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Abstract
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Doctor of Philosophy

Motion Segmentation Based Robust RGB-D SLAM

by Youbing Wang

While research on simultaneous localisation and mapping (SLAM) in static environments

can be regarded as a significant success due to intensive work during the last several

decades, conducting SLAM, especially vision-based SLAM, in dynamic scenarios is still

at its early stage. Although it seems like just one step further, the dynamic elements have

brought in many unanticipated challenges, including motion detection, segmentation,

tracking and 3D reconstruction of both the static environments and the moving objects,

in addition to the handling of motion blur.

Solely based on RGB-D data with no prior knowledge available, this work centres upon

proposing new practical solution frameworks for conducting SLAM in dynamic envi-

ronments with efficient and robust motion segmentation methods serving as the basis.

After a detailed review of the related achievements for SLAM in static environments

as well as dynamic ones, and an analysis of the unaddressed challenges, four different

motion segmentation methods, which include two 2-view sparse feature based motion

segmentation algorithms, a 2-view semi-dense motion segmentation algorithm and an

extended n-view dense moving object segmentation algorithm, are firstly proposed and

their advantages, disadvantages and feasibility for different practical SLAM application

scenarios are evaluated.

Based on the proposed motion segmentation methods, two kinds of solution frameworks

for performing SLAM in dynamic scenarios are then put forward: the first one is formu-

lated by integrating our sparse feature based motion segmentation techniques with the

available pose-graph SLAM framework; and the other one is built upon dense moving

object segmentation and tailored for dense SLAM. Related simulation and experimental

results have demonstrated the effectiveness of our approaches.
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