, then stij(r

t
ji) = k. For

all t > 1, the restaurant πt
i will have its own specials on the dishes served,

representing the “sticky” configuration in the graphical model. In contrast

to the sticky HDP-HMM (Fox et al. 2008) approach, which places emphasis

on one dish only, we allow multiple specials in our work, where the weight of

each special dish is adjusted according to the number of dishes served at this

restaurant at time t − 1, i.e., κ
2n

∑
k N

t−1
ik δk. Therefore, we can ensure that

the special dishes are served persistently across time in the same restaurant.

3.2.3 The mixture time invariant (MTI) Model

We show the MTI model in Figure 3.2. Here we only show the interaction

e1ij and omit the other interactions, whose structure is directly derived.

The β in the MTI model is identical to that in the MTV model, and

we sample the mixed-membership distribution and membership indicators

as follows:

π
(k)
i ∼ DP

(
α + κ,

αβ + κδk

α + κ

)
, ∀i, k ∈ N ; (3.3)

stij ∼ π
(st−1

ij )

i , rtij ∼ π
(rt−1

ij )

j , ∀i, j ∈ N , t ≥ 1. (3.4)

We assign uninformative priors on sampling the initial membership indicators

{s0ij, r0ij}i,j, i.e., {s0ij, r0ij}i,j are sampled from a multinomial distribution, with

each category having an equalized success probability. The dimension of this
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β

γ

π
(k)

i

π
(l)

j

i, j = 1 : n

k, l ∈ N

s1ij

r1ij

e1ij

κ
W

λ1

λ2

α

s0ij

r0ij

s2ij

r2ij

· · ·

· · ·

sTij

rTij

Figure 3.2: The mixture time invariant (MTI) Model

multinomial distribution is automatically adjusted according to the current

number of communities in the model.

On each node’s membership distribution, our MTI model is essentially

a Sticky Hierarchical Dirichlet Process-Hidden Markov Model (HDP-HMM)

(Fox et al. 2008)(Fox et al. 2011b)(Fox et al. 2011a). In this model, each node

has a variable number of mixed-membership distributions associated with it,

which may be infinite. At time t ≥ 2, its membership indicator stij (or rtij)

is generated from π
(st−1

ij )

i (or π
(rt−1

ij )

j ). To encourage persistence, each πik is

generated from the corresponding β, where κ is added to β’s kth component

(Fox et al. 2008)(Fox et al. 2011b)(Fox et al. 2011a).

Returning to the CRF (Teh et al. 2006) analogy, we have N ×∞ matrix,

where its (i, k)th element refers to π
(k)
i , which can be seen as the weights

of eating each of the available dishes. A customer stij(or r
t
ji) can therefore

only travel between restaurants located at the ith row of the matrix. When

π
(k)
i ’s kth component is more likely to be larger, it means that the dish k is a

special dish for restaurant k. Therefore, a customer at restaurant k at time

t− 1 is more likely to eat the same dish (i.e., kth dish), and hence to stay at

restaurant k at time t.
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3.2.4 Discussion and comparison

As a brief comparison, we discuss the differences between the two models

in the design of the time-persistence property. The MTV model allows the

mixed-membership distribution itself to change over time stamps. Howev-

er, there is only a single (but different) distribution for each node at each

individual time stamp. The membership indicator of a node at time t is

dependent on the “statistics” of all membership indicators of the same node

at t − 1 and t + 1. With a larger value of the sticky parameter κ, the cur-

rent mixed-membership distribution tends to be more similar to that of the

previous time stamp.

In contrast, the MTI model requires the mixed-membership distributions

to stay invariant over times. However, there may be an infinite number of

possible distributions associated with each node, but often, due to a HDP

prior, only a few distributions will be discovered. In this case, the member-

ship indicator at the current time is dependent and more likely to have the

same value as it had in the previous time stamp.

3.3 Inference

Two sampling schemes are implemented to complete the inference on the

MTV model: standard Gibbs sampling and Slice-Efficient sampling, which

both target the same posterior distribution.

3.3.1 Gibbs Sampling for the MTV model

The Gibbs Sampling scheme is largely based on (Teh et al. 2006). The

variables of interest are: β, Z and auxiliary variables m̂, where m̂ refers to

the number of tables eating dish k as used in (Teh et al. 2006)(Fox et al. 2008)

without counting the tables that are generated from the sticky portion, i.e.,

κN t−1
ik . Note that we do not sample {πt

i}1:T1:n , as it gets integrated out.
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Sampling β

β is the prior for all {πt
i}s, which can be thought of as the ratios between

the community components for all communities. Its posterior distribution is

obtained through the auxiliary variable m̂:

(β1, · · · ,βK ,βμ) ∼ Dir(m̂·1, · · · , m̂·K , γ) (3.5)

where its detail can be found in (Teh et al. 2006).

Sampling {stij}1:Tn×n, {rtij}1:Tn×n

Each observation etij is sampled from a fixed Bernoulli distribution, where the

Bernoulli’s parameter is contained within the role-compatibility matrix W

indexed (row and column) by a pair of corresponding membership indicators

{stij, rtij}. W.l.o.g., ∀k, l ∈ {1, · · · , K + 1}, the joint posterior probability of

(stij = k, rtij = l) is:

Pr(stij = k, rtij = l|Z\{stij, rtij}, e,β, α, λ1, λ2, κ)

∝Pr(stij = k|{stij0}j0 �=j , {rtj0i}nj0=1,β, α, κ,N
t−1
i )

·
2n∏
l=1

Pr(zt+1
il |zti·/stij, stij = k,β, α, κ,N t+1

i )

·Pr(rtij = l|{rti0j}i0 �=i, {sji0}ni0=1,β, α, κ,N
t−1
j )

·
2n∏
l=1

Pr(zt+1
jl |ztj·/rtij , rtij = l,β, α, κ,N t+1

j )

·Pr(etij |E\{etij}, stij = k, rtij = l,Z\{stij, rtij}, λ1, λ2)

(3.6)
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The first two terms of Eq. (3.6):

Pr(stij = k|{stij0}j0 �=j, {rtj0i}nj0=1,β, α, κ,N
t−1
i )

·
2n∏
l=1

Pr(zt+1
il |zti·/stij, stij = k,β, α, κ,N t+1

i )

∝Γ(αβk +N t+1
ik + κN

t,−stij
ik + κ)

Γ(αβk +N t+1
ik + κN

t,−stij
ik )

· Γ(αβk + κN
t,−stij
ik )

Γ(αβk + κN
t,−stij
ik + κ)

·
{

αβk + κN t−1
ik +N

t,−stij
ik , k ∈ {1, . . . , K};
αβμ, k = K + 1.

(3.7)

Here we should note thatN0
ik = 0,NT+1

ik = 0, ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , K}.
The following two terms of Eq. (3.6) are:

Pr(rtij = l|{rti0j}i0 �=i, {stji0}ni0=1,β, α, κ,N
t−1
j )

·
2n∏
l=1

Pr(zt+1
jl |ztj·/rtij , rtij = l,β, α, κ,N t+1

j )

∝Γ(αβl +N t+1
jl + κN

t,−rtij
jl + κ)

Γ(αβl +N t+1
jl + κN

t,−rtij
jl )

· Γ(αβl + κN
t,−rtij
jl )

Γ(αβl + κN
t,−rtij
jl + κ)

·
{

αβl + κN t−1
jl +N

t,−rtij
jl , l ∈ {1, . . . , K};
αβμ, l = K + 1.

(3.8)

The last term, i.e. the likelihood term is calculated as that of:

Pr(etij|E\{etij}, stij = k, rtij = l,Z\{stij, rtij}, λ1, λ2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n
t,1,−e

t
ij

k,l
+λ1

n
t,−e

t
ij

k,l
+λ1+λ2

, et
ij = 1;

n
t,0,−e

t
ij

k,l
+λ2

n
t,−e

t
ij

k,l
+λ1+λ2

, et
ij = 0.

(3.9)

Here n
t,−et

ij

k,l = nt
k,l − 1(stij = k, rtij = l) =

∑
i′j′ 1(s

t
i′j′ = k, rti′j′ = l)− 1(stij =

k, rtij = l), n
t,1,−etij
k,l = n1,t

k,l − 1(stij = k, rtij = l)et
ij =

∑
i′j′:st

i′j′
=k,rt

i′j′
=l e

t
i′j′ −

1(stij = k, rtij = l)et
ij and n

t,0,−etij
k,l = n

t,−etij
k,l − n

t,1,−etij
k,l .
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The detail derivation of Equation (3.7)(3.8)(3.9) are given in the sup-

plementary material. Assuming the current sample of {stij, rtij} has values

ranging between 1 . . .K, we let the undiscovered (new) community be in-

dexed by K + 1. Then, to sample a pair (stij, r
t
ij) in question, we need to

calculate all (K + 1)2 combinations of values for the pair.

Sampling m̂

Using the restaurant-table-dish analogy, we denote mt
ik as the number of

tables eating dish k, ∀i, k, t. This is related to the variable m̂ used in sampling

β, but also includes the counts of the “un-sticky” portion, i.e., αβk.

The sampling ofmt
ik incorporates a similar strategy as (Teh et al. 2006)(Fox

et al. 2008), which is independently distributed from:

Pr(mt
ik = m|α,βk, N

t−1
ik , κ) ∝ S(N t

ik, m)(αβk + κN t−1
ik )m (3.10)

Here S(·, ·) is the Stirling number of the first kind.

For each node, the ratio of generating new tables is the result of two

factors: (1) Dirichlet prior with parameter {α,β} and (2) the sticky config-

uration from membership indicators at t− 1, i.e., κN t−1
ik .

To sample β, we need only include tables generated from the “un-sticky”

portion, i.e., m̂, where each m̂t
ik can be obtained from a single Binomial

draw:

m̂t
ik ∼ Binomial(mt

ik,
αβk

κ
2n
N t−1

ik + αβk

). (3.11)

m̂k =
∑
i,t

m̂t
ik. (3.12)
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3.3.2 Adapted Slice-Efficient Sampling for the MTV

model

We also incorporate slice-efficient sampling (Kalli, Griffin &Walker 2011)(Walker

2007) to our model. The original sampling scheme was designed to sample

the Dirichlet Process Mixture model. To adapt it to our framework, which

is based on a HDP prior and also has pair-wise membership indicators, we

use the auxiliary variables U = {ut
ij,s, u

t
ij,r} for each of the latent membership

pairs {stij, rtij}. Having the Us, we are able to limit the number of components

in which πi needs to be considered, which is otherwise infinite.

Under the slice-efficient sampling framework, the variables of interest are

now extended to: πt
i, {ut

ij,r, u
t
ij,s}, {stij, rtij},β,m:

Sampling πt

For each node i = 1, · · · , N ; t = 1, · · · , T : we generate π
′t
i using the stick-

breaking process (Ishwaran & James 2001), where each kth component is

generated using:

π
′t
ik ∼beta(π

′t
ik; a

t
ik, b

t
ik), where

atik = αβk +N t
ik + κN t−1

ik

btik = α(1−
k∑

l=1

βl) +N t
i,k0>k + κN t−1

i,k0>k

(3.13)

Here πt
k = π

′t
k

∏k−1
i=1 (1− π

′t
i ).
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Sampling ut
ij,s, u

t
ij,r, s

t
ij, r

t
ij

We use ut
ij,s ∼ U(0,πt

istij
), ut

ij,r ∼ U(0,πt
jrtij

). The hidden label subsequently

obtained is then independently sampled from the finite candidates:

P (stij = k, rtij = l|Z, etij,β, α, κ,N,π, ut
ij,s, u

t
ij,r))

∝1(πt
ik > ut

ij,s) · 1(πt
jl > ut

ij,r)

·
2n∏
l=1

Pr(zt+1
il |zti·/stij , stij = k,β, α, κ,N t+1

i )

·
2n∏
l=1

Pr(zt+1
jl |ztj·/rtij, rtij = l,β, α, κ,N t+1

j )

·Pr(etij |E\{etij}, stij = k, rtij = l,Z\{stij, rtij}, λ1, λ2)

(3.14)

We refer to Eq. (3.7)(3.8)(3.9) for the detailed calculation of each term in

Eq. (3.14).

Sampling β

An obvious choice for the proposal distribution of β used in M-H is its prior

p(β|γ) = stick-breaking(γ). However, this proposal can be non-informative,

which results in a low acceptance rate. We sample β∗ conditioned on an

auxiliary variable m̂: (β∗
1, · · · ,β∗

K ,β
∗
K+1) ∼ Dir(m̂1, · · · , m̂K , γ), in order

to increase the M-H’s acceptance rate, where m̂ are sampled in accordance

with the method proposed in Section 3.3.1 (Eq. (3.10)(3.11)(3.12)). However,

instead of sampling β directly from m as in Section 3.3.1, we only use it

for our proposal distribution, as we have explicitly sampled {πi}ni=1. The

acceptance ratio is hence (τ indexes the iteration time):

A(β∗,β(τ)) = min (1, a) (3.15)

a =

∏
t,i

[∏K+1
d=1 Γ(αβ

(τ)
d ) · [πt

id]
αβ∗d

]
∏

t,i

[∏K+1
d=1 Γ(αβ∗

d) · [πt
id]

αβ
(τ)
d

] ·
∏K

d=1

[
β

(τ)
d

]m̂d−γ

∏K
d=1 [β

∗
d]

m̂d−γ
(3.16)
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3.3.3 Hyper-parameter Sampling

The hyper-parameters involved in the MTV model are γ, α, κ. However, it is

impossible to compute their posterior individually. Therefore, we place three

prior distributions on some “combination” of the variables. A vague gamma

prior G(1, 1) is placed on both γ, (α+ κ). A beta prior is placed on the ratio
κ

α+κ
.

To sample γ value, since log(γ)’s posterior distribution is log-concave, we

use the Adaptive Rejection Sampling (ARS) method (Rasmussen 1999).

To sample (α + κ), we use the Auxiliary Variable Sampling (Teh et al.

2006), and this needs the auxiliary variable m in Eq. (3.10), as proposed in

(Teh et al. 2006).

To sample κ
α+κ

, we place a vague beta prior B(1, 1) on it, with a likelihood

of {mt
ik − m̂t

ik, ∀i, k, t > 1} in Eq. (3.11), the posterior is in an analytical

and samplable form, thanks to its conjugate property.

3.3.4 Gibbs Sampling for the MTI model

The variables of interest are: β, Z and auxiliary variables m̂, where m̂

refers to the number of tables eating dish k as used in (Teh et al. 2006)(Fox

et al. 2008) without counting the tables generated from the sticky portion,

i.e., κN t−1
ik . As the hyper-parameters in the MTI model are quite similar to

those in (Fox et al. 2011a), we do not present the hyper-parameters here.

Interested readers can refer to (Fox et al. 2008)(Fox et al. 2011b)(Fox et al.

2011a) for the detailed implementation.

Sampling β

β’s sampling is the same as Eq. (1).
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Samplinig stij, r
t
ij

The posterior probability of stij , r
t
ij is:

Pr(sij = k, rij = l|α,β, κ, {N (i)
·· }, {N (j)

·· },e, λ1, λ2, Z)

∝Pr(stij = k|α,β, κ,N (i)

st−1
ij ·

, st−1
ij ) Pr(rtij = l|α,β, κ,N (j)

rt−1
ij ·

, rt−1
ij )

· Pr(etij|e/{etij}, stij = k, rtij = l, Z/{stij , rtij}, λ1, λ2)

(3.17)

The first term of Eq. (3.17) is:

Pr(stij = k|α,β, κ, N (i)

st−1
ij ·

, st−1
ij )

∝(αβk +N
(i)

st−1
ij k

+ κδ(st−1
ij , k))·⎛⎝αβst+1

ij
+N

(i)

kst+1
ij

+ kδ(k, st+1
ij ) + δ(k, st−1

ij )δ(k, st+1
ij )

α +N
(i)
k· + κ + δ(st−1

ij , k)

⎞⎠
(3.18)

The second term of Eq. (3.17) is:

Pr(rtij = l|α,β, κ, N (j)

rt−1
ij ·

, rt−1
ij )

∝(αβl +N
(j)

rt−1
ij l

+ κδ(rt−1
ij , l))·⎛⎝αβrt+1

ij
+N

(i)

lrt+1
ij

+ lδ(l, rt+1
ij ) + δ(l, rt−1

ij )δ(l, rt+1
ij )

α +N
(i)
l· + κ + δ(rt−1

ij , l)

⎞⎠
(3.19)

The likelihood of Pr(et
ij|e/{et

ij}, stij = k, rtij = l, Z/{stij, rtij}, λ1, λ2) is the

same as Eq. (3.9).

Sampling m̂

m̂ is similar to that in the MTV model, however, it differs in the incorpora-

tion of κ.

Pr(m
(i)
qk = m|α,βk, κ, N

(i)
qk ) ∝ S(N

(i)
qk , m)(αβk + κ) (3.20)

m̂
(i)
qk ∼ Binomial(m

(i)
qk ,

αβk

κ+ αβk

) (3.21)
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m̂·k =
∑
q,i

m̂
(i)
qk (3.22)

3.3.5 Inference discussions

Both the Gibbs Sampling and Slice-Efficient Sampling are two feasible ways

to accomplish our task. They have different pros and cons.

As mentioned previously, Gibbs Sampling in our MTV model integrates

out the mixed-membership distribution {πt
i}. It is the “marginal approach”

(Papaspiliopoulos & Roberts 2008). The property of community exchange-

ability makes it simple to implement. However, theoretically, the obtained

samples mix slowly as the sampling of each label is dependent on other labels.

Slice-Efficient Sampling is one “conditional approach” (Kalli et al. 2011)

while the membership indicators are independently sampled from {πt
i}. In

each iteration, given {πt
i} and the role-compatibility matrix W , we can par-

allelize the process of sampling membership indicators, which may help to

improve the computation, especially when the number of nodes, i.e., N be-

comes larger, and the number of communities, i.e., k becomes smaller.
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0.05 0.95 0.05

0.05 0 0.95

0.95 0.2 0

0.05 0.95 0.05

0.2 0 0.95

0.05 0.95 0

0.05 0.05 0.95

0.95 0 0.05

0.05 0.95 0

0.2 0.05 0.95

0.95 0 0.2

Figure 3.3: Four Cases of the Compatibility Matrix.
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3.4 Experiments

The performance of our DIM3 model is validated by experiments on synthet-

ic datasets and several real-world datasets. On the synthetic datasets, we

implement the finite-communities cases of our models as baseline algorithm-

s, namely as f-MTV model and f-MTI model. On the real world dataset

comparison, we individually implement the three benchmark models: the

mixed-membership stochastic blockmodel (MMSB), the infinite relational

model (IRM) and the latent feature relational model (LFRM) to the best of

our understanding. Also, we compare the dynamic relational infinite feature

model (DRIFT) with our models on real world datasets, and the source code

is provided by (Foulds et al. 2011).

3.4.1 Synthetic Dataset

For the synthetic data generation, the variables are generated following (Ho

et al. 2011). We use N = 20, T = 3, and hence E is a 20×20×3 asymmetric

and binary matrix. The parameters are set up such that the 20 nodes are e-

qually partitioned into 4 groups. The ground-truth of the mixed-membership

distributions for each of the groups are: [0.8, 0.2, 0; 0, 0.8, 0.2; 0.1,

0.05, 0.85; 0.4, 0.4, 0.2].

We consider 4 different cases to fully assess DIM3 against the ground-

truth; all lie in the 3-role compatibility matrix.

The detailed value of the role-compatibility matrix on these four cases

is shown in Figure 3.3. Top left (Case 1): large diagonal values and small

non-diagonal values. Top right (Case 2): large diagonal values and mediate

non-diagonal values. Bottom left (Case 3): large non-diagonal values and

small diagonal values. Bottom right (Case 4): small diagonal values and

mediate non-diagonal values.
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MCMC Analysis

The convergence behavior is tested in terms of two quantities: the cluster

numberK, i.e., the number of different values Z can take, and the deviance D

of the estimated density (Kalli et al. 2011)(Papaspiliopoulos & Roberts 2008),

which is defined as:

D = −2
∑
i,j,t

log

(∑
k,l

N t
ik ·N t

jl

4n2T
p(etij |Z, λ1, λ2)

)
(3.23)

In our MCMC stationary analysis, we run 5 independent Markov chains

and discard the first half of the Markov chains as a burn-in. With the ran-

dom partition of 3 initial classes as the starting point, 20, 000 iterations are

conducted in our samplings.

The simulated chains satisfy standard convergence criteria, as the test

was implemented using the CODA package (Plummer, Best, Cowles & Vines

2006). In Gelman and Rubin’s diagnostics (Gelman & Rubin 1992), the

value of Proportional Scale Reduction Factor (PSRF) is 1.09 (with upper

C.I. 1.27) for k, 1.03 (with upper C.I. 1.09) for D in the Gibbs sampling,

and 1.02 (with upper C.I. 1.06) for k, 1.02 (with upper C.I. 1.02) for D in

Slice sampling. Geweke’s convergence diagnostics (Geweke 1992) are also

employed, with the proportion of the first 10% and last 50% of the chain as

comparison. The corresponding z-scores are all in the interval [−2.09, 0.85]

for 5 chains. In addition, the stationarity and half-width tests of Heidelberg

and Welch Diagnostic (Heidelberger & Welch 1981) were both passed in all

the cases, with p-value higher than 0.05. Based on all these statistics, the

Markov chain’s stationarity can be safely ensured in our case.

The efficiency of the algorithms can be measured by estimating the inte-

grated autocorrelation time τ forK andD. τ is a good performance indicator

as it measures the statistical error of Monte Carlo approximation on a target

function f . The smaller τ , the more efficient the algorithm.

(Kalli et al. 2011) used an estimator τ̂ as:

τ̂ =
1

2
+

C−1∑
l=1

ρ̂l (3.24)
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Here ρ̂l is the estimated autocorrelation at lag l and C is a cut-off point,

which is defined as C := min{l : |ρ̂l| < 2/
√
M}, and M is the number of

iterations.

Table 3.1: Integrated Autocorrelation Times Estimator τ̂ for K

K

Sampling

�
�
�
�
�
�
�
�

γ

α
0.1 0.3 0.5 1 2

MTV-g

0.1 177.2 93.65 26.91 50.21 11.24

0.3 260.5 54.00 9.18 5.31 6.56

0.5 1.83 8.33 7.54 3.95 5.24

1.0 5.57 6.45 3.44 3.64 4.56

2.0 4.30 2.87 3.35 2.98 3.28

MTV-s

0.1 248.6 90.63 161.3 9.58 17.69

0.3 120.6 66.23 44.35 11.40 7.28

0.5 18.99 27.27 6.08 8.76 10.40

1.0 5.79 9.19 11.85 8.46 7.25

2.0 3.17 8.41 5.35 5.48 5.05

We test the sampling efficiency of the MTV-g and the MTV-s on Case

1 with the same setting as (Papaspiliopoulos & Roberts 2008). Of the w-

hole 20, 000 iterations, the first half of the samples is discarded as a burn-in

and the remainder are thinned 1/20. We manually try different values of

the hyper-parameters γ and α and show the integrated autocorrelation time

estimator in Table 3.1 and Table 3.2. Although some outliers exist, we can

see that there is a general trend that, with fixed α value, the autocorrelation

function will decrease when the γ value increases. This same phenomenon

happens on α while γ is fixed. This result confirms our empirical knowledge.

The larger value of γ, α will help to discover more clusters, followed by a

smaller autocorrelation function.

On the other hand, we confirm that the MTV-g and the MTV-s do not

show much difference in the mixing rate of the Markov Chain as shown
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Table 3.2: Integrated Autocorrelation Times Estimator τ̂ for D

D

Sampling

�
�
�
�
�
�
��

γ

α
0.1 0.3 0.5 1 2

MTV-g

0.1 358.8 148.3 23.94 84.75 4.31

0.3 389.5 315.0 3.11 26.32 4.78

0.5 2.88 79.34 90.93 3.17 3.82

1.0 3.19 2.78 1.76 8.14 5.74

2.0 95.48 1.91 3.29 8.74 6.55

MTV-s

0.1 8.67 59.90 57.57 1.87 3.70

0.3 29.05 20.64 30.01 45.57 3.40

0.5 39.66 3.87 5.30 3.17 5.83

1.0 40.51 4.85 3.12 6.88 10.51

2.0 25.54 34.82 4.61 35.61 12.68

in Table 3.1 and Table 3.2. As mentioned in the previous section, Slice

sampling provides a mixed-membership distribution independent sampling

scheme, which enjoys the time efficiency of parallel computing in one itera-

tion. For large scale datasets, it is a feasible solution. In Gibbs sampling,

parallel computing is impossible as the sampling variables are in a dependent

sequence.

Figure 3.4 is the trace plot of the training log-likelihood against the iter-

ations on Case 1. As we can see, the sampler in the MTI model converges to

the high training log-likelihood region faster than the MTV model. Also, the

MTI model reaches a higher training log-likelihood than the MTV model.

Further Performance

We will compare the models in terms of the Log-likelihood (in Figure 3.5);

the average l2 distance between the mixed-membership distributions and its

ground-truth; and the l2 distance between the posterior role-compatibility

matrix and its ground-truth (in Table 3.3).
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Figure 3.4: Top: the training log-likelihood trace plot on the MTV-g model.

Bottom: the training log-likelihood trace plot on the MTI-g model.
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Figure 3.5: Log-likelihood Performance on all the four cases
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Table 3.3: Average l2 Distance to the Ground-truth

Case f-MTV MTV-g MTV-s f-MTI MTI MMSB

R
ol
e-
C
om

p
at
ib
il
it
y

1 0.239 0.243 0.259 0.114 0.086 0.271

2 0.206 0.225 0.240 0.195 0.204 0.285

3 0.134 0.201 0.246 0.117 0.087 0.280

4 0.195 0.214 0.267 0.220 0.219 0.246

large size 0.220 0.239 0.215 0.142 0.059 0.237

M
ix
ed

-m
em

b
er
sh
ip 1 0.366 0.384 0.403 0.199 0.191 0.411

2 0.355 0.355 0.319 0.207 0.227 0.398

3 0.278 0.289 0.589 0.208 0.187 0.329

4 0.258 0.285 0.277 0.192 0.182 0.310

large size 0.243 0.316 0.246 0.147 0.120 0.296

From the log-likelihood comparison in Figure 3.5, we can see that the

MTI model performs better than the MTV model in general. On the aver-

age l2 distance to the ground-truth performance, the MTI model also per-

forms better. The superiority of the MTI model’s performance over that of

the MTV model is within our expectation, as the MTI model describes the

membership indicator’s time consistency more accurately (i.e. integrating

the sticky parameter κ on the specific membership indicator, rather than the

mixed-membership distribution). Also, the hidden Markov property enables

the MTI model to categorize membership indicators into the same mixed-

membership distributions based on its previous value. This seems to be a

more effective way than the time-based grouping in the MTV model. Howev-

er, in situations where there are dramatic changes amongst the membership

distributions over times, then the MTI model will not respond well, i.e., the

MTV model is much more effective and robust under these settings. In ad-

dition, the assumption that there exist different membership distributions

at each time instance makes it possible to parallelise MTV model to some

extent and making it suitable for dealing with large-scale problems.

Here we compare the computational complexity (Running Time) of the
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Table 3.4: Running Time (Seconds per iteration)

N. f-MTV MTV-g MTV-s f-MTI MTI p-MTV-s1

20 0.20 0.28 0.23 0.15 0.31 0.29

50 1.03 1.52 1.29 0.95 1.91 1.79

100 3.69 5.76 4.81 3.74 7.49 5.06

200 15.61 24.17 19.87 15.82 30.19 21.64

500 106.96 154.45 119.82 105.61 202.09 132.43

1000 493.44 888.86 642.28 597.29 1102.90 393.24

1 p-MTV-s denotes the parallel implementation of the MTV-s

inference.

models in one iteration, with K discovered communities and show the results

in Table 3.4. We discuss the MTV-g model and the MTV-s model as an

instance. In the MTV-g model, the number of variables to be sampled is

(2K+2n2T ) , while a total of (2K+4n2T +nT ) variables are sampled in the

MTV-s model. However, the posterior calculation of Z in the MTV-s model

can be directly obtained from the mixed-membership distribution, while we

need to calculate the ratio for each of Z in the MTV-g model. Also, the U

value at each time can be sampled in one operation as its independency in

the MTV-s model. The result is that the MTV-s model runs faster than the

MTV-g model, which is in accordance with our assumption.

Also, we have tried a parallel implementation on the slice variables {ut
ij,s, u

t
ij,r}i,j,t’s

in the MTV-s model. During each iteration, these slice variables are parti-

tioned into 4 parts (as our machine has 4 cores) and sampled independently,

while other variables are still sampled in a sequence. Its corresponding run-

ning time is exhibited in the last column of Table 3.4. As we can see, our

parallel design cost even more time when the dataset size is small (N ≤ 500).

This may due to the time spent on transferring the variables. However, it

needs less time when the dataset size is larger (N > 500). This verifies

that our parallel slice sampling method is a promising way in achieving large

scalability.
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Figure 3.6: Training Log-likelihood Performance (95% Confidence Interval

= Mean ∓×Standard Deviation)

Dataset MTV-g MTV-s MTI

Kapferer −673.7 ∓ 15.9 −698.9 ∓ 15.2 −501.5 ∓ 0.0

Sampson −347.6 ∓ 23.4 −350.4 ∓ 22.2 −242.0 ∓ 0.0

Student-net −1054.4 ∓ 48.5 −1059.3 ∓ 46.2 −594.3 ∓ 0.0

Enron −2274.2 ∓ 25.6 −2154.4 ∓ 43.3 −1335.7 ∓ 17.1

Senator −897.3 ∓ 16.2 −887.4 ∓ 43.2 −657.4 ∓ 12.3

DBLP-link −1923.9 ∓ 19.4 −2124.6 ∓ 26.4 −1049.6 ∓ 7.5

Hypertext −5276.7 ∓ 9.6 −5281.4 ∓ 10.3 −2923.2 ∓ 0.0

Newcomb −1075.0 ∓ 47.6 −1098.1 ∓ 48.0 −876.7 ∓ 0.0

Freeman −658.5 ∓ 19.6 −664.1 ∓ 19.2 −405.2 ∓ 0.0

Coleman −1500.8 ∓ 63.7 −1532.8 ∓ 64.2 −1003.9 ∓ 0.0

Dataset MMSB IRM LFRM DRIFT

Kapferer −618.4 ∓ 59.8 −658.6 ∓ 70.3 −865.1 ∓ 70.1 −783.2 ∓ 92.3

Sampson −353.0 ∓ 16.3 −366.8 ∓ 0.6 −332.2 ∓ 16.9 −275.2 ∓ 52.0

Student-net −881.4 ∓ 29.9 −1201.2 ∓ 1.6 −1069.6 ∓ 42.2 −905.8 ∓ 46.3

Enron −1512.5 ∓ 6.5 −2264.8 ∓ 26.2 −1742.9 ∓ 36.0 −1492.3 ∓ 13.2

Senator −713.2 ∓ 64.2 −843.6 ∓ 23.5 −673.2 ∓ 43.6 −678.6 ∓ 48.5

DBLP-link −2082.0 ∓ 12.0 −2953.1 ∓ 4.9 −1746.5 ∓ 15.4 −1426.1 ∓ 46.2

Hypertext −4083.5 ∓ 77.8 −5432.7 ∓ 19.6 −3747.5 ∓ 94.3 −3942.3 ∓ 48.5

Newcomb −1835.2 ∓ 14.2 −1965.9 ∓ 1.8 −1203.0 ∓ 14.7 −789.3 ∓ 63.2

Freeman −673.5 ∓ 73.9 −728.9 ∓ 66.9 −917.2 ∓ 35.7 −794.2 ∓ 66.2

Coleman −1302.8 ∓ 130.2 −689.5 ∓ 3.2 −606.7 ∓ 65.1 −546.1 ∓ 26.9
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Figure 3.7: AUC Performance (95% Confidence Interval = Mean

∓×Standard Deviation)

Dataset MTV-g MTV-s MTI

Kapferer 0.816 ∓ 0.074 0.816 ∓ 0.011 0.928∓ 0.000

Sampson 0.804 ∓ 0.000 0.821 ∓ 0.098 0.927∓ 0.000

Student-net 0.867 ∓ 0.030 0.877 ∓ 0.095 0.934 ∓ 0.000

Enron 0.834 ∓ 0.097 0.853 ∓ 0.143 0.920 ∓ 0.001

Senator 0.849 ∓ 0.129 0.839 ∓ 0.046 0.931∓ 0.001

DBLP-link 0.831 ∓ 0.046 0.816 ∓ 0.017 0.926∓ 0.000

Hypertext 0.861 ∓ 0.029 0.843 ∓ 0.027 0.901∓ 0.023

Newcomb 0.814 ∓ 0.049 0.795 ∓ 0.090 0.931 ∓ 0.000

Freeman 0.875 ∓ 0.133 0.862 ∓ 0.041 0.915∓ 0.000

Coleman 0.891 ∓ 0.067 0.872 ∓ 0.052 0.928 ∓ 0.000

Dataset MMSB IRM LFRM DRIFT

Kapferer 0.893 ∓ 0.001 0.751 ∓ 0.016 0.891 ∓ 0.034 0.905 ∓ 0.013

Sampson 0.836 ∓ 0.002 0.738 ∓ 0.005 0.841 ∓ 0.012 0.855 ∓ 0.029

Student-net 0.938 ∓ 0.001 0.809 ∓ 0.004 0.862 ∓ 0.076 0.949∓ 0.015

Enron 0.907 ∓ 0.013 0.820 ∓ 0.082 0.894 ∓ 0.073 0.956∓ 0.079

Senator 0.880 ∓ 0.022 0.829 ∓ 0.064 0.892 ∓ 0.056 0.925 ∓ 0.076

DBLP-link 0.918 ∓ 0.000 0.817 ∓ 0.010 0.891 ∓ 0.062 0.891 ∓ 0.034

Hypertext 0.844 ∓ 0.008 0.788 ∓ 0.015 0.853 ∓ 0.042 0.871 ∓ 0.010

Newcomb 0.836 ∓ 0.001 0.765 ∓ 0.013 0.879 ∓ 0.041 0.960∓ 0.027

Freeman 0.867 ∓ 0.001 0.790 ∓ 0.008 0.883 ∓ 0.026 0.897 ∓ 0.022

Coleman 0.928 ∓ 0.001 0.888 ∓ 0.004 0.929 ∓ 0.018 0.945∓ 0.052
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Larger data size results

We also conduct the experiments with a larger synthetic dataset (N =

100, T = 20). With the construction the same as previously, we increase

the role number to 5 and set the role-compatibility matrix as in Figure 3.8.

0.95 0.05 0.05 0.05 0.05

0.1 0.9 0.1 0.1 0.1

0.05 0.1 0.9 0.05 0

0.05 0 0.05 0.9 0.15

0 0.05 0.1 0.05 0.9

Figure 3.8: Larger dataset’s role-compatibility matrix

We set 5 groups in this network, with the group sizes as [35, 20, 20, 20, 5]

and the mixed-membership distributions for each of the groups as [0.8, 0.1, 0,

0.05, 0.05; 0.02, 0.85, 0.05, 0.03, 0.05; 0.1, 0, 0.9, 0, 0; 0.05, 0.1, 0, 0.85, 0; 0, 0.2,

0, 0.4, 0.4]. The detailed results are also given in Table 3.3. As we can see,

our MTI model still achieves the best performance of all the models.

3.4.2 Real World Datasets Performance

We select 10 real world datasets for benchmark testing: Kapferer (Kapferer

1972), Sampson (Sampson 1969)(Breiger, Boorman & Arabie 1975), Student-

net, Enron (Klimt & Yang 2004), Senator(Ho et al. 2011), DBLPlink (Asur,

Parthasarathy & Ucar 2009)(Lin, Chi, Zhu, Sundaram & Tseng 2009), Hy-

pertext (Isella, Stehl, Barrat, Cattuto, Pinton & Van den Broeck 2011),

Newcomb (Newcomb 1961), Freeman (Freeman & Freeman 1979), Coleman

(Coleman et al. 1964). Their detailed information, including the number of

nodes, the number of edges, edge types and time intervals, are given in Table

3.5. Following a general test on the training log-likelihood of the training

data and AUC (Area Under the ROC Curve) of the test data, we give a

more detailed elaboration on three selected datasets below.
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Table 3.5: Dataset Information
Dataset Nodes Edge Time Link Type

Kapferer 39 256 2 friends

Sampson 18 168 3 like

Student-net 50 351 3 friends

Enron 151 1980 12 email

Senator 100 5786 8 vote

DBLPlink 100 5706 10 citation

Hypertext 113 7264 10 contact

Newcomb 17 1020 15 contact

Freeman 32 357 2 friends

Coleman 73 506 2 co-work

General performance on Training log-likelihood and AUC value

We use a 5-fold cross validation method to certify our model’s performance on

the real world datasets. The hyper-parameters γ, κ, α are sampled according

to the sampling strategy mentioned in Section 3.3. Each experiment is run

10 times and we report their mean and standard deviation in Table 3.6 and

Table 3.7.

In these two tables, the black bold type denotes the best value in each row.

As we can see, our MTI model achieves the best values in 8 of the 10 datsets

on the training log-likelihood and 6 of the 10 datasets on the AUC value.

In the remaining datasets, while our MTI model’s performance is still quite

competitive, the DRIFT model has the best values, possibly due to that in

these datasets, all associated communities from both nodes are considered in

generating the link between these two nodes (Miller et al. 2009). The MTV

models still do not perform well enough, for the reason previously given. The

IRM’s results are the worst, which reflects the fact that the simple structure

(i.e., each node occupies only one class) may not be enough to capture the

full structure in relational learning.
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3.4.3 Kapferer Tailor Shop

The Kapferer Tailor Shop data (Nowicki & Snijders 2001) records interactions

in a tailor shop at two time points. In this time period, the employees in the

shop are negotiating for higher wages. The dataset is of particular interest

because two strikes occur after each time point, with the first failing and the

second succeeding.

We mainly use the “work-assistance” interaction matrix in the dataset.

The employees have 8 occupations: head tailor (19), cutter (16), line 1 tailor

(1-3, 5-7, 9, 11-14, 21, 24), button machiner (25-26), line 3 tailor (8, 15, 20,

22-23, 27-28), Ironer (29, 33, 39), cotton boy (30-32, 34-38) and line 2 tailor

(4, 10, 17-18).
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Figure 3.9: The MTI model’s Performance on Kapferer Tailor Shop Dataset.

Figure 3.9 shows the mixed-membership distribution’s evolving behaviour.

The x axis stands for the nodes, while the y axis represents the mixed-

membership distribution. Different colors are interpreted as the communities

we have discovered. The top barchart describes all the employees’ mixed-

membership distribution in Time 1, while the bottom one illustrates the one
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in Time 2. In Figure 3.9, we can see that the yellow communities at Time

2 are larger than those at Time 1, which means that people tend to have

another community at Time 2, rather than being mostly dominated by one

large group at Time 1. This larger “yellow” community may be the result

of the first failed strike, after which employees start to shift to the “minor”

(yellow) community for a successful strike.

3.4.4 Sampson Monastery Dataset

The Sampson Monastery dataset is used here to extend the study. There

are 18 monks in this dataset, and their social linkage data is collected at

3 different time points with various interactions. Here, we especially focus

on the like-specification. In the like-specification data, each monk selects

three monks as his closest friends. In our settings, we mark the selected

interactions as 1, otherwise 0. Thus, an 18 × 18 × 3 social network dataset

is constructed, with each row having three elements valued at 1.

According to previous studies (Kim et al. 2012)(Xing et al. 2010), the

monks are divided into 4 communities: Young Turks, Loyal Opposition, Out-

casts and an interstitial group.

Figure 3.10 shows the detail results of the MTI model. As three com-

munities have been detected, we put all the results in a 2-simplex, in which

we denote the communities as A, B and C. For trajectory convenience, we

also color the nodes according to the special group to which belong. As we

can see, these groups’ behavior differs significantly in the figure. The Loyal

Opposition group lies close to C, and the interstitial group tends to belong

to A. Both of their mixed-membership distribution is stable across time. On

the Outcasts and Young Turks groups, they lie much closer to B.

We also provide the role-compatibility matrix in Figure 3.11 for compar-

ison. Compared to the result in (Xing et al. 2010), our results have a larger

compatibility value within the same role. Also, the first role’s value in our

model is 0 while it is about 0.6 in (Xing et al. 2010).
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Figure 3.10: The nodes’ mixed-membership distribution of the MTI model

on Sampson Monastery Dataset (from Left to Right: Time 1-3.) Blue, Loyal

Opposition; Red, Outcasts; Green, Young Turks; Magenta, interstitial group.
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Figure 3.11: Role Compatibility Matrix (Left: MTV-g; Right: MTI)

3.4.5 Hypertext 2009 dynamic contact network

This dataset (Isella et al. 2011) is collected from the ACM Hypertext 2009

conference. 113 conference attendees volunteered to wear radio badges that

recorded their face-to-face contact during the conference. The original data

is composed of the records such as “(t, i, j)”, where t is the communication

time and i, j are the attendees’ ID. By adaptively cutting the whole time

period into 10 parts and noting the interaction data as “1” if communicated

during the time stamps, we obtain a 113 × 113 × 10 binary matrix. Figure

3.12 displays the dynamic behavior of the nodes’ mixed-membership distri-

butions and the corresponding role-compatibility matrix. The numbers on

66



CHAPTER 3. DYNAMIC INFINITE MIXED-MEMBERSHIP

STOCHASTIC BLOCKMODEL

11−20

31−40

21−30

41−50

51−60

101−110

111−113

91−100

71−80

61−70

81−90

1−10

1 2 3 4 5

0.23

0.78

0.18

0.02

Figure 3.12: The MTI model’s performance on the Hypertext 2009 dynamic

contact network.
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the left side denote the orders of nodes. Each bar chart represents the dy-

namic behavior of one node’s mixed-membership distribution, where the x

axis stands for the 10 time stamps. Different colors are interpreted as the

communities we have discovered, and their role-compatibility is represented

below the bar chart.

As we can see, almost half of all the mixed-membership distributions

fluctuated during these time stamps. This phenomenon coincides with our

common knowledge that people at academic conferences tend to communi-

cate causally. Thus, people’s roles may change during different time stamps.

The value of the role-compatibility matrix we learned is focused on the

“sky blue” community, whose intra-role compatibility value is 0.6932. It

has a small probability of interaction with other communities. The other

community’s compatibility value is almost 0. This might be the reason for

sparsity in the interaction data.

Here we would specially mention node 108. In the record, this person is

always the first to communicate with others on each of the three days. His

mixed-membership distribution is mainly composed of the “sky blue” com-

munity 1, which indicates he could be an organizer of this conference. The

other nodes with mixed-membership distribution dominated by community

1, such as nodes 24, 53, 61, all play actively with others according to the

record.

Another interesting phenomenon is that the nodes contain the “orange”

community 2 will interact with community 1 with a probability of 0.2. This

might be an indication that most of the attendees will communicate with the

organizers for various reasons.

3.5 Summary

Modeling complex networking behaviors in a dynamic setting is crucial for

widespread applications such as social media, social networks, online busi-

ness and market dynamic analysis. This challenges existing learning systems,
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which have limited power to address the dynamics. In this Chapter, we have

provided a generalised and flexible framework for describing the coupling re-

lations between the mixed-membership distributions over the time, which is

to further improve the popular mixed-membership stochastic blockmodel by

allowing a network to have infinite types of communities with relationships

that change across time. Through two different strategy of treating the time-

dependent coupling relations, we have shown our models’ effect on depicting

the mixed-membership distributions, as well as the communities’ time evolv-

ing behaviour. Further, both Gibbs sampling and adapted Slice-Efficient

sampling have been used to inference the desired target distribution. The

quantity analysis on the MCMC’s convergence behavior, including the con-

vergence test, autocorrelation function, etc., have been provided to enhance

the inference performance.

3.6 Limitation & future work

We should also note that our current DIM3 model only captures the incre-

mental changes in the social network. The dynamic changes of hidden mem-

bership indicators stij , r
t
ij only reflect the changes of individual people. While

there exist other kinds of dynamic changes in the social network, such as the

whole group’s re-organization or a subset of groups’ changing, our model need

to be adjusted on focusing the whole groups’ dynamic behaviour, such as the

compatibilities’ change. Also, other methods, such as the change detection

methods, might be an alternative candidature to address these issues.

On describing the coupling relations between the mixed-membership dis-

tributions, the Dependent Dirichlet Process (DDP) (MacEachern 1999) pro-

vides an alternative. Among the various constructions of the DDP (Caron,

Davy & Doucet 2007)(Chung & Dunson 2011)(Dunson 2006)(Bouguila &

Ziou 2010), (Rao & Teh 2009) constructs the DDP by projecting the Gamma

Process into different subspaces and normalizing them individually, through

which the overlap spaces reflect the correlation. (Lin, Grimson & Fisher 2010)
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discusses the intrinsic relationship between the Poisson Process, Gamma Pro-

cess and Dirichlet Process and uses three operations: superposition, subsam-

pling and point transition to evolve from one Dirichlet process to another,

with an elegant and solid theory support. Subsequent work including (Lin &

Fisher 2012)(Chen, Ding & Buntine 2012)(Chen, Rao, Buntine & Teh 2013)

extends this work from different perspectives.

Apart from this coupling relation’s construction, recent developments

(Gopalan, Gerrish, Freedman, Blei & Mimno 2012)(Yin, Ho & Xing 2013) in

large-scale learning of latent space modelling gives many approaches to the fu-

ture works. These attractive improvements include a parsimonious link mod-

elling (Gopalan et al. 2012), which reduces the parameter size from O(n2K2
)

toO(n2K); the utilization of stochastic variational inference method (Hoffman,

Blei, Wang & Paisley 2013); a triangular representation of network (Hunter,

Goodreau & Handcock 2008)(Yin et al. 2013), which could reduce the pa-

rameter size to O(nK2
). Through these new findings, it is hoped to scale the

models to millions of nodes and hundreds of communities.

70



Chapter 4

Copula Mixed-Membership

Stochastic Blockmodel for

Intra-group Correlation

4.1 Introduction

Community modeling is an important but challenging topic which has seen

applications in various settings including social-media recommendation (Tang

& Liu 2010), customer partitioning, discovering social networks, and parti-

tioning protein-protein interaction networks (Girvan & Newman 2002)(Fortunato

2010). Quite a few models have been proposed in the last few years to ad-

dress these problems; some earlier examples include stochastic blockmodel

(Nowicki & Snijders 2001), and its infinite community case - infinite rela-

tional model (IRM) (Kemp et al. 2006), both assume that each node has one

latent variable to directly indicate its community membership, dictated by

a single distribution of communities. Their aim is to partition a network of

nodes into different communities based on the pair-wise, directional binary

observations.

A typical need and challenge in community modeling is to capture the

complex interactions amongst the nodes in different applications. According-
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ly, several variants of IRM were proposed, including the mixed membership

stochastic blockmodel (MMSB) (Airoldi et al. 2008), in which multiple roles

(membership indicators) can possibly be played by one node. Each node has

its own “membership distribution”, and its relation with all other nodes is

generated from it. For any two nodes, having determined their correspond-

ing membership indicator pair, their (directional) interactions are generated

from a so-called, “role-compatibility matrix” with its row and column indexed

by this pair. One mentionable development of MMSB is the nonparamet-

ric metadata dependent relational model (NMDR) (Kim et al. 2012), which

modifies MMSB by incorporating each node’s metadata information into the

membership distribution.

However, all of the MMSB-typed models make the assumption that, for

each relation between two nodes, their corresponding membership indicator

pairs were determined independently. This may limit the way membership

indicators can be distributed. In fact, under many social network settings,

certain known group members may have higher correlated interactions to-

wards the ones within the same group. For instance, in a company, IT

support team members tend to co-interact with each other more than with

employees of other departments. Another example is that teenagers may

have similar “likes” or “dislikes” on certain topics, compared with the views

they may hold towards people of other age groups. MMSB-typed models

overlook such interactions within a group and thus cannot fully capture the

intrinsic interactions within a network.

In reality, within a social networking context, it is important to incor-

porate group member interactions (here called intra-group correlations) into

the modeling of membership indicators. Especially, the strong coupling rela-

tions inside each community plays a critical role in forming the interactions

between the nodes. While some communities may promote cohesive inter-

actions, others may produce repelled interactions. After introducing these

intra-group correlations (which is also named as Synchronous coupling

and Exclusive coupling), it is important that at the same time, we do not
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alter membership indicators’ distributions themselves, so that their interac-

tions to people outside of the known subgroups are unaffected.

Accordingly, in this chapter, a Copula function (Nelsen 2006)(McNeil &

Nešlehová 2009) is introduced to MMSB, forming a copula mixed-membership

stochastic blockmodel (cMMSB), for modeling the intra-group correlation-

s. With cMMSB, we can flexibly apply various Copula functions towards

different subsets of pairs of nodes while maintaining the original marginal

distribution of each of the membership indicators. We develop ways in which

a bivariate Copula can be used for two distributions of indicators, enjoying

infinitely possible values. Under the framework, we can incorporate different

choices of Copula functions to suit the need of the applications. With differ-

ent Copula functions imposed on the different groups of nodes, each of the

Copula function’s parameters will be updated in accordance with the data.

What is more, we also give two analytical solutions to calculate the condi-

tional marginal density to the two indicator variables, which plays a crucial

role in our likelihood calculation and also creates a new way of calculating a

deterministic relationship between multiple variables in a graphical model.

The rest of the chapter is organized as follows. In Section 4.2, we give

a literature review on relational models and a brief overview of the Copula

model. In Section 4.3, we present the main model, especially the details

of our Copula-based MMSB. We further provide two “collapsed” sampling

methods for the conditional probabilities, described in Section 4.4. In Section

4.5, we show the experimental results of our model, using both the synthetic

and real-world social network data. In Section 4.6, we would briefly conclude

this chapter.

4.2 Copula Model

Here we describe very briefly a bivariate copula function C(u, v), which is

a Cumulative Distribution Function over the interval [0, 1] × [0, 1] with the

uniform marginal distribution (Nelsen 2006). This correlation representation
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is extremely useful since we have the following theorem:

Theorem 4.1 Sklar’s Theorem: Let X and Y be random variables with dis-

tribution functions F and G respectively and joint distribution function H.

Then there exists a Copula C such that for all (x, y) ∈ R× R:

H(x, y) = C(F (x), G(y)) (4.1)

C is unique if F and G are continuous, then the joint probability density

function is:

h(x, y) = c(F (x), G(y)) · f(x)g(y) (4.2)

Here c(u, v) = ∂2C(u, v)/∂u∂v is noted for the copula density function.

Sklar’s theorem ensures the uniqueness of copula function C(F (x), G(y))

once the joint distribution h(x, y) and its two marginal distributions f(x)

and g(y) are known. The modification of a Copula function does not change

the marginal distributions, which serves the purpose of this chapter.

The popularity of copula models from various applications also meant the

availability of different choices of copula functions to suit various applications.

The commonly used copula function includes Gaussian Copula (Gaussian, t),

Archimedean Copula (Clayton, Gumbel, Frank, etc.), and Empirical Copula.

For a comprehensive survey of copula functions, please refer to (Nelsen 2006).

4.3 Graphical Model Description

The generative process of graphical modeling is illustrated below:

C1: β ∼ GEM(γ)

C2: {πi}ni=1 ∼ DP (α · β)

C3:

{
(uij, vij) ∼ Copula(θ), gij = 1, (i, j)belongs to the sub-group of interest;

uij, vij ∼ U(0, 1), gij = 0, (i, j)is under the traditional MMSB framework.

C4: sij = Π
−1
i (uij), rij = Π

−1
j (vij)
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βγ

πi πj

sij rij

eij

α

vij

uij

W

λ1

λ2

θ

Figure 4.1: Graphical model of Copula MMSB

C5: Wk,l ∼ Beta(λ1, λ2), ∀k, l;

C6: eij ∼ Bernoulli(Wsij ,rij).

Here gij = 1 in C3 denotes that the node pair (i, j) belongs to the sub-

group of interest, i.e., sij , rij are implicitly correlated, while gij = 0 means

(sij , rij) are modelled using traditional MMSB. In C4, Π
−1
i (uij) = {min k :∑k

q=1 πiq ≥ uij} denotes the interval of πi that uij belongs into, and similar

notation is applied to Π
−1
j (vij) = {min k :

∑k
q=1 πjq ≥ vij}.

For a simplified illustration, we divide the generative model into three

sub-models: (1) “mixed membership distribution modelling”, (2) “copula

incorporated membership indicator pair” and (3) “binary observation mod-

elling”, with their details elaborated in the following sections.

Mixed Membership Distribution Modeling

C1-C2 are for the generation of each node’s mixed membership distribution.

The number of communities, i.e., k is an important factor in mixed member-

ship distribution models. Therefore, we consider two possibilities here. The
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first is to use a fixed k. As the graphical model in Fig. 4.1 shows, for all

the mixed-membership distributions {πi}ni=1, there is a common parent node

β, where β typically has a “non-informative” symmetric Dirichlet prior, i.e.,

(β1, . . . ,βk) ∼ Dir(γ, . . . , γ) (Airoldi et al. 2008). The appropriate choice

of k is determined by the model selection method, such as the BIC crite-

rion (Schwarz 1978), which is commonly used in (Airoldi et al. 2008)(Xing

et al. 2010).

The second solution is applicable for the uncertain number of commu-

nities, which is often the case under many social network settings. The

usual approach is to use the Hierarchical Dirichlet Process (HDP) (Teh

et al. 2006) prior with β distributed from a GEM(γ), i.e., β is obtained via a

stick-breaking construction (Sethuraman 1994) with each of its components

βk = uk

∏k−1
l=1 (1− ul), ul ∼ Beta(1, γ).

After obtaining their parent’s node β, we can sample our mixed-membership

distribution {πi} independently from (Airoldi et al. 2008)(Koutsourelakis

& Eliassi-Rad 2008): πi ∼
{

Dir(α · β), fixed k;

DP (α · β), uncertain k.
For the notational

clarity, we concentrate our discussion on the uncertain k case without deli-

cately mentioning its finite counterpart, as the finite k case can be trivially

derived.

Copula Incorporated Membership Indicator Pair

Our main work of c-MMSB is displayed in phases C3-C4. We consider two

cases in this chapter for the intra-group correlation modeling: full correlation

and partial correlation.

Full correlation: i.e., intra-group correlation for all the nodes. We

assume each pair of nodes, i.e., all relations of the entire population are using

the same Copula function. As we will see in the experimental section that,

flexible modelling can still be achieved under this assumption, as parameters

of a Copula can vary to support various form of relations.
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Partial correlation: i.e., intra-group correlation are applied to only a

subset of the nodes. With a definition of one subgroup, we use the Copula

function on this specific subgroup and the others remain unchanged.

For traditional MMSB, the corresponding membership indicators within

one pair (sij, rij) are independently sampled from their membership distribu-

tions, i.e., sij ∼ πi, rij ∼ πj . Using the definition of {Π−1
i (·)}ni=1 from Section

4.3, this is equivalently expressed as:

uij ∼ U(0, 1), vij ∼ U(0, 1);

sij = Π
−1
i (uij), rij = Π

−1
j (vij).

(4.3)

As discussed in the introduction, we are motivated by examples within social

network settings, in which membership indicators from a node may well be

correlated with other membership indicators in an intra-group point of view.

People’s interactions with each other within the group may more likely (or

less likely) belong to the same category, i.e., (sij, rij) has higher (or lower)

density in some regions of the discrete space (1, 2, . . . ,∞)
2
, which may not

be well described by using only the two independent marginal distributions.

We propose a general framework by employing a Copula function to depict

the correlation within the membership indicator pair. This is accomplished

by the joint sampling of uniform variables (uij, vij) (in Eq. (4.3).) from

the Copula function, instead of from two independent uniform distributions.

More precisely, the membership indicator pair is obtained using:

∀gij = 1 : (uij, vij) ∼ Copula(u, v|θ);
sij = Π

−1
i (uij), rij = Π

−1
j (vij).

(4.4)

Using various Copula priors over the pair (uij, vij), we are able to more ap-

propriately express the way in which the membership indicator pair {sij, rij}
is distributed, given the different scenarios we are facing. Taking the Gumbel

Copula (with larger parameter values) (Nelsen 2006) as an instance, for cer-

tain membership indicator pairs (gij = 1), it generates (uij, vij) values that

more likely have positive correlation, i.e., within [0, 1]2 space, which promotes

sij = rij. Also, the Gaussian Copula (θ = −1) encourages the (sij , rij) pair

to be different.
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Binary Observation Modeling

C5-C6 model the binary observation, which directly follows the previous

work (Nowicki & Snijders 2001)(Kemp et al. 2006) etc. Due to the beta-

bernoulli conjugacy, W can be marginalized out and the likelihood of binary

observation becomes as follows:

Pr(e|z, λ1, λ2) =

∏
k,l

beta(m1
k,l + λ1, m

0
k,l + λ2)

beta(λ1, λ2)
(4.5)

here z = {sij , rij}i,j=1,··· ,n denotes all the hidden labels, beta(λ1, λ2) denotes

the beta function with parameters λ1 and λ2, m
1
k,l is number of link 1 from

community k to l, i.e. m1
k,l =

∑
sij=k,rij=l eij , m

0
k,l is number of link 0 from

community k to l, i.e. m0
k,l =

∑
sij=k,rij=l(1− eij).

4.4 Inference & Further Discussion

Let K be the discovered number of communities, a formal and concise rep-

resentation of Eq. (4.4), i.e. the probability of (sij, rij), is:

Pr(sij , rij) =

∫
∑K+1

d=1 πjd=1

∫
∑K+1

d=1 πid=1

∫
(uij ,vij)

· 1 (sij = Π
−1
i (uij), rij = Π

−1
j (vij)

)
· dC(uij, vij)dF (πi1, · · · , πiK+1)dF (πj1, · · · , πjK+1)

(4.6)

Unfortunately, we cannot bring Pr(sij, rij) to an analytical form without any

integrals present. However, with some mathematical design, we found that,

conditioning on the explicit sample of either (uij, vij) or (πi, πj), it is possible

to obtain a marginalised conditional density in which sij, rij is conditioned

on either (uij, vij) or (πi, πj), but not both. Additionally, having a set of

variables “collapsed” from the Gibbs sampling, it results in a faster mixing on

Markov chains (Liu 1994). Therefore, two corresponding inference schemes

are needed. We present both inference below, and name them Marginal

conditional on π only method and the Marginal conditional on u, v only

respectively:
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4.4.1 Marginal Conditional on π only: cMMSBπ

In the Marginal conditional on π only (cMMSB
π
for short) method, the vari-

ables of interest include {πi}, {sij, rij},β. As mentioned before, we describe

the formulation using the infinite communities (uncertain k) case only, its

counterpart in the finite communities (fixed k) case can be trivially derived.

Sampling πi

When a Copula is introduced, p(πi) and Pr(sij|πi) are no longer a conjugate

pair. Therefore, we resort to the use of Metropolis-Hastings (M-H) Sampling

in each (τ)-th MCMC iteration.

For each node i, πi’s posterior distribution is formed as Eq. (4.7), where

p
sijrij
ij (πi, πj) is defined in Eq. (4).

p(πi|α,β, {sij, rij}i,j)

∝
K+1∏
k=1

π
αβk−1
ik ·

n∏
j=1

[
p
sijrij
ij (πi, πj)p

sjirji
ji (πj , πi)

] (4.7)

The Corresponding proposal distribution of πi for the above M-H is a pos-

terior Dirichlet distribution in the form of (i.e., πi’s posterior distribution

under the MMSB framework):

q(π∗
i |α,β, {sij, rij}i,j) ∝

K+1∏
k=1

[π∗
ik]

αβk+Nik−1
(4.8)

Then the acceptance ratio becomes:

A(π∗
i , π

(τ)
i ) = min(1, a) (4.9)

a =

∏n
j=1

[
p
sijrij
ij (π∗

i , πj)p
sjirji
ji (πj , π

∗
i )
]

∏n
j=1

[
p
sijrij
ij (π

(τ)
i , πj)p

sjirji
ji (πj , π

(τ)
i )

] ·
∏K+1

k=1

[
π
(τ)
ik

]Nik

∏K+1
k=1 [π∗

ik]
Nik

(4.10)
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Sampling sij and rij

As eij is dependent on both {sij, rij}, a joint sampling of {sij , rij} is imple-

mented as:

Pr(sij , rij|eij, λ1, λ2, θ, πi, πj, m
−eij
sij ,rij

)

∝ Pr(sij , rij|πi, πj , θ) · Pr(eij |sij, rij, λ1, λ2, m
−eij
sij ,rij

)

(4.11)

Where (w.l.o.g., we assume sij = k, rij = l)

Pr(eij|sij = k, rij = l, λ1, λ2, m
−eij
k,l )

∝P (eij, e\{eij}, sij = k, rij = l, , m
−eij
k,l , λ1, λ2)

=

∫
Wk,l

P (eij|sij = k, rij = l,Wk,l) · p(Wk,l|λ1, λ2)

·
∏

si′j′=k,ri′j′=l,i′j′ �=ij

P (ei′j′|Wk,l)dWk,l

=

∫
Wk,l

W
eij+m1

k,l
+λ1−1

k,l (1−Wk,l)
1−eij+m0

k,l
+λ2−1dWk,l

=
Γ(eij +m1

k,l + λ1)Γ(1− eij +m0
k,l + λ2)

Γ(1 +mk,l + λ1 + λ2)

(4.12)

Here mk,l =
∑

i′j′ 1(si′j′ = k, ri′j′ = l), m1
k,l =

∑
si′j′=k,ri′j′=l ei′j′, and m0

k,l =

mk,l −m1
k,l. Thus, we obtain

Pr(eij |sij, rij, λ1, λ2, m
−eij
sij ,rij

) =

{
m

1,−eij
sij ,rij + λ1, eij = 1;

m
0,−eij
sij ,rij + λ2, eij = 0.

(4.13)

On the first term of the r.h.s. in Eq. (4.11), we define pklij (πi, πj) ≡
Pr(sij = k, rij = l|πi, πj , θ), ∀gij = 1, and let C(uij, vij |θ) be the chosen

Copula cumulative distribution function (c.d.f.) with parameter θ. Given

the explicit values of πi, πj, we can integrate over all uij, vij to compute the

probability mass of the indicator pair (sij = k, rij = l), k, l ∈ {1, · · · , K+1}:

pklij (πi, πj) =

∫ π̂k
i

π̂k−1
i

∫ π̂l
j

π̂l−1
j

dC(u, v|θ)

=C(π̂k
i , π̂

l
j) + C(π̂k−1

i , π̂l−1
j )− C(π̂k

i , π̂
l−1
j )− C(π̂k−1

i , π̂l
j)

(4.14)
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Here π̂k
i =

{
0, k = 0;∑k

q=1 πiq, k > 0
.

Since {πi}ni=1 are piecewise functions, we can easily calculate the prob-

ability mass in this “rectangular” area. In other cases of {gij = 0}, i.e.,
interaction data eij falls outside of the correlated relation group, we have

pklij (πi, πj) = πikπjl.

It is noted that, using the properties of a Copula function, the marginal

distributions of Pr(sij = k, rij = l|πi, πj, θ) remain πi and πj respectively,

which becomes that of:

K+1∑
l=1

Pr(sij = k, rij = l|πi, πj, θ) = πik;

K+1∑
k=1

Pr(sij = k, rij = l|πi, πj , θ) = πjl.

(4.15)

Sampling β

An obvious choice for the proposal distribution of β used in M-H is its prior

p(β|γ) = GEM(γ). However, this proposal can be non-informative, which

results in a low acceptance rate. We sample β∗
conditioned on an aux-

iliary variable m: (β∗
1, · · · ,β∗

K ,β
∗
K+1) ∼ Dir(m1, · · · ,mK , γ), in order to

increase the M-H’s acceptance rate, where m are sampled in accordance with

the method proposed in (Teh et al. 2006). However, instead of sampling β

directly from m as in (Teh et al. 2006), we only use it for our proposal distri-

bution, as we have explicitly sampled {πi}ni=1. The acceptance ratio is hence:

A(β∗,β(τ)
) = min(1, a) (4.16)

a =

∏n
i=1

[∏K+1
d=1 Γ(αβ

(τ)
d ) · παβ∗d

id

]
∏n

i=1

[∏K+1
d=1 Γ(αβ∗

d) · παβ
(τ)
d

id

] ·
∏K

d=1

[
β

(τ)
d

]md−γ

∏K
d=1 [β

∗
d]

md−γ
(4.17)
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Sampling Hyper-parameters

Hyper-parameters γ, α are distributed from a vague gamma prior G(1, 1).
Since log(γ|.) is log-concave, we use the Adaptive Rejection Sampling method

(Rasmussen 1999) to obtain its value. For α, we use the Auxiliary Variable

Sampling (Teh et al. 2006) to complete α’s update. An M-H Sampling scheme

is used to update the Copula function parameter θ. We set the proposal q(θ)

to be the prior of θ, i.e., G∗
(1, 1), where G∗

(x; a, b) = G(x − 1; a, b) ∀x > 1.

Then, the acceptance ratio A(θ∗d, θ
(τ)
d ) becomes that of:

A(θ∗d, θ
(τ)
d ) = min(1, a) (4.18)

a =

∏
gij=1 [Pr(sij, rij|πi, πj, θ

∗
d) Pr(sji, rji|πj , πi, θ

∗
d)]∏

gij=1

[
Pr(sij , rij|πi, πj , θ

(τ)
d ) Pr(sji, rji|πj , πi, θ

(τ)
d )

] (4.19)

4.4.2 Marginal Conditional on u and v only: cMMSBuv

In Marginal conditional on u, v only method ( cMMSB
uv

for short), the

variables of interest include {uij, vij}, {sij, rij},β, and an auxiliary variable

m.

Sampling uij and vij

We have used the M-H Sampling for (uij, vij), ∀i, j ∈ {1, . . . , n}, due to the

nonconjugacy issue. The Copula function is used as its proposal, and there-

fore, its corresponding acceptance ratio becomes that of:

A
(
(u

(τ)
ij , v

(τ)
ij ), (u∗

ij, v
∗
ij)

)
= min(1, a) (4.20)

a =
Iu∗ij (h

k−1
i , ĥk−1

i )− Iu∗ij (h
k
i , ĥ

k
i )

I
u
(τ)
ij

(hk−1
i , ĥk−1

i )− I
u
(τ)
ij

(hk
i , ĥ

k
i )

· Iv∗ij (h
l−1
j , ĥl−1

j )− Iv∗ij (h
l
j, ĥ

l
j)

I
v
(τ)
ij

(hl−1
j , ĥl−1

j )− I
v
(τ)
ij

(hl
j , ĥ

l
j)

(4.21)

Here hk
i , ĥ

k
i ’s definitions are the same as in Eq. (7), assuming sij = k, rij = l.
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Sampling sij and rij

An alternative “collapsed” sampling method is to integrate over {πi}ni=1 while

we explicitly sample the values of {(uij, vij)}i,j.
Similar as Eq. (4.11), we obtain:

Pr(sij = k, rij = l|
eij , λ1, λ2, mk,l, uij, vij , {hk

i }k, {ĥk
i }k, {hk

j}k, {ĥk
j}k)

∝Pr(sij = k|uij, , {hk
i }k, {ĥk

i }k)
· Pr(rij = l|vij , {hk

j}k, {ĥk
j}k) · Pr(eij|λ1, λ2, mk,l)

∝(Iuij
(hk−1

i , ĥk−1
i )− Iuij

(hk
i , ĥ

k
i ))

· (Ivij (hl−1
j , ĥl−1

j )− Ivij (h
l
j, ĥ

l
j)) · Pr(eij |λ1, λ2, mk,l)

(4.22)

From Eq. (4.4), given {(uij, vij)}i,j’s values, the probabilities sij = k

and rij = l can be computed independently. The Copula function leaves

marginal distributions of sij and rij invariant, which remains the same as

the classical MMSB, i.e., πi|α, β, {N−ij
ik }Kk=1 ∼ Dir(αβ1 + N−ij

i1 , · · · , αβK +

N−ij
iK , αβK+1). Therefore, having the knowledge of F (πi|α, β, {N−ij

ik }Kk=1),

given uij, our calculation of Pr(sij = k) is equal to computing the probability

of uij falling in πi’s k
th

interval, i.e. Pr(
∑k−1

d=1 πid ≤ uij <
∑k

d=1 πid) (similar

case with vij to πjl). This can be obtained from the fact that the set {uij ∈
[0, 1]|∑k−1

d=1 πid ≤ uij} can be decomposed into two disjoint sets:

{uij ∈ [0, 1]|
k−1∑
d=1

πid ≤ uij}

={uij ∈ [0, 1]|
k−1∑
d=1

πid ≤ uij <

k∑
d=1

πid}

∪ {uij ∈ [0, 1]|
k∑

d=1

πid ≤ uij}

(4.23)

where
∑k

d=1 πid ∼ Beta(
∑k

d=1 αβd + Nid,
∑K+1

d=k+1 αβd + Nid). (A similar
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result was also found in page 10 of (Teh et al. 2006)). Therefore, we have:

Pr(

k−1∑
d=1

πid ≤ uij <

k∑
d=1

πid)

=Pr(

k−1∑
d=1

πid ≤ uij)− Pr(

k∑
d=1

πid ≤ uij)

=Iuij
(hk−1

i , ĥk−1
i )− Iuij

(hk
i , ĥ

k
i )

(4.24)

Here hk
i =

∑k
d=1 αβd + Nid, ĥ

k
i =

∑K+1
d=k+1 αβd + Nid; Iu(a, b) denotes

the Beta c.d.f. value with parameter a, b on u. The existence and non-

negativity of Iuij
(uk−1, ûk−1) − Iuij

(uk, ûk) is guaranteed by the fact that

{uij ∈ [0, 1]|∑k
d=1 πid ≤ uij} ⊆ {uij ∈ [0, 1]|∑k−1

d=1 πid ≤ uij} on the same πi.

With the same notation as in Eq. (4.12), we have

Pr(sij = k, rij = l|
eij , λ1, λ2, mk,l, uij, vij, {hk

i }k, {ĥk
i }k, {hk

j}k, {ĥk
j}k)

∝(Iuij
(hk−1

i , ĥk−1
i )− Iuij

(hk
i , ĥ

k
i ))

· (Ivij (hl−1
j , ĥl−1

j )− Ivij (h
l
j , ĥ

l
j))

·
{

m
1,−eij
k,l + λ1, eij = 1;

m
0,−eij
k,l + λ2, eij = 0.

(4.25)

Sampling m and β

In the Marginal conditional on u, v only method, since we have integrated out

π, therefore, we follow the method similar to that of (Teh et al. 2006), and use

the auxiliary variable m which is distributed as (Antoniak 1974)(Van Gael,

Saatci, Teh & Ghahramani 2008):

p(mik = m|Nik, α,βk) ∝ S(Nik, m)(αβk)
m

(4.26)

Here S(·, ·) is the Stirling number of first kind. And the parameter β has the

posterior distribution:

(β1, · · · ,βK ,βK+1) ∼ Dir(m·1, · · · , m·K ,γ) (4.27)

Here βK+1 denotes the proportion of undetected communities.
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Sampling Hyper-Parameters

Hyper-parameters α and γ are the same with the other methods in this chap-

ter. Similar as Marginal conditional on π only, in Marginal conditional on

u, v only, we also use the M-H sampling to update Copula function parameter

θ’s value. With the proposal distribution being the prior G∗
(1, 1) (definition

in Eq. (14)), we obtain the following acceptance rate:

A(θ∗d, θ
(τ)
d ) = min

(
1,

∏
i,j c(uij, vij|θ∗)∏
i,j c(uij, vij|θ(τ))

)
(4.28)

4.4.3 Relations with Classical MMSB

A bivariate independence Copula function, i.e. C(u, v) = uv, is a uniform dis-

tribution on the region of [0, 1]×[0, 1]. Under the case of “marginal condition-

al on π only”, Eq. (4.14) then becomes that of pklij (πi, πj) = Pr(sij = k, rij =

l|πi, πj) =
∫ π̂k

i

π̂k−1
i

∫ π̂l
j

π̂l−1
j

·1dudv = πik · πjl. Under the case of “marginal condi-

tional on u, v only”, as {uij, vij} are independently uniform distributed, the e-

quation
∫
uij

Pr(
∑k−1

d=1 πid < uij ≤
∑k

d=1 πid)duij =
∑k

d=1 πid−
∑k−1

d=1 πid = πik.

(A similar result also holds for vij .) All these results are identical to that of

the classical MMSB. In a sense, our model can be viewed as a generalization

of MMSB.

In addition, for most Copula functions, a certain choice of parameters

will result in the function equalling or approaching that of the independence

Copula. As an example, when Gumbel (Nelsen 2006) Copula is used, it has

its c.d.f. defined as:

C(u, v) = exp

[
− (

(− ln u)θ + (− ln v)θ
) 1

θ

]
(4.29)

where θ ∈ [1,∞). For θ = 1, it becomes that of the independence Copula.

Our experiments show that when the data are generated using independence

Copula (i.e., classical MMSB), the recovered Gumbel Copula’s parameter has

a high probability of around 1.
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4.4.4 Relations with Dependent Dirichlet Process

As we should note that, since the proposal of dependent Dirichlet process (D-

DP) (MacEachern 1999), a variety of DDP models were developed, including

a recent Poission Process perspective (Lin et al. 2010) and its variants (Lin &

Fisher 2012)(Foti, Futoma, Rockmore & Williamson 2013)(Chen et al. 2013).

From the dependency modeling perspective, our Copula-incorporated work

achieves a similar goal to that of DDP. However, the DDP-type works concen-

trate on the intrinsic relations between multiple Dirichlet Processes. In our

work, however, we assume Dirichlet Processes themselves are independent.

The dependency is introduced at the (discrete) realizations of the multiple

DPs, which are the membership indicators. Therefore, making it feasible to

use Copula to model the dependency between each pair of membership indi-

cators. This obviously cannot be achieved at the DP level, as one’s relations

with every other nodes share the same DP.

4.4.5 Computational Complexity Analysis

We estimate the computational complexity for each graphical model and

present the result in Table 4.1. Compared to the classical models (especially

the MMSB), our cMMSB
π
involves an additional O(Kn) term which refers to

the sampling of the mixed membership distributions. Note that the compu-

tational time varies for different Copulas. cMMSB
uv

requires an extra O(n2
)

term for the u, v’s sampling for each membership indicator. Each operation

requires a beta c.d.f. in a tractable form.

4.5 Experiments

Here, our cMMSB’s performance is compared with the classical mixed-

membership stochastic blockmodel (MMSB)-type methods, including the o-

riginal MMSB (Airoldi et al. 2008) and the infinite mixed-membership model

(iMMM) (Koutsourelakis & Eliassi-Rad 2008). Additionally, we also com-
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Table 4.1: Computational Complexity for Different Models

Models Computational Complexity

IRM O(K2L)1((Palla et al. 2012))

LFRM O(K2n2
) ((Palla et al. 2012))

MMSB O(Kn2
) ((Kim et al. 2012))

cMMSB
π O(Kn2

+Kn) = O(Kn2
)

cMMSB
uv O(Kn2

+ n2
) = O(Kn2

)

1 L =
∑

i,j eij, denotes the number of pos-

itive link data.

pare it with other non-MMSB approaches including the infinite relational

model (IRM) (Kemp et al. 2006), the latent feature relational model (LFR-

M) (Miller et al. 2009) and the nonparametric metadata dependent relational

model (NMDR) (Kim et al. 2012).

We independently implement the above benchmark algorithms to the

best of our understanding. In order to provide a common ground for all

comparisons, we make the following small variations to these algorithms: (1)

In iMMM, instead of having an individual αi value for each πi as used in

the original work, we use a common α value for all the mixed-membership

distributions {πi}ni=1; (2) In LFRM (Miller et al. 2009)’s implementation,

we do not incorporate the metadata information into the interaction data’s

generation, but use only the binary interaction information.

As the predict ability is one important property of the model, we use a ten-

fold cross-validation to complete this task, where we randomly select one out

of ten for each node’s link data as test data and the others as training data.

Each model is run for 50 times for fair comparison and the corresponding

statistics (including the mean and standard deviation) are reported.

4.5.1 Synthetic Data

We first perform the synthetic data exploration as a pilot study. In addition

to the ones associated with the Copula function, the rest of the variables are
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N Table 4.2: Model Performance (Mean ∓ Standard Deviation) on Synthetic Data of Full Correlation.

Train error Test error Test log likelihood AUC

IRM 0.104∓ 0.010 0.105∓ 0.013 −90.060∓ 8.217 0.874∓ 0.026

LFRM 0.094∓ 0.003 0.113∓ 0.014 −99.997∓ 10.8921 0.872∓ 0.023

MMSB 0.024∓ 0.000 0.125∓ 0.000 −104.107∓ 0.265 0.851∓ 0.001

iMMM 0.027∓ 0.0002 0.121∓ 0.0003 −101.497∓ 0.203 0.862∓ 0.001

cMMSB
π

0.033∓ 0.001 0.088∓ 0.000 −82.625∓ 0.128 0.890∓ 0.000

cMMSB
uv

0.042∓ 0.000 0.093∓ 0.000 −85.951∓ 0.084 0.889∓ 0.001

cMMSB
π
(P)

1
0.034∓ 0.001 0.089∓ 0.000 −83.264∓ 0.105 0.894∓ 0.001

cMMSB
uv
(P)

1
0.0497∓ 0.001 0.091∓ 0.001 −83.124∓ 0.046 0.895∓ 0.007

1 This is under the situation of Partial Correlation, i.e., we are using two Copula functions in different

subgroups.
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generated in accordance with (Airoldi et al. 2008)(Newman & Girvan 2004).

We use n = 50, and hence E is a 50 × 50 asymmetric and binary ma-

trix. The parameters are set up such that 50 nodes are partitioned into 4

subgroups, with each subgroup having 20, 13, 9, 8 number of nodes, respec-

tively. The mixed-membership distribution of each group and the whole

role-compatibility matrix are displayed in Fig. 4.2 and Fig. 4.3, respectively.

Thus, the generated synthetic data forms as one block diagonal matrix, with

the outliers existed.

0.9 0.1 0 0

0 0.9 0.1 0

0.1 0.05 0.85 0

0.1 0.05 0.05 0.8

Figure 4.2: Mixed-membership Distribution

0.95 0.05 0 0

0.05 0.95 0.05 0

0.05 0 0.95 0

0 0.05 0 0.95

Figure 4.3: Role-compatibility Matrix

Full Correlation - Single Copula on All Nodes in Link Prediction

We incorporate a single Gumbel Copula (with parameter θ = 3.5) on every

interaction to generate all membership indicator pairs. The corresponding

average values are shown in Table 4.2. The definitions for the comparison

indicator such as train error, test error, test log likelihood and AUC can be

referred to (Kim et al. 2012).

An interesting part of our results is that we find the IRM is slightly

better than the LFRM and MMSB, we explain this to the “blockness” of

the synthetic data. In terms of train error, our model is comparative to
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other MMSB-type models, which in general outperforms IRM and LFRM.

On the predictability measures on test error, test log likelihood and AUC,

both our cMMSB
π
and cMMSB

uv
outperform all other MMSB and non-

MMSB benchmarks.

Another interesting comparison is the posterior predictive distribution on

the train data, and we have shown its results and detailed discussion in Fig.

4.4. The corresponding value is calculated as the average value of the second

half of the samples in one chain, as the first half is set being the “burn in”

stage. The darker of the pointer stands for the larger value close to 1, and

vice versa.

The original data is a block diagonal matrix, with some outliers existed

as the black points. For the IRM model, its result is composed of rectangu-

lar zones. One value is presented in each rectangular. This simplified and

“smoothed” version is due to the single membership representation for one

node, it cannot distinguish the random distributed points. Comparing to

this, the LFRM provides a larger amount of values to select from. This en-

ables the model to place different values on one rectangular zone, especially

each node is meant to be line-shaped colors, which is in consistent with the

one latent feature vector for one node representation. However, it still fails

to detect the random points. MMSB and iMMM successfully capture the

random points. What is more, we find our cMMSB
π
and cMMSB

uv
models

partition the relational data the best.

Partial Correlation - Multiple Copulas in Subgroup Structure

We also have an additional test case and integrate two Gumbel Copula func-

tions in the modelling. The first 20 nodes form a correlated subgroup and

share one Copula function, while the other Copula function is applied on the

rest of the interactions. The performance on this partial correlation data is

shown in the bottom two rows of Table 4.2.

While using this model on a partial correlation dataset, we obtain the

95% Confidence Interval for both of the recovered θ1 and θ2 displayed in
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data  IRM  LFRM

 MMSB  iMMM  cMMSBπ  cMMSBuv

Figure 4.4: Comparison of Models’ Posterior Predictive Distribution on the

Training data.

Table 4.3. We can see that our model can distinguish between the correlated

and independent cases, where the recovered value of θ2 is much closer to 1.

In Figure 4.4, the IRM tends to “re-construct” the training relational data

in single-density rectangles, while the re-construction in the LFRM contains

strip-type variants. All of the bottom 4 plots are MMSB-type model, while

they tend to precisely re-construct the relational data (including the noise

data). Also, we have found our models achieve better performance against

MMSB and iMMM.

Table 4.3: θ’s 95% Confidence Interval

Models s-cMMSB s-ciMMM Ground-truth

θ1 4.19 ∓ 0.91 3.23 ∓ 1.22 3.5

θ2 1.42 ∓ 0.23 2.39 ∓ 0.48 1.0
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4.5.2 Real-world Datasets for Link Prediction

We analyse three real-world datasets: the NIPS Co-authorship dataset, the

MIT Reality Mining dataset (Eagle & Sandy 2006) and the Lazega-lawfirm

dataset (Lazega 2001). Under the same execution setting as in synthetic

data, we show the detailed results in Table 4.6.

NIPS Co-authorship Dataset

We use the co-authorship as a relation from the proceeding of the Neural

Information Processing Systems (NIPS) conference for the years 2000-2012.

Due to the sparse nature of the co-authorships, we observe the authors’

activities in all the 13 years (i.e. regardless of the time factor) and set the

relational data to 1 if the two corresponding authors have co-authored for no

less than 2 papers, which remove some of the “by chance” co-authorships.

Further, the author with less than 4 relationships with others are considered

“inactive” and hence have been manually removed. Thus, a 92×92 symmetric

and binary matrix is obtained.

On this dataset, no pre-defined group information is obtained in advance.

Thus, we consider it as full-correlation case and use one Gumbel Copula

function to model all the interactions.

MIT Reality Dataset

From the MIT Reality Mining (Eagle & Sandy 2006), we use the subjects’

proximity dataset, where weighted links indicate the average proximity from

one subject to another at work. We then “binarize” the data, in which we

set the proximity value larger than 10 minutes per day as 1, and 0 otherwise.

Therefore, a 94× 94 asymmetric and binary matrix is obtained.

The dataset are roughly divided into four groups: Sloan Business School

students (Sloan), lab faculty, senior students with more than 1 year in the lab

and junior students. In our experiment, we only apply the Gumbel Copula

function to the Sloan portion of the students to encourage similar mixture
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Table 4.4: Model Performance on NIPS Co-author dataset(Mean ∓ Standard Deviation)

Models Train error Test error Test log likelihood AUC

IRM 0.032∓ 0.000 0.042∓ 0.001 −135.047∓ 7.382 0.890∓ 0.016

LFRM 0.048∓ 0.080 0.024∓ 0.074 −105.217∓ 179.551 0.935∓ 0.167

MMSB 0.013∓ 0.004 0.030∓ 0.006 −86.213∓ 10.126 0.952∓ 0.022

iMMM 0.006∓ 0.002 0.025∓ 0.004 −83.426∓ 9.429 0.957∓ 0.016

cMMSB
π

0.007∓ 0.004 0.023∓ 0.004 −83.426∓ 9.428 0.957∓ 0.016

cMMSB
uv

0.010∓ 0.005 0.024∓ 0.007 −83.426∓ 9.429 0.958∓ 0.015
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Table 4.5: Model Performance on MIT Reality dataset(Mean ∓ Standard Deviation)

Models Train error Test error Test log likelihood AUC

IRM 0.063∓ 0.000 0.067∓ 0.000 −133.804∓ 1.127 0.826∓ 0.005

LFRM 0.040∓ 0.002 0.063∓ 0.004 −143.607∓ 10.059 0.853∓ 0.018

MMSB 0.026∓ 0.011 0.072∓ 0.004 −129.436∓ 7.655 0.856∓ 0.018

iMMM 0.030∓ 0.006 0.063∓ 0.002 −126.788∓ 3.477 0.862∓ 0.012

NMDR 0.039∓ 0.004 0.067∓ 0.001 −139.523∓ 2.937 0.857∓ 0.014

cMMSB
π 0.025∓ 0.002 0.049∓ 0.002 −125.388∓ 3.269 0.879∓ 0.016

cMMSB
uv

0.028∓ 0.004 0.044∓ 0.002 −123.388∓ 3.125 0.874∓ 0.036
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Table 4.6: Model Performance on Lazega dataset(Mean ∓ Standard Deviation)

Models Train error Test error Test log likelihood AUC

IRM 0.099∓ 0.000 0.105∓ 0.001 −201.791∓ 3.350 0.706∓ 0.017

LFRM 0.057∓ 0.002 0.105∓ 0.006 −222.592∓ 16.199 0.817∓ 0.020

MMSB 0.039∓ 0.007 0.091∓ 0.003 −212.126∓ 3.215 0.799∓ 0.010

iMMM 0.049∓ 0.007 0.110∓ 0.003 −202.715∓ 5.308 0.807∓ 0.014

NMDR 0.064∓ 0.006 0.113∓ 0.002 −207.719∓ 3.475 0.829∓ 0.011

cMMSB
π 0.025∓ 0.005 0.102∓ 0.006 −201.015∓ 5.217 0.827∓ 0.015

cMMSB
uv

0.028∓ 0.004 0.114∓ 0.002 −204.029∓ 9.546 0.822∓ 0.017

9
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membership indicators.

Lazega Law Dataset

The lazega-lawfirm dataset (Lazega 2001) is obtained from a social network

study of corporate located in the north-eastern part of U.S. in 1988 - 1991.

The dataset contains three different types of relations: co-work network,

basic advice network and friendship network, among the 71 attorneys, of

which the element are labeled as 1 (exist) or 0 (absent).

Since no group information is obtained in this dataset, we use the same

setting as in NIPS co-authorship dataset as one Gumbel Copula function is

used for all the interactions.

General Performance

From these reported statistics as shown in Table 4.6, we can see that our

methods (cMMSB
π
, cMMSB

uv
) obtain the best performance in these 3 dataset-

s, amongst all other models. Although iMMM can achieve smallest train

error in the NIPS co-author dataset, our cMMSB’s predictability is better

than iMMM and the others. On the MIT reality and Lazega-lawfirm dataset-

s, our cMMSB can achieve at least 1% improvement on the AUC score. On

the performance comparison of our two different sampling schemes cMMSB
π

and cMMSB
uv
, we find they achieve similar results, which is within our ex-

pectation.

Our cMMSB
π
, cMMSB

uv
beat both MMSB-liked models and non-MMSB

models since a hidden intra-group correlation has been adaptively utilized

here. As its widely existence in social network, this additional information is

expected to contribute to the model’s performance, which is verified in our

experiment.
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4.6 Summary

In this chapter, we have tried to integrate the Copula function to fully de-

scribe the coupling relations within the communities of the networks, which

is to greatly complement the mixed-membership stochastic blockmodel which

essentially treats nodes independently. The Copula function is used to repre-

sent the correlation between the pair of membership indicators, while keeping

the membership indicators’ marginal distribution invariant. The results show

that, using both synthetic and real data, our Copula-incorporated MMSB,

i.e., cMMSB, is effective in learning the community structure and predicting

the missing links.

4.7 Limitation & Future Work

As this chapter discusses an elegant integration of the Copula function into

the Dirichlet Process, the main limitation may be the complicated generative

process and its corresponding inference schedule. Although we have tried two

different inference methods to address the problem, the computational cost

is still larger than the classical ones. Also, as the single Copula function

may be insufficient to capture the complex coupling relations within the

communities, multiple-Copula functions may be used as a trial.

Besides this copula integration method, there are other ways in consid-

ering the subgroup correlation, such as conditioning on the value of gij or

simply using the logistic function to model the observation. These interest-

ing methods are intuitive and easy implemented, however, can not provide

find-grained control of the effect that gij has on the eij . Also, we should note

that although sij and rij are generated independently, their corresponding

product have been “re-measured” in a “copula” way (see the second infer-

ence method). From this perspective, we are arguing that these membership

indicator pair preserve the “coupling relation” we are modelling.

The focus here is on using one Copula function (Gumbel Copula) to

explore the within communities’ coupling relations. A natural extension is
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to use multiple Copulas on different subgroups, as the various types of Copula

functions provide multiple options to capture various dependencies. Inspired

by the multiple kernel learning, a linear combination of Copula functions

used in cMMSB is also a promising direction for future research.

Apart from these modelling choices, there is also interests in more ap-

plications involving the Copula function. For instance, two Indian Buffet

Processes can also be described by using the Copula function, as well as

the Hierarchical Dirichlet Process - Hidden Markov Model. This modelling

within this MMSB framework can be regarded as one pilot work to provide

a different way in introducing the Copula function to the graphical model.
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Chapter 5

Learning Relational Models by

Efficiently Involving Node

Information in a Network

5.1 Introduction

Community detection and network partitioning is an emergent topic in var-

ious areas including social-media recommendation (Tang & Liu 2010), cus-

tomer partitioning, social network analysis, and partitioning protein inter-

action network tasks (Girvan & Newman 2002) (Fortunato 2010). Many

models have been proposed in recent years to address this problem by using

link data (e.g. a person’s view towards others). Some examples include the

stochastic blockmodel (Nowicki & Snijders 2001) and in the case of infinite

communities, the infinite relational model (IRM) (Kemp et al. 2006), both

aiming at partitioning a network of nodes into different groups based on their

pairwise, directional binary observations. In most existing approaches, the

“inter-nodes” link data is a lone contributor towards the understanding of

the insights of social structures.

On the other hand, the “intra-nodes” information is a vital source of ad-

ditional information to complement the link information. Let us take the
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Lazega dataset (Lazega 2001) (detailed in the experimental section of this

chapter), which is a social network within a lawyer firm, as an example. The

node (i.e. attorney) here contains information such as ages, offices (Boston,

Hartford or Providence), and law schools (Harvard, Yale, Ucon or other).

Naturally, the attorneys with similar information (e.g. the same office) tend

to have relationships, and/or belong to same community. This kind of de-

pendent coupling is no doubt to facilitate us with a much more complete

understanding of the network.

While some recent efforts have been directed to incorporate the node

information, they all face several shortcomings mainly in terms of appropri-

ateness and efficiency. For example, in terms of appropriateness, in LFRM

(Miller et al. 2009), although the direct and linear combination of node in-

formation and the latent feature have experimentally demonstrated its effec-

tiveness in link prediction, it is hard to interpret the recovered features and

their related social structure (also stated in (Kim et al. 2012)). In terms of

efficiency, taking NMDR (Kim et al. 2012) as example, the logistic-normal

transform was employed to integrate the node information into each node’s

mixed-membership distribution. However, this integration complicates the

original structure and results in non-conjugacy during the inference.

Two major branches of relational models have been developed in the last

few years, namely the MMSB (Airoldi et al. 2008) and LFRM (Miller et al.

2009), where community memberships are modelled as mixed memberships

and latent features respectively. In order to demonstrate the generality of our

method, we have individually adapted our method to both of these frame-

works, and have produced two distinct models, which is the central theme of

this chapter: the node-information involved mixed-membership model (niM-

M) and the node-information involved latent-feature model (niLF). In both

cases, methods similar to the stick-breaking process (Sethuraman 1994)(Teh

et al. 2007) are proposed to model the unknown number of communities.

In particular, niMM successfully obtains the conjugate property during the

MCMC inference procedure. As discussed later, through these efforts, the
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existing models (MMSB and LFRM) can be seen as special cases of our

proposed models. In this way, our models capture much richer information

embedded in a network; hence, they result in better performance in modeling

the communities’ memberships as illustrated in the experiments.

In summary, our contributions can be stated as: 1) we have naturally

extended the existing benchmark models (i.e. MMSB and LFRM) to incor-

porate the nodes’ information. The experimental results seem quite promis-

ing while the nodes’ information is closely related to the link data; 2) our

extension to MMSB has retrieved the conjugate property during the MCMC

inference, which mixes much faster in the Markov Chain than the previous

approaches. Also, we find that in the experiments, our method converges

much earlier than the previous one; 3) our model is under the Bayesian

Nonparametrics setting (achieved through the methods similar to the stick-

breaking constructions), which can deal with the problem of an unknown

number of communities.

The rest of the chapter is organized as follows. We describe both our

niMM and niLF models in details, as well as the detail inference procedure

and a “collapsed” inference discussion of niMM. We also include the model’s

computational complexity analysis in the same section. In the experimental

section, we compare our methods with the previous work to validate the

models performances. The conclusions and future work are given in the last

section.
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5.2 Literature Review of Stick-breaking Pro-

cess

The stick-breaking method (Sethuraman 1994)(Ishwaran & James 2001) has

provided an explicit construction of a draw G from a Dirichlet process:

G =

∞∑
k

πkδθk , πk = ψk

k−1∏
l=1

(1− ψl),

ψk
iid∼ Beta(1, γ), θk

iid∼ G0.

(5.1)

The concentration parameter γ controls the diversity of θ in G, whereas G0

is regarded as the base measure generating {θk}∞k=1. A larger γ encourages

the weights distribution to be more “flat”, whereas a smaller γ stimulates

the weights to be “sharper”, i.e., only a few weights have appreciable values

and the others are relatively small. As an indication of the importance of

this concentration parameter γ, a vague gamma prior distribution is usually

placed on it.

Based on this ingenious construction, more flexible constructions have

been proposed, the recent examples being the logistic stick-breaking process

(Ren et al. 2011), the probit stick-breaking process (Rodriguez & Dunson

2011), the kernel stick-breaking process (Dunson & Park 2008), and the dis-

crete infinite logistic normal process (Paisley, Wang & Blei 2012). While

being elastic in describing the Bayesian Nonparametric prior in different sit-

uations, one common problem is that they cannot form a prior-posterior

conjugate design, which caused difficulties for both the MCMC sampling

inference (using Metropolis-Hastings Sampling instead would greatly slow

down the mixing rate) and variational inference (having to find an approxi-

mate distribution to replace this distribution).

5.3 Generative Model

Figure 5.1 depicts the graphical models of all the variables used in our work.

Observational variables are colored in grey. {φi}ni=1 is the nodes’ attributes
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Figure 5.1: The generative model for the niMM and niLF models.

information (transformed into one binary vector), and {eij}i,j stands for the
observational link data. C1 − C4 represent four conditional distributions in

two different forms as shown in the niMM and niLF sections, respectively. sij

and rij in the rectangular nodes represent the latent label in niMM, and zi

and zj are in the niLF context. As previously discussed, node information is

incorporated into both branches of the relational models: iMMM and LFRM.

Therefore, we illustrate both in the same figure, as most nodes are common

to both graphical models.

5.3.1 Node-information Involved Mixed-Membership

Model

The generative process for the node-information involved mixed membership

(niMM) model is defined as follows (W.l.o.g. ∀i, j = 1, . . . , n, k ∈ N+
):

C1, ψik ∼ Beta(1,
∏

f η
φif

fk );
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C2, πik = ψik

∏k−1
l=1 (1− ψil);

C3, sij ∼ Multi(πi), rij ∼ Multi(πj);

C4, eij ∼ Bernoulli(Wsijrij).

Here, C1 and C2 constitute the stick-breaking representation for our mixed-

membership distribution πi, which is similar to that of the Dirichlet process.

While the Dirichlet process employs one single γ parameter to finish its stick-

breaking construction, our representation uses different values for each com-

ponent. The values are computed through exponential form η
φif

fk to further

facilitate the conjugate design. C3 and C4 correspond to the membership

indicator and link data generation, which follows the procedure as in Section

2.3.1.

On C1, we replace the fixed γ parameter in the stick-breaking process

with
∏

f η
φif

fk , where the positive, importance indicator ηfk is given a vague

gamma prior ηfk ∼ Gamma(αη, βη). Our method can successfully integrate

the node information into the node’s mixed-membership distribution and

enjoy the conjugate property during the inference procedure. On the other

hand, the previous approach (Kim et al. 2012)(Kim & Sudderth 2011) uses

the logistic normal distribution (with the mean value being the linear sum

(i.e.,
∑

f φifηfk)) to construct a stick-breaking weight ψik, which makes the

inference inefficient (i.e. slow mixing rate during the MCMC sampling).

We again use the attribute age (which will be “binarized” before use)

in the Lazega dataset to further explain the importance indicator ηfk used

in C1. W.l.o.g., we let f th
0 column of φ matrix denotes the age attribute,

φif0 = 1 implies that node i has age > 40 (in our experimental setting), and

0 otherwise. From Equation C1, one can easily see that when ηf0k � 1, age

would largely increase its impact on the kth
community. Likewise, ηf0k � 1

reduces the influence of the age attribute on the kth
community. ηf0k = 1

means that age does not have an impact on the kth
community at all. Also,

φif0 = 0 makes age of the node i neutral towards all other communities.
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Both the importance indicator ηfk and stick-breaking weight ψik can enjoy

the conjugate property. More specifically, the distributions of ηfk, ψik are:

p(ηfk|αη, βη) ∝ η
αη−1
fk e−βηηfk ;

p(ψik|η·k, φi) ∝
[∏

f

η
φif

fk

]
· (1− ψik)

∏
f η

φif
fk

−1.
(5.2)

Thus, the posterior distribution of ηfk becomes:

p(ηfk|αη, βη , ψ·k, φ) ∝ p(ηfk|αη, βη)
∏
i

p(ψik|φi, η·k)

∝η
αη+

∑
i φif−1

fk e−(βη−
∑

i φif ln(1−ψik)
∏

F �=f η
φiF
Fk

)ηfk

=⇒ηfk ∼ Gamma(αη +
∑
i

φif , βη −
∑
i

φif ln(1− ψik)
∏
q �=f

η
φiq

qk )

(5.3)

The joint probability of {sij , rji}nj=1 becomes:

p({sij}nj=1, {rji}nj=1|ψi·) ∝
K∏
k=1

[
ψNik

ik (1− ψik)
∑K

l=k+1 Nil

]
(5.4)

here Nik = #{j : sij = k}+#{j : rji = k}.
The posterior distribution of ψik becomes:

p(ψik|φ, η·k, {sij , rji}nj=1)

∝ψNik

ik (1− ψik)
∑K

l=k+1 Nil+
∏

f η
φif
fk

−1

=⇒ψik ∼ Beta(Nik + 1,
K∑

l=k+1

Nil +
∏
f

η
φif

fk )

(5.5)

The posterior distribution of ψik in Eq. (5.5) is consistent with the result in

(Ishwaran & James 2001)(Kalli et al. 2011), where their result is conditioned

on a single concentration parameter α instead of
∏

f η
φif

fk .

Another interesting comparison is the placing of prior information for

communities within different models. In iMMM, although the author claimed

to use different αi to model individual πi, the stick-breaking weights {ψik}∞k=1

within one πi are generated identically, i.e., from beta(1, αi). This is obvi-

ously insufficient as each community may expect an individual prior in real
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application. Accordingly, NMDR has incorporated node information using a

logistic normal function, as stated above. In a way, this approach has further

generalised the model, such that each ψik differs in their distributions.

Despite the model relaxation, empirical results show that NMDR has

a slow convergence. It is therefore imperative for us to search for a more

efficient way to incorporate the node information. Compared to iMMM, our

niMM model replaces the simple set {αi} with
∏

f η
φif

fk for the generation of

ψik. Its conjugate property makes our model appealing in terms of mixing

efficiency, which is confirmed in the results shown in the experimental section.

What is more, our model can be seen as a natural extension of the popular

iMMM model. By letting ηfk = α1/F
and φif = 1 , we obtain the classical

iMMM. This makes sense, as without the presence of metadata, each feature

is assumed to be counted equally, which implies that the model becomes the

classical iMMM.

5.3.2 Node-information Involved Latent Feature Mod-

el

The generative process for the node-information involved latent feature (niL-

F) model is defined as follows:

C1, ψik ∼ Beta(
∏

f η
φif

fk , 1);

C2, πik =
∏k

l=1 ψil;

C3, zik ∼ Bernoulli(πik);

C4, eij ∼ Bernoulli(
1

1+exp(−ziWzTj )
).

C1 and C2 here also constitute our specialized stick-breaking representation

πi. However, we should note that these two are different from those of the

niMM model while here they are based on the traditional stick-breaking pro-

cess for the Indian Buffet Process (Sethuraman 1994)(Teh et al. 2007). The

πis are used to generate the latent feature matrix z in C3. C4 corresponds
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to the link data generation, which is the same as the LFRM model. Similar

to the niMM model, our work can be seen as an extension of the traditional

LFRM (Miller et al. 2009).

However, the structure of the stick-breaking representation in our niLF

model differs from that of the LFRM model. In our niLF model, each ith

node’s latent feature is motivated by their own stick-breaking representation

πi, i.e., there are n stick-breaking representations in total. In this way, the

individual node information of node i is contained in each corresponding

representation πi, which will consequently be reflected in the latent feature.

On the contrary, the LFRM model uses one specialized beta process π as

the underlying representation for all the n nodes’ latent feature z. This pro-

cess can be easily marginalized out πi, beneficiated from the Beta-Bernoulli

conjugacy (Thibaux & Jordan 2007).

We use the new transform, i.e.,
∏

f η
φif

fk , as the mass parameter (Thibaux

& Jordan 2007) in the construction of the stick-breaking representation, as

stated in C1. The importance indicator η here plays an opposite role when

compared to the niMM model, i.e., a larger value of ηfk would make the

presence of attribute f promote the kth
community.

An interesting notation is that the stick-breaking representations in both

our niMM and niLF models are no longer the Dirichlet process and Beta

process individually, as the single valued α parameter is replaced by a set of

individually-different valued {∏f η
φif

fk }.

5.4 Inference

5.4.1 Informative Mixed Membership Model

In niMM’s sampling, the variables of interest in our slice sampling are: node

information weight {ηfk}f,k, stick-breaking weight {ψik}i,k, latent feature in-
dicator {sij, rij}i,j, compatibility value Wkl and the hyper-parameters. Also,

we discuss here the Beta Distribution as the generation distribution and the

other ones can be trivially derived.
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Sampling ηfk

∀f, k, ηfk’s posterior distribution relies on node information {φif}ni=1, stick-

breaking weights {ψik}ni=1, the other attribute importance indicator {ηFk}F �=f ,

and its hyper-parameters αη, βη.

ηfk ∼ Gamma(αη +

∑
i

φif , βη −
∑
i

φif ln(1− ψik)

∏
F �=f

ηφiF

Fk ) (5.6)

Sampling ψik

∀i, k, ψik’s posterior distribution relies on {Nik}nk=1, {ηfk}f,k, {φif}qq=1.

ψik ∼ Beta(Nik + 1,

K∑
l=k+1

Nil +

∏
f

η
φif

fk ) (5.7)

Sampling sij, rij

Pr(eij|Z\eij , αW , βW ) =
m

1,−eij
kl + αW

m
−eij
kl + αW + βW

(5.8)

here we assume sij = k, rij = l, andm
1,−eij
kl =

∑
i′j′ �=ij,si′j′=k,ri′j′=l ei′j′, m

−eij
kl =∑

i′j′ �=ij,si′j′=k,ri′j′=l 1

Thus, we get:

Pr(sij = k, rij = l) ∝ πikπjl · m
1,−eij
kl + αW

m
−eij
kl + αW + βW

(5.9)

When we sample K +1 to sij or rij, we need to re-sample the corresponding

{ηfK+1}Ff=1, ψiK+1(or ψjK+1) to the new (K + 1)
th

component.

Sampling Hyper-parameters αη, βη, αW , βW

The hyper-parameters we are sampling are αη, βη, αW , βW .

For αη, we set a vague prior Gamma(ααη
, βαη

):

p(αη|{ηfk}f,k, βη, ααη
, βαη

)

∝
∏
f,k

[
βη

αη

Gamma(αη)
η
αη−1
fk

]
· αααη−1

η e−βαηαη
(5.10)
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As Eq. (5.10) is log-concave in αη, we use Adaptive Rejection Sampling

(ARS) to finish its update.

For βη, we set a vague prior Gamma(αβη
, ββη

):

p(βη|{ηfk}f,k, αη, αβη
, ββη

)

∝
∏
f,k

[
βη

αηe−βηηfk
] · βααη−1

η e−βαηβη

∝ βη
KF ·αη+ααη−1 · e−(

∑
f,k ηfk+βαη )βη

=⇒ βη ∼ Gamma(KF · αη + ααη
,
∑
f,k

ηfk + βαη
)

(5.11)

αW and βW is similar as above, we set a vague prior Gamma(ααW
, βαW

):

p(αW |{Wkl}k,l, βW , ααW
, βαW

)

∝
∏
k,l

[
βW

αW

Gamma(αW )
W αW−1

kl

]
· αααW

−1

W e−βαW
αW

(5.12)

As Eq. (5.12) is log-concave in αW , we use Adaptive Rejection Sampling

(ARS) to finish its update.

For βW , we set a vague prior Gamma(αβW
, ββW

):

p(βW |{Wkl}k,l, αW , αβW
, ββW

)

∝
∏
k,l

[
βW

αW e−βWWkl
] · βααW

−1

W e−βαW
βW

∝ βW
K2·αW+ααW

−1 · e−(
∑

kl Wkl+βαW
)βW

=⇒ βW ∼ Gamma(K2 · αW + ααW
,
∑
kl

Wkl + βαW
)

(5.13)

5.4.2 Informative Latent Feature model

In niLF’s sampling, the variables of interest in our slice sampling are: node

information weight {ηfk}f,k, stick-breaking weight {ψik}i,k, latent feature in-
dicator {sij, rij}i,j, compatibility vale Wkl and the hyper-parameters.
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Sampling η

ηfk ∼ Gamma(αη +

∑
i

φif , βη −
∑
i

φif lnψik

∏
F �=f

ηφiF

Fk ) (5.14)

Sampling ψik

We use Metropolis-Hastings Sampling to obtain the ψik’s value, so the ac-

ceptance ratio becomes that of (πik =
∏k

l=1 ψil):

A(ψ∗
ik, ψ

(τ)
ik ) =

π∗,zik
ik (1− π∗

ik)
1−zik

π
(τ),zik
ik (1− π

(τ)
ik )1−zik

(5.15)

Sampling ui

We introduce an auxiliary slice variable ui for each node i:

ui|zi, π ∼ Uniform[0, π∗
i ] (5.16)

where π∗
i = mink:zik=1 {πik}.

Sampling zik

We let z1i = zi,zik=1, z
0
i = zi,zik=0, the likelihood term becomes:

Pr(eij|Z\i, z
1
i ,W ) = σ(z1iWzj)

eij (1− σ(z1i Wzj))
1−eij (5.17)

Thus, we get:

Pr(zik|πi, {eij}nj=1, Z\i,W ) ∝{
πik

∏
j

[
Pr(eij |Z\i, z

1
i ,W ) Pr(eji|Z\i, z

1
i ,W )

]
, zik = 1;

(1− πik)
∏

j

[
Pr(eij |Z\i, z

0
i ,W ) Pr(eji|Z\i, z

0
i ,W )

]
, zik = 0.

(5.18)

Sampling Wkl

Due to the nonconjugacy of σ(·) function, we use the Metropolis-Hastings

method to do the sampling. Setting the proposal distribution the same as
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the prior distribution Normal(0, σW ), we have the acceptance ratio as:

A(W ∗
kl,W

τ
kl) = min

{
1,

f(W ∗
kl)

f(W τ
kl)

}
. (5.19)

Sampling Hyper-parameters λf , μf , λv, λW

For μf , we set the prior as Gaussian prior Normal(0, λμ), which leads to:

p(μf |λμ,η, λf) ∝ Normal(μf ; 0, λμ)

∏
k

Normal(ηfk;μf , λf)

∝ Normal

(
μf ;

∑
k ηfk

λ2
f +K

, 1 +
K

λ2
f

)
(5.20)

For the rest of the hyper-parameters, we set the vague gamma prior

G(a·, b·) on them and the corresponding update can be done accordingly.

For λf , we give the prior on λ−2
f :

p(λf |af , bf , η,μf ) ∝ G(λ−2
f ; af , bf )

∏
f

∏
k

Normal(ηfk;μf , λf )

∝ G
⎛⎝λ−2

f ; af +
1

2
KF, bf +

1

2

∑
k

∑
f

(ηfk − μf )
2

⎞⎠ (5.21)

For λv, we give the prior on λ−2
v :

p(λv|av, bv, η, φ) ∝ G(λ−2
v ; av, bv)

∏
i

Normal(vi:;ηφ
T
i: , λv)

∝ G
(
λ−2
v ; av +

1

2
KN, bv +

1

2

∑
k

∑
i

(vik − ηkφi)
2

)
(5.22)

For λW , we give the prior on λ−2
W :

p(λW |aW , bW ,W ) ∝ G(λ−2
W ; aW , bW )

∏
k

∏
l

Normal(Wkl; 0, λW )

∝ Gamma

(
λ−2
W ; aW +

1

2
K2, bW +

1

2

∑
k

∑
i

W 2
kl

)
(5.23)
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5.4.3 πi-Collapsed Sampling for the niMM Model

When the community number is know in advance, inferencing the niMM

model by collapsing the mixed-membership distributions {πi}ni is a promising

solution. W.l.o.g., the membership indicators’ joint probability for node i is:

Pr({sij}nj=1, {rji}nj=1|φ, η) ∝
∏

k Gamma(Gamma(Nik +
∏

f η
φif

fk ))

Gamma(2n +
∑

k

∏
f η

φif

fk )
(5.24)

∀k ∈ {1, · · · , K}, the conditional probability of the membership indicator

sij (the same to rij) is:

Pr(sij = k|{sij0}j0 �=j, {rji}nj0=1, φ, η) ∝ N
\sij
ik +

∏
f

η
φif

fk (5.25)

Compared to its counterpart in MMSB:

Pr(sij = k|{sij0}j0 �=j, {rji}nj0=1, α,K) ∝ N
\sij
ik +

α

K
(5.26)

our collapsed niMMmodel (cniMM) replaces the term of
α
K
in Eq. (5.26) with

{∏f η
φif

fk }Kk=1. In fact, while the MMSB generates the mixed-membership dis-

tribution πi through the Dirichlet distribution with parameters (
α
K
, · · · , α

K
),

our cniMM’s corresponding one is the Dirichlet distribution with unequal

parameter (
∏

f η
φif

f1 , · · · ,
∏

f η
φif

fK ).

Due to the unknown information on the undiscovered communities, we

limit our cniMM model into this finite communities’ number case. The ex-

tension on the infinite communities’ case remains an interesting future task.

5.4.4 Computational Complexity

We estimate the computational complexities for each model and present the

results in Table 5.1. Our niMM and niLF are O(Kn2
+ Kn + FKn) and

O(K2n2
+Kn+FKn) respectively, with O(Kn) for the sampling of {πi}ni=1

and O(FKn) for the incorporation of node information.
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Table 5.1: Computational Complexity for Different Models

Models Computational complexity

IRM O(K2L)1((Palla et al. 2012))

LFRM O(K2n2
) ((Palla et al. 2012))

MMSB O(Kn2
) ((Kim et al. 2012))

NMDR O(Kn2
+Kn+ FKn) = O(Kn2

)

niMM O(Kn2
+Kn+ FKn) = O(Kn2

)

niLF O(K2n2
+Kn+ FKn) = O(K2n2

)

1 L =
∑

i,j eij, denotes the number of positive

link data.

5.5 Experiments

We analyze the performance of our models (niMM and niLF) on two real-

world datasets: the Lazega dataset (Lazega 2001) and the MIT Reality

Mining dataset (Eagle & Sandy 2006). The comparison models we are us-

ing include IRM (Kemp et al. 2006), LFRM (Miller et al. 2009), iMMM

(Koutsourelakis & Eliassi-Rad 2008) (an infinite community case of MMSB

(Airoldi et al. 2008)), and NMDR (Kim et al. 2012).

We have independently implemented the above baseline models to the

best of our understanding. There has been a slight variation to NMDR,

in which we have employed Gibbs sampling to sample the unknown cluster

number, instead of the Retrospective MCMC (Papaspiliopoulos & Roberts

2008) used in the original chapter. This setting is to ensure a fair comparison

as all of our sampling schemes are under the Gibbs sampling pipeline.

To validate our models’ link prediction performance, we use a ten-folds

cross-validation strategy. For each node’s link data, we randomly select one

out of ten from them as the test data. Then, we remove these test data and

keep the remaining ones as the training data. The corresponding evaluation

criteria (Kim et al. 2012) are the training error (0 − 1 loss) on the training

data, the testing error (0 − 1 loss), the testing log likelihood and the AUC

113



C
H
A
P
T
E
R

5
.
L
E
A
R
N
IN

G
R
E
L
A
T
IO

N
A
L
M
O
D
E
L
S
B
Y

E
F
F
IC

IE
N
T
L
Y

IN
V
O
L
V
IN

G
N
O
D
E
IN

F
O
R
M
A
T
IO

N
IN

A
N
E
T
W
O
R
K

Table 5.2: Performance on Lazega Dataset (Mean ∓ Standard Deviation)

Models Training error Testing error Testing log likelihood AUC

IRM 0.099∓ 0.000 0.105∓ 0.001 −201.791∓ 3.350 0.706∓ 0.017

LFRM 0.057∓ 0.002 0.105∓ 0.006 −222.592∓ 16.199 0.817∓ 0.020

iMMM 0.049∓ 0.007 0.110∓ 0.003 −202.715∓ 5.308 0.807∓ 0.014

NMDR 0.064∓ 0.006 0.113∓ 0.002 −207.719∓ 3.475 0.829∓ 0.011

niMM 0.033∓ 0.006 0.107∓ 0.002 −196.050∓ 4.396 0.837∓ 0.012

niLF 0.039∓ 0.013 0.101∓ 0.003 −213.525∓ 12.325 0.812∓ 0.014

cniMM 0.047∓ 0.009 0.112∓ 0.002 −205.067∓ 4.532 0.831∓ 0.012

1
1
4
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Table 5.3: Performance on Reality Dataset (Mean ∓ Standard Deviation)

Models Training error Testing error Testing log likelihood AUC

IRM 0.063∓ 0.000 0.067∓ 0.000 −133.804∓ 1.127 0.826∓ 0.005

LFRM 0.040∓ 0.002 0.063∓ 0.004 −143.607∓ 10.059 0.853∓ 0.018

iMMM 0.030∓ 0.006 0.063∓ 0.002 −126.788∓ 3.478 0.862∓ 0.012

NMDR 0.039∓ 0.004 0.067∓ 0.001 −139.523∓ 2.937 0.857∓ 0.014

niMM 0.027∓ 0.005 0.062∓ 0.002 −127.738∓ 3.131 0.851∓ 0.013

niLF 0.038∓ 0.005 0.073∓ 0.005 −131.037∓ 9.452 0.865∓ 0.014

cniMM 0.055∓ 0.002 0.064∓ 0.001 −126.909∓ 2.646 0.860∓ 0.010

1
1
5
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(Area Under the roc Curve) score on the test data. Apart from this, we also

conduct a study on learning the node information’s importance indicator in

the Lazega dataset.

At the beginning of the learning process, we set the vague Gamma prior

Gamma(1, 1) for the hyper-parameters αη, βη, αW , βW . For W ’s setting, we

set Beta(1, 1) as the prior distribution. For the attributes values that are not

in binary form, we have to do the binary transform. The initial states are of

random guesses on the hidden labels (membership indicators in MMSB and

latent feature in LFRM). For all the experiments, we run chains of 10, 000

MCMC samples 30 times, assuming the first 5000 samples are used for burn-

in. The average statistics of the remaining 5000 samples are reported.

5.5.1 Performance on the Lazega Dataset

The Lazega dataset includes the social network links within a US firm in

1988 to 1991. The dataset contains a co-work network for 71 attorneys,

in which each directional link data is labelled as 1 (exist) or 0 (absent).

Apart from this 71 binary asymmetric matrices, the dataset also provides

information on each node (i.e. attorneys), including the Status (partner or

associate), Gender, Office (Boston, Hartford or Providence), Years (with the

firm), Age, Practice (litigation or corporate), and Law school (harvard, yale,

ucon or other). After binarizing these attributes, we obtain a 71× 11 binary

information matrix.

Link prediction by different models is conducted and the results are shown

in Table 5.3. Notably, the performance of our implementation of NMDR

model is inferior compared to its original ((Kim et al. 2012)), which may be

a result of a sub-optimal metadata binarization process. However, we have

shown that, with the same attributes, our niMM model performs better than

the NMDR model, as well as other relational models without the involving

of node information. The performance of cniMM is also quite competitive.
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Attribute-community importance learning

Another interesting issue here is the attribute-community importance learn-

ing for the importance indicator η. As the learning should fix the commu-

nities during the sampling iteration, we use cniMM to observe the effect of

node attribute information on each individual community. The number of

communities is set to 4 and the results are shown in Table 5.4. Each value

shows the geometric mean of the 5, 000 samples in the MCMC inference.

Also, we should note smaller value indicates larger influence. For notational

clarity, we use the black bold symbol to denote the values that under 0.5.

Table 5.4: Attribute-community importance learning for η

Community 1 2 3 4

Office
boston 0.3103 1.3139 0.0877 2.7415

hartford 0.4061 0.6547 0.2601 0.9010

Age
young 1.1884 1.0649 0.8954 1.2016

middle 0.8562 0.7420 0.7078 0.9639

Years
long 0.3684 0.5422 0.2089 1.8316

middle 0.7429 0.7164 0.6534 1.3045

School
yale 0.9733 0.6881 0.9465 0.7372

ucon 1.4117 1.0636 1.1856 0.8408

Status partner 0.9822 0.8203 0.9583 0.6359

Practice litigation 0.2971 0.9731 0.3405 0.9884

Gender man 0.3972 1.1592 0.7156 0.8653

As we can see, the importance of attributes office in boston and hartford,

long years with firm and litigation in practice is the smallest amongst all

attributes. This implies they are more important than others in affecting

hidden community formation. This is generally consistent with our com-

monsense. For instance, people in the same office would usually have more

communications in everyday life; employees would be more familiar with each

other if they together have a longer time stay with the firm. The result of
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Table 5.5: Mixing rate (Mean ∓ Standard Deviation) for different models,

with the bold type denoting the best ones within each row.

Datasets Lazega Reality

Criteria τ̂ ESS τ̂ ESS

iMMM 166.2 ∓ 90.37 77.6 ∓ 38.71 184.9 ∓ 78.88 62.5 ∓ 22.70

LFRM 310.6 ∓ 141.95 40.7 ∓ 26.26 113.4 ∓ 77.35 125.5 ∓ 71.93

NMDR 179.8 ∓ 156.96 134.3 ∓ 133.12 142.8 ∓ 129.99 185.0 ∓ 206.12

niMM 39.1∓ 40.58 341.8 ∓ 132.00 27.8∓ 22.49 449.7∓ 181.37

niLF 149.2 ∓ 126.12 61.2 ∓ 59.93 134.2 ∓ 163.23 71.24 ∓ 48.74

the importance of the litigation in practice seems a bit interesting proba-

bly because the litigation needs frequent corporations and thus leads to the

connection.

5.5.2 MIT Reality Mining

Based on the MIT Reality Mining dataset (Eagle & Sandy 2006), we obtain

a proximity matrix describing each node’s proximity towards the others, i.e.,

eij represents the proximity from i to j based on participant i’s opinion. With

the same setting of the previous model (Koutsourelakis & Eliassi-Rad 2008),

we manually set the proximity value to be larger than 10 minutes per day as

1, and 0 otherwise. We hence obtain a 73× 73 asymmetric matrix.

Alongside this directional link data, we also have survey data on the par-

ticipants’ information (i.e. node information), including the transport choice

to work, social activity, the communication method, and satisfaction of uni-

versity life. As we can see in Table 5.3, we find our niMM and niLF models’

performances are competitive in relation to the ones in iMMM, however, we

do not achieve a significant improvement compared to the baseline models.

When we trace back to the node information, we find it does not have a

direct correlations with the link data. This may be the main reason for our

models’ less significant result.
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5.5.3 Convergence Behaviour

Trace plot for AUC

A trace plot for the AUC value versus iteration time could help us choose an

appropriate burn-in length. An earlier reach to the stable status of MCMC

is desirable as it indicates fast convergence. Figure 5.2 and Figure 5.3 show

the detailed results.
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Figure 5.2: Trace plot of the AUC value versus iteration time in the Lazega

dataset
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Figure 5.3: Trace plot of the AUC value versus iteration time the Reality

dataset

As we can see, except for NMDR, all the other models reach the stable

status quite fast. On the Lazega dataset, our niMM and cniMM outper-
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form all the others. On the MIT Reality dataset, our niMM and cniMM’s

performances are still quite competitive.

Mixing rate for a stable MCMC.

In addition to the MCMC trace plot, another interesting observation is the

mixing rate of the stable MCMC chains. We use the number of active com-

munities K as a function of the updated variable to monitor the mixing

rate of the MCMC samples, whereas the efficiency of the algorithms can be

measured by estimating the integrated autocorrelation time τ and Effective

Sample Size (ESS) for K. τ is a good performance indicator as it measures

the statistical error of Monte Carlo approximation on a target function f .

The smaller the τ , the more efficient the algorithm. Also, the ESS of the

stable MCMC chains informs the quality of the Markov chains, i.e., a larger

ESS value indicates more independent useful samples, which is our desired

property.

On estimating the integrated autocorrelation time, different approaches

are proposed in (Geyer 1992). Here we use an estimator τ̂ (Kalli et al. 2011)

and the ESS value is calculated based on τ̂ as:

τ̂ =
1

2
+

C−1∑
l=1

ρ̂l; ESS =
2M

1 + τ̂
. (5.27)

Here ρ̂l is the estimated autocorrelation at lag l and C is a cut-off point

which is defined as C := min{l : |ρ̂l| < 2/
√
M}, and M is equal to half of

the original sample size, as the first half is treated as a burn in phase. The

detailed results are shown in Table 5.5. As we can see, our model niMM

performs the best among all the models.

5.6 Summary

Increasing applications with natural and social networking behaviors request

the effective modeling of hidden relations and structures. This is beyond the

currently available models, which only involve limited link information in
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binary settings. In this chapter, we have proposed a unified transform to in-

corporate the rich node attribute information into the relational models. The

proposed node-information involved mixed membership (niMM) model and

node-information involved latent feature (niLF) model have been demon-

strated to be effective in learning the structure and have shown advanced

performance on learning implicit relations and structures.

In the stick-breaking construction of C1 in Section 5.3.1, we could put

an additional α into the product of
∏

f η
φif

fk . This combined result α
∏

f η
φif

fk

can avoid the concentration parameter to be 1 in case all of the {φif}f are

0. While the conjugate property can still be kept, this also set an extra

parameter for the model. In a result, additional computational complexity

is required for this incorporation.

5.7 Limitations & Future Work

In this chapter, the main limitation may be the fixed “linear” combinations

of different nodes’ information. The nodes’ information should be combined

with different manners, as well as different weights. Another issue is the

incorporation method into the communities, which should be more flexible.

On the future work, the work here is expected to investigate the fol-

lowing: 1) how to integrate the multi-relational networks and unify them

into the niMM framework to deeply understand network structures; 2) as

there are more advanced constructions for the beta process (Paisley et al.

2010)(Paisley, Blei & Jordan 2012), what are more flexible ways to incorpo-

rate the node information into LFRM; and 3) when the node information

goes beyond the binary scope and becomes the continuous form, how can

this information been utilized.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, various strategies on the modelling of coupling relations in

the relational data have been presented. After an introduction of the pre-

liminary knowledge and literature review, the coupling relations have been

individually described in Chapters 3, 4, 5, which include the coupling rela-

tions between the mixed-membership distributions across time, the coupling

relations within the communities of the networks and the coupling relations

between the node information and the mixed-membership distribution.

In Chapter 2, preliminary knowledge on the nonparametric Bayesian

methods, the Monte Carlo Markov Chain (MCMC) methods and the two

representative work of mixed-membership stochastic blockmodel and latent

feature relational model has been given. Also, extensive literature reviews on

the coupling relation learning, relational models and stick-breaking process.

All of which worth a closer look in comparing to the works in this thesis have

been given individually.

In Chapter 3, a generalised and flexible framework to further improve

the popular mixed-membership stochastic blockmodel by allowing a network

to have infinite types of communities with relationships that change across

time have been provided. This is noted to be as describing the coupling
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relations between the mixed-membership distributions across time. By in-

corporating a time-sticky factor for the mixed-membership distributions, the

time-correlation between latent labels have been realistically modelled. Both

Gibbs sampling and adapted Slice-Efficient sampling have been used to in-

ference the desired target distribution. Quantity analysis on the MCMC’s

convergence behavior, including the convergence test and autocorrelation

function, have been provided to enhance the inference performance. The

results in the experiments verify that the proposed DIM3 from this study is

effective for learning the coupling relation between the mixed-membership

distribution across time.

In Chapter 4, a new framework to capture the coupling relations with-

in the communities of the networks has been proposed, which is to greatly

complement the mixed-membership stochastic blockmodel which essentially

treats nodes independently. The principal contribution of the proposed mod-

el is the introduction of the Copula function into MMSB, which represents

the correlation between the pair of membership indicators, while keeping the

membership indicators’ marginal distribution invariant. The results show

that, using both synthetic and real data, the Copula-incorporated MMSB,

i.e., cMMSB, is effective in learning the coupling relations within the com-

munities. In terms of inference, the main contribution of this study lies in an

analytical solution to both of the conditional marginal likelihoods to the two

indicator variables (sij, rji), given either the indicator distributions πi, πj or

the bivariate Copula variables uij, vij .

In Chapter 5, a unified approach to incorporate the rich node informa-

tion into the relational models has been put forward, which is able to de-

scribe the coupling relations between the node attribute information and the

mixed-membership distribution. The proposed node-information involved

mixed membership (niMM) model and node-information involved latent fea-

ture (niLF) model have been demonstrated to be effective in learning coupling

relations between the node information and mixed-membership distribution

and have shown advanced performance on learning implicit relations and
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structures.

Each chapter (i.e. from Chapter 3 to Chapter 5) of this thesis is sup-

ported by one published paper and others under reviewing as
1
listed in List

of Publications. Therefore, what has been done and proposed in this the-

sis is of significance to the coupling relation learning research and the data

analytics area.

6.2 Future Work

6.2.1 Future Work on Large-scale Bayesian inference

for nonparmetric Bayesian methods

The coupling relations cover far more than what has been done in this thesis.

In the future research, more complete coupling relations will be explored, as

well as their efficient and effective inference.

In the current age of Big Data, the huge quantity of available data has

been exceeding the computational resources available. Thus, there is increas-

ing interest for new large-scale learning methods, including the Bayesian

inference methods for the nonparametric Bayesian priors. The Bayesian

inference methods provide complete characterizations of the joint posteri-

or distribution over the model parameter and hidden variable, rather than

seeking an optimal point estimate in an optimization manner (either loss

function or maximum likelihood estimation). In this way, the Bayesian infer-

ence methods are better at modelling the uncertainty, as well as avoiding the

over-fitting problem with the introduction of prior information (Teh, Thiéry

& Vollmer 2014).

The detail large-scale Bayesian inference methods of the nonparametric

Bayesian prior can be roughly categorized into several parts. 1), stochastic

variational inference methods (Hoffman et al. 2013), which applies the s-

1The paper of chapter 3 is published, and the paper of chapter 4,5 are still under review

under journal or conference
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tochastic optimization techniques to optimize the variational bound (such as

KL divergence); 2), submodular variational inference (Reed & Ghahramani

2013), which is to use the submodular maximization techniques in getting a

lower variational bound. Currently, this work is applied in the Indian Buf-

fet Process prior only; 3), parallel MCMC sampling (Williamson, Dubey &

Xing 2013)(Neiswanger, Wang & Xing 2013), which attempts distribute the

whole inference computation to several parts; 4), subsampling MCMC meth-

ods (Welling & Teh 2011)(Ahn, Balan & Welling 2012)(Ahn, Shahbaba &

Welling 2014), which is trying to update the solver by a small subset of the

data.

6.2.2 Future work from the relational models perspec-

tive

However, several issues still exist in using the relational models to describe

the coupling relations. In this case, a few will be listed here.

(i). To what extent does relational modelling address the coupling

relations? The coupling relations cover the complex interactions be-

tween the objects, while the relational models only consider the sim-

plest interactions of these, which is mainly represented as the binary

(or real value) interaction. Also, this dependency relation mainly fo-

cuses on the inter-node relation, while it does little in the intra-node

relation.

(ii). What aspects of the coupling relations have not been covered

by relational models ? Currently, the relational models only address

the following simplest cases:

• relational models only consider two-nodes interaction, which is an

over-simplified assumption. In real-world application, the interac-

tion usually occurs among more than two nodes. For instance, in
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the stock-trading market, the buy and sell options happen among

different levels of people.

• relational models use the communities compatibilities to deter-

mine the interaction value, which is also set in a vacuum. In a

real-world application, communities influence in the interaction

usually plays as a small role in some cases, and in other cases,

the interaction is affected by various other information, including

the nodes profile, the specific environment (this may be related

to time dynamic, space information, or even cultural custom), or

even the goal (in the stock market, making profit is the goal and

the relations may move towards this goal).

(iii). Where are the main gaps between coupling relations and the

relational models? The main gaps between the coupling relations

and the relational models mainly lie in the perfect assumption in the

relational models, which is seldom seen in real world application. From

another perspective, this has also stimulated several opportunities for

working on the coupling relation learning part. More specifically, the

following options are available for further research.

• considering the interactions between more nodes. In this case,

there may be a need to incorporate the matrix or even the tensor

to represent the relations.

• incorporating more information in building the relations, includ-

ing the nodes profile, time or space information and goal.

• instead of considering the inter-node dependence, in coupling re-

lation learning, there are more forms in representing the relations,

such as their intra-node relation, time correlation. Utilizing this

correlations to depict the whole picture would be an interesting

future task.
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6.2.3 Future work on the inconsistent estimators of the

component number

(Miller & Harrison 2013) has shown that even a simple DP mixture model

estimator is inconsistent for the number of mixture components. In all of our

models of this thesis, we feel it as a missing part since we did not pay much

attention to this specific topic. The number of mixture components discov-

ered here is mainly used for the MCMC convergence diagnose. However, we

should emphasize that we did encounter the situations where there are more

smaller-size clusters than the reality, especially in the work of nonparamet-

ric power-law data clustering. This can be remained as a future work and

I believe this topic would be both interesting and influential for the future

research.
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Derivation equations for the

model of MTV-g

In the section, we derive the equations for the MCMC sampling in MTV-g

in chapter 3. The variables we want to sample are: β, Z = {stij, rtij}1:Tn×n and

m̂.

A.1 Sample β

β represents each component’s proportion.

(β1, · · · , βK , βμ) ∼ Dir(m̂·1, · · · , m̂·K , γ) (A.1)

Here m̂·k denotes the dish k’s whole considered table. (We use dish and

community alternatively, however, they stand for the same meaning.)

A.2 Sample Z = {stij, rtij}1:Tn×n

∀i, j ∈ {1, · · · , n}, t ∈ {1, · · · , T}, we sequentially sample the pair (stij, r
t
ij)

together, as they jointly determine et
ij ’s indexed position (i.e. row and col-
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MTV-G

umn) in W .

P (stij = k, rtij = l|Z\{stij, rtij}, e,β, α, λ1, λ2, κ)

∝P (stij = k, rtij = l|Z\{stij, rtij},β, α, κ)
· P (etij |e\{et

ij}, stij = k, rtij = l,Z\{stij, rtij}, λ1, λ2)

(A.2)

The first term of Eq. (A.2), i.e., the prior of (stij, r
t
ij) is:

Pr(stij = k, rtij = l|Z\{stij, rtij},β, α, κ)
∝Pr(stij = k|{stij0}j0 �=j , {rtj0i}nj0=1,β, α, κ,N

t−1
i )

· Pr(rtij = l|{rti0j}i0 �=i, {sji0}ni0=1,β, α, κ,N
t−1
j )

·
2n∏
l=1

Pr(zt+1
il |zti·/stij , stij = k,β, α, κ,N t+1

i )

·
2n∏
l=1

Pr(zt+1
jl |ztj·/rtij, rtij = l,β, α, κ,N t+1

j )

(A.3)
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We treat the first part of Eq. (A.3) as:

Pr(stij = k|{stij0}j0 �=j , {rtj0i}nj0=1,β, α, κ,N
t−1
i )

∝Pr(stij = k, {stij0}j0 �=j , {rtj0i}nj0=1,β, α, κ,N
t−1
i )

=

∫
πt

i

p(πt
i|β, α, κ,N t−1

i ) · Pr(stij = k|πt
i)

∏
j0 �=j

Pr(stij0|πt
i)

n∏
j0=1

Pr(rtj0i|πt
i)dπ

t
i

=

∫
πt

i

Γ(
∑

l αβl + κN t−1
il )∏

l Γ(αβl + κN t−1
il )

∏
l

π
αβl+κNt−1

il
−1

il

∏
l

π
N

t,−stij
il

il · πikdπ
t
i

=
Γ(
∑

l αβl + κN t−1
il )∏

l Γ(αβl + κN t−1
il )

∏
l Γ(αβl + κN t−1

il +N
t,−stij
il ) + δ(l, k)

Γ(
∑

l αβl + κN t−1
il +N

t,−stij
il + δ(l, k))

=
Γ(α+ 2n · κ)

Γ(α + 2n · κ+ 2n)

∏
l

Γ(αβl + κN t−1
il +N

t,−stij
il + δ(l, k))

Γ(αβl + κN t−1
il )

=
Γ(α+ 2n · κ)

Γ(α + 2n · κ+ 2n)

∏
l

Γ(αβl + κN t−1
il +N

t,−stij
il )

Γ(αβl + κN t−1
il )

· (αβk + κN t−1
ik +N

t,−stij
ik )

∝αβk + κN t−1
ik +N

t,−stij
ik

(A.4)

Here N t
ik =

∑n
j0=1 1(s

t
ij0 = k) +

∑n
j0=1 1(r

t
j0i = k), N t

i· =
∑

k N
t
ik = 2n;

N
t,−stij
ik =

∑n
j0 �=j 1(s

t
ij0 = k) +

∑n
j0=1 1(r

t
j0i = k), N

t,−stij
i· =

∑
k N

t
ik − 1 =

2n− 1; δ(l, k) is the dirac delta function with δ(l, k) =

{
1, l = k;

0, l �= k.
Thus, we get

Pr(stij = k|{stij0}j0 �=j, {rtj0i}nj0=1,β, α, κ,N
t−1
i )

∝
{

αβk + κN t−1
ik +N

t,−stij
ik , k ∈ {1, · · · , K};
αβμ, k = K + 1.

(A.5)

Under the similar transformation, we got

Pr(rtij = l|{rti0j}i0 �=i, {sji0}ni0=1,β, α, κ,N
t−1
j )

∝
{

αβl + κN t−1
jl +N

t,−rtij
jl , l ∈ {1, · · · , K};
αβμ, l = K + 1.

(A.6)
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Similarly, we got:

2n∏
l=1

Pr(zt+1
il |zti·/stij, stij = k,β, α, κ,N t+1

i )

∝Γ(αβk +N t+1
ik + κN

t,−stij
ik + κ)

Γ(αβk +N t+1
ik + κN

t,−stij
ik )

Γ(αβk + κN
t,−stij
ik )

Γ(αβk + κN
t,−stij
ik + κ)

(A.7)

2n∏
l=1

Pr(zt+1
jl |ztj·/rtij, rtij = l,β, α, κ,N t+1

j )

∝Γ(αβl +N t+1
jl + κN

t,−rtij
jl + κ)

Γ(αβl +N t+1
jl + κN

t,−rtij
jl )

· Γ(αβl + κN
t,−rtij
jl )

Γ(αβl + κN
t,−rtij
jl + κ)

(A.8)

Also, the second term of Eq. (A.2), i.e., the likelihood of (stij, r
t
ij) becomes

as:

P (et
ij |e\{et

ij}, stij = k, rtij = l,Z\{stij , rtij}, λ1, λ2)

∝P (etij , e\{et
ij}, stij = k, rtij = l,Z\{stij , rtij}, λ1, λ2)

∝
∫
ηk,l

P (et
ij |stij = k, rtij = l, ηk,l) · p(ηk,l|λ1, λ2)

·
∏

st
i′j′

=k,rt
i′j′

=l,i′j′ �=ij

P (eti′j′|ηk,l)dηk,l

∝
∫
ηk,l

η
etij+n

t,1,−e
t
ij

k,l
+λ1−1

k,l (1− ηk,l)
1−etij+n

t,0,−e
t
ij

k,l
+λ2−1dηk,l

∝Γ(et
ij + n

t,1,−etij
k,l + λ1)Γ(1− et

ij + n
t,0,−etij
k,l + λ2)

Γ(1 + n
t,−et

ij

k,l + λ1 + λ2)

(A.9)

Here n
t,−etij
k,l = nt

k,l − 1(stij = k, rtij = l) =
∑

i′j′ 1(s
t
i′j′ = k, rti′j′ = l)− 1(stij =

k, rtij = l), n
t,1,−etij
k,l = n1,t

k,l−1(stij = k, rtij = l)et
ij =

∑
st
i′j′

=k,rt
i′j′

=l e
t
i′j′−1(stij =

k, rtij = l)et
ij and n

t,0,−etij
k,l = n

t,−etij
k,l − n

t,1,−etij
k,l .

Considering the case of et
ij = 1 and et

ij = 0, Eq. (A.9) is to be simplified
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as:

P (et
ij |e\{et

ij}, stij = k, rtij = l,Z\{stij , rtij}, λ1, λ2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n
t,1,−e

t
ij

k,l
+λ1

n
t,−e

t
ij

k,l
+λ1+λ2

, etij = 1;

n
t,0,−etij
k,l

+λ2

n
t,−et

ij
k,l

+λ1+λ2

, etij = 0.

(A.10)

By combing the results of Eq. (A.5)(A.6)(A.7)(A.8)(A.10), the sampling

of (stij, r
t
ij) is completed.

A.3 Sampling m̂

m̂’s sampling is detailed in the chapter.
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Several fundamental

distributions used in the thesis

B.1 Bernoulli distribution

The probability mass function of the Bernoulli distribution is:

∀0 ≤ p ≤ 1,Pr(x) =

{
p, x = 1;

1− p, x = 0.
(B.1)

B.2 Multinomial distribution

The probability mass function of the Multinomial distribution is:

∀
K∑
k=1

pk = 1,Pr(n1, · · · , nK) =
n!∏K

k=1 nk!

K∏
k=1

pnk

k . (B.2)

Here ∀k ∈ {1, · · · , K}, nk denotes the number of times the kth component

appears, and pk represents the probability of the kth
component appears.
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B.3 Beta distribution

The probability density function of the Beta distribution is:

∀α, β > 0, p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1

(1− x)β−1. (B.3)

Here Γ(·) is the Gamma function, which is Γ(x) =
∫∞

0
tx−1e−tdt.

B.4 Dirichlet distribution

The probability density function of the Dirichlet distribution is:

∀α1, · · · , αk > 0, p(x1, · · · , xK) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

xαk−1
k . (B.4)

Here (x1, · · · , xK) lies in a K-dimensional simplex, which is
∑K

k=1 xk = 1.

B.5 Gamma distribution

The probability density function of the Gamma distribution is:

∀α, β > 0, p(x) =
βα

Γ(α)
xα−1e−βx. (B.5)

Here α is the shape parameter, while β is the rate parameter.
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List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

n number of nodes

K number of discovered communities

T number of whole time stamps

t the specific time stamp

etij directional, binary interactions at time t

β a stick-breaking representation to denote the “significance”

of all existing communities at all times

γ, α concentration parameters for HDP

κ a sticky parameter representing the time-persistence ef-

fect

stij sender’s (from i to j) membership indicator at time t

rtij receiver’s (from j to i) membership indicator at time t

Z all the membership indicators, i.e. Z = {stij, rtij}i,j,t
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zti· node i’s membership indicators at time t, i.e. {stij , rtji}nj=1

mt
ik in Chinese Restaurant Franchise analogy, the number of

tables eating dish k for restaurant i at time t

πt
i mixed-membership distribution for node i at time t, it

generates sti1, · · · , stin, rt1i, · · · , rtni

πt
ik the “significance” of community k for node i at time t

W role-compatibility matrix

Wk,l compatibilities between communities k and l

nt
k,l number of links from community k to l at time t i.e.

nt
k,l = #{ij : stij = k, rtij = l.}

nt,1
k,l part of mk,l where the corresponding etij = 1 at time t,

i.e. nt,1
k,l =

∑
st
ij
=k,rt

ij
=l e

t
ij

nt,0
k,l part of mk,l where the corresponding etij = 0 at time t,

i.e. nt,0
k,l = nt

k,l − nt,1
k,l

N t
ik number of times that a node i has participated in commu-

nity k (either sending or receiving) at time t, i.e. N t
ik =

#{j : stij = k}+#{j : rtji = k}

eij directional, binary interactions

sij sender’s (from i to j) membership indicator

rij receiver’s (from j to i) membership indicator

πi mixed-membership distribution for node i, it generates

si1, · · · , sin, r1i, · · · , rni

πik the “significance” of community k for node i
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mk,l number of links from community k to l, i.e. mik = #{ij :
sij = k, rij = l.}

m1
k,l part of mk,l where the corresponding eij = 1, i.e. m1

k,l =∑
sij=k,rij=l eij

m0
k,l part of mk,l where the corresponding eij = 0, m0

k,l =

mk,l −m1
k,l

θ parameter associated with any Copula function

F number of attributes in node information

φ an n × F binary matrix, φif = 1 denotes the ith data

occupies the f th
attribute

η an F ×K positive matrix, ηfk indicates the importance

of f th
attribute to kth

roles.

ψi stick-breaking weights to constitute πi

zi latent feature vector of node i in LFRM

Nik number of times that a node i has participated in com-

munity k (either sending or receiving), i.e. Nik = #{j :

sij = k}+#{j : rji = k}
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