

# Electrode Materials for Lithium-ion Batteries and Supercapacitors

This thesis is submitted in fulfilment of the requirements for the degree of

**Doctor of Philosophy** 

from

University of Technology, Sydney

by

# Anjon Kumar Mondal

B. Sc. (Hons) & M. Sc.

Centre for Clean Energy Technology Faculty of Science 2015

### **CERTIFICATE OF ORIGINAL AUTHORSHIP**

I, Anjon Kumar Mondal certify that the work presented in this thesis has not previously been submitted for a degree nor has been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Anjon Kumar Mondal Sydney, Australia May, 2015

# DEDICATION

This thesis is dedicated to my family. Thank you for all of your love and support.

#### ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Professor Guoxiu Wang for his invaluable advice and supervision throughout this research work. His inventive research ideas and motivation enlightened and encouraged me during my PhD study.

I am grateful to my co-supervisor Assoc. Professor Alison Ung for her constant suggestion, contribution to reviewing my thesis and the fruitful discussion. I also acknowledge Assoc. Professor Andrew McDonagh for his kind help and suggestion.

Special thanks are given to my colleagues, Dr. Hao Liu, Dr. Zhimin Ao, Dr. Xiaodan Huang, Dr. Ali Reza Ranjbartoreh, Dr. Bei Wang, Dr. Bing Sun, Dr. Ying Wang, Dr. Dawei Su, Mr. Shuangqiang Chen, Mr. Kefei Li, Mr. Yiying Wei, Mr. Xiuqiang Xie, Mr. Jinqiang Zhang, Miss Yufei Zhao, Miss Katja Kretschmer, Miss Jing Xu, and Mr. Linfeng Zheng for their innovative ideas, kind co-operation and assistance during the period of this research. It is my pleasure to have worked with all of you and I really appreciate everyone's efforts in creating an intimate atmosphere for the research work.

I would like to acknowledge Dr. Jane Yao for her kind help and support in many ways throughout this study period.

I appreciate the administrative and technical support I received from Dr. Ronald Shimmon, Dr. Linda Xiao, Mrs. Rochelle Seneviratne, Mrs. Era Koirala, Ms. Sarah King, and Ms. Emaly Black.

Finally, I would like to express my sincere gratitude to my wife, my son, my daughter my parents, my family members and relatives. Without their support and encouragement, it would have been impossible for me to complete the research. Their

iii

love is the mental strength that supported me to study abroad and it will hold a special place in my heart forever.

## **RESEARCH PUBLICATIONS**

- 1 A. K. Mondal, D. Su, S. Chen, A. Ung, H. S. Kim, G. X. Wang, Mesoporous MnCo<sub>2</sub>O<sub>4</sub> with a flake-like structure as advanced electrode materials for lithium ion batteries and supercapacitors, *Chemistry–A European Journal*, 2015, 21, 1526-1532. IF: 5.696
- A. K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H. J. Ahn, G. X. Wang, A microwave synthesis of mesoporous NiCo<sub>2</sub>O<sub>4</sub> nanosheets as electrode materials for lithium ion batteries and supercapacitors, *ChemPhysChem*, 2015, 16, 169-175. IF: 3.36
- 3 A. K. Mondal, D. Su, S. Chen, X. Xie, G. X. Wang, Highly porous NiCo<sub>2</sub>O<sub>4</sub> nanoflakes and nanobelts as anode materials for lithium ion batteries with excellent rate capability, *ACS Applied Materials & Interfaces*, 2014, 6, 14827-14835. IF: 5.9
- A. K. Mondal, D. Su, S. Chen, J. Zhang, A. Ung, G. X. Wang, Microwave-assisted synthesis of spherical β-Ni(OH)<sub>2</sub> superstructures for electrochemical capacitors with excellent cycling stability, *Chemical Physics Letters*, 2014, 610-611, 115–120. IF: 1.991
- 5 A. K. Mondal, D. Su, S. Chen, B. Sun, K. Li, G. X. Wang, A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance, *RSC Advances*, 2014, 4, 19476-19481. IF: 3.708
- 6 A. K. Mondal, B. Wang, D. Su, Y. Wang, S. Chen, X. Zhang, G. X. Wang, Graphene/MnO<sub>2</sub> hybrid nanosheets as high performance electrode materials for supercapacitors, *Materials Chemistry and Physics*, 2014, 143, 740-746. IF: 2.129
- 7 A. K. Mondal, D. Su, Y. Wang, S. Chen, Q. Liu, G. X. Wang, Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances, *Journal of Alloys and Compounds*, 2014, 582, 522-527. IF: 2.726
- 8 A. K. Mondal, S. Chen, D. Su, H. Liu, G. X. Wang, Fabrication and enhanced electrochemical performances of MoO<sub>3</sub>/graphene composite as anode material for lithium-ion batteries, *International Journal of Smart Grid and Clean Energy*, 2014, 3, 142-148.
- 9 A. K. Mondal, D. Su, Y. Wang, S. Chen, G. X. Wang, Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance, *Chemistry - An Asian Journal*, 2013, 8, 2828-2832. IF: 3.935
- 10 A. K. Mondal, B. Wang, D. Su, Y. Wang, X. Zhang, G. X. Wang, Preparation and enhanced electrochemical performance of MnO<sub>2</sub> nanosheets for supercapacitors, *Journal of the Chinese Chemical Society*, 2012, 59, 1275-1279. IF: 0.856

| TABLE OF | CONTENTS |
|----------|----------|
|----------|----------|

| CERTIFICATE OF AUTHORSHIP                                   | i      |
|-------------------------------------------------------------|--------|
| DEDICATION                                                  | ii     |
| ACKNOWLEDGEMENTS                                            | iii    |
| RESEARCH PUBLICATIONS                                       | V      |
| TABLE OF CONTENTS                                           | vi     |
| LIST OF TABLES                                              | xii    |
| LIST OF FIGURES                                             | xiii   |
| ABSTRACT                                                    | xxiv   |
| INTRODUCTION                                                | xxviii |
| CHAPTER 1 Literature Review                                 | 1      |
| 1.1 Lithium-ion Batteries                                   | 1      |
| 1.1.1 History and Development                               | 1      |
| 1.1.2 Basic Concepts and Energy Storage Mechanism           | 2      |
| 1.1.3 Advantages and Disadvantages of Lithium-ion Batteries | 4      |
| 1.1.4 Nanostructured Electrode Materials                    | 9      |
| 1.1.4.1 Anode Materials                                     | 11     |
| 1.1.4.2 Cathode Materials                                   |        |
| 1.2 Supercapacitors                                         | 41     |
| 1.2.1 History and Development                               | 41     |
| 1.2.2 Energy Storage Mechanism                              |        |
| 1.2.3 Electrode Materials                                   | 44     |
| 1.2.4 Electrolytes                                          |        |
| CHAPTER 2 Experimental                                      | 63     |
| 2.1 Overview                                                | 63     |
| 2.2 Materials and Chemicals                                 | 63     |

| 2.3 Materials Preparation                                               |
|-------------------------------------------------------------------------|
| 2.3.1 Hydrothermal Method65                                             |
| 2.3.2 Microwave Method                                                  |
| 2.3.3 Precipitation Method                                              |
| 2.4 Materials Characterization                                          |
| 2.4.1 X-ray Diffraction (XRD)68                                         |
| 2.4.2 Field-emission Scanning Electron Microscopy (FESEM)69             |
| 2.4.3 Transmission Electron Microscopy (TEM)70                          |
| 2.4.4 Brunauer-Emmett-Teller (BET) Nitrogen Adsorption-Desorption       |
| Isotherms                                                               |
| 2.4.5 Thermogravimetric Analysis                                        |
| 2.4.6 Raman Spectroscopy                                                |
| 2.4.7 Atomic Force Microscopy                                           |
| 2.4.8 Fourier Transform Infrared Spectroscopy                           |
| 2.5 Electrode Fabrication and Cell Assembly                             |
| 2.5.1 Electrode fabrication                                             |
| 2.5.2 Cell Assembly                                                     |
| 2.5.2.1 Lithium ion batteries                                           |
| 2.5.2.2 Supercapacitors74                                               |
| 2.6 Electrochemical Measurements74                                      |
| 2.6.1 Cyclic voltammetry                                                |
| 2.6.2 Galvanostatic charge-discharge                                    |
| 2.6.3 Electrochemical Impedance Spectroscopy76                          |
| CHAPTER 3 Hydrothermal synthesis of nickel oxide nanosheets for lithium |
| -ion batteries and supercapacitors with excellent performance78         |
| 3.1 Introduction                                                        |
| 3.2 Experimental                                                        |

| 3.2.1 Preparation of NiO nanosheets                                                               | 79            |
|---------------------------------------------------------------------------------------------------|---------------|
| 3.2.2 Materials characterization.                                                                 | 79            |
| 3.2.3 Electrochemical testing                                                                     | 80            |
| 3.3 Results and Discussion                                                                        | 81            |
| 3.3.1 Structural and morphological analysis                                                       |               |
| 3.3.2 Electrochemical performance of NiO nanosheets for lithium ion b                             | patteries and |
| supercapacitors                                                                                   |               |
| 3.4 Conclusions                                                                                   | 90            |
| CHAPTER 4 Microwave-assisted synthesis of spherical β-Ni(OH) <sub>2</sub> su                      | perstructures |
| for electrochemical capacitors with excellent cycling stability                                   | 92            |
| 4.1 Introduction                                                                                  | 92            |
| 4.2 Experimental                                                                                  | 94            |
| 4.2.1 Preparation of spherical β-Ni(OH) <sub>2</sub>                                              | 94            |
| 4.2.2 Materials characterization                                                                  | 95            |
| 4.2.3 Electrochemical measurements                                                                | 95            |
| 4.3 Results and Discussion                                                                        | 96            |
| 4.3.1 Physical and structural characterization                                                    | 96            |
| 4.3.2 Electrochemical properties for supercapacitors                                              | 101           |
| 4.4 Conclusions                                                                                   | 105           |
| CHAPTER 5 Microwave synthesis of $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanoparticles and their | r lithium     |
| storage properties: A comparative study                                                           | 106           |
| 5.1 Introduction.                                                                                 | 106           |
| 5.2 Experimental                                                                                  | 107           |
| 5.2.1 Preparation of Fe <sub>2</sub> O <sub>3</sub> nanoparticles                                 | 107           |
| 5.2.2 Materials Characterization                                                                  | 108           |
| 5.2.3 Electrochemical testing                                                                     | 108           |

| 5.3 Results and Discussion                                                             | 109  |
|----------------------------------------------------------------------------------------|------|
| 5.3.1 Structural and morphological analysis                                            |      |
| 5.3.2 Electrochemical performances                                                     | 114  |
| 5.4 Conclusions                                                                        | 123  |
| CHAPTER 6 Highly porous NiCo <sub>2</sub> O <sub>4</sub> nanoflakes and nanobelts as a | node |
| Materials for lithium ion batteries with excellent rate capability                     | 124  |
| 6.1 Introduction                                                                       | 124  |
| 6.2 Experimental                                                                       | 126  |
| 6.2.1 Synthesis of NiCo <sub>2</sub> O <sub>4</sub> nanoflakes and nanobelts           | 126  |
| 6.2.2 Materials characterization                                                       | 127  |
| 6.2.3 Electrochemical measurements                                                     | 127  |
| 6.3 Results and Discussion                                                             | 128  |
| 6.3.1 Physical and structural characterization                                         | 128  |
| 6.3.2 Electrochemical performances for lithium ion batteries                           | 137  |
| 6.4 Conclusions                                                                        | 145  |
| CHAPTER 7 Graphene/MnO <sub>2</sub> hybrid nanosheets as high performan                | ice  |
| electrode materials for supercapacitors                                                | 147  |
| 7.1 Introduction                                                                       | 147  |
| 7.2 Experimental                                                                       | 150  |
| 7.2.1 Synthesis of graphene nanosheets                                                 | 150  |
| 7.2.2 Synthesis of MnO <sub>2</sub> nanosheets                                         | 150  |
| 7.2.3 Preparation of graphene-MnO <sub>2</sub> hybrid nanosheets                       | 151  |
| 7.2.4 Materials Characterization                                                       | 151  |
| 7.2.5 Electrochemical testing                                                          | 151  |
| 7.3 Results and Discussion                                                             | 152  |
| 7.3.1 Structural and morphological characterization                                    | 152  |

| 7.3.2 Electrochemical performances for supercapacitors                                                  | .157 |
|---------------------------------------------------------------------------------------------------------|------|
| 7.4 Conclusions                                                                                         | 161  |
| CHAPTER 8 A microwave synthesis of mesoporous NiCo <sub>2</sub> O <sub>4</sub> nanosheets as            |      |
| electrode materials for lithium ion batteries and supercapacitors                                       | 163  |
| 8.1 Introduction                                                                                        | 163  |
| 8.2 Experimental                                                                                        | 165  |
| 8.2.1 Synthesis of NiCo <sub>2</sub> O <sub>4</sub> nanosheets                                          | 165  |
| 8.2.2 Materials characterization                                                                        | 166  |
| 8.2.3 Electrochemical testing                                                                           | 166  |
| 8.3 Results and Discussion                                                                              | 167  |
| 8.3.1 Structural analysis and surface characterization                                                  | 167  |
| 8.3.2 Electrochemical performances for lithium ion batteries and                                        |      |
| supercapacitors                                                                                         | 172  |
| 8.4 Conclusions                                                                                         | 179  |
| CHAPTER 9 Mesoporous MnCo <sub>2</sub> O <sub>4</sub> with a flake-like structure as advanced           |      |
| electrode materials for lithium ion batteries and supercapacitors                                       | 180  |
| 9.1 Introduction                                                                                        | 180  |
| 9.2 Experimental                                                                                        | 182  |
| 9.2.1 Preparation of flake-like MnCo <sub>2</sub> O <sub>4</sub>                                        | 182  |
| 9.2.2 Physical Characterization                                                                         | 182  |
| 9.2.3 Electrochemical measurements                                                                      | 182  |
| 9.3 Results and discussion                                                                              | 183  |
| 9.3.1 Structural and morphological analysis                                                             | 183  |
| 9.3.2 Electrochemical properties of like MnCo <sub>2</sub> O <sub>4</sub> for lithium ion batteries and |      |
| supercapacitors                                                                                         | 191  |
| 9.4 Conclusions                                                                                         | 199  |

| CHAPTER 10 Conclusions and future perspective |     |
|-----------------------------------------------|-----|
| 10.1 Conclusions                              |     |
| 10.2 Future perspective                       | 201 |
| APPENDIX: NOMENCLATURE                        | 203 |
| REFERENCES                                    | 206 |

# LIST OF TABLES

| Table 1.1 Nonaqueous electrolytes for lithium ion batteries               | 7  |
|---------------------------------------------------------------------------|----|
| Table 1.2 Density, resistivity and operating voltage window for different |    |
| electrolytes                                                              | 60 |
| Table 2.1 Materials and chemicals                                         | 63 |

#### **LIST OF FIGURES**

| Figure 1.1 Schematic illustration of the charge/discharge process involved in a lithium- | ion |
|------------------------------------------------------------------------------------------|-----|
| Cell                                                                                     | 3   |
| Figure 1.2 Voltage versus capacity for electrode materials for the next generation       | of  |
| rechargeable Li-based cells                                                              | .5  |

**Figure 1.8** SEM images of the nickel oxide nanocone arrays (Ni NCAs) before and after oxidation. (a, b) SEM images of Ni NCAs deposited on Ni foam; the inset in (a) xiii

**Figure 1.9** (a) Overview SEM image of  $Fe(OH)_x$  nanotubes; (b) SEM image of cracked nanotubes showing exposed interior; (c and d) TEM images of Fe(OH)x nanotubes; (e) wall structure of the nanotubes. (f) Discharge/charge voltage profiles of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanotubes cycled between 0.01–3.0 V at 0.5 C; (b) cycling performance of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanotubes and nanoparticles at 0.5 C. All potentials are with reference to Li/Li<sup>+</sup>.....29

**Figure 1.14** (a) XRD pattern, (b) SEM image, (c and d) TEM images and (e) Cycling performance and coulombic efficiency of the urchin-like NiCo<sub>2</sub>O<sub>4</sub> nanostructures....54

Figure 2.3 Microwave Synthesizer (Model: NOVA-II)......67

**Figure 2.6** (a) A UniLab glove box, manufactured by MBraun, Germany (b) An electrochemistry workstation (CHI660D model) and (c) Neware battery testers.....75

Figure 3.1 XRD patterns of as-synthesized (a)  $\alpha$ -Ni(OH)<sub>2</sub> and (b) NiO nanosheets...81

**Figure 4.1** XRD pattern of spherical β-Ni(OH)<sub>2</sub>.....96

Figure 4.4 TGA curve of as-synthesized spherical β-Ni(OH)<sub>2</sub>.....99

**Figure 4.5** FTIR spectrum of the prepared spherical β-Ni(OH)<sub>2</sub>.....100

**Figure 4.7** (a) Galvanostatic charge/discharge curves at different current densities (1 to  $10 \text{ A g}^{-1}$ ) and (b) CV curves at various scan rates ranging from 2 to 50 mV s<sup>-1</sup> for the spherical  $\beta$ -Ni(OH)<sub>2</sub> electrode in 2 M KOH electrolyte......102

**Figure 4.8** (a) Specific capacitance at various discharge current densities and (b) cycling performance of spherical  $\beta$ -Ni(OH)<sub>2</sub> at a scan rate of 50 mV s<sup>-1</sup>. The charge and discharge curves of  $\beta$ -Ni(OH)<sub>2</sub> for the first ten cycles (the inset in Fig. 8(b))......103

**Figure 5.1** XRD patterns of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) small particles (precursor concentration 0.5 mmol) and (b) big particles (precursor concentration 5 mmol).....109

**Figure 5.2** FESEM images of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> small particles (precursor concentration 0.5 mmol) (a), (b) low magnification and (c), (d) high magnification......110

| particles | (b) | big | particle | s at a | a scan | rate | of 0.1 | mV s | s <sup>-1</sup> ir | n the | voltage | range | of | 0.01 | -3.0 |
|-----------|-----|-----|----------|--------|--------|------|--------|------|--------------------|-------|---------|-------|----|------|------|
| V         |     |     |          |        |        |      |        |      |                    |       |         |       |    | 1    | 116  |

**Figure 5.6** Nitrogen adsorption-desorption isotherms of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) small particles (b)

Figure 5.7 Cyclic voltammograms of the electrodes made from  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) small

Figure 5.8 Discharge/charge profiles of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (a) small particles and (b) big particles at a current density of 100 mA g<sup>-1</sup>, in the potential range of 0.01-3.0 V......117

Figure 5.9 Cycling performances of the electrodes made of small and big particles of  $\alpha$ - $Fe_2O_3$  at the current density of (a) 100 mA g<sup>-1</sup> and (b) 500 mA g<sup>-1</sup>.....118

| Figure 5.10 FESEM images of $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanoparticles after charge-discharge | cycling |
|-----------------------------------------------------------------------------------------------------------|---------|
| (a), (b) small particles and (c), (d) big particles                                                       | 119     |

| Figure 5.11 Rate performances of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrodes at different cur | rrent densities |
|-----------------------------------------------------------------------------------------------------------|-----------------|
| (a) small particles and (b) big particles                                                                 | 121             |

| Figure 5.12 Electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> electrochemical impedance spectra of the $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> | etrode (small and big |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| particles) (a) fresh cell (b) after 80 cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |

| Figure 6.1 XRD par | tterns of NiCo <sub>2</sub> O <sub>4</sub> | calcinated at | 500 °C for | r 3 h (a) n | anoflakes (b) |
|--------------------|--------------------------------------------|---------------|------------|-------------|---------------|
| nanobelts          |                                            |               |            |             | 128           |

Figure 6.2 FESEM images of the Ni-Co based intermediate (a and b) nanoflakes (low and high magnification), (c and d) nanobelts (low and high magnification)......130

| Figure 6.3 FESEM images of porous NiCo <sub>2</sub> O <sub>4</sub> nanc | oflakes (a and b) low magnification, |
|-------------------------------------------------------------------------|--------------------------------------|
| (c and d) high magnification                                            |                                      |

 Figure 6.5
 SEM-EDX pattern of (a) NiCo<sub>2</sub>O<sub>4</sub> nanoflakes and (b) NiCo<sub>2</sub>O<sub>4</sub>

 nanobelts
 133

Figure 6.9 TGA curves for the NiCo<sub>2</sub>O<sub>4</sub> nanoflakes (a) and NiCo<sub>2</sub>O<sub>4</sub> nanobelts (b)..136

| Figure   | 6.13   | Rate  | perform | nances | for | the | NiCo <sub>2</sub> O | elect | rode a | at v | various | current | densities |
|----------|--------|-------|---------|--------|-----|-----|---------------------|-------|--------|------|---------|---------|-----------|
| (a) nano | oflake | s and | (b) nan | obelts |     |     |                     |       |        | •••• |         |         | 141       |

**Figure 7.2** FESEM images of (a) graphene nanosheets, (b)  $MnO_2$  nanosheets, (c) graphene/MnO<sub>2</sub> (1:4 in weight ratio) hybrid nanosheets (low magnification), and (d) graphene/MnO<sub>2</sub> (1:4 in weight ratio) hybrid nanosheets (high magnification)......153

 Figure 7.5 SEM-EDX elemental analysis of graphene/MnO2 (1:4 in weight ratio)

 hybrid nanosheets
 156

 Figure 7.6 Raman spectrum of graphene/MnO2 (1:4 in weight ratio) hybrid

 nanosheets
 156

| Figure 7.7      | CV curves of graphene/MnO <sub>2</sub> (1:4 in weight ratio) hybrid nat                                             | nosheets at              |
|-----------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|
| different sca   | an rates of 5 mV s <sup>-1</sup> , 10 mV s <sup>-1</sup> , 20 mV s <sup>-1</sup> , 50 mV s <sup>-1</sup> and 100 mV | / s <sup>-1</sup> in 1 M |
| $Na_2SO_4$ solu | ution                                                                                                               | 157                      |

**Figure 7.8** Charge/discharge profiles of graphene/ $MnO_2$  (1:4 in weight ratio) hybrid nanosheets at the current density of 500 mA g<sup>-1</sup> in 1 M Na<sub>2</sub>SO<sub>4</sub> solution......158

Figure 7.9 Comparison of cycling performance of graphene/MnO<sub>2</sub> hybrid nanosheets with different ratios in 1 M Na<sub>2</sub>SO<sub>4</sub> at the current density of 500 mA  $g^{-1}$ ......159

| Figure 7.10 Cycling performance | of MnO <sub>2</sub> nanosheets at the | current density of 500 mA |
|---------------------------------|---------------------------------------|---------------------------|
|                                 |                                       |                           |

| $g^{-1}$ in 1 M Na <sub>2</sub> S | \$04 |  |
|-----------------------------------|------|--|
|-----------------------------------|------|--|

| Figure 8.1 XRD | pattern of NiCo <sub>2</sub> O <sub>4</sub> | nanosheets | 167 |
|----------------|---------------------------------------------|------------|-----|
|----------------|---------------------------------------------|------------|-----|

| Figure 8.2 FI | ESEM images | of the Ni-C | o based | intermediate | (a) low | magnification | and |
|---------------|-------------|-------------|---------|--------------|---------|---------------|-----|
| (b) high magn | ification   |             |         |              |         | 1             | 68  |

**Figure 8.9** (a) Rate performance of NiCo<sub>2</sub>O<sub>4</sub> nanosheets......175

**Figure 8.11** (a) Galvanostatic discharge and charge curves at different current densities (2 to 20 A  $g^{-1}$ ) and (b) CV curves at various scan rates ranging from 2 to 20 mV s<sup>-1</sup> for the porous NiCo<sub>2</sub>O<sub>4</sub> nanosheet electrode in 2 M KOH electrolyte......177

Figure 9.1 XRD pattern of flake-like MnCo<sub>2</sub>O<sub>4</sub>......184

**Figure 9.3** FESEM images of mesoporous flake-like  $MnCo_2O_4$  ((a) and (b)) low magnification, ((c) and (d)) high magnification......185

 Figure 9.5 FESEM images (without Na2SO4) (a) low magnification and (b) high magnification.

 187

 Figure 9.6 FESEM images (temperature less than 180 °C) (a) low magnification and (b)

 high magnification

 188

**Figure 9.10** The first three consecutive CV curves of the electrode made from flake-like  $MnCo_2O_4$  in the potential range of 0.01–3.0 V at a scan rate of 0.1 mV s<sup>-1</sup>.....192

 Figure 9.12 Rate capability test for the flake-like MnCo<sub>2</sub>O<sub>4</sub> electrode at different

 current densities
 195

**Figure 9.15** Cycling performance of flake-like  $MnCo_2O_4$  at a scan rate of 50 mV s<sup>-1</sup>. The charge and discharge curves for the first ten cycles (the inset in Fig. 10)......198

#### ABSTRACT

With the increasing demand for energy and growing concern about environmental pollution caused by the enormous consumption of fossil fuels, it is an urgent need of renewable energy and clean energy sources. Development of suitable mobile electronics or energy storage technologies that can be used in electric vehicles would help to address problem. As energy storage devices, lithium-ion batteries have attracted attention due to their high energy density and storage capacity. Supercapacitors have attracted enormous attention due to high power density and long cycle life. The exploration of new electrode materials for lithium-ion batteries and supercapacitors is the focus of research to satisfy the ever-rising demands for better performance including longer cycle life and improved safety. Nanostructured materials exhibit excellent electrochemical performances, and they are regarded as promising materials for highperformance lithium-ion batteries and supercapacitors. In this doctoral study, various nanostructured materials such as, nanosheets, nanospheres, nanobelts, nanoflakes, hybrid nanostructures and mesoporous structures have been successfully synthesized and characterised, using different methods. Their electrochemical properties have also been evaluated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectra.

Nickel oxide (NiO) nanosheets have been synthesized, using a simple ethylene glycol mediated hydrothermal method. When evaluated as anode materials for lithium ion batteries, NiO nanosheets exhibited high reversible capacities of 1193 mA h g<sup>-1</sup> at the current density of 500 mA g<sup>-1</sup> with enhanced rate capability and good cycling stability. While as electrode materials for supercapacitors, NiO nanosheets also demonstrated a

xxiv

superior specific capacitance of 999 F  $g^{-1}$  at the current density of 20 A  $g^{-1}$  with excellent cycling performance.

The spherical  $\beta$ -Ni(OH)<sub>2</sub> superstructures was successfully synthesised in a single-step microwave-assisted process, without using any templates. Due to its unique morphology, the prepared  $\beta$ -Ni(OH)<sub>2</sub> electrode displayed a high and specific capacitance of 2147 F g<sup>-1</sup> at a discharge current of 1 A g<sup>-1</sup> with excellent cycling stability (99.5 % capacitance retained after 2000 cycles).

A straight forward microwave reaction was employed to successfully prepare  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles with two different sizes. When used as anode materials for lithium ion batteries of both the materials showed good electrochemical performances. Remarkably, the electrode made of larger particles (200-300 nm) exhibited higher reversible capacity of 1012 mA h g<sup>-1</sup> with better rate capability and excellent cycling stability (88 % retention after 80 cycles) than those of the smaller particles (20-30 nm) (49 % retention after 80 cycles). The better lithium storage properties of the large particles can be attributed to their structural integrity during cycling, which offers adequate spaces to accommodate volume expansion during Li<sup>+</sup> insertion/extraction and shortens the diffusion paths of lithium ions.

Highly porous NiCo<sub>2</sub>O<sub>4</sub> nanoflakes and nanobelts were prepared in two steps; the NiCo<sub>2</sub>O<sub>4</sub> intermediates were first formed by a hydrothermal method and the intermediates were simply thermal treated to the final product. Owing to their unique porous structural features, the NiCo<sub>2</sub>O<sub>4</sub> nanoflakes and nanobelts exhibited high specific capacities of 1033 mA h g<sup>-1</sup> and 1056 mA h g<sup>-1</sup>, respectively, good cycling stability and rate capability. These exceptional electrochemical performances could be attributed to the unique structure of high surface area and void spaces within the surface of

nanoflakes and nanobelts, which provides large contact areas between electrolyte and active materials for electrolyte diffusion and cushions the volume change during charge-discharge cycling.

Graphene/MnO<sub>2</sub> hybrid nanosheets were prepared by the incorporating graphene and  $MnO_2$  nanosheets in ethylene glycol. As electrode materials for supercapacitors, graphene/MnO<sub>2</sub> hybrid nanosheets of different ratios were investigated. The graphene/MnO<sub>2</sub> hybrid nanosheets with a weight ratio of 1:4 (graphene: MnO<sub>2</sub>) delivered the highest specific capacitance of 320 F g<sup>-1</sup>, and exhibited good capacitance retention on 2000 cycles.

Mesoporous NiCo<sub>2</sub>O<sub>4</sub> nanosheets were synthesized by microwave method and applied as electrode materials for lithium ion batteries and supercapacitors. Due to its porous nanosheet structure, the NiCo<sub>2</sub>O<sub>4</sub> electrodes exhibited a high reversible capacity of 891 mA h g<sup>-1</sup> at the current density of 100 mA g<sup>-1</sup> with good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo<sub>2</sub>O<sub>4</sub> nanosheets demonstrated a specific capacitance of 400 F g<sup>-1</sup> at the current density of 20 A g<sup>-1</sup> and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous nanosheet structure, which provided high specific surface area to increase electrode-electrolyte contact area and facilitate rapid ion transport.

Mesoporous flake-like Manganese-cobalt composite oxide ( $MnCo_2O_4$ ) was successfully synthesized, using the hydrothermal method. The flake-like  $MnCo_2O_4$  was evaluated as anode materials for lithium ion batteries. It exhibited superior rate capability and good cycling stability with a high reversible capacity of 1066 mA h g<sup>-1</sup>. As electrode materials for supercapacitors,  $MnCo_2O_4$  also demonstrated a high super capacitance of 1487 F  $g^{-1}$  at the current density of 1 A  $g^{-1}$  and superior cycling stability over 2000 charge-discharge cycles.