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Doctor of Philosophy

Motion Segmentation Based Robust RGB-D SLAM

by Youbing Wang

While research on simultaneous localisation and mapping (SLAM) in static environments

can be regarded as a significant success due to intensive work during the last several

decades, conducting SLAM, especially vision-based SLAM, in dynamic scenarios is still

at its early stage. Although it seems like just one step further, the dynamic elements have

brought in many unanticipated challenges, including motion detection, segmentation,

tracking and 3D reconstruction of both the static environments and the moving objects,

in addition to the handling of motion blur.

Solely based on RGB-D data with no prior knowledge available, this work centres upon

proposing new practical solution frameworks for conducting SLAM in dynamic envi-

ronments with efficient and robust motion segmentation methods serving as the basis.

After a detailed review of the related achievements for SLAM in static environments

as well as dynamic ones, and an analysis of the unaddressed challenges, four different

motion segmentation methods, which include two 2-view sparse feature based motion

segmentation algorithms, a 2-view semi-dense motion segmentation algorithm and an

extended n-view dense moving object segmentation algorithm, are firstly proposed and

their advantages, disadvantages and feasibility for different practical SLAM application

scenarios are evaluated.

Based on the proposed motion segmentation methods, two kinds of solution frameworks

for performing SLAM in dynamic scenarios are then put forward: the first one is formu-

lated by integrating our sparse feature based motion segmentation techniques with the

available pose-graph SLAM framework; and the other one is built upon dense moving

object segmentation and tailored for dense SLAM. Related simulation and experimental

results have demonstrated the effectiveness of our approaches.
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Chapter 1

Introduction

1.1 Simultaneous Localisation and Mapping (SLAM)

As shown in Fig. 1.1, mobile robotics is composed of three closely related branches of

research topics, i.e., mapping which concerns about building a map of the environment,

localisation that deals with keeping track of the robot’s location in the environment,

and motion control and path planning. Accordingly, in practice, they are regarded as

three basic capabilities of a robot and are usually treated in separate disciplines [1–

3]. However, if a robot is deployed in a formerly unknown environment, mapping and

localisation would become two highly interdependent problems: each of them relies on

the results of the other’s. It was under such an understanding that some researchers

propose to deal with them together, thus SLAM as an independent research area came

into beings [4]. Since SLAM can endow mobile robots with the ability of exploring in

unknown environments autonomously, much attention has been attracted towards this

topic. And within the last several decades, we have witnessed significant progress in

this area, focusing on conducting SLAM in static environments. As the result, many

researchers share the feeling that this problem has been solved [5].

Figure 1.1: SLAM in relation with the other research topics in mobile robotics.
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With the development of SLAM research, various kinds of sensors have been employed

to collect data, among which are laser scanners, cameras (including stereo rig and single

camera), RGB-D sensors which can provide both RGB and depth information, sonar

sensors, inertial measurement units (IMUs), quite recently tactile sensors, radars, wifi

signals, or combinations of them. Each of them calls for a specific method to extract

odometry and loop-closures from the raw sensor data. Accordingly, SLAM can be further

divided into many sub-areas, such as laser SLAM, stereoSLAM, monoSLAM (the cor-

responding research area in computer vision is known as structure from motion (SfM)),

RGB-D SLAM and sensor-fusion based SLAM which includes more than one sensor,

either the same kind or different kinds.

On the other hand, in terms of methodology, at its early stage, a variety of filter-based

methods, such as Kalman filter (KF) [6], extended Kalman filter (EKF), extended infor-

mation filter (EIF) and particle filters, constituted the predominant ways to tackle the

problem. However, gradually people come to realise that those filter-based methods suf-

fer from inconsistency problem [7], so optimisation-based methods boom quickly. Nowa-

days, the common practice in modern SLAM is the separation of the sensor-independent

part of work, i.e., graph optimisation, from the sensor-dependent part which mainly

concerns about extracting odometry, observations and loop closures from the raw sensor

data. As shown in Fig. 1.2, the sensor-dependent part is usually called the front-end [8],

and the sensor-independent part is widely known as the back-end [9, 10]. This division

frees researchers from considering the special characteristics of different sensors, thus

facilitating the development of general back-ends. As the result, many mature theories

and algorithms have been established in this regard. However, as the front-end part is

highly sensor-specific, there is no general or automatic way readily available.

Figure 1.2: The flowchart of modern SLAM.

Under this situation, for any specific SLAM application, one needs to firstly choose an

appropriate front-end method according to the sensor type, and then employ one of the

general back-ends for SLAM.
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1.2 SLAM in Dynamic Scenarios

1.2.1 Various Dynamic Scenarios to Handle

Undoubtedly, compared with dynamic scenarios, static environments are much simpler

and we can easily reach consensus on the characteristics of them. However, as for dy-

namic scenarios and their corresponding features, it is very difficult to describe them

using just one unified formulation. Furthermore, a multitude of researchers are dealing

with them for divergent purposes. For example, as we know, we are living in a changing

world whose appearance can be quite inconsistent due to variable light/weather con-

ditions or in different seasons. To deal with this kind of problems, the research group

led by Paul Newman proposes the concept of life long exploration [11] in outdoor en-

vironments, emphasising accumulating the changing maps: performing visual odometry

(VO) and localisation at the same time, and if localisation fails, VO will be utilised to

accumulate a new experience of the appearance of the same environment. Moreover,

some other researchers are interested in another type of indoor dynamic scenarios where

the environment will remain static during each round of SLAM, but parts of it may be

changed due to man-made modifications [12]. In this case, they propose to integrate and

update the corresponding pose graphs between different rounds. Nevertheless, this two

kinds of scenarios share one key property: within each round, the environment remain

static or the changes within it are extremely small, therefore the formulations for static

environments can be directly utilised.

However, there still exists another kind of dynamic scenarios that are ubiquitous in our

daily life: a considerable part of our home, offices, or streets, are dominated by moving

people, activated vehicles or other dynamic objects. While the background remains the

same, the dynamic objects constitute a large portion of the images we are taking, in

which case RANdom SAmple Consensus (RANSAC) [13] -based VO will become highly

inefficient and may fail in some situations. In this thesis, we are interested in this kind

of dynamic scenarios. And without causing confusion, we will simply call our problem

as conducting SLAM in dynamic environments thereafter.

1.2.2 Conducting SLAM in Dynamic Environments

Although in SLAM research, some effective and mature solution frameworks have al-

ready been established, most of them assume that the whole environment remains static

while the robot as the only dynamic part moves through it performing SLAM tasks.

As a matter of fact, when it comes to conducting SLAM in dynamic scenarios, most of

them will fail. To tackle the new problem, different methodologies have been developed
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for different purposes. Some focus on employing robust estimation methods, such as

RANSAC or robust kernels, to filter out dynamic objects to make the odometry estima-

tion and thus the SLAM results with respect to the static environment more robust [14].

And there are some others proposing to track the moving objects and perform SLAM

at the same time [15–20]. The latter is closely related to what is now widely known

as multibody SLAM, or multibody structure-and-motion (MSaM) in computer vision.

Multibody SLAM/MSaM, as an extension to SLAM/SfM in static environments, aims

to map both the dynamic objects and the static environment in addition to performing

localisation at the same time, although due to many difficulties most of the available

work is still restricted to tracking moving objects plus conducting static SLAM only.

1.2.3 Another Chicken-and-Egg Problem?

Historically, mapping and localisation form a typical chicken-and-egg problem: without

a prior map, localisation can be elusive; without localisation, mapping is impossible,

although with the introduction of SLAM, after decades of intensive research, we come

to realise that tackling these two problems together is possible.

To some degree, conducting SLAM in dynamic scenarios will burden us with another

chicken-and-egg problem, especially for those systems only equipped with allothetic sen-

sors such as laser scanners and cameras: without getting rid of the moving parts, odom-

etry and SLAM results are subject to errors; without prior knowledge of the static

environment and camera poses, motion segmentation would be complicated and limited

by sensor noises and errors.

1.2.4 Motivation

Now many researchers share the opinion that conducting SLAM in static environments

has become a relatively solved problem due to intensive research work in the last several

decades. However, when it comes to performing SLAM in dynamic scenarios, it is a

different story. Although the latter has also gained much attention for a long time and

some achievements have been made, it is still far from being solved. Many reasons can

be attributed to this situation, among which lacking robust tools to deal with the serious

challenges imposed by general dynamic scenarios which include motion detection, seg-

mentation, tracking and 3D reconstruction of the both static environments and moving

objects, constitutes the basic one.

Nevertheless, the importance of conducting SLAM in dynamic environments could not

be overstated. Firstly, we are living in a highly dynamic world, robots need to be able to
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localise themselves, map and navigate through this changing world before human-robot

coexistence becomes reality. Secondly, on the other hand, if we can model the dynamic

process of the changing world including human activities, it will lay a solid foundation

for many other applications such as semantic SLAM and human robot interaction.

It is under such a general situation that this work is devoted to looking for robust

methods that can enable us to perform SLAM in dynamic scenarios only using a RGB-

D camera. Although dynamic scenarios have brought in many new challenges, at least

parts of them are static or rigid, and for them we can still employ the formulations for

performing SLAM in static environments. Therefore, in our methodology, what we have

learned from conducting SLAM in static environments constitutes the starting point for

executing SLAM in dynamic scenarios.

However, when it comes to performing SLAM in general dynamic scenarios, if we want

to make full use of what we have learned in performing SLAM in static environments, ef-

fective measures capable of dividing the originally complex scenarios into correct groups,

i.e., motion segmentation methods, amount to be the key bridging step.

1.3 The Scope and Limitations of This Thesis

1.3.1 The Targeted Problem

While conducting visual SLAM in a static environment, only the camera is moving and

all of the other objects are static (some moving objects may appear from time to time,

but they are usually limited to just few shots and occupy very small parts of the images);

if some moving objects constitute considerable parts of the scenario, and remain in front

of the camera performing some activities for a continuous length of time, then it becomes

a typical dynamic scenario that we aim to address in this thesis. Although, compared

with SLAM in static environments, conducting SLAM in dynamic scenarios seems only

need to handle the moving objects in addition to the static environment and camera

poses, the persistent moving objects could impose serious impacts on the traditional

SLAM process and results. Therefore, we need to find new robust methods to cope with

the problem.

1.3.2 Research Scope

In this thesis, we are interested in proposing practical measures that enable us to perform

visual SLAM in real dynamic scenarios that include both slow and fast continuous non-

rigid movements. The RGB-D data provided by Microsoft Kinect is the only source of
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information we are using, and we have no prior restriction and knowledge of the motion

model of the camera nor any object model. In other words, our analysis is solely based

on the RGB-D video itself.

And the two major emphases targeted in this thesis are:

Effective Motion Segmentation Methods for Challenging Real Scenarios.

With both sparse feature-based and dense segmentation based methods in consider-

ation, we pay special attention to their capability of discerning slow and continuous

non-rigid movements close to the camera, which means that moving objects constitute

a large part of the images.

Robust SLAM Solution Frameworks for RGB-D SLAM in Dynamic Sce-

narios. By incorporating the proposed motion segmentation methods to form robust

front-ends and employing pose-graph based SLAM back-end, we are especially concerned

about practical solution frameworks capable of handling motion blur and featureless re-

gions.

1.3.3 Limitations

Since essentially we are conducting visual SLAM without any other sensor, one corre-

sponding limitation is that we need enough visual information in each image that can

enable us to obtain acceptable visual odometry for SLAM. Otherwise, visual SLAM is

impossible at the current stage.

In addition, in this thesis, we concentrate on obtaining camera poses instead of mapping

after motion segmentation. Motion segmentation constitutes a very important topic in

our work. After motion segmentation, through pose-graph SLAM, we can obtain an

estimation of the camera poses. Based on the results, for rigid moving objects, we can

achieve satisfactory mapping results by utilising the readily available surface mapping

applications such as Kinectfusion [21]. However, when it comes to mapping non-rigid

moving objects, there are still many challenges involved. Mapping of dynamic objects

will be a part of our future work.

Bearing these two major limitations in mind, this thesis is oriented to make full use of

what we have achieved in SLAM, computer vision and many other closely-related areas

to handle dynamic scenarios in RGB-D SLAM area.
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1.4 Main Contributions

Centring around providing practical solutions for challenging real scenarios, different

methods based on different assumptions and information have been put forward. More

specifically, the main contributions of this thesis are four folded: by combining the

ideas of available 2D and 3D motion segmentation methods, a more efficient and ro-

bust method than traditional robust methods such as RANSAC and robust kernels is

proposed; from sparse to dense, robust two-view based motion segmentation methods ca-

pable of handling challenging dynamic scenarios are proposed; from two-view to n-view,

a practical pipeline that can segment densely moving object out is proposed; based on

these proposed motion segmentation methods, practical solution frameworks for robust

SLAM in dynamic scenarios are proposed.

1.5 Publication List

• Y. Wang and S. Huang, ”Towards Dense Moving Object Segmentation based

Robust Dense RGB-D SLAM in Dynamic Scenarios”, in International Conference

on Control, Automation, Robotics and Vision (ICARCV), 10th-12th, December,

2014

• Y. Wang and S. Huang, ”Motion Segmentation based Robust RGB-D SLAM”, in

World Congress on Intelligent Control and Automation (WCICA), 29th,June-4th,

July, 2014

• Y. Wang and S. Huang, ”An Efficient Motion Segmentation Algorithm for Multi-

body RGB-D SLAM”, in the Australasian Conference on Robotics and Automation

(ACRA), Sydney, 2nd-4th, December, 2013

1.6 The Structure of This Thesis

In Chapter 2, we give a detailed illustration and review of the related problems involved

in conducting SLAM in static and dynamic scenarios and the corresponding methodolo-

gies having been proposed so far in robotics and computer vision communities. More

importantly, we focus on what is still missing while dealing with the challenges. Based

on in-depth analysis, we present our ideas to improve the existing techniques in various

aspects.
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In Chapter 3, we propose a sparse feature distance-based motion segmentation method

for RGB-D SLAM and together with the pose-graph back-end we could obtain satisfac-

tory simulation and experimental results.

In Chapter 4, another sparse feature motion-model-based motion segmentation method

is presented. To cope with highly dynamic scenarios, a semi-dense and adaptive version

of it is also put forward. Furthermore, for each version of the method, we demonstrate

how to integrate it with the pose-graph SLAM framework to obtain satisfactory results.

In Chapter 5, we focus on dense moving object segmentation methods so that dense

SLAM can be employed to deal with highly dynamic scenarios.

Chapter 6 summarises our work and discusses future directions.



Chapter 2

SLAM: From Static to Dynamic

In this chapter, as shown in Fig. 2.1, based on a summary of the major achievements of

conducting SLAM in static scenarios in terms of problem formulations and solutions, we

give a detailed review of the available methods proposed so far for performing SLAM in

dynamic scenarios, most of which are closely related to the accumulated contributions

of SLAM in static environments, focusing on what is still missing, then make it clear

what we need to do, and how we can do it to push the research forward.

Figure 2.1: A sketch of the relative positions of the major topics to be covered in
this chapter, where items in red represent the work has been proposed for conducting
SLAM in static environments, those in green belong to visual SLAM, and those in blue

are closely related to performing SLAM in dynamic scenarios.

9



Chapter 2. SLAM: From Static to Dynamic 10

More specifically, in Section 2.1, we present some of the most influential theoretical for-

mulations and representations for SLAM in static scenarios. In Section 2.2, we then

review those methodologies having been proposed to address the SLAM problem in dy-

namic scenarios. Following that, in Section 2.3, we pay special attention to the concept,

implementations of a variety of motion segmentation methods. Then we evaluate the

related solution frameworks (in Section 2.4) and benchmark datasets (in Section 2.5)

in terms of their appropriateness for conducting SLAM in dynamic environments. And

finally we present our basic research objectives in Section 2.6.

2.1 SLAM in Static Environments

Thanks to the intensive work of the last several decades, most of the theoretical prob-

lems of SLAM in static environments have become clear and numerous enlightening

formulations have been proposed and verified in practice. In this part, we will review

some of the most classical ones.

2.1.1 SfM and SLAM Problem

Historically, there were two groups of researchers working on a theoretically similar

problem, i.e., estimating sensor poses while mapping an unknown static environment,

but with different sensors, emphases and terminologies. Originated from photogram-

metry, the former group is widely known as SfM in computer vision, emphasising 3D

reconstruction from a small bunch of camera images based on projective geometry and

optimisation, while the latter is called SLAM in mobile robotics, highlighting estimat-

ing a robot’s poses in real time while it moves through an unknown environment with

various kinds of sensors onboard, therefore filter-based methods have played a crucial

role in this field, although optimisation-based methods have also gained popularity. In

the following section, we discuss the related theoretical explorations and achievements

in detail.

2.1.2 Two Kinds of Formulations

Although theoretically we still have not fully understood the structure of SLAM prob-

lems, and are still not sure of the number of local minima and how to attain the global

minimum in general [22], numerous practical solution frameworks capable of producing

satisfactory results are readily available for us to use, most of which fall into one of the

two categories: filter-based formulations and optimisation-based ones.
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Filter-based Formulations

Ever since the early days of SLAM as an independent research topic, various filters have

been proposed to handle the problem. KF/EKF and particle filters are the most famous

ones.

Kalman Filter, which is named after one of the primary contributors of the theory,

Rudolf (Rudy) E. Kálmán [23], can provide statistically optimal estimation of the un-

derlying system state based on a series of noisy observation data. However, it could

only handle linear system models while most practical systems are nonlinear. Therefore,

EKF was proposed to handle the more prevalent nonlinear situations, the core of which

is the calculation of matrix partial derivatives, i.e., Jacobian, at predicted states based

on multivariate Taylor series expansions. As a result, while the state transition and

observation models do not need to be linear, they need to be differentiable. And their

widely adopted discrete-time forms could be illustrated as follows:

xk = f(xk−1,uk−1) + wk−1 (2.1)

zk = h(xk) + vk (2.2)

Here, xk represents the combination of the inner states and feature positions, uk is the

control vector, while wk and vk correspond to the process and observation noises that

are usually assumed to be normally distributed with zero mean and Qk and Rk as their

respective covariance matrices, with zk being the observation vector.

And the corresponding prediction equations are:

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (2.3a)

Fk−1 =
∂f

∂x
|x̂k−1|k−1,uk−1

(2.3b)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1 (2.3c)

And the update step is composed of:

ỹk = zk − h(x̂k|k−1) (2.4a)

Hk =
∂h

∂x
|x̂k|k−1

(2.4b)

Sk = HkPk|k−1H
T
k + Rk (2.4c)

Kk = Pk|k−1H
T
k S−1k (2.4d)

x̂k|k = x̂k|k−1 + Kkỹk (2.4e)

Pk|k = (I−KkHk)Pk|k−1 (2.4f)
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As we can see, although f and h could be directly utilised to predict the new state and

observation, their Jacobians are needed to update the covariance.

Nonetheless, EKF suffers from several disadvantages as well. Firstly, for a nonlinear

system, the estimation result is no longer optimal. Secondly, if the estimated initial

value of the system state is too far away from the true value, or the system model is

incorrect, EKF could diverge quickly. Last but not least, the estimated covariance matrix

is usually optimistic when compared with the ground truth and therefore inconsistency

is highly possible [7].

When the system model is partially unknown or not accurate, Monte Carlo methods such

as particle filters are usually employed [24, 25]. Nonetheless, they are computationally

expensive, especially when it comes to deal with high dimensional problems.

Since filter-based methods are easy to implement and capable of producing real time

estimation results, they are still being widely employed in various applications.

Optimisation-based Formulations

In SfM, bundle adjustment [26] has been the predominant method. While in SLAM, a

global optimisation-based method and its corresponding graph formulation was firstly

put forward in [27]. However, it took several years for the method to become popular

due to its complexity. With increased understanding of the structure of SLAM problems

and development of sparse linear algebra, efficient solutions to this formulation become

available, leading to the boom of such kind of formulations. Now, they amount to be

the state of the art methods for conducting SLAM in static environments.

In addition to the mathematical modelling of the filter-based methods, graph-based

methods constitute another kind of intuitive representation of the SLAM problem, which

is different from the widely employed Bayesian framework.

2.1.3 Two Categories of Typical Representations

Bayesian Network Based Representations

Since SLAM is dealing with noisy sensor data, we can summarise the objective of SLAM

as estimating the posterior

arg max
x1:T ,m

p(x1:T ,m|z1:T ,u1:T ) (2.5)
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where T is the last time step, x1:T represent the robot poses, m corresponds to the

map, z1:T represent the observations and u1:T are the control inputs. However, without

taking the special structure of SLAM problems, i.e., the static environment and Markov

assumptions, into account, this high dimensional problem is intractable. Therefore,

being capable of effectively illustrating the structure, Bayesian networks are usually em-

ployed. And a dynamic Bayesian network (DBN) that highlights the temporal structure

and therefore corresponds to the filtering process is shown in Fig. 2.2.

Figure 2.2: Representing SLAM problems with DBN, in which x1..T are invisible
system states, m the unknown static environment, u1..T input control and z1..T the

observations.

Graph-based Representations

Compared with Bayesian networks, graph-based representations [28] emphasise the spa-

tial structure and are very suitable for illustrating the idea of optimisation-based meth-

ods.

As shown in Fig. 2.3, for a typical graph in SLAM, its nodes represent robot/camera

poses and/or features; its edges correspond to the observation or odometry/loop closure

information: if an edge connects a pose and a feature, the edge represents the observation

of the feature from the pose; if the edge connects two poses, it corresponds to the

odometry or loop closure information of the pose the arrow pointed to in the frame of

the other. And if the nodes are all poses, it will be called a pose graph, or if both

poses and features are involved, it would be called a pose-feature graph. Moreover,

by employing some simple techniques, a pose-feature graph could be converted into a
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pose graph easily [29]. In this way, the dimension of the original problem could be

decreased therefore simplifying the problem to some degree. As a result, this kind of

formulation has drawn much attention and numerous efficient optimisation techniques

and applications have been proposed based on it [30–32].

Figure 2.3: A graph representing SLAM problems in which zij represents the obser-
vation/odometry of xj at the position of xi and Qij is the corresponding covariance

matrix.

Let x = (x1, x2, ...xn)T represents the states of the nodes in the graph, zij and Ωij

denote the actual observation and information matrix of the observation of node j from

node i, and fij(x) corresponds to the predicted observation. Then, the residual rij could

be calculated as:

rij(x) = zij − fij(x) (2.6)

And the corresponding weighted error for this edge is:

e2ij(x) = rij(x)TΩij(x)rij(x) (2.7)

And the accumulated error of all edges is:

E2(x) =
∑

(i,j)∈G

e2ij(x) =
∑

(i,j)∈G

rij(x)TΩij(x)rij(x) (2.8)

where G represents the union composed of the indices of the end points of all existing

edges. And the solution to the graph-based SLAM is:

x∗ = arg min
x

∑
(i,j)∈G

rij(x)TΩij(x)rij(x) = arg min
x

∑
(i,j)∈G

||rij(x)||2Ωij
(2.9)

which also corresponds to the goal of optimisation-based SLAM.
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Robust Graph-based SLAM

According to modern graph-based SLAM, the front-end is in charge of constructing a

graph based on the raw sensor data, and the correctness of the abstracted graph struc-

ture could directly affect the optimisation results of the back-end. Therefore, various

measures, including robust kernels and switch variables, have been proposed to han-

dle any possible outliers, i.e., misplaced false constraint edges, during the optimisation

process [10, 33–35].

2.1.4 Visual Odometry

For most SLAM research and applications in static environments, no matter what kind

of technique is to be applied to solve the problem, combining the raw sensor data in

temporal sequence, i.e., data association, constitutes the common important step of ini-

tialisation. And for graph-based SLAM, initial motion estimation after data association,

or obtaining odometry, is also a prerequisite. In modern SLAM, data association and

motion estimation belongs to the front end. Some navigation systems make use of global

positioning system (GPS), inertial measurement units (IMUs) or rotary encoders, to pro-

vide odometry information. However, many other systems are equipped with sensors

that could not provide such straight forward odometry data. Therefore, special meth-

ods need to be employed to abstract odometry information from such kind of raw sensor

data. Through laser scan matching related iterative closest point (ICP) methods, laser

odometry can be obtained; or, if the sensors are cameras, then the process of estimating

ego-motion of the robot using camera data is called visual odometry (VO) [36, 37].

Depending on the kinds of sensors employed, SLAM as an independent research area

could be further divided into several sub-areas. For those research that performs SLAM

solely based on cameras has a specific name, i.e., visual SLAM. Within this sub-area,

those systems with single cameras are called monoSLAM, those with stereo rigs are

called stereoSLAM, and those with RGB-D cameras are called RGB-D SLAM.

Since this work mainly concerns RGB-D SLAM, here we will focus on summarising the

achievements in VO to date.

Visual Odometry for Sparse Feature-based Visual SLAM

For sparse feature-based visual SLAM, given a set of calibrated images, we could abstract

useful features through a feature detection and matching process. Historically, many

point-feature detectors such as corner detectors and blob detectors have been presented,
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and nowadays SIFT [38] and SURF [39] are among the most popular methods due to

their robustness and effectiveness.

Usually, to maximise the quality of VO, the composition of the images is crucial: we

firstly need to ensure that sufficient illumination is supplied while taking the pictures.

Secondly, we need to point the camera to a scene with sufficient texture. Furthermore,

sufficient scene overlap between two consecutive frames is also of great importance.

Depending on the dimensions of the matched features, three kinds of VO estimation

methods could be employed: 2D-to-2D, 3D-to-3D and 3D-to-2D.

2D-to-2D: if the features in two specified images are specified in 2D image coordinates as

monoSLAM does, estimating the corresponding essential matrix or fundamental matrix

[40] is usually performed firstly, from which the rotation matrix R and translation t (up

to a scale) could then be extracted.

3D-to-3D: if there is depth information contained in the images such as RGB-D sensors,

or we can derive the depth data from stereo cameras, we can easily obtain the 3D

coordinates of detected features, deriving the rotation matrix R and translation t then

amounts to be minimising the L2 distance between two sets of 3D points:

arg min
Tk

∑
i

||X̃i
k − TkX̃

i
k−1||2 (2.10)

where i denotes the ith feature, k represents the kth frame, and X̃i
k, X̃i

k−1 correspond

to 3D points in homogeneous form, i.e., X̃ = [x, y, z, 1]T , while Tk =

[
R t

0 1

]
.

According to [41], a possible solution to the above mentioned formula could be obtained

through SVD. The translation is given by

tk = Xk −RXk−1 (2.11)

where Xk and Xk−1 are the corresponding arithmetic mean values.

The rotation matrix could be efficiently calculated as

Rk = VUT (2.12)

where USVT = svd((Xk −Xk)(Xk−1 −Xk−1)
T

), and Xk,Xk−1 are the corresponding

sets of 3D points.
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3D-to-2D: in this case, although the depth information is also available, while deriving

the rotation matrix R and translation t, we are trying to minimize the L2 distance

between the predicted projections of 3D features and their real positions in images:

arg min
Tk

∑
i

||pi
k − p̃i

k−1||2 (2.13)

where p̃i
k−1 represents the reprojection of 3D point X̃i

k−1 into the kth frame according

to Tk.

Although some researchers have found that the 3D-to-2D method could produce more

accurate results than 3D-to-3D does [42, 43], but the latter is being widely adopted due

to its efficiency, simplicity and ease of use.

Since feature matching results usually contain outliers, RANSAC is usually employed

before motion estimation. After motion estimation, some researchers may also utilise a

local optimisation process over more than two frames to further improve the estimation

results.

Visual Odometry from Dense or Feature-free Methods in Visual SLAM

Some researchers have also employed dense methods such as optical flow [44] or feature-

less methods [45] to obtain visual odometry. Although they are usually computationally

expensive and less accurate compared with spare feature-based methods, they are espe-

cially useful when it comes to handling low-texture regions.

2.2 Available Methodologies for SLAM in Targeted Dy-

namic Scenarios

In a typical dynamic scenario that we are interested in this thesis, some moving ob-

jects constitute considerable parts of the scenario, and remain in front of the camera

performing some activities throughout most parts of the process.

As a matter of fact, based on different assumptions and originated from different view

points, divergent ways have been proposed to deal with such kind of scenarios, and one

basic difference between them is: to deal with SLAM and moving objects simultane-

ously or separately (either sequentially or parallel)? Or, in other words, to solve the

new problem within an extended version of the traditional SLAM framework (either at
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the back-end or using filters) or quest for a more powerful front-end to solve it? Ac-

cording to this criterion, the available methods can be roughly divided into three major

categories. The first one can be represented by the formulation called simultaneous lo-

calisation, mapping, and moving object tracking (SLAMMOT) [16] and the second is

a dense estimation method proposed by [20] for simultaneous multibody structure and

motion (called SMSaM thereafter for simplicity), while the last one can be called mo-

tion segmentation based multibody SLAM or multibody structure-and-motion (MSaM)

in computer vision.

2.2.1 SLAMMOT, SMSaM and Multibody SLAM/MSaM

SLAMMOT and SMSaM constitute two typical solutions of SLAM community for SLAM

in dynamic scenarios. The former can be regarded as an extension to EKF, while the

latter is built upon the modern SLAM back-end.

SLAMMOT. This methodology is firstly proposed in [16], which aims to conduct 2D

SLAM and moving object tracking in outdoor environments with laser data. To some

degree, it can be regarded as an extension to the traditional filter-based approach.

In this method, each scan is firstly divided into small segments solely based on the

distances of adjacent points. At the heart of this method is its special moving object

detection techniques which include a consistency-based approach and a moving object

map based method. The consistency-based approach firstly assumes that two sequential

scans could be registered with ICP methods. Then, based on the registration result,

the previous scan is transformed to the current scan position and compared with the

latter in a polar coordinate system. Those corresponding pairs of points whose range

differences go beyond a certain threshold are then identified as moving points, and those

segments that are composed of over one half of moving points will then be identified as

moving objects. As for the moving object map based method, it mainly assumes that if

a segment is located in an area that used to be occupied by a moving object, then this

object could be identified as a potential moving object.

In [15], the moving object detection is based on a binary Bayes method and inverse

depth check ([46] implements a similar idea, although local optimisation based method

is employed there). In the former method, for each new feature that could be static or

dynamic, two corresponding hypotheses are made and accordingly two EKF processes

are initialised. The difference between the two hypotheses is defined as:

dm = (xc
m − xc

r)
TΣ−1xc

r
(xc

m − xc
r) (2.14)
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where xc
r, x

c
m are camera poses for two hypotheses without and with adding the new

feature, and Σxc
r

is the covariance matrix of xc
r.

Then a binary Bayes filter is employed to integrate the difference over a fixed number

of steps as follows:

lt(Hm) = log
p(Hm|dm)

1− p(Hm|dm)
− log

p(Hm)

1− p(Hm)
+ lt−1(Hm) (2.15)

If the accumulated log odds value lt(Hm) is bigger than a threshold, then the new feature

will be classified as static, otherwise it will be identified as moving.

Essentially, in addition to employing EKF for SLAM and moving object tracking, this

method also relies on EKFs to check whether each newly emerged feature is static or

not. Therefore, no other motion segmentation method is required. And it constitutes

the foremost advantage of this method.

However, such kind of moving object detection methods have some limitations. For the

laser data based method, the initial object segmentation method based on distances

is hard to be generalised; with moving objects in sight, the ICP results tend to be

erroneous. For the method used in stereoSLAM, it assumes a correct initial step that

no dynamic feature involved; in the current EKF framework, each moving object is

usually represented as several feature points tracked by Kanade-Lucas-Tomasi (KLT)

tracker, therefore direct extension to attain dense details of the moving objects would

be hard. Moreover, these two kinds of methods also assume that dynamic object could

be identified within the initial few steps. However, it does not always hold. On the other

hand, as we know from SLAM in static scenarios, EKF itself suffers from inconsistency

problem [47].

SMSaM. More recently, by extending upon the modern SLAM framework [48] to incor-

porate motion group labels as another kind of variables into the optimisation framework,

Anastasios et al. [20] propose to deal with the elements of the multibody structure and

motion problem in a simultaneous way. Different from the filter-based approach, it

amounts to be a formal formulation of the problem in terms of a modern optimisation

based energy minimisation process:

E(d, L,J ) = λEdata + αEreg + βEpotts + γMDL (2.16)

where Edata represents the sum of photometric errors over all of the frames, Ereg is

a spatial regularisation term for the depth map, Epotts corresponds to discrete pair-

wise costs encouraging adjacent pixels to share same models, and MDL (Minimum
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Description Language) is in favour of solutions composed a smaller number of motion

groups.

However, this batch method is limited to 2.5D mapping of a small volume corresponding

to a reference frame, applicable to short videos composed of rigid objects only, and

relying on GPU to shoulder the computational cost. Moreover, although the paper

has proposed a hill-climbing solution approach for the problem, there is no theoretical

justification that for such a complicated multivariate formulation we could always find

the global minimum in this way. And handling non-rigid moving objects in this way

would also be hard. Therefore, much work is still in need in this direction before it could

find applications in general dynamic scenarios.

Multibody SLAM/MSaM. Contrary to SLAMMOT and SMSaM, multibody SLAM/M-

SaM firstly focuses on employing separate motion segmentation methods to decouple the

complex dynamic scenarios into several motion groups, and then for each group making

use of available optimisation-based back-ends to obtain SLAM results.

In computer vision, especially in recent years, more and more researchers have studied

MSaM using a single camera. Konrad et al. [49] propose a generic recover-and-select

procedure based on model selection which is a branch of statistics and information theory

for MSaM outlined as in Algorithm 1:

Algorithm 1: Outline of n-view multibody structure-and-motion method [49]

1. Tracking : track feature points through the sequence;

2. Generating candidates: for each pair of consecutive frames (j, j + 1);

(a) Sample a set of two-view motions {Qj
i};

(b) For each Qj
i , estimate inlier set and standard deviation;

(c) Cluster {Qj
i} and re-estimate representatives {Qj

i} for each cluster j;

3. Motion linking : recursively link {Qj
i} through frames to obtain candidate motions

{Dk};
4. Model selection : pick the best subset from {Dk};
(a) build the codelength/likelihood function D(b) for the candidate motions;

(b) maximize D(b) over the index vector b to determine the best subset;

5. Postprocessing : enforce temporal consistency to clean up segmentation;

6. (optional) Triangulation : triangulate 3D coordinates of feature points

In [18], the authors further explore the challenges a practical algorithm for MSaM using

a single camera is facing and thus the requirements it needs to meet, advocating online

estimation of the number of moving objects including its changes, feature tracking,

segmentation and 3D reconstruction simultaneously. Then, they propose a probabilistic

solution (as shown in Algorithm 2) based on [49] to address some of the requirements
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including motion splitting and merging, as well as mirror symmetry ambiguity, and

demonstrate promising results using several short datasets.

Algorithm 2: Dynamic structure and motion pipeline [18]

1) Instantiate new features, and track all features;

2) if not enough parallax (e.g. average feature displacement < 50 pixels) then
goto step 1;

else if sufficient parallax and no SfM yet then

do initial segmentation and 3D structure computation;

create symmetric models for small objects;

goto step 1;

else
continue;

end

3) Try to estimate new 3D motion for active models;

if too many outliers (e.g. > 25%) for a motion model then

try to split;

end

Instantiate new models if necessary;

4) if waiting period is over and the number of unexplained tracks surpasses a threshold

(e.g. 10%) then

try to detect new motion models;

create symmetric models for small objects;

end

5) if waiting period is over then

try to fuse active motion models greedily;

end

6) Remove symmetric models, where enough evidence available (e.g.

Mmirrored/Mcorrect > 1.2,M = model score);

7) goto step 1;

In [19], the authors propose another realtime incremental multibody SLAM algorithm

emphasising on combining multiple cues to deal with degenerate situations.

Please note that, despite of the differences, all of the above mentioned categories of

methods claiming to be capable of dealing with dynamic scenarios are restricted to

handling rigid moving objects.
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2.2.2 Motion Segmentation based Multibody SLAM/MSaM

In multibody SLAM/MSaM, the basic idea can be summarised in two steps: firstly

allocate the available sparse features into different groups according to their motion

types, widely known as motion segmentation that we will cover in more details in Section

2.3, and then for each of the group, if they are rigid, we can directly apply the classic

SLAM framework developed for static environments to solve it. As we have seen, till

now, most of the available work concerns dynamic scenarios with rigid moving objects

only. Quite recently, dense segmentation methods capable of handling non-rigid moving

objects are also emerging [50, 51]. However, 3D reconstruction of their structures is still

an open problem.

Therefore, multibody visual SLAM/MSaM calls for a robust motion segmentation method

to handle various challenging dynamic scenarios which may include occlusion, motion

blur and featureless regions.

2.2.3 Summary of Different Methodologies for Conducting SLAM in

Dynamic Scenarios

SLAMMOT. As a classical method widely employed in SLAM, EKF-based approaches

are also capable of detecting moving objects. Nonetheless, they may suffer from the

inconsistency problem.

SMSaM. The formulation of the problem in terms of energy minimisation is theoreti-

cally attractive. However, putting all variables in a mega-problem make it computation-

ally intensive and liable to be trapped within local minima. Furthermore, it is strictly

limited to short videos of rigid objects in small regions.

Motion Segmentation based Multibody SLAM/MSaM. The divide-and-conquer

methodology enable us to focus on addressing different sub-problem at each step, thus

facilitating the development of powerful specialized methods for each of them. For

example, at the current stage, we can see that non-rigid moving object segmentation

methods are emerging [50, 51]; on the other hand, after motion segmentation, the mature

algorithms for SLAM in static environments can be directly utilized to solve the second

sub-problem, and the ongoing intensive research on non-rigid object reconstruction in

computer vision [52] will also be directly beneficial to the mapping task of non-rigid

objects in SLAM as well.

Through the comparison above, we think the idea of the third methodology is quite

promising for handling practical challenging data. However, to ensure that we can push
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the boundary along this track, firstly we need to be aware of what has been achieved

in this direction so far, and what is still missing. Since the achievements in SLAM

have already been summarised during previous sections of this chapter, in the following

section, we will focus on evaluating the available methods for motion segmentation and

SLAM, corresponding to those two steps involved in the process.

2.3 Motion Segmentation

2.3.1 Definition

Motion segmentation originates from computer vision for image understanding and video

coding. Initially it mainly concerns segmenting an image into coherent regions solely

based on 2D (δu, δv) motion model, but now 3D motion model based segmentation

methods prevail. Although motion segmentation seems like so intuitive a notation that

we can hardly find a formal definition for it in computer vision, according to our under-

standing, motion segmentation algorithms aim to separate a dynamic scenario composed

of moving elements and static environment apart from each other according to their dif-

ferent motion types. In other words, motion segmentation means dividing a target

image into different motion groups. Generally, there are some basic questions that mo-

tion segmentation algorithms need to answer: how many moving groups are there in

the scenarios? What are they? Can we detect them as soon as possible? In addition,

the number of motions can change from time to time, so ideally motion segmentation

algorithms should be sensitive and quick enough to detect the changes in real time.

However, due to lack of clear specifications of the problem in details, implementations

of the existing motion segmentation methods are quite different from each other, either

in terms of the input, output, or the process.

2.3.2 Different Implementations

When it comes to practice, the required input to motion segmentation methods can be

sparse features or the whole image, and the data can be just two frames or a sequence of

images (called 2-view based or n-view based motion segmentation methods respectively).

Accordingly, the output are groups of sparse features or densely separated regions. When

it comes to the segmentation process, most available methods in computer vision are

n-view based [53], relying a factorization process to cluster the point trajectories into

different groups. For 2-view based methods using only RGB data, fundamental matrix

of multi-view geometry [40] is widely employed as the criteria for segmentation; as to
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2-view based methods using RGB-D data, simple distance-based algorithms have been

proposed [54].

However, there may exist some misunderstanding of the differences between n-view and

2-view based segmentation methods. N-view based segmentation methods call for the

point trajectories across several frames, therefore they assume that data association

(also called motion linking) is performed beforehand. On the other hand, for 2-view

based motion segmentation methods, they only require that the same point appears

in the current two frames, and its segmentation is solely based on and for the current

two frames only. As a result, data association information beyond this two frames is

absent from both its input and output. However, it is not due to the inability of 2-view

based motion segmentation methods themselves; instead, it is just because they do not

require data association beyond two frames to perform segmentation, while n-view based

methods calls for robust data association across several frames as their prerequisite. In

other word, both of the two available kinds of motion segmentation methods can only

perform the job of segmentation, therefore to conduct SLAM in dynamic scenarios, we

are still in need of some other methods to execute the data association task.

On the other hand, the available methods are all based on the raw sensor data, therefore

their capability of distinguishing small movements is limited by the accuracy of the sensor

data.

2.3.3 Related Work

In computer vision, ever since 1990’s, motion segmentation has been regarded as a very

important step for MSaM and many other applications. From 2D to 3D, numerous alge-

braic and statistical motion segmentation techniques based on different camera models

have been put forward, and [53] has given a detailed review of them. Nevertheless,

motion segmentation using only RGB data turns out to be a non-trivial task, especially

when the number of motion groups is unknown, or when the motion groups are changing

from time to time. Most of the available methods assume that the number of motion

groups occurring in the scenes is known beforehand and fixed during the process, then

through a clustering analysis, they can allocate each point to one of the groups. Fur-

thermore, most of the available algorithms are n-view based batch process, which means

that their segmentation results are always delayed.

Another branch of work, which can be seen as an extension to the method in [15, 16],

determines the number of motions through a model selection process [55].
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In [19], the authors propose an incremental motion segmentation method by combining

optical flow and two-view geometry for monocular data. It relies on imposing geometric

and flow vector bound constraints to conduct segmentation and deal with degenerate

situations.

On the other hand, 6D vision [56] combines stereo information to detect moving cars

or pedestrians, but it assumes that the ego-motion is known with the help of another

sensor. In contrast, in this thesis, we are conducting segmentation with RGB-D data as

the only source of information.

Motilal et al. [17] propose a RANSAC-based realtime algorithm for moving object

detection in stereoSLAM, and demonstrates its effectiveness in scenarios that contains

a moving person. By assuming that the largest motion group of features corresponds to

the static environment and through image warping, it could detect the moving person in

some simple cases. It is the first of its kind. However, as noted by some other researchers

[53], the efficiency of RANSAC alone will be compromised significantly when there are

more moving objects in the scenario.

2.3.4 Evaluation Methods

In computer vision, to evaluate motion segmentation algorithms, it is usually assumed

that the benchmark datasets are free from outliers, then checking the accuracy of seg-

mentation results in terms of true positive, false positive [53] turns out to be a common

practice. However, for real data, such kind of clean input is rare.

Nonetheless, when it comes to SLAM, especially RGB-D SLAM, there is no such kind of

benchmark datasets available yet. Furthermore, the aforementioned accuracy quotation

for motion segmentation methods usually could not represent their ultimate performance

in SLAM applications. For example, it is often the case that a motion segmentation

method could achieve high accuracy, but its corresponding SLAM estimation results

can still be far from satisfactory, the underlying possible reason of which is that false

positive points, although small in quantity, could still spoil the estimated camera poses.

Therefore, in this thesis, we emphasize on comparing the visual odometry and final

SLAM results to appraise the performance of the related algorithms.

2.3.5 Difficulties

Till now, most of the available motion segmentation methods are limited to rigid objects

and large movements, because such scenarios are much easier to deal with. When the
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differences between two motion groups become closer, choosing appropriate threshold

turns out to be a very tricky problem. And for articulated/non-rigid objects, how

to deal with the intersection parts between different groups is largely untouched, let

alone describing their motions. In this thesis, we pay special attention to such kind of

difficulties involved in the segmentation process, i.e., continuous movements and non-

rigid objects.

2.3.6 Usability Analysis of Different Methods

Compared with dense methods, sparse feature-based motion segmentation methods are

generally quicker, with both 2-view and n-view versions available. However, they suffer

from some limitations. Firstly, sparse features cannot catch all the details of moving

objects in the scenarios. Secondly, they are generally sensitive to sensor noises and

outliers. While dense methods can be more robust in these scenarios, their ability to

cope with motion blur in general is still not satisfactory.

N-view Sparse Feature-based Motion Segmentation

N-view sparse feature-based motion segmentation methods require that the same sets of

feature points be visible in a series of frames. It turns out to be a very good condition to

enable the related methods to focus on motion segmentation itself. Firstly, it stipulates

that the input feature trajectories are pre-filtered against outliers; secondly, it requires

that data association be achieved beforehand, therefore motion segmentation methods

in this category do not need to concern about data association at all.

However, fulfilling this condition amounts to be a very tough task for practical applica-

tions. If an object goes through a long distance, or rotates beyond a certain angle, the

previously tracked feature points can easily get lost. As a result, those currently available

methods are still limited to very short videos composed of small range of translations

and rotations.

2-view Sparse Feature-based Motion Segmentation

The input to the 2-view sparse feature-based motion segmentation methods [17, 57] can

be two consecutive or non-consecutive frames, and they may come from a single camera,

stereo rig, or RGB-D camera. Theoretically, compared with those n-view based methods,

2-view based algorithms can detect possible motions as soon as possible. Nevertheless,

their segmentation results are liable to noises, and they need a motion linking step to

combine segmentation results at each time step to form a general idea of the correct

membership of each point, which amounts to be a accumulative filtering process that no

mature solution is available yet.
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Dense Moving Object Segmentation

The current available dense moving object segmentation methods are also based on

long-term trajectory analysis, but employ optical flow instead of feature detection and

matching results as the starting point. Theoretically, dense moving object segmentation

aims to assign each pixel to a motion group, therefore it can produce very intuitive

results. However, this methodology is still not robust enough to deal with general

dynamic scenarios. We will also make some endeavours in this direction.

Nevertheless, we need to note that moving object segmentation and motion segmentation

are essentially two different concepts that only overlap for scenarios composed of rigid

objects. Otherwise, for articulated moving objects contain many internal motion groups

for their different parts; for general deformable non-rigid objects, it is even harder to

simply use motion groups to describe their activities.

2.4 Usability of Available SLAM Solution Frameworks for

Conducting SLAM in Dynamic Scenarios

After motion segmentation, theoretically, for each group, we can directly employ the

available SLAM back-ends to estimate their respective motions and structures. However,

in terms of usability, which SLAM solution framework is the best choice? We will give

our answer after a brief comparison of them.

2.4.1 Pose-graph SLAM Versus Pose-feature-graph SLAM

In addition to suffering from the inconsistency problem [7], filters have also been shown

in [58] to produce less accurate results than keyframe-based BA. On the other hand,

graphs amount to be an effective kind of formulations of the SLAM problem to highlight

the spatial structure. Therefore, in this work, we prefer to employ graph-based SLAM

frameworks of which pose-graph SLAM could be regarded as the state-of-the-art SLAM

back-end formulation in terms of simplicity, speed and accuracy. Compared with pose-

feature graphs, pose graphs enable us to firstly concentrate on solving camera poses

that have lower dimensions thus mitigating the complexity of the original problem and

improving the efficiency. Therefore, it is especially suitable for robust SLAM in dynamic

scenarios.

In this thesis, we have chosen pose graph as our back-end representation method, and

employed G2O [33] to perform the optimisation process.
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2.4.2 Dense SLAM Versus Sparse Feature-based SLAM

Dense SLAM is generally regarded as a slower but more robust method when compared

with sparse feature-based SLAM. While conducting SLAM in dynamic scenarios, the

images are shared by different motion groups, which means that for each group the total

number of features will be much fewer than usual. Therefore, dense SLAM is especially

useful for this situation. Furthermore, the latest version of dense SLAM [59] in RGB-D

SLAM can run in real time, which further facilitate its usage in our applications.

In this thesis, we have chosen dense visual SLAM as our reference in Chapter 3 and

4, and endeavoured to combine it with our latest dense moving object segmentation

method to form a robust solution framework for SLAM in general dynamic scenarios in

Chapter 5.

2.5 Benchmark Datasets for RGB-D SLAM

Recently, low cost lightweight commodity RGB-D sensors, such as Microsoft Kinect

and Asus Xtion Pro Live sensor, have caught much attention. Since they can supply

depth information in addition to RGB information, yet are simpler to use than the

traditional stereo cameras, and cheaper than laser scanners, more and more researchers

have adopted them as a new kind of sensor to solve SLAM problems. Also thanks to

the other closely related mature areas, such as monoSLAM, stereoSLAM, laser SLAM

and many others in computer vision, RGB-D SLAM has a solid foundation to move

forward. It is under such a general background that RGB-D SLAM as an important

new branch has developed very quickly right after its emergence. Now, numerous efficient

and robust RGB-D SLAM algorithms have been proposed and many of their codes are

available for practical applications. Some of these achievements should be attributed to

the availability of good benchmark datasets, which have been provided during the initial

forming stage of this area.

Although many benchmark datasets are available in laser and camera based SLAM, they

are still relatively rare in RGB-D SLAM. Two famous benchmark datasets in RGB-D

SLAM are the MIT Stata Center dataset [60] and the one provided by TUM [61]. The

first one is a vast scale dataset collected over a long time in a 10-storey building, and it

aims for a wide range of research areas in addition to visual SLAM, but only part of it

includes RGB-D data.

While TUM benchmark includes RGB-D data along with ground-truth values from an

external motion capture system, and provides some readily available tools for automatic
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evaluation. It contains 39 sequences of various kinds of textures and structures, from

single objects to some typical office or industrial hall scenarios; during the sequences,

the camera is put on a robot or hand-held, therefore it sometimes move slowly with

constraints, at other times move very fast; and the environment is totally static in some

sequences, while in some others moderately dynamic (one or two people with small

movements) or in the rest highly dynamic (two people move rapidly in front of the

camera). In other word, it is deliberately composed of systematic real sequences with

various difficulties, therefore it is very convenient for fellow researchers to develop, polish

and then test new algorithms step by step with this dataset. Since it aims to benchmark

RGB-D SLAM in static environments as well as robust SLAM in dynamic scenarios,

there is only ground truth for camera poses.

Similar to what Middlebury benchmark datasets [62–64] have achieved in computer

vision, those few RGB-D SLAM benchmark datasets have stimulated the birth of new

methods both as a director and also common touchstone. As a result, it has become a

common practice for a new algorithm to report its performance on benchmark datasets

and show its superiority than the other related ones.

In this thesis, we have mainly employed the TUM dataset as a benchmark to compare

the performance of our algorithms against that of related methods.

2.6 Towards Motion Segmentation based Robust SLAM

2.6.1 Missing Elements

Based on the comparative analysis of the related work, we discover that there is still

much work needed to be done: the available motion segmentation methods are generally

limited to short videos of rigid moving objects; the development of robust data associa-

tion methods for dynamic scenarios has been largely relying on RANSAC; more research

on suitable evaluation methods for real data are needed; practical solution frameworks

for robust SLAM in fast dynamic environments are still missing.

2.6.2 Our Basic Objectives

Following the track of motion segmentation based multibody SLAM/MSaM, in this

thesis, we firstly focus on proposing effective motion segmentation methods that can

handle challenging real data. Then, by combining our motion segmentation methods

and pose-graph SLAM framework, we aims to propose practical motion segmentation
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based robust SLAM frameworks that can handle both static and dynamic scenarios in

a unified manner. Furthermore, based on the available challenging benchmark dataset,

we will discuss some useful ways for evaluating our motion segmentation algorithms and

SLAM frameworks.



Chapter 3

Sparse Feature Distance-based

Motion Segmentation for

Multibody RGB-D SLAM

To perform SLAM in dynamic scenarios, multibody SLAM, i.e., conducting SLAM in

a static environment with some rigid objects moving in it, is a comparatively simpler

case to handle than the others. Therefore, in this chapter, we have chosen multibody

RGB-D SLAM as the starting point, aiming to propose a sparse feature distance-based

motion segmentation algorithm and a corresponding back end for it and then verify its

efficiency and robustness using both simulated and real RGB-D data.

In the following sections, we firstly review related work in motion segmentation for

multibody RGB-D SLAM, then we present our motion segmentation theory, algorithm,

implementation, simulation and experimental results. In the end, we discuss the appli-

cability of our algorithm for multibody RGB-D SLAM and other dynamic scenarios as

well, highlighting the relevance of our work in the following chapters.

3.1 Motivation

In Chapter 2, we have given a detailed review of the related motion segmentation meth-

ods that have been proposed in multibody SLAM/MSaM. While using a single camera,

many 2-view based motion segmentation methods are readily available and most of them

are built upon the fundamental/essential matrix of multi-view geometry [57]. However,

this criterion is not so strict. Therefore, the corresponding segmentation results usually

contain some false positive elements. Since RGB-D cameras can provide us with depth

31
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information along with RGB data, in this chapter, we will explore the possibility of

presenting a more stringent algorithm for motion segmentation.

As we know, for both static and rigid moving objects, the distance between any two

points within each motion group will remain the same through out the dynamic process.

It is based on this observation that [54] proposes a simple and efficient method to segment

motions using RGB-D data. In RGB-D SLAM, FOVIS [65] has also made use of this

property to filter out moving objects. But as the authors of [54] have pointed out, their

algorithm is only using a necessary instead of sufficient condition to segment motions,

which means that even after the segmentation, one still can not safely conclude that any

two points within the same motion group really have no relative movements.

However, since relative motion represents one of the essential differences between being

relatively static and moving, as we will see, they can be applied to various situations,

independent of the types and number of motions. If we can deduce the conditions that

are both necessary and sufficient, we can propose a more reliable algorithm based on

it to segment the motions existing in scenarios that multibody RGB-D SLAM aims at,

and then we can utilise the framework of the currently available pose-graph solution for

SLAM in static environments to solve multibody problem. This constitutes the basic

idea of this chapter.

3.2 An Efficient RGB-D Motion Segmentation Method

Firstly, we try to find out the necessary and sufficient conditions that we need to check

before we can safely conclude that one point has no relative motion to the other points

during the process and thus they belong to the same motion group. Then, we propose

an efficient motion segmentation algorithm based on these conditions.

3.2.1 Problem Restated

For two overlapping but not necessarily sequential RGB-D frames, through feature de-

tection and matching, we can extract two corresponding sets of feature points residing

either on moving objects or in the static environment. Since we have depth informa-

tion, we can easily obtain their 3D positions relative to their camera centres. Then, the

problem becomes: for these two sets of 3D points, how can we divide them into different

motion groups efficiently?

More specifically, given two RGB-D frames Fi and Fj (where i, j correspond to the frame

identifiers), we define that a pair of shadow points means two local 3D points pik and
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pjk (where k represents the point identifier and pmn = (xmn, ymn, zmn)T ) corresponding

to two matched 2D features fik and fjk (where fmn = (umn, vmn)T , umn and vmn are

image coordinates, and [fmn; 1] = M [pmn; 1] for a pinhole camera with a 3×4 projection

matrix M). If the matching is correct, this pair of shadow points should correspond to

the same 3D point Pk = (xk, yk, zk)T in the physical world which can be called a physical

point. Similar to ordinary shadows, those two shadow points are just the 3D snapshots

of this physical point in two local coordinates at two different time steps i and j respec-

tively. Furthermore, we stipulate that the distance between shadow points is a Euclidean

distance that can only be defined and calculated between two shadow points from the

same image frame, thus in the same local coordinates. Now, suppose we have two pairs

of shadow points (pik,pil) and (pjk,pjl) (corresponding to two 3D physical points Pk

and Pl) from frames Fi and Fj respectively, we can obtain easily the distances between

them, i.e., dikl and djkl (where dlmn represents the Euclidean distance between shadow

points plm and pln in frame l, i.e., dlmn =
√

(xlm − xln)2 + (ylm − yln)2 + (zlm − zln)2).

From now on, we will focus on comparing these two distance values. Ideally, without

considering noises, if their corresponding 3D physical points come from the same motion

group, these two values should remain the same; otherwise, we can conclude that these

two pairs of shadow points belong to different motion groups. Similarly, for a third pair

of shadow points, if their distances to the initial two pairs of shadow points remain the

same across the two frames, we can also decide that their corresponding physical points

come from the same group. These are the simplest situations, however. Now, if we

have another or more pairs of shadow points, is it enough for us to just compare their

distances to the first three pairs of points? Or, do we need to check the changes of the

distances between every possible pairs of points before we can safely draw a conclusion?

The following section tries to answer this question.

3.2.2 Theory

Based on geometry, we can deduce the necessary and sufficient conditions for grouping

relatively static 3D points.

Proposition: a 3D physical point’s position can be uniquely specified by three prede-

fined non-collinear 3D points through three distances and a side discrimination.

As we know, in 3D space, the potential points having a specified distance to a predefined

point will constitute a sphere. Then, as shown in Fig. 3.1, the potential points that

have predefined distances d1 and d2 to any two specified points P1 and P2 (where

Pi = (xi, yi, zi)
T ) respectively (d1 + d2 > d12 where d12 denotes the distance between

P1 and P2), will constitute a circle which is the intersection of the two spheres defined
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by the following two equations:

{
(x− x1)2 + (y − y1)2 + (z − z1)2 = d12

(x− x2)2 + (y − y2)2 + (z − z2)2 = d22

(3.1)

(3.2)

If we choose a third point P3 that does not lie on the line defined by P1, P2, and

specify that the potential points need to have a preset distance d3 to the third point,

then the potential points meeting the d1, d2 and d3 conditions simultaneously will lie

on the intersection of the circle and the third sphere, which has at most two possible

points, located on both sides of the plane determined by the three pre-specified points

and symmetrical to each other with respect to the plane, which also correspond to the

solutions to the following three equations:


(x− x1)2 + (y − y1)2 + (z − z1)2 = d12

(x− x2)2 + (y − y2)2 + (z − z2)2 = d22

(x− x3)2 + (y − y3)2 + (z − z3)2 = d32

(3.3)

(3.4)

(3.5)

Therefore, if we further specify that the potential points should remain on the same side

of the plane which can be identified using the norm of the plane defined by P12 × P13

where Pij = Pj −Pi, then we can reach the conclusion that there is only one possible

point that can meet the requirements.

Although this proposition just mentions 3D physical points, for their corresponding

shadow points which can be regarded as the same points captured by the camera at

different times, we can estimate their relative motion by comparing their distances in

different frames. Therefore, similarly, for any pair of shadow points, during a motion

process, only stipulating that its distances to three pairs of non-collinear shadow points

remain the same is not enough, we need to make sure that it remains on the same

side of the plane defined by these three specified pairs of points. Only when all of these

conditions are met, can we conclude that this pair of shadow points belong to the motion

group defined by the three specified pairs of shadow points.

More generally, we can also see that, for any further coming pair of shadow points,

checking their distances and side with respect to the three pairs of specified non-collinear

shadow points is enough to judge whether the additional points come from the same

motion group or not. In other word, we do not need to check the distances between

every two possible pairs of points. Because of this, the the proposed algorithm is very

efficient.
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In summary, this proposition makes it possible for us to conduct motion grouping in an

efficient way.

Figure 3.1: Constrain a new point P using three non-collinear points P1, P2 and P3

3.2.3 Algorithm

The inputs to our algorithm are two RGB-D frames, from which we can extract two

sets of shadow points. And the main function of our algorithm is to divide the pairs of

shadow points into different groups. Before coming to the details, we firstly introduce

two definitions.

Definition 1: A suitable group for a pair of points means that by comparing that pair

with the points from the group in the way mention above, their distance changes are

within specified thresholds which are to be discussed below.

Definition 2: If the number of pairs in any group reaches three, and the corresponding

pairs of points are non-collinear, then they become the basic components of this group,

and the group becomes a mature group, from which we can derive the normal vector of

the corresponding plane.
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And our RGB-D motion segmentation algorithm is illustrated as follows:

Algorithm 3: Sparse feature distance based RGB-D motion segmentation algorithm

Inputs: two frames of RGB-D data;

Output: different groups of matched 3D feature pairs;

1. Obtain a set of 3D matched point pairs: given two RGB-D frames, conduct

feature detection and matching, and only those pairs of shadow points with depth are

kept in an initial set P;

2. Go through all point pairs: for each pair of points left in P, perform tasks

2.1-2.2 ;

2.1 Find a corresponding group: firstly compare them with the existing groups one

by one till finding one suitable group for them;

(a) Deal with immature groups: if the current group is not mature, compare the

distances of the chosen pair of points to the available one or two pairs of shadow points

in the group. If the distances do not change across the two frames, then put the pair of

points into the current group; otherwise compare with the next group;

(b) Deal with mature groups: if the current group is mature, calculate the distances

of the chosen pair of points to the three basic components of the group, and its relative

position to the plane formed by the basic components (which side it is located). If

these four results remain the same, then the chosen pair of points belongs to the

current group. Otherwise, compare with the next group;

(c) Allocate a new group if needed : finally, if it turns out that the chosen pair of

points belongs to none of the existing group, allocate a new group for it;

2.2. Remove the current pair from P;

In this way, just after going through all of the pairs of points sequentially in one round

(no iterations), we can correctly group them according to their motions.

3.2.4 Discussion

The characteristics of this algorithm include:

Efficiency: theoretically, the computation cost is O(Np) (in which Np denotes the total

number of the pairs of points). Detailed analysis can be found in Appendix A.

Dependent on sparse features with depth information: since it is based on the

essential property of being relatively static as opposed to be relatively dynamic, if we

have depth information, we can use this algorithm to segment rigid body motion groups.

In addition, it just needs a set of sparse features as input.
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Reliability and robustness: it checks both the necessary and sufficient conditions

for rigid body motion segmentation, so theoretically its result should correspond to the

ground truth motion groups. However, in practice, inaccurate sensor data and outliers

will inevitably bring in some additional small groups. Nevertheless, if we just filter out

such very small groups, we can still obtain results of the number of motion groups and

their respective members consistent with the ground truth.

The thresholds are only affected by the precision of sensor data: it means that

only when we apply this algorithm to 3D point data coming from a different type of

sensors, do we need to adapt its threshold values. For Kinect, its depth noise is about

2mm at 1.0m, and 2.5cm at 3.0m [66], varying across the distance. In this chapter,

since we are concerned about features within 1.0− 3.0m, we simply choose 2.5cm as the

threshold.

The choice of base points: its results will be affected by the quality of the three

base points of each group. We may firstly choose those points lying closer to the camera

whose depth data is relatively more accurate; and ensuring that the distances between

them to be more than ten times of the range of sensor noises could also help to boost

the accuracy of the calculated distances and normal vectors.

3.2.5 Segmentation Results Using Simulated Data

We firstly run the algorithm using some simulated data with the combination of different

shapes such as planes and balls, and motion parameters, for which we assume that there

is no noise in positioning and the feature matching is perfect. Some typical data and

results are shown in Fig. 3.2a-3.4b. Among them, Fig. 3.2a, 3.3a and 3.4a represent

three kinds of simulated scenarios, in which different colours denote different motion

groups; Fig. 3.2b, 3.3b and 3.4b show the motion segmentation results, in which different

colours also represent detected motion groups. Please note that here different colours

are just utilised to distinguish different motion groups, and it does not means that our

results need to employ the same colour as the ground-truth has done to represent any

specific group. As we can see, the segmentation results are 100% accurate.

3.2.6 Efficiency

Using a CPU of Intel(R) Xeon@3.33GHz, the efficiency of our algorithm is shown in

Table 3.1. In this table, the second column Np denotes the number of feature points

to be grouped, the third column Ng represents the number of motion groups, which is
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unknown before our segmentation step, and the last column Tmean symbolises the com-

putation time for segmentation. The first three rows correspond to simulation results,

and the last row comes from our experimental data which will be discussed next. With

the currently un-optimised sequential MATLAB code, we can obtain the segmentation

results at the approximate rate of 7.5 points/ms, independent of motion group number,

and the required time is proportional to the number of feature points. All of these have

confirmed our theoretical analysis of its efficiency.

(a) Simulated motions. (b) Motion segmentation result.

Figure 3.2: Motion segmentation result for the simulated 3 planes scenario. Here
different colours are only used to differentiate different motion groups, so not necessarily

the same as the ground-truth marked. Best viewed in colour.

(a) Simulated motion. (b) Motion segmentation result.

Figure 3.3: Motion segmentation result for the simulated 1 plane and 2 balls scenario.
Here different colours are only used to differentiate different motion groups, so not

necessarily the same as the ground-truth marked. Best viewed in colour.
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(a) Simulated motion. (b) Motion segmentation result.

Figure 3.4: Motion segmentation result for the simulated 3 balls scenario. Here
different colours are only used to differentiate different motion groups, so not necessarily

the same as the ground-truth marked. Best viewed in colour.

Table 3.1: Computation time in relation with the number of feature points and groups

Dataset NO. Np Ng Tmean(ms)

Simulation1 450 3 55

Simulation2 300 2 38

Simulation3 150 3 19

Experiment1 152 3 21

3.3 Evaluation with A Simulated Multibody RGB-D SLAM

Problem

3.3.1 The Simulated Multibody RGB-D SLAM Scenario

We simulate a typical multibody RGB-D SLAM scenario as shown in Fig. 3.5, which

contains a depth camera and two moving objects in addition to some static features.

Throughout the process, the two objects are moving independently along different paths,

and we keep recording the ground truth images at discrete steps around a loop.

3.3.2 Motion Segmentation Results Using Simulated Noisy Data

In order to test the robustness of Algorithm 3, we add some independent Gaussian noises

to the u, v (standard deviation within 0.5 pixel) and d (standard deviation within 1%

of the ground truth depth value) values of the recorded images respectively, and then
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take the results as the input to our algorithm. Theoretically, any value within the range

determined by the maximal noises and minimal motion parameters could be selected as

the threshold. At this stage, we roughly choose a threshold of 0.1m with which 100%

accurate segmentation results have been achieved as shown in Fig. 3.6.

Figure 3.5: Simulated multibody RGB-D SLAM scenario: blue and red points rep-
resent static features, and red ones are currently seen by the camera; green ones stand
for camera’s positions; yellow ones correspond to the paths of the two moving objects

Figure 3.6: One segmentation result from the simulated data: blue, red and green
points represent the three groups the algorithm has found, corresponding exactly to

the ground-truth groups
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3.3.3 Multibody SLAM Results Using Simulated Noisy Data

Based on the segmentation results, according to [41], we can estimate pair-wise visual

odometry and loop closures for each motion group, from which we can calculate the

initial values of the features’ positions and camera’s poses. Then, we choose the static

features and camera as a group to perform a RGB-D SLAM employing Gauss-Newton

method for optimisation. Once we have attained the camera poses, we utilise them to

calculate the positions of the dynamic features at each time step of the process.

Fig. 3.7a, 3.7b, 3.7c and 3.7d show our SLAM results as compared with the ground

truth values.

(a) Angular errors of camera poses using
simulated data.

(b) Translational errors of camera poses us-
ing simulated data.

(c) Average position errors of the first mov-
ing object from the simulated data.

(d) Average position errors of the second
moving object from the simulated data

Figure 3.7: Angular, translational and position errors of the multibody RGB-D SLAM
results using the simulated data.
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3.4 Evaluation Based on Our Own Dataset

3.4.1 Collecting Our Own Dataset

Given the difficulty in finding a suitable RGB-D dataset containing only rigid moving

objects to test Algorithm 3, we have instead collected a small dataset with ground truth

values for evaluating both our motion segmentation algorithm and visual odometry

results.

As shown in Fig. 3.8, we choose a special space in our lab with the dimension of 4m×2m.

The background has also been decorated with some feature rich objects. In the scenario,

there are two moving boxes and a Kinect sensor. From one step to the next, the two

boxes, in black and blue respectively, and Kinect will translate or rotate independently,

and any of the moving objects can remain static at sometimes, which means that the

number of motion groups is changing throughout the process. At each discrete step, we

measure and record the position and orientation of each object manually. At the same

time, we keep recording the synchronised RGB-D data using Kinect and ROS.

Figure 3.8: Experimental setup: one Kinect, two boxes (one in blue, one in black)
are located at the further side of the image, and have been marked out
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3.4.2 Motion Segmentation Results From Experimental Data With

Outliers

After obtaining the data, we firstly perform feature detection and matching using SIFT

[38], and filter out those that do not have depth values. Then we apply Algorithm 3 to

the matched sets of points.

The sample feature matching and segmentation results are shown in Fig. 3.9 and 3.10. In

Fig. 3.10, different colour represents different motion groups, consistent with the ground

truth. As we can see that outliers have been separated into small independent groups

which are usually composed of less than 3 feature points, and we can just discard such

small groups. As a result, although the feature matching results unavoidably contain

outliers, our motion segmentation algorithm can still handle them.

Figure 3.9: One sample feature matching result from the experimental data

Figure 3.10: One sample segmentation result from the experimental data
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3.4.3 Initial Values Based on Motion Segmentation and Visual Odom-

etry

From the segmentation results, we choose the 3D feature points corresponding to the

static group to calculate visual odometry, by accumulating which we can then derive the

initial values of the camera poses for pose-graph optimisation. The angular (Yaw, Pitch

and Roll) and translational (x, y and z) errors of camera poses as compared with the

ground truth are shown in Fig. 3.11a and 3.11b respectively. In Fig. 3.11a, the x-axis

represents frame number, and the y-axis represents the angular errors in radians; in Fig.

3.11b, the x-axis represents frame number, and the y-axis represents the translational

errors in meters.

As we can see, although the segmentation results are good, the visual odometry and

thus the initial values of camera poses turn out to be not as sastifactory as we have

expected. This may be due to several reasons. Firstly, after the division, the number

of feature points for each motion group is much smaller compared with ordinary SLAM

scenarios, and therefore the least squares results will inevitably degrade to some degree.

Secondly, as we know, the noises contained in the depth information of RGB-D cameras

do not fit into Gaussian distributions; instead, they are distance dependent [66]. Last

but not least, we have not fully preserved the accuracy of the depth information during

the image format transformation and saving process.

(a) The angular errors. (b) The translational errors.

Figure 3.11: The angular and translational errors of camera poses’ initial values as
compared with the ground truth. Best viewed in color.

3.5 Summary

In this chapter, we have deduced the necessary and sufficient conditions for grouping 3D

points into different motion sets, upon which a distance-based 3D motion segmentation

algorithm using RGB-D data is proposed. Results from both simulated and real data
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show that our algorithm is efficient and robust. Furthermore, we have applied it to solve

a simulated multibody SLAM problem, and the results are very promising. Finally, we

have also shown that the satisfactory segmentation results using real dataset enable us

to attain visual odometry for solving practical SLAM problems.

Although simulation and experimental results prove that the proposed motion segmen-

tation algorithm is applicable to dynamic scenarios composed of rigid objects with large

motions, when it comes to images with continuous video of non-rigid moving objects, it

would be difficult; or if motion blur or featurless regions occur, the number and quality

of available feature points will drop dramatically, jeopardising the following motion anal-

ysis. In the next chapter, we will firstly explore the possibilities of choosing appropriate

2D/3D base points and thresholds for each motion group, based on which two other

frameworks capable of dealing with scenarios including quick non-rigid moving objects

and featureless zones are then proposed.



Chapter 4

Motion Model based

Segmentation for Robust RGB-D

SLAM: From Sparse to

Semi-dense

Solely based on detecting the changes of the relative 3D position between feature points,

the sparse feature-based motion segmentation method proposed in last chapter is es-

pecially suitable for segmenting large movements. As an extension in this direction,

in this chapter, we firstly propose another sparse feature-based motion segmentation

method according to motion models. Compared with the former method, this motion

model based segmentation algorithm is based on feature flow analysis (suitable for both

2D and 3D), therefore it is capable of capturing motion details in continuous videos.

Furthermore, we demonstrate that this motion segmentation method along with the

pose-graph SLAM framework constitutes a unified way for robust SLAM in both static

and dynamic scenarios.

However, when it comes to dealing with some of the challenging TUM [61] benchmark

sequences, we discover that motion blur and featureless regions are pervasive, in which

case sparse features become insufficient in quantity and unreliable in quality. To over-

come these difficulties, we then propose another semi-dense feature version of our motion

segmentation method based on optical flow. Using challenging real data, our method

could produce much better results than the state-of-the-art method.

The structure of this chapter is as follows. Firstly, we present related work in Section 4.1.

Then we propose our motion segmentation algorithm in Section 4.2, in which no prior

46
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motion model or object model is assumed. After that, we choose standard RANSAC as

a reference, and make detailed comparisons between them using simulated data; based

on that, we further test our algorithm using TUM benchmark dataset and compare our

results with those of the state-of-the-art in RGB-D SLAM, i.e., dense visual SLAM [59]

in Section 4.3. Based on analysis in Section 4.4 of the challenging walking sequences of

the TUM benchmark, we proposed a semi-dense motion segmentation method in Section

4.5 and verify it using the walking sequences in Section 4.6. Finally, we summarise the

chapter and talk about possible future work in this direction.

4.1 Related Work

In this section, we will mainly discuss RANSAC and give a brief review of related work

that has made use of RANSAC to deal with outliers and moving objects in SLAM.

Moreover, following the detailed survey of the available motion segmentation algorithms

in multibody SLAM in Chapter 2, we will focus on summarising the related work from

a different perspective.

4.1.1 RANSAC and Its Application in SLAM

As an important robust estimator, RANSAC has become a standard and indispensable

tool to deal with outliers in sparse feature-based SLAM [43, 67] as well as many other

areas. It was firstly proposed in [13], and the standard RANSAC is composed of itera-

tions of three simple steps: generate random hypothetical minimal inliers, fit a model,

and obtain the consensus set. It will keep iterating till the possibility of obtaining a good

model with the corresponding consensus set is above a pre-set value or the maximum

iteration times have been reached.

Theoretically, with appropriate threshold values, given enough time, RANSAC can al-

ways find the most accurate model, but when the number of iterations is limited, the

obtained solution is not guaranteed to be optimal. As we all know, in practice, time

is a precious resource, therefore the balance between accuracy and time consumption

amounts to be a constant topic of RANSAC. Furthermore, for one of the common cases

where we are only concerned about the predominant model in the data, only when out-

liers just constitutes a small part of the whole data, standard RANSAC turns out to be a

simple and efficient solution; as the number and portion of moving parts and other out-

liers increase, RANSAC will become inefficient very quickly. To improve the efficiency,

accuracy and robustness of the standard RANSAC, many extension versions have been

proposed. The basic conclusion is that RANSAC can be improved in one regard but at
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the expense of the others, and interested reader can refer to [68] for a detailed survey

and performance evaluation of them.

On the other hand, the standard RANSAC can not be directly used to estimate multi-

model in a scenario, although [17] has made use of it to detect one moving object

which can be regarded as a simpler case of complex dynamic scenarios in SLAM. As a

result, some researchers propose to conduct sequential RANSAC [69]: apply RANSAC

to obtain a model and its inliers, remove the found inliers from the data and then for the

remaining data apply RANSAC again. The iterations will keep going till no model can

be recovered from the data. However, during the process, inaccurate inliers detection

will affect the estimation of the following models. To tackle this problem, multiRANSAC

[70] is proposed, which performs the estimation in a parallel manner. Nevertheless, it

requires the user to specify the number of model instances, which is usually unknown in

most cases.

Generally speaking, although many variants of RANSAC have been proposed to partially

address the shortcomings of the standard RANSAC, the problem has not been fully

solved yet. And as far as we know, up till now, none of them has been applied in

multibody SLAM yet.

In this chapter, we are mainly concerned about robust estimation of camera/robot poses,

or ego-motion, in various situations where the static features usually amount to be the

predominant part of the data, therefore we choose to compare our algorithm with the

standard RANSAC here.

4.1.2 Motion Segmentation Methods for SLAM in Dynamic Scenarios

In multibody SLAM, motion segmentation algorithms have been regarded as an impor-

tant step to decompose the dynamic scenario into different motion groups. And almost

all of the available motion segmentation algorithms conduct segmentation without dis-

crimination, which means that while performing segmentation, they do not care about

which group belongs to the static environment.

In terms of targeted applications, most of the available motion segmentation algorithms

are for RGB data only, quite recently some work on RGB-D data is also emerging [71].

In Chapter 2, an efficient algorithm for motion segmentation in RGB-D SLAM based on

the necessary and sufficient conditions of being relatively static is proposed. However,

since the segmentation algorithm solely relies on the distance values whose accuracy is

limited by the capability of the sensor, i.e., Kinect, while it is good at detecting large
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movements, it may fail to detect small movements within the precision range of Kinect.

Furthermore, the approach is restricted to scenarios composed of rigid moving objects.

As to the output of motion segmentation methods, the segmentation results can be dense

or sparse. In the former case, every pixel in an image will be assigned a label associated

with a motion group; while the latter only provide identifications for some sparse pixels

in the image. To achieve dense results, some algorithms start from dense optical flow,

which is usually obtained by employing available mature algorithms in computer vision.

And therefore their accuracy depends on that of optical flow results. On the other hand,

some others firstly conduct a long trajectory analysis to obtain a sparse segmentation

result, then through a label diffusion process to obtain dense results [50]. Accordingly,

the resulting accuracy mainly depends on that of its initial stage.

4.1.3 Different Solutions for Different Scenarios

As we know, in SLAM, there are three long standing problems that are pervasive and till

now they are regarded as different problems and being treated in different ways, either

from the front end or back end.

Firstly, in traditional filter, pose-feature-graph or pose-graph based SLAM, while per-

forming data association during the initial process, there are unavoidable outliers coming

from feature matching and sensor noises. How to get rid of them constitutes a classical

problem. Nowadays, RANSAC [13] is widely utilised to find the motion model for the

camera/robot that can encompass most available feature points as inliers. Once such

a model is found, the points that are inconsistent with the model are regarded as out-

liers and discarded. Since the proportions of this kind of outliers are usually very low,

RANSAC’s performance proves to be quite satisfactory in most cases [72, 73], although

it is an iterative and non-deterministic method.

Secondly, dynamic scenarios can bring in another kind of outliers. As we know, the

traditional solution framework of SLAM assumes that everything is static except the

camera/robot. And when it comes to dynamic scenarios, the effects of moving objects

can be very serious. In this case, we do not care about what the moving objects are

and how they are moving; instead, our sole purpose is just to filter out these extra

outliers (moving objects) together with those mentioned above. RANSAC method can

still work in some special cases, but as we will see, its performance will degrade rapidly

as the fraction of outliers increases. Dense visual SLAM [59], which represents the latest

achievement in RGB-D SLAM, makes use of the colour and depth information at every

pixel while conducting SLAM and employ t-distribution to enhance its robustness; in

[14], however, weighting function is utilised to handle moving objects. On the other
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hand, instead of relying solely on the data association stage to get rid of all of the

outliers, robust kernels such as Huber function [74], and recently some other robust

approaches [10, 75, 76], have also been proposed and adopted at the back ends to cope

with unwanted outlier edges brought from the front ends. The basic idea of them is

to minimise the effects of outliers including dynamic elements while performing the

least squares optimisation instead of explicitly identifying and separating them away

beforehand.

Thirdly, as mentioned before, in multibody SLAM which concerns about depicting all

of the parts, either static or moving ones, in the scenarios, we usually firstly resort

to motion segmentation algorithms to decompose the dynamic scenarios into different

motion groups and then apply the current available solution frameworks for SLAM static

environments to handle each of them. As a matter of fact, in multibody SLAM, moving

objects become one of our focuses instead of unwanted, useless pseudo noises; at the

same time, we still need to deal with outliers caused by feature matching and sensor

noises. Therefore, to some degree, multibody SLAM is a more general task, and those

situations we have mentioned before constitute some of the special cases of it. It means

that motion segmentation algorithms need to be able to cope with such kind of situations

as well. In other word, motion segmentation algorithms can be a general solution to all

these three kind of problems.

Although the sparse feature-based motion segmentation proposed here in this chapter is

originally targeted for RGB-D SLAM in dynamic scenarios, we argue that a good motion

segmentation algorithm can act as a unified solution to the three different problems

mentioned above, and we will see that it is efficient and effective in handling those three

kinds of situations in the same framework. We have tested it using simulated data and

several benchmark RGB-D sequences, some of which are difficult ones, and our results

are quite promising. As a result, we are confident that as a supplement for the traditional

solution frameworks of SLAM in static environments, this algorithm will enable us to

conduct robust SLAM in both static and dynamic scenarios.

4.2 Our Sparse Feature Motion Model based Motion Seg-

mentation Algorithm

The inputs to our motion segmentation algorithm are two frames of RGB-D data, from

which we can obtain sparse SIFT feature pairs through feature detection and matching,

and the outputs are separated motion groups of feature pairs.
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As we know, for each dynamic scenario composed of some moving objects, its corre-

sponding flow field is made up of several coherent regions, therefore each pair of inlier

points is not singular. Instead, each of them can find some close neighbours that have

similar flow vectors. On the other hand, for those who can not find any similar neigh-

bour, it is highly possible that they are outliers. It is based on this observation that we

firstly select two similar neighbouring pair of points and then together with the given

pair to calculate the rotation matrix R and translation T across the two frames during

the segmentation process.

More specifically, when judging whether two vectors are similar or not, we are using the

following formula as in [77]:

s =
|Vi −V0|

0.5(|Vi|+ |V0|) + ε
(4.1)

In formula 4.1, s represents the similarity score, V0 = (∆x0,∆y0,∆z0)
T denotes the 3D

flow vector of the current chosen point, Vi corresponds to the 3D flow vector of one of

the neighbours and ε is a constant whose value is set according to the noise level of the

data. After some primitive verification using some sampled points, we discover that if

ε is set to 1 and s < 0.05, the corresponding neighbour could be regarded as similar

to the current point. And these two values are fixed in this chapter except for the last

sequence (Section 4.6.4) where adaptive thresholds are adopted.

After obtaining the initial R and T with similar neighbours according to [41], we will

iterate between updating R/T and inliers till no more inliers can be included. This

process is similar to the second part of the locally optimal RANSAC [78].

4.2.1 Sparse Feature Motion Model Based Motion Segmentation Al-

gorithm

The detailed steps of our algorithm are described in Algorithm 4.

4.2.2 Solution for Robust SLAM and Multibody SLAM

The chosen group and its corresponding R and T will be put into a pose-graph optimi-

sation process to estimate the camera poses. For pose-graph based robust SLAM, the

result is thus obtained. And for multibody SLAM, it is also a good start. For example,

once ego-motion is known, it can help us identify various moving objects (including both
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rigid and non-rigid objects) and their motions types, even when there are not sufficient

features on some moving objects in some frames.

Algorithm 4: Sparse feature motion model based motion segmentation algorithm

Inputs: two frames of RGB-D data D1 and D2;

Output: the static group S and its corresponding R/T;

Assumption: the largest group corresponds to the static group;

1. Obtain the set of matched feature pairs: for D1 and D2, perform feature

detection and matching , filtering out those feature points with no depth information,

and then we can obtain a set of matched 3D feature pairs P;

2. obtain corresponding 3D feature flow : convert obtained features into (x, y, z)

form, and then obtain their corresponding 3D flow (∆x,∆y,∆z);

3. Loop: iterate through 3.1-3.3 till P is empty or left with points pairs that could

not find similar pairs;

3.1 Choose similar points as a seed : for one pair of matched features, choose its

neighbours that have similar 3D flow as a cluster to obtain an initial guess of R and

T, based on which corresponding inliers are obtained. If for one pair, we cannot find a

minimum number (3 is used in this chapter) of similar neighbours, it is highly possible

that it is an outlier and we will skip it;

3.2 Iterative update : keep iterating between updating R/T and inliers until no more

inliers can be included;

3.3 Remove found group: remove the found inlier group from P and remember its

corresponding R/T.

4. Group Selection : after all of the features have been classified, choose the largest

group as the static group S.

4.3 Simulation and Experimental Results

Firstly, to show the efficiency of Algorithm 4, we compare it with the standard RANSAC

(without causing confusion, we will just call it RANSAC thereafter) using simulated

data. As we will see, as the fraction of the targeted group decreases, the performance

of RANSAC degrades quickly while ours remains almost the same. Please note that

for RANSAC, the computation time include just one round, which can only tell us the

inliers corresponding to the biggest group, while Algorithm 4 will segment all the points

into different groups at one go.

Then, we test Algorithm 4 using several benchmark RGB-D sequences, which include

both static and dynamic scenarios. The segmentation results are verified by the accurate

visual odometry achieved, based on which pose-graph SLAM results can be obtained.
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4.3.1 Results Using Simulated Dynamic Scenarios

Simulated Dynamic Situations

We randomly generate one thousand of 3D points (x, y, z), separate them into different

groups, and then translate and rotate them using different sets of motion parameters

(Rs and Ts), all of which constitute the ground-truth values.

From the 3D points, we can obtain their images at their different positions through a

simulated RGB-D camera (its intrinsic matrix is the same as the Kinect used in the

real dataset), then we add Gaussian noises to the u, v and d values respectively (whose

standard deviations are within 0.5 pixel for the u and v values, 1% for the d values).

Simulation Results

Given thus obtained two sets of u, v and d values, we apply Algorithm 4 (represented as

MS3D in this section) and RANSAC to perform segmentation respectively. According

to the noise level of current data, the roughly chosen threshold for both MS3D and

RANSAC here is the same value 0.08m.

As to the iteration times k of RANSAC, assuming that the probability of choosing an

inlier component is w, if we want to ensure that we can obtain a subset of n-component

coming from the inlier set with the probability of p, the traditional way to calculate k

as follows [13]:

k =
log(1− p)

log(1− wn)
(4.2)

While directly applying this formula to our data, we find that in most cases, RANSAC

cannot find a solution at all. According to our understanding, this formula just tell us

that within k times, we can find one subset of inliers; on the other hand, as we know,

for noisy data, we cannot expect that one randomly chosen inlier subset could give us a

good estimation. Therefore, in our comparisons, we have used 30 times of the calculated

k as the limit. Even at this larger limit, there still exist some occasions that RANSAC

could not find a coherent inlier group to estimate R and T.

If we change the portion of the predominant group, the run time for RANSAC will

increase dramatically while that of MS3D remains almost the same, as shown in Table

4.1 and Table 4.2. More specifically, in Table 4.1 where there are two motion groups,

when the percentage of the targeted group decreases from 100% to 51%, to obtain
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the same accuracy, the consumed time for RANSAC increases from 0.01 second to 2.7

seconds (discarding those situations in which it fails to find the results) while the running

time for MS3D remains to be around 0.03 second. Similar trend can be seen in Table

4.2 which represents the five-motion-group scenario.

Table 4.1: Comparison of Average Computation Time: Scenarios Composed of Two
Motion Groups

Percentage for The Average Run Time (Seconds)
Targeted Group (%) RANSAC MS3D

100 0.01 0.02

90 0.3 0.03

80 0.5 0.03

70 0.9 0.03

60 1.6 0.03

51 2.7 0.03

Table 4.2: Comparison of Average Computation Time: Scenarios Composed of Five
Motion Groups

Percentage for The Average Run Time (Seconds)
Targeted Group (%) RANSAC MS3D

80 0.5 0.3

70 0.9 0.2

60 1.6 0.2

50 2.9 0.2

40 5.8 0.2

30 14.2 0.2

4.3.2 Experimental Results Using Static and Dynamic Scenarios

We then test Algorithm 4 using several typical benchmark RGB-D sequences pro-

vided by TUM [61], among which are static (fr3 long office), dynamic (fr3 sitting xyz,

fr2 desk with person) scenarios, and even a very challenging sequence that no visual

odometry results have been reported before (fr3 walking static).

For each sequence, we are not using all of the data; instead, we firstly select some

keyframes according to two criteria: either every two consecutive frames at least have

a minimum number of common features (we choose 100 here), or have a minimum

distance (we specify that the sum of the norm of the relative translation (in meters) and

absolute rotation angles (in radians) should be bigger than 0.03) from each other. Apart

from these conditions, there is no further manual pruning involved. Then the relative

translation and rotation, i.e., visual odometry, can be obtained after sparse feature (we

are using SIFT) detection, matching and segmentation.
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Based on the visual odometry results from every two consecutive frames, we can obtain

the initial values for the camera poses; furthermore, we also check every frame with its

closest neighbours within a certain distance (we use 0.2m as the limit). Those frames

that have at least 100 common features with the current frame amount to be satisfactory

loop closures.

With all of these R and T values, we then employ G2O [33] to perform a pose-graph

based SLAM. The respective visual odometry and SLAM results for each sequence are

shown below (the last one only has visual odometry results because its loop closures are

impaired due to shortage of common features).

Our visual odometry comes right after motion segmentation, and its accuracy can di-

rectly reflect the quality of motion segmentation results. According to [61] and [14, 59],

the RMSE of relative pose error (RPE) in meters per second is a good evaluation stan-

dard for visual odometry; while the RMSE of absolute trajectory error (ATE) is espe-

cially suitable for evaluating the SLAM results. In this thesis, we follow these rules and

make use of the final results of dense visual SLAM [59] (called DVSLAM thereafter) as

a reference.

fr3 long office

In this sequence, the camera is moving around a large table, therefore the outliers mainly

come from feature detection, matching and/or sensor errors.

a) Motion Segmentation Result

As shown in Fig. 4.1, Algorithm 4 can detect outliers effectively.

b) Visual Odometry Result

The RMSE of RPE for our visual odometry is 0.024m/s; while the RMSE of RPE for

DVSLAM is 0.054m/s.

c) After Pose-graph SLAM

Our RMSE of ATE is 0.050m, and the obtained camera poses as compared with the

ground truth values are shown in Fig. 4.2; while the RMSE of ATE for DVSLAM is

0.084m.
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Figure 4.1: A sample motion segmentation result of two frames from the fr3 long office
sequence (best viewed in colour): blue points respresent detected inliers, while red

points represent outliers caused by inaccurate depth data or feature matching.

Figure 4.2: Our SLAM results for the fr3 long office sequence compared with the
ground truth (best viewed in colour): gray lines represent ground truth, blue lines
represent the SLAM results, and red lines represent the differences between them at

various corresponding timestamps.

fr3 sitting xyz

In this sequence, two people are sitting in front of a table before the camera, chatting

with small body movements.

a) Motion Segmentation Result

As shown in Fig. 4.3, Algorithm 4 can detect moving points and other outliers effectively.
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Figure 4.3: A sample motion segmentation result of two frames from the
fr3 sitting xyz sequence (best viewed in colour): blue points respresent detected in-
liers, while red points represent outliers caused by inaccurate depth data or feature

matching.

b) Visual Odometry Result

The RMSE of RPE for our visual odometry is 0.025m/s; while the RMSE of RPE for

DVSLAM is 0.049m/s.

c) After Pose-graph SLAM

Our RMSE of ATE is 0.018m, and our camera poses as compared with the ground truth

values are shown in Fig. 4.4; while the RMSE of ATE for DVSLAM is 0.060m.

Figure 4.4: Our SLAM results for the fr3 sitting xyz sequence compared with the
ground truth (best viewed in colour): gray lines represent ground truth, blue lines
represent the SLAM results, and red lines represent the differences between them at

various corresponding timestamps.
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fr2 desk with person

In this sequence, one people comes to sit before the desk, simulating working there with

some big body movements and making changes to parts of the environment.

a) Motion Segmentation Result

As shown in Fig. 4.5, Algorithm 4 can separate the moving parts of the human body

and other outliers from the static group effectively.

Figure 4.5: A sample motion segmentation result of two frames from the
desk with person sequence (best viewed in colour): blue points respresent detected in-
liers, while points in other colours represent outliers caused by inaccurate depth data,

feature matching, or moving objects.

b) Visual Odometry Result

The RMSE of RPE for our visual odometry is 0.018m/s; while the RMSE of RPE for

DVSLAM is 0.018m/s.

c) After Pose-graph SLAM

Our RMSE of ATE is 0.055m, and the camera poses as compared with the ground truth

values are shown in Fig. 4.6; while the RMSE of ATE for DVSLAM is 0.073m.
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Figure 4.6: Our SLAM results for the fr2 desk with person sequence compared with
the ground truth (best viewed in colour): grey lines represent ground truth, blue lines
represent the SLAM results, and red lines represent the differences between them at

various corresponding timestamps.

fr3 walking static

As shown in Fig. 4.7, in this sequence, two people are moving in front of the camera,

there are blur caused by quick camera movements and in some frames useful features

are limited. Till now, no one else has publish reasonable results on this sequence yet.

Since there are wide ranges of dynamic changes in the scenarios, a fixed threshold value is

no longer valid for segmenting all of the frames into different motion groups. Therefore,

we have modified Algorithm 4 so that it can change the threshold value on the fly to

adapt to different situations. However, similar to [79], it is based on a basic assumption

that there are at least 20 common features in each pair of frames. Nevertheless, we can

only obtain relatively better visual odometry results at this stage.
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Figure 4.7: Two snapshots of the fourth sequence: fr3 walking static.

For our visual odometry, the RMSE of ATE is 0.161m, and the RMSE of RPE is

0.084m/s; while for DVSLAM, the RMSE of ATE is 0.470m, and RMSE of RPE is

0.309m/s.

And Table 4.3 is a summary of the comparison of the results of our methods (represented

as SMS) with those of DVSLAM.

Table 4.3: Comparison of RMSE of RPE (m/s) and ATE (m) for SMS and DVSLAM

Sequence No.
RPE ATE

DVSLAM SMS-VO DVSLAM SMS

1 0.054 0.024 0.084 0.050

2 0.049 0.025 0.060 0.018

3 0.018 0.018 0.073 0.055

4 0.309 0.084 0.470 0.161

4.4 Motivations to Semi-dense Feature Motion Model Based

Motion Segmentation

As we know, based on TUM benchmark, many algorithms for RGB-D SLAM have

been proposed ever since 2012 [80], among which are RGB-D SLAM system [67], muti-

resolution mapping [81], and dense visual SLAM [59]. And, as we can see, in terms

of accuracy, all of them can produce satisfactory results for most of the sequences of

static scenarios. However, when it comes to robustness, none of the available algorithms

has mentioned their performance on those sequences of dynamic scenarios. As far as

we know, [14], which concentrates on robust visual odometry estimation, is the first one

that has reported its estimation results on some moderately dynamic scenarios (the TUM

sitting sequences); as to those highly dynamic scenarios (the TUM walking sequences),

it says that no reasonable result can be obtained yet. A closer look will show that those

dynamic scenarios really pose great challenges for us to overcome.
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It is under this general situation that we have determined to further improve the ro-

bustness upon the current SLAM framework so that we can perform SLAM in more

challenging scenarios in a less constrained manner, and this constitutes the motivation

of the following work of this chapter. More specifically, in the following parts of this

chapter, we firstly analyse the characteristics of the challenging sequences that we are to

address. After summarising the pros and cons of the most popular methods that have

been employed to achieve robustness, we propose a semi-dense version of motion model

based motion segmentation algorithm that can act as the front end. Then, together

with pose-graph SLAM, we show the improved performance of this new framework in

four of the most challenging sequences. Finally, we give an evaluation of our framework

and talk about possible future work.

4.4.1 The Challenging Sequences and Its Impacts on Available Meth-

ods

The TUM RGB-D walking sequences are composed of four challenging shots, whose

samples have been shown in Fig. 4.8, 4.9, 4.10 and 4.11. As we can see, the camera is

moving quickly, so blur is pervasive in these sequences; the moving people sometimes

constitute a large portion of the image; the illumination is changing; and textureless

areas emerge from time to time. All of these turn out to be great challenges to the

related state-of-the-art methods.

Figure 4.8: Samples of fr3 walking static
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Figure 4.9: Samples of fr3 walking xyz

Figure 4.10: Samples of fr3 walking rpy
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Figure 4.11: Samples of fr3 walking halfsphere

4.4.2 Sparse Feature-based SLAM Cannot Deal with Image Blur and

Textureless Areas

Sparse feature-based SLAM usually relies on SIFT/SURF or some other kinds of sparse

features to calculate visual odometry, but when the illumination changes too much,

textureless areas appears, or image blur occurs, the number and quality of such kinds

of detectable features will decrease dramatically, all of which will directly affects the

accuracy of the visual odometry results.

4.4.3 Dense SLAM is Vulnerable to Moving Objects

Dense SLAM can deal with some textureless scenarios, motion blur and illumination

changes gracefully, but moving objects will have a great impact on its performance.

While performing dense registration, a large portion of moving objects will surely impair

the results.
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4.4.4 RANSAC and Robust Kernels Cannot Endure Too Many Out-

liers

The widely adopted RANSAC and robust kernels have acceptable performance when

outliers just constitute a minor portion of the features, but they cannot deal with situ-

ations where outliers constitute a significant part.

In summary, these challenging sequences contain mainly two kinds of challenges, i.e.,

tracking against blur/illumination changes/textureless areas and tolerating more than

50% of outliers. The state-of-the-art sparse feature-based and dense SLAM, RANSAC

and robust kernels cannot accommodate all of these challenges at the same time. There-

fore, we need to find new way to deal with them.

4.5 Our Semi-dense Feature Motion Model based Motion

Segmentation Method

As we know, to cope with the challenges, firstly we need to ensure that we always have

enough features for tracking. Dense tracking is ideal but is not practical at present due

to its heavy computational cost. Therefore, we choose to conduct a semi-dense tracking

instead. On the other hand, we need to find a robust method that can tolerate more

than 50% of outliers, and our choice is motion segmentation. We propose to employ

an efficient motion segmentation algorithm which is adaptive to deal with outliers in

various scenarios. After these two steps, we can obtain visual odometry and loop closure

constraints which constitute the inputs to standard pose-graph SLAM to estimate the

camera/robot poses. Therefore, our method mainly concentrates on the front end.

4.5.1 SIFT Flow For Dense-Feature Detection And Matching

Since in the current context, the traditional SIFT/SURF feature detectors are no longer

helpful, we firstly turn our attention to optical flow algorithms which can provide us

with dense correspondences across two consecutive frames in the video. Optical flow

as a classical problem in computer vision has attracted much attention, and numerous

algorithms [64] have been proposed. Nevertheless, most of the available algorithms

assume constant illumination and the displacement between the two frames cannot be

too large, which has been verified by our preliminary test results. Finally, we find SIFT

flow [82], which combines SIFT detector and the framework of optical flow together to

produce a dense result and is robust against illumination and scale changes.
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However, we are not using all of the output of SIFT flow, instead, we down-sample it

with the factor of 16. It is a good balancing point that can retain the motion details

while being lightweight for post-processing.

4.5.2 Semi-dense Feature-based Motion Segmentation

In this version of motion segmentation algorithm, in addition to the changes of features

from sparse to semi-dense, we are also trying to make the thresholds adaptive to various

dynamic scenarios. And the details of our algorithm are shown in Algorithm 5.

Through this process, we can find out the static group successfully in most cases. How-

ever, as we know, in the challenging sequences, there exist some shots that the feature

points on the moving people turn out to be the biggest group. In such cases, we need

to find some other way to identify the static group. It has not been full solved yet, and

some large errors in our results using real data can be attributed to this problem.

Another practical problem is that, for different scenarios, the noise levels of the SIFT

flow are different. Therefore, we need to adjust the related threshold values accord-

ingly. However, automatically adapting thresholds to different scenarios is still an open

problem, although some progress has been made [79] [83]. In this chapter, we simply

stipulate that the biggest group should have at least 100 point members; otherwise, we

will increase the thresholds step by step (0.001m each time) till we can find enough

points or maximum increments (5 in this chapter to limit the maximal thresholds) have

been reached.

Fig. 4.12 is a sample output of SIFT flow and motion segmentation result using this

algorithm.

4.5.3 Pose-graph SLAM

Based on the visual odometry, we choose some keyframes and loop closure relative pose

constraints to perform a pose-graph SLAM by using standard optimisation tools such as

G2O [33]. As to the standard of choosing keyframes, we stipulate that the relative pose

between two keyframes cannot be too large (the sum of the norm of translation and the
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norm of Euler angles is no more than 0.03), and the number of their common features

should be no less than 150.

Algorithm 5: Semi-dense feature motion model based motion segmentation method

Inputs: two frames of RGB-D data D1 and D2;

Output: the static group S and its corresponding R/T;

Assumption: the largest group corresponds to the static group;

1. Obtain semi-dense set of feature pairs: calculate SIFT flow with the two

images, down-sample it to obtain the semi-dense result.

2. Obtain 3D flow : with the semi-dense set of feature pairs P and related depth

images, we calculate the corresponding 3D flow (V(p) = [∆x,∆y,∆z] for each pixel p

in the first image) across the two frames;

3. Loop: iterate through 3.1-3.3 till P is empty or left with points pairs that could

not find similar pairs;

3.1. Choose a seed : for a pair in P, choose its two closest neighbours that have

similar 3D flow together with itself to obtain a tentative visual odometry. More

specifically, We firstly select one point and its 3D flow vector (V0) as the reference,

compare the others’ flow vectors (Vi) with this one, and then choose the two closest

similar neighbours (according to (4.1)) along with itself to calculate T and R. If one

point cannot find similar neighbours, it is highly possible that it is an outlier, so we

just skip it;

3.2. Find inliers: use the tentative T and R to obtain the corresponding inliers. For

each point, we can predict its position in the second image. Then we compare these

predictions with their real positions in the second image. All of those whose differences

are within a certain limit (its initial value is set to be 0.003m) constitute the inliers to

this group of T and R;

3.3. Local optimisation : employ locally optimal RANSAC [78] to further expand

the inlier set. Randomly choose 5 points from the initial inlier set, calculate T and R

and obtain corresponding new inlier set as Step 3.2 has done. If the new inlier set is

bigger than the initial one, it will replace the initial one. Repeat this process for a

number of times (we have adopted 100 in this chapter), then we can obtain an updated

inlier set that constitutes a new group. Remove members of this group from P;

4. Find the static group: finally choose the biggest group and take its

corresponding T and R as the visual odometry.

4.6 Experimental Evaluation Using Challenging Sequences

We have applied our semi-dense feature based method to the four challenging TUM

walking sequences. For comparison, we also employ the state-of-the-art, dense SLAM
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Figure 4.12: An sample SIFT flow and motion segmentation result (Best viewed
in colour). The first column are the original images, and the second column is the
SIFT flow output. In the third column, different colours in the upper image represent
different motion groups we’ve found, and the blue points in the lower image represent

the static group.

[59], whose code has also included the work of robust visual odometry [14], to the same

sequences. Again, we adapt the RMSE of ATE and RPE as the metric for the SLAM

results. Therefore, we have shown both of these two metric results for every sequence.

4.6.1 The fr3 walking static Sequence

In this sequence, the camera’s movements are relatively small, but the movements of

two people are large, sometimes constituting a large portion of the images.

For dense SLAM, the RMSE of RPE is 0.309m/s, and RMSE of ATE is 0.470m, whose

details are shown in Fig. 4.13.

Our visual odometry results are: RPE is 0.021m/s, and ATE is 0.034m; after pose-graph

SLAM, RPE is 0.020m/s, and ATE is 0.037m, whose details are shown in Fig. 4.14 and

4.15 respectively.

As we can see, our method can obtain much better results. Even our visual odometry

results are good enough that are comparable to what dense SLAM has achieved on some

other static sequences. They show that our motion segmentation algorithm is good at

separating dynamic parts out. But the improvement of our SLAM results is not so

obvious, which indicates that loop closures have not brought in enough complementary

constraints.
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Figure 4.13: The RMSE of RPE for the Results of dense SLAM with the TUM
walking static sequence

Figure 4.14: The RMSE of RPE for the Results of Visual odometry of our method
with the TUM walking static sequence
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Figure 4.15: The RMSE of RPE for the Pose-graph SLAM Results of our method
with the TUM walking static sequence

4.6.2 The fr3 walking xyz Sequence

In this sequence, the camera’s movements become larger, and the movements of two

people are large, sometimes covering most of the textured parts and constituting a very

large portion of the images.

For dense SLAM, its RPE is 0.450m/s, and ATE is 1.302m, whose details are shown in

Fig. 4.16.

Our visual odometry results are: RPE is 0.125m/s, and ATE is 0.184m; after pose-graph

SLAM, RPE is 0.119m/s, and ATE is 0.162m, as shown in Fig. 4.17 and 4.18.

As we can see, dense SLAM cannot get reasonable results; on the other hand, our results

are still much better, although not as good as with the first sequence.

4.6.3 The fr3 walking rpy Sequence

For dense SLAM, its RPE is 0.454m/s, and ATE is 0.789m, whose details are shown in

Fig. 4.19.

Our visual odometry results are: RPE is 0.321m/s, and ATE is 0.496m; after pose-graph

SLAM, RPE is 0.286m/s, and ATE is 0.433m.
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As shown in Fig. 4.20 and 4.21, our results have significant degradation, although they

are still better than those of dense SLAM.

Figure 4.16: The RMSE of RPE for the Results of dense SLAM with the TUM
walking xyz sequence

Figure 4.17: The RMSE of RPE for the Visual odometry of our method with the
TUM walking xyz sequence
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Figure 4.18: The RMSE of RPE for the Pose-graph SLAM results of our method
with the TUM walking xyz sequence

Figure 4.19: The RMSE of RPE for the Results of dense SLAM with the TUM
walking rpy sequence
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Figure 4.20: The RMSE of RPE for the Visual odometry of our method with the
TUM walking rpy sequence

Figure 4.21: The RMSE of RPE for the Pose-graph SLAM results of our method
with the TUM walking rpy sequence

4.6.4 The fr3 walking halfsphere Sequence

For dense SLAM, its RPE is 0.406m/s, and ATE is 0.584m.
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Our visual odometry results are: RPE is 0.284m/s, and ATE is 0.536m; after pose-

graph SLAM, RPE is 0.188m/s, and ATE is 0.319m. Our visual odometry has obvious

degradation, although robust kernel based pose-graph SLAM has improved the results

to some degree and the results are still better than that of dense SLAM.

In summary, the comparison of the results obtained by our method (denoted as SDMS)

and dense visual SLAM (represented as DVSLAM) is shown in Table 4.4 and 4.5.

Table 4.4: Comparison of Visual Odometry and SLAM Results in Terms of RMSE of
RPE (m/s)

Sequence No. DVSLAM
SDMS

VO SLAM

1 0.309 0.021 0.020

2 0.450 0.125 0.119

3 0.454 0.321 0.286

4 0.406 0.284 0.188

Table 4.5: Comparison of Visual Odometry and SLAM Results in Terms of RMSE of
ATE (m)

Sequence No. DVSLAM
SDMS

VO SLAM

1 0.470 0.034 0.037

2 1.302 0.184 0.162

3 0.789 0.496 0.433

4 0.584 0.536 0.319

4.6.5 Discussion

As we can see, when compared with the state-of-the-art method, i.e., dense visual SLAM,

for the four challenging sequences, our method can always produce much better results.

On the other hand, when compared with the best SLAM results in static or less chal-

lenging scenarios, our method performs very well for the first sequence, and even its

performance for the second sequence is still quite reasonable. But for the last two se-

quences, its performance is not as satisfactory as we have expected.

As a matter of fact, there are two possible reasons contributing to the degradation.

Sometimes due to the covering of human bodies, acceptable features in the image are

not enough in quantity, to meet the requirement of minimum 100 common feature points

between two frames, we have to increase the thresholds. As a result, some human moving

parts may be included in the static group. The other reason is that in some scenarios

when human bodies come closer to the camera and many of the feature points on human

bodies have coherent motion pattern, thus our current assumption that the biggest group

corresponds to the static group will not hold. In the end, the wrong group may have
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been picked up. Therefore, our current work is by no means the end of dealing with

challenges caused by motion blur, large featureless zones and overwhelmingly dynamic

parts. Instead, we hope our endeavours in this direction will draw attention to this

problem and could inspire more fruitful work in the near future.

4.7 Summary

In this chapter, we firstly propose a general sparse feature-based motion model based

segmentation algorithm for robust RGB-D SLAM. We have shown that together with the

solution framework of static SLAM, it is able to handle outliers and dynamic objects in

an efficient, effective and unified manner. Using real dataset, we have achieved promising

results that are comparable or better than what has been achieved using dense method

[14, 59].

However, in the walking sequences of TUM, motion blur and textureless areas are per-

vasive and therefore the number and quality of useful sparse features drops quickly,

preventing us from obtaining better results from them. Nevertheless, those challenges

represent what we need to address to enable robust SLAM in highly dynamic scenarios,

and overcoming them will symbolise that the achieved SLAM method framework is di-

rectly applicable to much wider range of real problems. Therefore, it is very worthwhile

for us to further investigate this issue. To face up to these challenges, we then propose

another robust method which is mainly composed of a semi-dense version of motion seg-

mentation method and pose-graph SLAM. Results using some of the most challenging

sequences show that our method is more effective and robust than state-of-the-art to

overcome the challenges. As far as we know, this is the first endeavour towards robust

SLAM in highly challenging scenarios.

Nevertheless, to fully address all of the challenging sequences, on one hand, we need to

find better way to automatically adjust the thresholds ([79] and [83] have made some

beneficial endeavours, but more work is needed to fully solve this fundamental problem);

on the other hand, we have to find more robust way to identify the static group, and in

the next chapter we will seek another way to tackle this problem.



Chapter 5

Towards Dense Moving Object

Segmentation based Robust

Dense RGB-D SLAM in Dynamic

Scenarios

Different from the previous chapter which focuses on proposing sparse or semi-dense

feature-based motion segmentation methods and combining them with available back

ends to perform SLAM in dynamic environments, the work in this chapter is targeted

for dense moving object segmentation based dense SLAM by building upon the latest

achievements in computer vision and RGB-D SLAM. Dense segmentation is more ap-

pealing to us, because not only its intuitive results are more in accordance with our

expectation, but also it will make the following SLAM problem become much easier to

handle and more robust results are possible.

The structure of this chapter is as follows. After introducing the specific challenges we

are concerned and the background within which we are to formulate a feasible method in

Section 5.1, we present different closely-related motion segmentation methods and RGB-

D SLAM algorithms in Section 5.2, showing the advantages of combining n-view based

moving object segmentation and dense SLAM to handle more general dynamic scenarios.

After this, we propose the framework for robust SLAM in dynamic scenarios, including

a practical way for dense moving object segmentation in Section 5.3. In Section 5.4, to

demonstrate the effectiveness of our approach, we show some sampling moving object

segmentation results and the improved SLAM results of our method compared with

those of the original dense SLAM as well as spare feature-based SLAM when possible

using some challenging real data. Section 5.5 concludes the chapter.
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5.1 Introduction

As we have mentioned in Chapter 4, various measures have been taken to enhance the

robustness of related SLAM algorithms. For example, RANSAC [13] and robust kenerls

[74] are being widely adopted to handle outliers. While in multibody SLAM/MSaM,

various motion segmentation methods including generalised principal component anal-

ysis [85] and local subspace affinity [86], can be employed to separate rigid objects from

each other based on feature trajectory analysis. However, they usually require tough

conditions in real scenarios. As a result, most of the applicable motion segmentation

methods in multibody SLAM/MSaM are two-view based [57].

Nevertheless, as the latest achievement in computer vision along the line of n-view based

motion segmentation, [50] tries to remove some unrealistic assumptions of the traditional

n-view based motion segmentation methods and has proved to be capable of producing

satisfactory dense segmentation results of moving objects for some real data.

Similar to previous chapters, in this chapter, we are still concerned about conducting

SLAM with some continuous videos taken by a freely-moving RGB-D camera which

is the only input and no other prior knowledge available. In addition to motion blur

and feartureless regions, those videos contain non-rigid objects that may be static, par-

tially moving, or totally moving from time to time. To cope with motion blur and

feartureless regions, dense SLAM [59] proves to be a better choice than those sparse

feature-based methods. However, special measures need to be taken to enhance its ro-

bustness in dynamic scenarios. Inspired by multibody SLAM, to conduct dense SLAM

in such kinds of environment, we need to densely separate the moving objects out before

executing SLAM. And the approach reported in [50] is quite promising for this goal.

To substantiate our ideas, firstly, through theoretical analysis, we argue that moving

object segmentation is a better choice to enable us to perform robust SLAM in dynamic

scenarios as well as multibody SLAM when compared with other motion segmentation

methods. Then, we propose a practical avenue to achieve this goal: based on the find-

ings of [50], we propose practical measures to improve the dense segmentation results,

then employ dense SLAM to estimate the camera poses. The main characteristics of

our method are that it aims to separate different moving objects out before conducting

SLAM, it can handle both rigid and non-rigid moving objects in a unified manner, and

both the segmentation and SLAM are performed densely.
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5.2 Related Work

In this section, we firstly give a brief review of different ways to perform motion segmen-

tation. Motion segmentation constitutes a very important step for conducting SLAM

in dynamic scenarios, but practical ways capable of handling general dynamic scenarios

are still missing.

Furthermore, we give a short comparison of the available methods for visual odometry

in RGB-D SLAM, showing their advantages and disadvantages.

5.2.1 Two-view/N-view Based Motion Segmentation Versus Extended

N-view Based Moving Object Segmentation [50]

As we know, motion segmentation aims to separate the available scenarios into different

motion groups without prior knowledge as of the moving objects or the camera’s mo-

tion. Generally speaking, most of the available methods are only suitable for rigid or

articulated objects, and they can be divided into two groups, i.e., two-view based and

n-view based methods. And their output is the detected moving groups (corresponding

to detectable moving parts beyond a threshold) of different objects.

From 2D to 3D, numerous two-view based motion segmentation methods have been

proposed [57, 71, 77, 87], and two-view based motion segmentation methods constitute a

quick way for us to detect instant motion and obtain visual odometry in SLAM and SFM

[57] [87], as our work in Chapter 3 and 4 have shown. However, intuitively, only when the

two frames are discrete, the scenarios only contain rigid moving objects and the motion

between them are big enough (but not too big to limit the number of matchable pairs of

points), two-view based motion segmentation methods can separate different objects into

different motion groups. Otherwise, two-view based motion segmentation methods can

only tell us those moving parts that have gone beyond the threshold determined by the

sensor noise level. Accordingly, we can see that the visual odometry and loop-closures

constraints obtained by two-view based motion segmentation methods may be biased to

some degree (one loop-closure example is shown in Fig. 5.1) no matter which threshold

we choose, and a theoretically better way to avoid this problem is n-view based moving

object segmentation.

At the same time, there are many n-view based 3D motion segmentation methods avail-

able in computer vision, and interested readers can refer to [53] for a detailed review.

Nevertheless, some strong assumptions have prevented most of them from finding prac-

tical applications in SLAM. Firstly, most of them usually assume that each point need
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to appear in every frame, which can only be met in controlled experiments. Secondly,

most of them are sensitive to non-Gaussian noises and cannot tolerate errors brought

Figure 5.1: In this example, the biggest common part having depth information of the
two non-consecutive images does not belong to the static group, making loop-closure

detection harder to handle.

forward from feature detection, matching and tracking. Last but not least, most of them

can only handle rigid or articulated body while practical SLAM need to handle rigid as

well as various non-rigid moving objects including human beings. Therefore, in SLAM,

we are expecting a robust motion segmentation method that is capable of handling noisy

continuous data composed of non-rigid and rigid bodies in a unified manner.

Until quite recently, [50] proposes a robust method for moving object segmentation

based on long term point trajectory analysis without prior model, making it applicable

for some real scenarios. Firstly, it can handle point trajectories of arbitrary length.

Secondly, by employing spectral clustering and a model selection process, it can handle

noisy data with outliers. Furthermore, for some scenarios that contain more than one

non-rigid moving objects, it also proves to be able to obtain acceptable segmentation

results. It is based on this method that we propose a practical way to perform dense

moving object segmentation for dense SLAM in dynamic scenarios.

5.2.2 RGB-D SLAM: Sparse Versus Dense

With the advent of affordable Microsoft Kinect, we are endowed with dense depth in-

formation along with RGB data. And with the help of pose-graph SLAM, localisation

and mapping can be decoupled into two sub-steps. In RGB-D SLAM, maps can be

dense because of the dense depth information provided by RGB-D cameras. However,

in pose-graph based RGB-D SLAM, to estimate camera poses, we firstly can choose

to employ sparse feature-based or dense methods to obtain visual odometry and loop-

closure relative pose constraints [43]. Initially, sparse feature-based methods are very
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popular because dense methods are usually much slower. Now with the emergence of

dense SLAM [59], the situation is changing. Dense SLAM is making use of every pixel,

both its colour and depth information, and it can obtain SLAM results in real time. To

cope with motion blur and featureless regions, dense SLAM is a better choice.

Nevertheless, dense SLAM is vulnerable to the negative effects of dynamic elements in

the images. Therefore, we need to densely separate the dynamic objects out before

applying dense SLAM for dynamic scenarios. In this chapter, we aims to combine a

practical extended n-view based dense moving object segmentation method with dense

SLAM, enabling it to work in dynamic scenarios as well.

5.3 Moving Object Segmentation Based Robust Dense SLAM

A robust moving object segmentation method is proposed to enhance the robustness of

dense SLAM in dynamic scenarios, and the overall process of our SLAM framework is

illustrated in Fig. 5.2.

5.3.1 Proposed Robust Moving Object Segmentation Method

Moving object segmentation, as the pre-requisite of SLAM, need to be robust and adap-

tive enough to handle various dynamic scenarios. However, the state-of-the-art method

may produce under or over-segmentation results, depending on the scenarios. Therefore,

we propose further measures solely based on RGB information to overcome this kind of

problems.

The Original Moving Object Detection and Segmentation Method and Its

Results

As shown in Fig. 5.3, the original moving object segmentation method [50] can be di-

vided into three steps: calculating optical flow, sparse point trajectory clustering and

densification. Through this process, we can obtain satisfactory segmentation results for

some videos including rigid and non-rigid moving objects. However, for many other

videos, over-segmentation (a moving object has been segmented into several groups) or

under-segmentation (several moving objects have been put into one group) can happen,

and examples are shown in Fig. 5.4 and 5.5. Even tuning the related parameters (in-

cluding the scale parameter λ which determines the normalisation fitness for trajectory
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Figure 5.2: Flowchart of the whole process for robust SLAM

grouping, and weight parameter ν which keeps the balance between split and smooth-

ness) cannot help solve the problem, although these two kinds of results can be converted

into each other by tuning the parameters.

Figure 5.3: Flowchart of the original moving object segmentation method [50] with
images showing the results at different stages.
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Figure 5.4: The left column represents the result before the merging using funda-
mental matrix, while the right one represents that after merging. The lower images
represent the segmented group masks in different color intensities, and the upper im-
ages are the combination of the original image and segmentation results. Best viewed

in colour.

Figure 5.5: The left column represents the result before merging the connected neigh-
bouring regions, while the right one represents that after merging. The lower images
represent the segmented group masks in different color intensities, and the upper im-
ages are the combination of the original image and segmentation results. Best viewed

in colour.
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Robust Measures to Improve Results

As shown in Fig. 5.2, since under-segmentation is harder to tackle, we firstly turn it into

the over-segmentation scenario by tuning the related parameters of the original method.

Secondly, we propose to look for those separated regions that always share the same

motion model during the process and merge them. According to multi-view geometry

[40], for those points belonging to a rigid body or the static environment, if we can obtain

their positions in every two consecutive frames based on [88], we can find a fundamental

matrix to describe their motion. On the other hand, for non-rigid human body, we

cannot find a fundamental matrix to describe its motion as a whole; instead, each part

of it may need one fundamental matrix to approximate its motion. And for all objects,

their corresponding fundamental matrices are changing, either due to the motion of

camera, their own movements, or both of them. For those regions whose predominant

parts (70% is used in this chapter) always share the same fundamental matrices across

the periods of their appearance, we will merge them into one group. A typical result is

illustrated in Fig. 5.4. As we can see, after this step, over-segmented static groups can

be found and combined together.

Thirdly, based on the assumption that the largest group corresponds to the static envi-

ronment, we find the biggest group in each frame and remove it. And for the available

benchmark dataset [61], in terms of the number of pixels, the aforementioned assump-

tion is valid. Nonetheless, in some rare cases in practice, if the size of the second largest

group is very close to the first one, it is still possible that the wrong group might be

chosen.

Fourthly, we check the changes of the connection between the remaining neighbouring

regions during the course. For those remaining connected (the distances between the

closest points from different regions are always within 1 pixel) throughout the process,

it is highly possible that they belong to the same object, so we propose to agglomerate

them at this step. This step can re-combine the over-segmented parts of human body

together as shown in Fig. 5.5.

Through these steps, we can reasonably combine some segregated regions to produce

more elegant segmentation results of the static environment and moving objects. Fig. 5.6

has shown one of the final segmentation results after applying our merging procedures.

5.3.2 Dense Visual SLAM

After densely separating the moving objects from the images, we can employ dense

SLAM to estimate camera/robot poses only using the remaining static parts.
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The overall process of dense SLAM is as follows: after obtaining visual odometry by

using both dense colour and depth information, selecting keyframes and detecting loop-

closures, dense SLAM makes use of G2O [33], which presents a general theoretical frame-

work along with various practical implementations for graph-based SLAM, for pose op-

timisation, and outputting pose trajectories. Interested reader can refer to [59] for more

details.

(a) The original image (b) The found static part

(c) Found people1 (d) Found people2

Figure 5.6: The original image and segmentation results (from the walking static
sequence).

There are several practical reasons why we need to densely remove the moving objects

before using dense SLAM. Firstly, to improve robustness, dense SLAM proposes a fast

dense image registration method based on joint optimisation of the colour and depth

errors of all the available pixels. Although t-distribution has also been employed to deal

with large errors, as we will see, those pixels corresponding to the moving objects in the

scenarios can impose inevitable negative effects on the optimisation results. Secondly,

dense SLAM proposes an entropy-based method for keyframe selection and loop-closure

validation to reduce drift. However, without firstly densely removing the moving objects,

the entropy value will be spoiled. As the result, unexpected keyframes may be selected

and false loop closures may be found. Therefore, to some degree, dense SLAM is specially

designed for static scenarios, and very susceptible to moving objects.
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And the overall process of our proposed method is summarised in Algorithm 6.

Algorithm 6: Dense moving object segmentation based robust dense SLAM algorithm

Inputs: a sequence of RGB-D data;

Output: camera/robot poses;

Assumption: the largest group corresponds to the static group;

1. Dense moving object detection and segmentation : perform [50], from which

we can obtain the preliminary segmentation results. If they are under-segmented, we

can adjust the related parameters to change it into over-segmentation;

2. Merge separated regions based on fundamental matrix ;

3. Remove the static region : find the largest region and remove it;

4. Agglomerate remaining connected regions;

5. Dense SLAM : after separating the moving objects out, we put the obtained static

regions in every image as the input to dense visual SLAM [59] to estimate the

camera/robot poses.

5.4 SLAM Results for The Benchmark Dataset

To show the effectiveness of Algorithm 6, we have chosen to compare the SLAM results

on some challenging benchmark sequences (the walking series) provided by the TUM [61]

benchmark dataset we have employed before. Moreover, to further support our analysis,

we have shown the SLAM results both before and after moving object segmentation in

this section as a comparison.

5.4.1 RGB-D SLAM Benchmark and Methods Involved

As we know, although many good results have been reported for most of the TUM

dataset [59], the walking sequences are still among the most challenging ones that have

not been fully solved yet. According to [61], they are specially designed for evaluating the

robustness of visual SLAM and odometry algorithms when there are non-rigid moving

objects dynamically occupying large parts of the visible scene. The major difficulties

of these sequences lie in that motion blur, large featureless zones and large human

movements are pervasive in the images. As we will see, the traditional sparse feature-

based SLAM could not fully address them [87], nor could the state-of-the-art method in

RGB-D SLAM known as dense SLAM [59] produce meaningful results.

In Chapter 3, we proposes a sparse feature-based two-view motion segmentation method

[87]. By combining with pose-graph SLAM, it has obtained a meaningful result just for

the first sequence. In addition, we have also chosen dense SLAM as another reference.
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(a) RPE when directly applying dense
SLAM to the walking static sequence

(b) RPE when applying dense SLAM to the
segmented walking static sequence

(c) RPE when directly applying dense
SLAM to the walking halfsphere sequence

section

(d) RPE when applying dense SLAM to
the segmented walking halfsphere sequence

section

(e) RPE when directly applying dense
SLAM to the walking xyz sequence section

(f) RPE when applying dense SLAM to the
segmented walking xyz sequence section

(g) RPE when directly applying dense
SLAM to the walking rpy sequence section

(h) RPE when applying dense SLAM to the
segmented walking rpy sequence section

Figure 5.7: Comparison of dense SLAM results before and after moving object seg-
mentation using the four walking sequences.
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Therefore, including our own method, there are three methods altogether involved in

this chapter for comparison. Nonetheless, only for the first sequence the results of the

three methods are presented; while for the rest sequences we mainly compare the results

obtained by Algorithm 6 with those by directly applying dense SLAM to the original

videos.

5.4.2 Challenging Sequences

We firstly apply Algorithm 6 and dense SLAM to four challenging walking sequences in

the TUM dataset, whose details are illustrated as follows:

walking static: in this sequence, the camera is being kept in place manually, therefore

its movement is small, while two people are moving around the table with large motions.

walking halfsphere : in this sequence, the camera is moving on a small half sphere

whose diameter is about one meter, while two persons are walking around in the office

scene.

walking xyz : in this sequence, the camera’s movement is small, and two people are

moving around the table.

walking rpy : in this sequence, the camera mainly rotates, and two people are walking

around the table. Since large parts of the visible scenes are dynamic, it constitutes a

very difficult task.

5.4.3 Comparison of the Experimental Results

As we have done in previous chapters, following the rules proposed by [14, 59], we have

quoted both the root mean square error (RMSE) of relative pose error (RPE) in meters

per second and the RMSE of absolute trajectory error (ATE) for comparison.

Among the four sequences, The sparse method in Chapter 3 could only obtain a mean-

ingful result for the first one: the RMSE of RPE is 0.084m/s, and the RMSE of ATE

is 0.161m [87]. And for parts of the other three sequences, the overall comparison of

the results obtained by Algorithm 6 in this chapter (represented as MS DSLAM) versus

those of dense SLAM is summarised in Table 5.1. In addition, two representative de-

tailed comparison of RPE of the four sequences is shown in Fig. 5.7, and similar results

can be observed in the ATE case.

As we can see, the applicability of the traditional sparse feature-based SLAM to chal-

lenging dynamic scenarios is limited [87], nor could dense SLAM [59], which is known as
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the state-of-the-art method in RGB-D SLAM, produce satisfactory results as it does in

static scenarios, while Algorithm 6 has demonstrated its effectiveness and robustness.

5.4.4 Discussion

As we know, sparse feature-based methods as a classical choice for SLAM in static

environments can usually produce satisfactory results. However, as noted in Chapter 3,

when it comes to blurred images and featureless regions in dynamic scenarios, both the

quantity and quality of detectable features decreases dramatically, thus jeopardising the

applicability of this kind of methods in this case. Similarly, the results also show that

dense SLAM is very sensitive to moving objects, as our previous analysis has indicated.

Table 5.1: Comparison of the RPE (m/s) & ATE (m) Results of Dense SLAM Versus
Those of Algorithm 6 (MS DSLAM) Using the Four Sequences

Seq.
RPE ATE

DenseSLAM MS DSLAM DenseSLAM MS DSLAM

1 0.309 0.022 0.470 0.024

2 0.175 0.080 0.116 0.055

3 0.321 0.055 0.202 0.040

4 0.477 0.088 0.515 0.076

5.5 Summary

Motion segmentation is of great importance for conducting SLAM in dynamic scenarios.

In this chapter, we propose a practical moving object segmentation method that can

densely segment rigid and non-rigid objects in a unified manner by building upon the

latest achievements in computer vision. Combined with dense SLAM, it constitutes

a new way for robust dense SLAM in dynamic scenarios as well as multibody SLAM.

Results from some challenging real data have shown that this method is quite promising.

Nevertheless, Algorithm 6 is still not robust enough for some challenging dynamic sce-

narios. Therefore, in the near future, we aim to find more robust and efficient ways

to perform moving object segmentation, and by integrating Algorithm 6 with object

tracking to construct a complete solution for robust SLAM in dynamic scenarios.



Chapter 6

Conclusions and Future Work

In the previous chapters, from spare to dense, from motion segmentation to moving

object segmentation, we have detailed our proposed 4 kinds of motion segmentation

methods and their corresponding solution frameworks, and a series of tests through

simulation and experiments using real data and benchmark dataset have been performed

to demonstrate their advantages over state-of-the-art methods in handling challenging

dynamic scenarios for RGB-D SLAM. As the results have shown, appropriate motion

segmentation methods can outperform traditional robust measures including RANSAC

and robust kernels in terms of efficiency and robustness and therefore more suitable to

be integrated with those available SLAM backe-end solution frameworks.

6.1 What We Have Done: Motion Segmentation based Ro-

bust RGB-D SLAM

In Chapter 3, a distance-based motion segmentation algorithm using only two frames

of RGB-D data is proposed, and results from both simulated and real data show its

efficiency and reliability. To further verify its usability in multibody SLAM scenarios,

we firstly utilize it to solve a simulated multibody RGB-D SLAM problem, and then

apply it to segment a real RGB-D dataset collected by ourselves. Based on the good

results of our motion segmentation algorithm, we can obtain satisfactory SLAM results

for the simulated problem, and the segmentation results using real data also enable us

to attain visual odometry for each motion group thus facilitating the following steps to

solve the practical multibody RGB-D SLAM problems.

In the first part of Chapter 4, another 2-view sparse feature-based motion segmentation

algorithm for RGB-D data is proposed which offers us a unified way to handle outliers
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and dynamic scenarios. Together with the pose-graph SLAM framework, they constitute

an effective and robust solution that enable us to conduct RGB-D SLAM in static

environments as well dynamic ones, although traditionally they have been divided into

different categories and treated separately using different kinds of methods. Through

comparisons with RANSAC using simulated data and testing with different benchmark

RGB-D sequences against the state-of-the-art method in RGB-D SLAM, we show that

our solution is efficient and effective in handling general static and dynamic scenarios,

some of which have not be achieved before.

Significant progress has been made to improve the robustness upon the traditional RGB-

D SLAM algorithms in the last few years. However, when faced with challenging scenar-

ios composed of large moving objects and image blur caused by quick camera motion,

almost all of the available sparse and dense methods for SLAM will fail. In the second

part of Chapter 4, we analyze the major difficulties involved in some of the challenging

RGB-D benchmark datasets and propose a more robust and adaptive motion segmenta-

tion algorithm that can handle semi-dense features. By combining this algorithm with

the available pose-graph SLAM, we can obtain a robust SLAM solution framework that

is capable of dealing with some of the extremely difficult scenarios. The results from

the most challenging sequences of the available benchmark show that our method has

better performance than state-of-the-art.

In Chapter 5, based on the latest achievements in computer vision and RGB-D SLAM, a

practical way for dense moving object segmentation and thus a new framework for robust

dense RGB-D SLAM in challenging dynamic scenarios is put forward. As the state-of-

the-art method in RGB-D SLAM, dense SLAM is very robust when there are motion blur

or featureless regions, while most of those sparse feature-based methods could not handle

them. However, it is very susceptible to dynamic elements in the scenarios. To enhance

its robustness in dynamic scenarios, we propose to combine dense moving object segmen-

tation with dense SLAM. Since the object segmentation results from the latest available

algorithm in computer vision are not satisfactory, we propose some effective measures

to improve upon them so that better results can be achieved. After dense segmentation

of dynamic objects, dense SLAM then can be employed to estimate the camera/robot

poses. Quantitative results from available challenging benchmark sequences have proved

the effectiveness of our method.

6.2 Future Work: Beyond Motion Segmentation

As we know, motion segmentation constitutes a crucial step for conducting SLAM in

dynamic scenarios. However, motion segmentation itself cannot solve all the problems
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on our way.

For motion segmentation itself, we can only expect that it successfully separate the

inputs into different groups according to their motions. However, how to ensure the re-

sulting quality of automatic data association, how to form a bigger picture of the related

scenarios in a spacial-temporal sense based on the outputs, are largely unaddressed. As

a result, much more work is still needed, although some related practical measures and

solution frameworks have been proposed in this direciton.

Firstly, we have tried to make use of optical flow results to deal with motion blur, but is

it the best way to handle motion blur? Is it possible for us to fully address the challenges

of motion blur and textureless regions only using the available dense methods?

Secondly, the mapping of non-rigid moving objects is still an open problem, although

some researchers from computer vision are making promising progress.

Thirdly, it seems that, to fully address those problems encountered while performing

SLAM in dynamic scenarios, we need to combine motion segmentation with moving

object tracking and learning. However, what is the best way to combine motion detec-

tion, segmentation, tracking and learning together to form an efficient pipeline to handle

general scenarios robustly?

Lastly, but not leastly, SLAM has adopted a bottom-up way, i.e., from small pieces of

noisy senser data to form an overall filtered picture of the environment and the camer-

a/robot poses. However, how far is us to semantic SLAM by following this bottom-up

way? Is it possible to conduct human-robot-interaction related research based on mov-

ing object segmentation and long term accumulative learning, instead of solely relying

on some pre-formulated knowledge as most available semantic SLAM related work has

done?

We look forward to investigating these regards in detail in the near future.



Appendix A

Analysis of The Computational

Cost of Algorithm 3

Suppose we have Np pairs of shadow points belonging to Ng groups. Although the

number of motion groups is unknown before segmentation, and may change a little bit

during the process, in practice, it is very small when compared with the number of

points. Therefore, here we just regard it as an unknown small constant. In addition,

since in practice Np is almost always larger than 7, we only consider situations under

such conditions. And the unit of the cost is comparing the relative distance once or

comparing the side once.

If Ng = 1, there is only one motion group. For the basic components, we just need to

perform 3 times of comparisons to obtain them; for the rest points, each of them need

to be compared with the basic components (3 + 1) times. As a result, the corresponding

total cost will be 3 + 4(Np − 3) = 4Np − 9.

If Ng ≥ 2, there are many possibilities for the sequence of the formed groups, so are the

computational costs. Here we just consider two extremes. In the simplest case, most

of the points belong to the first group and the rest groups contain just their respective

basic components, i.e., 3 pairs of points. For the basic components, we just need to

perform 3 times of comparisons to obtain them; for the rest points, each of them need

to be compared with the basic components (3 + 1) times. So, in total the cost for the

first groups is 3 + 4(Np − 3Ng) = 4Np − 12Ng + 3. For the other groups, each of them

need to compare with basic components in its former groups before setting up a new

group. In the least situation, we will refer to the next group just after one comparison

and discovering that the result does not satisfy the grouping conditions. In this case,

the cost for the i-th group will be 3 + 3(i− 1) = 3i, and for i = 2, ..., Ng, in total it will
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be 3(Ng + 2)(Ng − 1)/2. Adding the cost associated with the scenario when i = 1 into

it, we will get 4Np + 1.5N2
g − 10.5Ng.

When we come to the other extreme where most of the points belong to the last group,

similarly we can see that for the basic components from group i = 1, ..., Ng−1, their cost

in total is
Ng−1∑
i=1

3+3×4×(i−1) = 6N2
g −15Ng +9. While for the points belonging to the

last group, each of them need to be compared with the basic components in the prior

groups before reaching the last one, therefore the maximum corresponding cost is 4Ng.

For the basic components in the last group, their cost is 3×4×(Ng−1)+3. Consequently,

in total, the cost will be 6N2
g − 15Ng + 9 + 4Ng(Np − 3Ng) + 3 × 4 × (Ng − 1) + 3 =

4NgNp − 6N2
g − 3Ng.

Putting two extremes together, we can see that the computation cost c is bounded:

4Np + 1.5N2
g − 10.5Ng ≤ c ≤ 4NgNp − 6N2

g − 3Ng. Since the number of groups can be

regarded as a constant, the computation cost is linear to the number of pairs of points,

as stated in Section 3.2.3 of this paper.
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