MECHANICAL AND STRUCTURAL PROPERTIES OF POLYVINYL ALCOHOL FIBRE REINFORCED CONCRETE (PVA-FRC)

AMIN NOUSHINI

MASTER OF ENGINEERING
2013
Mechanical and Structural Properties of Polyvinyl Alcohol Fibre Reinforced Concrete (PVA-FRC)

by

Amin Noushini

A thesis submitted for the fulfilment of the requirements for the degree of Master of Engineering

School of Civil and Environmental Engineering
Faculty of Engineering and Information Technology
University of Technology Sydney

2013
CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Amin Noushini
Sydney, August 2013
ACKNOWLEDGEMENTS

This thesis would not have been completed without the guidance, advice and support of a number of individuals whose contribution I would gratefully like to acknowledge. I would specially like to express my gratitude to my supervisors, Professor Bijan Samali and Dr Kirk Vessalas. Herein, I would like to express my deepest gratitude to Professor Samali, who has been my principal supervisor for this research, not only because of his invaluable guidance and expert advice throughout the research but also on account of his strong support like a kind father during the last two years. The author would also very much like to record his appreciation to Dr Vessalas for his valuable advice and constant support from the commencement of this project to the end, much more than just a co-supervisor.

I would also like to convey my thanks to University of Technology Sydney (UTS) Civil Engineering Laboratories staff, specially the laboratories manager Mr Rami Haddad, senior project engineer Mr Peter Brown and technical officer Mr David Dicker who kindly helped me in project experimental stages.

Furthermore, I am obliged to many of my colleagues and friends who assisted me during my studies. Special thanks must go to my dear friends and co-researchers, Mr Rami Haddad, Ms Nassim Ghosni and Ms Negin Sharifi for their unfailing assistance and support in this research work.

The support from the Centre for Built Infrastructure Research (CBIR) and assistance of academics and researchers in the School of Civil and Environmental Engineering at UTS, particularly Dr Hamid Valipour and Dr Nima Khorsandnia is highly acknowledged.

Lastly, I would like to extend my love and gratitude to my dearest parents for their support and encouragement. I want to sincerely thank them from the bottom of my heart and acknowledge that without them none of this could have happened and I was not able to achieve most of the things I have in my life.

Hereby, I would like to dedicate this thesis to my parents for being such great supports in my life.
LIST OF PUBLICATIONS BASED ON THIS THESIS

Journal Articles

Conference Papers

2. Noushini, A., Samali, B., Vessalas, K. 2013, ‘Flexural Toughness and Ductility Characteristics of Polyvinyl Alcohol Fibre Reinforced Concrete (PVA-FRC)’, *VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-8)*, Toledo, Spain, pp. 1110-1121

ABSTRACT

Concrete is a brittle material that has low tensile strength and low strain capacity. In fact, many deteriorations and failures in the concrete structures are due to the brittle nature of this material (Hamoush et al. 2010). These disadvantages may be avoided by adding short discontinuous fibres to plain concrete which has been a major motivation for many research works in recent years (Wu & Sun 2003).

Fibres are added into a brittle-matrix composite to help improve three major aspects; toughness, ductility and strength (tensile) (Arisoy 2002). Fibres tend to increase toughness of the composite material by bridging the cracks and provide energy absorption mechanism related to de-bonding and fibre pull-out. Furthermore, they can increase the ductility of the composite by allowing multiple cracking. They may also help increase the strength by transferring load and stresses across the cracks.

Advancement of fibre reinforced concretes (FRCs) started in the 1970s. By that time, only glass fibre and steel fibre were investigated (Perumalsamy & Surendra 1992). Synthetic fibres have become more attractive in recent years as reinforcements for cementitious materials. This is due to the fact that they can provide inexpensive reinforcement for concrete and if the fibres are further optimized, greater improvements can be gained without increasing the reinforcement costs (Li et al. 1991; Wang et al. 1989). Moreover, unlike the steel fibre which is highly corrosive in nature, there is no corrosion concern regarding synthetic fibres in concrete.

During the past 20 years (since early 1990s), polyvinyl alcohol (PVA) fibre has been introduced in the production of cementitious composites (Li 1998; Redon et al. 2001; Shen et al. 2008; Sun & Wu 2008). PVA fibres act greatly in a cement based matrix with no coarse aggregates due to their surface formation and high strength (Li et al. 2001). The resulting composite, which exhibits a pseudo ductile behaviour, is called engineered cementitious composites (ECC).

Although many research works have been performed to date on the properties of PVA fibre reinforced ECC, there has not been much investigation on the mechanical and structural characteristics of PVA fibre reinforced concrete. Accordingly, the objective of this study is to experimentally observe the effects of adding PVA fibres to the conventional concrete to assess its mechanical and structural properties.
To achieve this aim, a comprehensive set of experiments were carried out to investigate the effect of PVA micro fibre addition on mechanical and structural properties of conventional concrete. Therefore, concrete mixes containing PVA fibres of varying lengths (6 and 12 mm) in different fibre volume fractions ranging from 0.125% - 1% were prepared and tested for their fresh and hardened properties. The optimum fibre contents in terms of FRC performance were then selected to cast several concrete beams. These beams have later been tested for 4-point monotonic and 3-point cyclic flexure, to assess their structural properties. Hammer test was also conducted to evaluate the dynamic characteristics of conventional and FRC specimens as well as concrete beams.
TABLE OF CONTENTS

Certificate of authorship/originality ...ii
Acknowledgements ... iii
List of publications based on this thesis ... iv
Abstract .. vi
Table of contents .. viii
List of tables ... xi
List of figures ... xiii
Notations .. xvii

1 Introduction ..2
 1.1 Overview ..2
 1.2 Research objectives and plan ..3
 1.3 Thesis layout ..4
 1.4 Terminologies ...5

2 Literature Review ..8
 2.1 Preface ..8
 2.2 Fibre Reinforced Concrete (FRC) ...8
 2.3 Polyvinyl Alcohol Fibre (PVA) ..18
 2.4 Mechanical properties of PVA-FRC ...20
 2.5 Structural properties of FRC beams ...27
 2.6 Damping characteristics of FRC and FRC beams ..31
 2.7 Concluding Remarks: ..38

3 Materials and experimental methodology ...40
 3.1 Preface ..40
 3.2 Project materials ..40
 3.2.1 Shrinkage limited cement ...40
 3.2.2 Fly ash (FA) ..41
 3.2.3 Fine and Coarse aggregates ..42
 3.2.4 Polyvinyl alcohol fibre (PVA) ...42
 3.2.5 High range water reducing admixture (HWR) ...43
 3.2.6 Water ..43
 3.2.7 Steel reinforcement (rebar) ..43
 3.3 Experimental program ..45
 3.4 Mix proportioning and sequences ...47
 3.5 Fabrication of test specimens and curing ..49
 3.6 Description of test methods ..51
 3.6.1 Slump test ..…..51
 3.6.2 Compacting factor test ..52
 3.6.3 Air content (AC) test ..53
 3.6.4 Mass per unit volume (MPV) test ..53
 3.6.5 Compressive test ...54
 3.6.6 Indirect tensile test ...55
 3.6.7 Modulus of rupture (MOR) test ..56
3.6.8	Modulus of elasticity (MOE) test	57
3.6.9	Residual flexural strength test	58
3.6.10	Impact resonance test	59
3.6.11	4-point static flexural test	62
3.6.12	3-point cyclic test	69

3.7 Concluding remarks ... 71

4 Test results and discussion ... 73

4.1 Preface .. 73

4.2 Fresh properties ... 75

4.2.1 | Slump | 75 |

4.2.2 | Compacting factor | 76 |

4.2.3 | Air content | 77 |

4.2.4 | Mass per unit volume | 78 |

4.3 Material Properties ... 79

4.3.1 | Compressive strength | 79 |

4.3.2 | Indirect tensile strength | 86 |

4.3.3 | Modulus of rupture (flexural strength) | 87 |

4.3.4 | Modulus of elasticity | 91 |

4.3.5 | Residual flexural tensile strength | 93 |

4.3.6 | Dynamic properties of materials | 97 |

4.4 Structural Properties .. 105

4.4.1 | 4-point flexural test | 105 |

4.4.1-a Load-deflection | 106 |

4.4.1-b Moment-curvature | 113 |

4.4.1-c Crack propagation | 125 |

4.4.1-d Impact resonant frequency test | 128 |

4.4.2 | 3-point cyclic test | 131 |

4.5 Concluding Remarks ... 144

5 Finite element modelling and analysis 148

5.1 Preface .. 148

5.2 Constitutive Model SBETA .. 149

5.2.1 | Basic assumptions | 149 |

5.2.2 | Stress-Strain Relations for Concrete | 153 |

5.2.2.a Tension before Cracking | 154 |

5.2.2.b Tension after Cracking | 154 |

5.2.2.c Compression before peak stress | 157 |

5.2.2.d Compression after peak stress | 158 |

5.2.3 | Localization Limiters | 159 |

5.2.4 | Fracture process, crack width | 160 |

5.2.5 | Biaxial Stress Failure Criterion of Concrete | 161 |

5.2.5.a Compressive Failure | 161 |

5.2.5.b Tensile Failure | 162 |

5.2.6 | Crack modelling | 163 |

5.2.7 | Compressive Strength of Cracked Concrete | 163 |

5.2.8 | Tension Stiffening in Cracked Concrete | 164 |

5.2.9 | Material Stiffness Matrices | 165 |

5.2.9.a Uncracked Concrete | 165 |

5.2.9.b Cracked Concrete | 165 |

5.2.9.c Smear Reinforcement | 166 |

5.2.9.d Material Stiffness of Composite Material | 167 |

5.2.10 | Analysis of Stresses | 167 |
LIST OF TABLES

Table 1. Typical properties of concrete versus common used fibres in concrete and cementitious composites (Bentur & Mindess 2007; Hannant 2003) ... 15
Table 2. Common types PVA fibre available in the market ... 18
Table 3. Compressive strength of ECC with and without PVA fibres (Şahmaran et al. 2012).................. 23
Table 4. Mix proportions and concrete samples compressive strength (Li et al. 2012) 24
Table 5. Mix proportion and slabs fracture energy values (Ong et al. 1999) ... 25
Table 6. Mix proportions and mechanical properties (Bangi & Horiguchi 2012) 25
Table 7. PVA-ECC reinforced beam specifications and test results .. 30
Table 8. 28-day properties of plain and fibre reinforced concretes (Giner et al. 2012) 36
Table 9. Typical properties of shrinkage limited cement versus AS 3972 requirements 40
Table 10. Oxide compositions of binders by x-ray fluorescence method ... 41
Table 11. Sieve analysis ... 42
Table 12. Properties of PVA fibres (provided by the manufacturer) ... 42
Table 13. Typical properties of Glenium 51 (provided by the manufacturer, BASF chemical company) ... 43
Table 14. Properties of steel reinforcement .. 44
Table 15. Mix designations .. 46
Table 16. Mix proportions ... 47
Table 17. Impactor and accelerometer specifications .. 60
Table 18. Steel reinforcement arrangements ... 62
Table 19. Steel and concrete strain gauge specifications ... 64
Table 20. Hammers and accelerometers specifications ... 65
Table 21. Summary of testing procedure ... 74
Table 22. Fresh properties of control and FRCs ... 75
Table 23. Description of workability and compacting factor (Neville 1991) 76
Table 24. Compressive strength of control and FRCs at 7, 28 and 56 days 79
Table 25. Relative compressive strengths for control and FRCs ... 83
Table 26. Stress and strain at ultimate stress in compression at 28 days for FRCs versus control 86
Table 27. Indirect (splitting) tensile strength of control and FRCs at 7, 28 and 56 days 86
Table 28. Flexural strength of control and FRCs at 7, 28 and 56 days ... 87
Table 29. Elastic modulus of control and FRCs at 7, 28 and 56 days ... 91
Table 30. Limit of proportionality and residual flexural strength of control and FRCs at 28 days 96
Table 31. Dynamic properties of control and FRCs for transverse mode .. 103
Table 32. Dynamic properties of control and FRCs for longitudinal mode 103
Table 33. Beam designations ... 105
Table 34. Concrete properties of RC beams .. 106
Table 35. Ductility factor of control and FRC beams ... 113
Table 36. Moment and curvature calculations for beam control (A) .. 115
Table 37. Moment and curvature calculations for beam 6PVA0.25% (A) ... 115
Table 38. Moment and curvature calculations for beam 12PVA0.50% (A) ... 115
Table 39. Moment and curvature calculations for beam Control (B) ... 116
Table 40. Moment and curvature calculations for beam 12PVA0.50% (B) ... 116
Table 41. Neutral axis calculation for uncracked section of RC beams .. 121
Table 42. Characteristic compressive and flexural tensile strength of RC beams 122
Table 43. Neutral axis calculation for cracked section of RC beams .. 123
Table 44. Analytical uncracked and cracked section properties of RC beams 124
Table 45. Natural frequency of uncracked and cracked sections for transverse mode 129
Table 46. Theoretical natural frequency calculation for transverse mode (uncracked section) 130
Table 47. Hysteretic energy and damping calculations for beam Control (A) 137
Table 48. Hysteretic energy and damping calculations for beam 6PVA0.25% (A) 137
Table 49. Hysteretic energy and damping calculations for beam 12PVA0.50% (A) 138
Table 50. Hysteretic energy and damping calculations for beam Control (B) 138
Table 51. Hysteretic energy and damping calculations for beam 12PVA0.50% (B) 138
Table 52. Initial and ultimate stiffness of concrete beams of series A and B 141
Table 53. The values of constants related to Equation (63) ... 163
Table 54. Default formulas of material parameters (Červenka et al. 2012) 168
Table 55. Properties of PP fibres (provided by manufacturer - Sika Australia) 237
Table 56. Mechanical properties of PVA and PP fibre reinforced concretes 237
LIST OF FIGURES

Figure 1. Three type of failure modes observed in materials (Frances Cyr 2003) ... 8
Figure 2. Schematic failure modes for cement, concrete and low fibre volume fraction FRC 9
Figure 3. Fibre types and amount used by volume percent of matrix (Zollo 1997) ... 11
Figure 4. Energy-absorbing fibre/matrix mechanisms (Anderson 2005) .. 12
Figure 5. The structure of fibre in matrix: (a) fibre prior to pull-out and (b) the groove after fibre pull-out (Bentur et al. 1997) .. 12
Figure 6. Fibre pull-out (a) and fibre rupture (b) (Mechtcherine et al. 2011) ... 13
Figure 7. Typical stress-strain curves for fibre reinforced concrete (Hannant 2003) 14
Figure 8. PVA fibre structure ... 18
Figure 9. Scanning electron microscope (SEM) images of Polypropylene (PP) and PVA fibres (Felekoğlu et al. 2009) ... 19
Figure 10. Scanning electron microscope (SEM) images of PVA fibres surface; (a) original fibre (b) after failure (Felekoğlu et al. 2009) ... 21
Figure 11. Schematic beam and reinforced section geometry (Rinaldi et al. 2006) .. 29
Figure 12. Schematic amplitude-time curve for the determination of logarithmic decrement 32
Figure 13. the hysteresis loop (Tedesco et al. 1999) .. 33
Figure 14. Definition of energy loss E_D in a cycle of harmonic vibration and maximum strain energy E_{so} (Chopra 1995) .. 34
Figure 15. Experimental tests to obtain dynamic characteristics (longitudinal, transverse and torsional resonant frequency) of the concrete specimens (Giner et al. 2012) ... 36
Figure 16. Fibres used in this study (a) 6 mm fibres (b) 12 mm fibres ... 43
Figure 17. Stress-strain curve for 10 mm diameter reinforcement ... 44
Figure 18. Stress-strain curve for 12 mm diameter low strength reinforcement ... 44
Figure 19. Stress-strain curve for 12 mm diameter high strength reinforcement ... 44
Figure 20. Mixing procedure (AS1012.2-1994) ... 48
Figure 21. Preparation of material testing specimens .. 49
Figure 22. Preparation of concrete beams ... 50
Figure 23. Different profiles of concrete slump .. 51
Figure 24. Typical mould for slump test (AS 1012.3.1-1998) ... 52
Figure 25. Standard compacting factor test apparatus (AS 1012.3.2-1998) ... 52
Figure 26. typical apparatus for measuring air content by drop in gauge pressure (AS 1012.4.2-1999) 53
Figure 27. Schematic of compressive strength test with strain gauge .. 54
Figure 28. Splitting tensile test; (left) typical arrangement of the test (right) stress distribution across the loaded diameter of a cylinder compressed between two plates (Mehta & Monteiro 2005) 55
Figure 29. Modulus of rupture test; (left) typical arrangement of the test (right) stress distribution across the depth of a concrete beam under flexure (Mehta & Monteiro 2005) 56
Figure 30. Typical compressometer arrangement for measurement of longitudinal strain 57
Figure 31. Typical arrangement of 3-point bending test over notched sample with measuring CMOD (EN 14651:2005) ... 58
Figure 32. Schematic of apparatus for impact resonance test .. 59
Figure 33. Typical impact resonance test set-up (locations of impact and accelerometer) for different modes of vibration (ASTM C 215 – 08) ... 61
Figure 34. Schematic of RC beam .. 62
Figure 35. LVDTs and strain gauge arrangement on concrete beam ... 63
Figure 36. Strain gauge mounting procedure on tensile steel reinforcement .. 64
Figure 37. Accelerometers arrangement on RC beam .. 65
Figure 38. Hammers and accelerometer; left: hammer A, middle: hammer B, right: accelerometer 65
Figure 39. Beam supports ... 66
Figure 40. Support A (pinned support) details ... 67
Figure 81. Longitudinal resonant frequency of FRCs and control at the age of 14 and 28 days; FRCs with 6 mm fibres (left) FRCs with 12 mm fibres (right) ... 104
Figure 82. Dynamic MOE versus static chord MOE at the age of 28 days ... 105
Figure 83. Load-deflection curves of PVA-FRC and control beams of series A 107
Figure 84. Load-deflection curves of PVA-FRC and control beams of series B 107
Figure 85. Alternative definitions of yield displacement (Park 1988) .. 108
Figure 86. Alternative definitions of ultimate (maximum) displacement (Park 1988) 109
Figure 87. Equivalent yield displacement and ultimate displacement of control (A) beam 110
Figure 88. Equivalent yield displacement and ultimate displacement of 6PVA-0.25% (A) beam 110
Figure 89. Equivalent yield displacement and ultimate displacement of 12PVA-0.5% (A) beam 111
Figure 90. Equivalent yield displacement and ultimate displacement of control (B) beam 112
Figure 91. Equivalent yield displacement and ultimate displacement of 12PVA-0.5% (B) beam 112
Figure 92. Flexural deformation and curvature (Warner et al. 2007) ... 114
Figure 93. Moment-curvature relationship of concrete beams of series A .. 117
Figure 94. Strain diagrams of concrete beams of series A at different loading stages (a) Control (A), (b) 6PVA0.25% (A) and (c) 12PVA0.5% (A) ... 117
Figure 95. Moment-curvature relationship of concrete beams of series B .. 118
Figure 96. Strain diagrams of concrete beams of series B at different loading stages (a) Control (B) and (b) 12PVA0.50% (B) ... 118
Figure 97. Idealized moment-curvature relationship of RC section (Kwak & Kim 2002) 119
Figure 98. Uncracked transformed section of RC beam ... 121
Figure 99. Cracked transformed section of RC beam ... 122
Figure 100. Concrete stress-strain diagram for uniaxial compression (Béton 1993) 123
Figure 101. Characteristic strength versus cracking behaviour of RC beams 124
Figure 102. Cracking patterns of beam Control (A) .. 126
Figure 103. Cracking patterns of beam 6PVA0.25% (A) .. 126
Figure 104. Cracking patterns of beam 12PVA0.50% (A) .. 127
Figure 105. Cracking patterns of beam 12PVA0.50% (B) .. 127
Figure 106. Impact resonance test set up .. 128
Figure 107. Transverse mode natural frequency for uncracked and cracked beams of series A 129
Figure 108. Transverse mode natural frequency for uncracked and cracked beams of series B 130
Figure 109. Comparison of theoretical and experimental natural frequency of RC beams for uncracked section ... 131
Figure 110. 3-point cyclic test set up ... 131
Figure 111. Hysteretic curves for beam Control (A) ... 132
Figure 112. Hysteretic curves for beam 6PVA0.25% (A) ... 132
Figure 113. Hysteretic curves for beam 12PVA0.50% (A) ... 133
Figure 114. Hysteretic curves for beam Control (B) ... 133
Figure 115. Hysteretic curves for beam 12PVA0.50% (B) ... 133
Figure 116. Load-deflection curves for beam Control (A) under cyclic loading until failure 135
Figure 117. Load-deflection curves for beam 6PVA0.25% (A) under cyclic loading until failure 135
Figure 118. Load-deflection curves for beam 12PVA0.50% (A) under cyclic loading until failure 135
Figure 119. Load-deflection curves for beam Control (B) under cyclic loading until failure 136
Figure 120. Load-deflection curves for beam 12PVA0.50% (B) under cyclic loading until failure 136
Figure 121. Peak-to-peak secant stiffness k .. 137
Figure 122. Damping ratio at each cycle for beams of series A ... 139
Figure 123. Damping ratio at each cycle for beams of series B ... 139
Figure 124. Energy dissipated in each cycle for beams of series A ... 140
Figure 125. Energy dissipated in each cycle for beams of series B ... 140
Figure 126. Peak-to-peak secant stiffness of each cycle for beams of series A 141
Figure 127. Peak-to-peak secant stiffness of each cycle for beams of series B 141
Figure 128. Stiffness degradation for beams of series A ... 142
Figure 129. Stiffness degradation for beams of series B ... 142
Figure 130. Discretization of a beam; numbers at the corners are node numbers, and the circled numbers are element numbers (Yeung 2008) .. 148
Figure 131. Components of plane stress state (Červenka et al. 2012) ... 150
Figure 132. Components of plane strain state (Červenka et al. 2012) ... 150
Figure 133. Rotation of reference coordinate axes (Červenka et al. 2012) 151
Figure 134. Concrete uniaxial stress-strain diagram (Červenka et al. 2012) 153
Figure 135. Linear softening based on strain (Červenka et al. 2012) .. 156
Figure 136. Steel fiber reinforced concrete based on fracture energy (Červenka et al. 2012) 156
Figure 137. Steel fiber reinforced concrete based on strain (Červenka et al. 2012) 157
Figure 138. Compressive stress-strain diagram (Červenka et al. 2012) ... 158
Figure 139. Softening displacement law in compression (Červenka et al. 2012) 158
Figure 140. Definition of localization bands (Červenka et al. 2012) .. 160
Figure 141. Stages of crack opening (Červenka et al. 2012) ... 160
Figure 142. Biaxial failure function for concrete (Červenka et al. 2012) 161
Figure 143. Tension-compression failure function for concrete (Červenka et al. 2012) 163
Figure 144. Compressive strength reduction of cracked concrete (Červenka et al. 2012) 164
Figure 145. RC beam schematic modelled in ATENA ... 169
Figure 146. SBETA Material used in FE modelling ... 169
Figure 147. Reinforcement model used in FE modelling .. 170
Figure 148. FE modelling result of beam Control (A) ... 171
Figure 149. FE modelling result of beam Control (A) ... 172
Figure 150. FE modelling result of beam 6PVA0.25% (A) .. 172
Figure 151. FE modelling result of beam 12PVA0.50% (A) .. 172
Figure 152. FE modelling result of beam Control (B) ... 173
Figure 153. FE modelling result of beam 12PVA0.50% (B) .. 173
Figure 154. 18 mm monofilament PP fibres (left) and 19 mm fibrillated PP fibres (right) 237
Figure 155. 7-day compressive strength of PVA and PP-FRCs .. 238
Figure 156. 28-day compressive strength of PVA and PP-FRCs .. 238
Figure 157. 56-day compressive strength of PVA and PP-FRCs .. 239
Figure 158. 28-day modulus of rupture of PVA and PP-FRCs ... 239
Figure 159. 28-day modulus of elasticity of PVA and PP-FRCs ... 240
Figure 160. FE modelling results of beam element .. 241
NOTATIONS

The symbols used in this thesis, including their definitions, are listed below.

\[A_s \] cross-sectional area of reinforcement

\[A_{sc} \] cross-sectional area of compressive reinforcement

\[A_{st} \] cross-sectional area of longitudinal tensile reinforcement

\[b \] width of a rectangular cross-section

\[c \] distance from the extreme compression fibre to the neutral axis

\[d \] effective depth (the distance from the extreme fibre to the centroid of the tensile steels)

\[d' \] distance from the extreme compressive fibre to the centroid of the compression steels

\[d_f \] diameter of fibre

\[E_c \] static modulus of elasticity of concrete

\[E_f \] modulus of elasticity of fibre

\[E_s \] modulus of elasticity of steel reinforcement

\[f_c \] compressive strength of concrete – stress in concrete

\[f'_c \] characteristic compressive (cylinder) strength of concrete

\[f_{ct} \] uniaxial tensile strength of concrete

\[f_{ct,sp} \] indirect (splitting) tensile strength of concrete

\[f_{ct,f} \] flexural strength (modulus of rupture) of concrete

\[f_s \] stress in tension reinforcement

\[f_y \] specified yield strength of steel reinforcement

\[f_{sy} \] yield strength of steel reinforcement

\[f_{su} \] ultimate strength of steel reinforcement

\[F_u \] ultimate (maximum) load applied
h overall height of a rectangular cross-section

I_g second moment of area of the uncracked cross-section

I_{cr} second moment of area of the cracked cross-section

L_f length of fibre

M_{cr} cracking moment

M_y yield moment

n modular ratio (E_s/E_c)

V_f fibre volume fraction

ε_{cu} strain at peak stress (compression) of concrete

ε_{cc} concrete strain in compression

ε_{ts} steel strain in tension

ε_s strain in tension reinforcement

ε_{sy} yield strain of steel reinforcement

ε_{su} uniform strain at maximum stress, corresponding to the onset of necking

ρ_s longitudinal tension reinforcement ratio (A_s/bd)

ρ'_s longitudinal compression reinforcement ratio (A_{sc}/bd)

ξ damping ratio (percentage of critical damping)

δ logarithmic decrement

δ_y yield displacement of reinforced concrete beam

δ_u ultimate displacement of reinforced concrete beam

μ ductility factor

ϕ_{cr} curvature corresponding to the cracking moment (M_{cr})

ϕ_y curvature corresponding to the yield moment (M_y)