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ABSTRACT 

With the increasing demand for energy and growing concern about environmental 

pollution caused by the enormous consumption of fossil fuels, it is an urgent need of 

renewable energy and clean energy sources. Development of suitable mobile electronics 

or energy storage technologies that can be used in electric vehicles would help to 

address problem. As energy storage devices, lithium-ion batteries have attracted 

attention due to their high energy density and storage capacity. Supercapacitors have 

attracted enormous attention due to high power density and long cycle life. The 

exploration of new electrode materials for lithium-ion batteries and supercapacitors is 

the focus of research to satisfy the ever-rising demands for better performance including 

longer cycle life and improved safety. Nanostructured materials exhibit excellent 

electrochemical performances, and they are regarded as promising materials for high-

performance lithium-ion batteries and supercapacitors. In this doctoral study, various 

nanostructured materials such as, nanosheets, nanospheres, nanobelts, nanoflakes, 

hybrid nanostructures and mesoporous structures have been successfully synthesized 

and characterised, using different methods. Their electrochemical properties have also 

been evaluated by cyclic voltammetry, galvanostatic charge-discharge, and 

electrochemical impedance spectra. 

Nickel oxide (NiO) nanosheets have been synthesized, using a simple ethylene glycol 

mediated hydrothermal method. When evaluated as anode materials for lithium ion 

batteries, NiO nanosheets exhibited high reversible capacities of 1193 mA h g-1 at the 

current density of 500 mA g-1 with enhanced rate capability and good cycling stability. 

While as electrode materials for supercapacitors, NiO nanosheets also demonstrated a 
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superior specific capacitance of 999 F g-1 at the current density of 20 A g-1 with 

excellent cycling performance.  

The spherical β-Ni(OH)2 superstructures was successfully synthesised in a single-step 

microwave-assisted process, without using any templates. Due to its unique 

morphology, the prepared β-Ni(OH)2 electrode displayed a high and specific 

capacitance of 2147 F g-1 at a discharge current of 1 A g-1 with excellent cycling 

stability (99.5 % capacitance retained after 2000 cycles).  

A straight forward microwave reaction was employed to successfully prepare α-Fe2O3 

nanoparticles with two different sizes. When used as anode materials for lithium ion 

batteries of both the materials showed good electrochemical performances. Remarkably, 

the electrode made of larger particles (200-300 nm) exhibited higher reversible capacity 

of 1012 mA h g-1 with better rate capability and excellent cycling stability (88 % 

retention after 80 cycles) than those of the smaller particles (20-30 nm) (49 % retention 

after 80 cycles). The better lithium storage properties of the large particles can be 

attributed to their structural integrity during cycling, which offers adequate spaces to 

accommodate volume expansion during Li+ insertion/extraction and shortens the 

diffusion paths of lithium ions. 

Highly porous NiCo2O4 nanoflakes and nanobelts were prepared in two steps; the 

NiCo2O4 intermediates were first formed by a hydrothermal method and the 

intermediates were simply thermal treated to the final product. Owing to their unique 

porous structural features, the NiCo2O4 nanoflakes and nanobelts exhibited high specific 

capacities of 1033 mA h g-1 and 1056 mA h g-1, respectively, good cycling stability and 

rate capability. These exceptional electrochemical performances could be attributed to 

the unique structure of high surface area and void spaces within the surface of 
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nanoflakes and nanobelts, which provides large contact areas between electrolyte and 

active materials for electrolyte diffusion and cushions the volume change during charge-

discharge cycling. 

Graphene/MnO2 hybrid nanosheets were prepared by the incorporating graphene and 

MnO2 nanosheets in ethylene glycol. As electrode materials for supercapacitors, 

graphene/MnO2 hybrid nanosheets of different ratios were investigated. The 

graphene/MnO2 hybrid nanosheets with a weight ratio of 1:4 (graphene: MnO2) 

delivered the highest specific capacitance of 320 F g-1, and exhibited good capacitance 

retention on 2000 cycles. 

Mesoporous NiCo2O4 nanosheets were synthesized by microwave method and applied 

as electrode materials for lithium ion batteries and supercapacitors. Due to its porous 

nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 

mA h g-1 at the current density of 100 mA g-1 with good rate capability and stable 

cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 

nanosheets demonstrated a specific capacitance of 400 F g-1 at the current density of 20 

A g-1 and superior cycling stability over 5000 cycles. The excellent electrochemical 

performance could be ascribed to the thin porous nanosheet structure, which provided 

high specific surface area to increase electrode-electrolyte contact area and facilitate 

rapid ion transport.   

Mesoporous flake-like Manganese-cobalt composite oxide (MnCo2O4) was successfully 

synthesized, using the hydrothermal method. The flake-like MnCo2O4 was evaluated as 

anode materials for lithium ion batteries. It exhibited superior rate capability and good 

cycling stability with a high reversible capacity of 1066 mA h g-1. As electrode 

materials for supercapacitors, MnCo2O4 also demonstrated a high super capacitance of 



 
 

xxvii 
 

1487 F g-1 at the current density of 1 A g-1 and superior cycling stability over 2000 

charge-discharge cycles. 
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