MICROWAVE IMAGING FOR EARLY STAGE BREAST TUMOR DETECTION AND DISCRIMINATION VIA COMPLEX NATURAL RESONANCES

By

Fan Yang

A Thesis Submitted for the Degree of Doctor of Philosophy

Faculty of Engineering & Information Technology, University of Technology, Sydney

March 2014

CERTIFICATION

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that this thesis has been written by me and that any help that I have received in my research work, preparing this thesis, and all sources used, have been acknowledged in this thesis. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

(Fan Yang)

i

In loving memory of my father, Zengke Yang (1951-2013)

ACKNOWLEDGEMENTS

First and foremost, I am grateful for the supervision and encouragement from my supervisor, Associate Professor Dr. Ananda Mohan Sanagavarapu who offered me with every bit of guidance and expertise. The professional skills and enthusiasm that I learned from him will be invaluable in my life. His tireless pursuits in excellent research and fruitful thoughts, advice and valuable feedback have helped me to achieve many research goals, even during in tough times during PhD work. My thesis is part of an ARC Discovery grant obtained by my supervisor.

Secondly, I am particularly thankful to my alternative supervisor Professor Hung Nguyen, who offered me the Top-up scholarship to support me to study in Centre of Health Technologies at UTS and consistently provided me advice and encouragement. I feel extremely privileged to have been his student.

In particular, I extend my gratitude to Dr. Steven Su and Dr. Li Li at UTS, for providing me with valuable advices. I am also grateful to Professor Michael Cortie and Dr. Ronald Shimmon at Faculty of Science in UTS, for supporting me work in their wonderful lab. I would also like to acknowledge my erstwhile colleague and friend Dr. Mohammed Jainul Abedin for his constructive advice and collaboration that have contributed immensely to my personal and professional time at UTS as well as my other colleagues and friends Mr. Md Delwar Hossain, Dr. Mohd Yazed Ahmad and Mr. Md Masud Rana for all the great times that we have shared. I am especially grateful to Mr. Rifai Chai, who is a source of inspiration and technical skills that help me for my measurement work.

I am deeply thankful to my family for their love, support and sacrifices. For my parents whose love and boundless backing supported me in all my pursuits. For my loving, patient and unconditional supportive wife Xiuzhi whose faithful support during my PhD pursuit is deeply appreciated. Without them, this thesis work would never have been

finished. I dedicate this thesis to the memory of my beloved father Zengke Yang, whose role in my life was, and remains immense.

I owe a great debt of gratitude to Faculty of Engineering and IT, and Graduate School at UTS for providing me with IRS scholarship to study at UTS.

Lastly, I would like to thank our faculty's administrative officer, Rosa Tay, Phyllis Agius and Craig Shuard for their administrative support that kept us organized and were always ready to help.

ABSTRACT

In this thesis, a new microwave imaging technique for early stage breast cancer detection is developed to achieve two key aims: (i) to reconstruct the radar image of the suspicious region within the breast and (ii) to decide whether a suspicious region has malignant or benign tumors by differentiating their morphological features in terms of their complex natural resonances.

For our investigations we employ both numerical and chemical tissue mimicking breast phantoms. The breast phantom is illuminated by UWB pulses radiated from antenna elements arranged in a multistate configuration surrounding the breast. An efficient preprocessing technique is proposed to process the received pulses for the removal of early-time artifacts. To reduce the interferences of the background tissue clutter in inhomogeneous breast environment, a new time-of-arrival (TOA) auto-calibration is presented to estimate accurate TOA for confocal imaging. For determining the suspicious region within the breast, a novel and efficient data independent beam former known as Modified Weighted Delay and Sum (MWDAS) algorithm has been proposed. Once the suspicious region is localized by MWDAS method, the waveform of late-time backscattered field will be estimated using a proposed two-stage waveform estimation method. The accuracy of the waveform improves the extraction of complex natural resonances (CNR) that will be used to discriminate of whether a suspicious tissue is malignant or benign. Basing on radar target discrimination, we propose that the CNRs extracted from the late-time resonant tumor response can be closely related their morphological properties: spiculated lesion has CNR poles that differ from CNR poles of a smooth lesion. To validate our proposal, we perform FDTD simulations on 2D and 3D numerical breast phantoms that have been developed based on MRI-derived tissue dielectric properties. These simulations have revealed that the CNRs from malignant tumors have significant lower damping factors than the benign ones. These simulation

results helped to reconfirm that it is possible to distinguish malignant and benign breast tumors based on their CNRs.

To validate the proposed method of tissue discrimination, we have developed an experimental UWB imaging prototype using novel UWB sensors and tissue mimicking chemical breast phantoms to carry out preliminary preclinical experiments. Three novel end-fire compact sized UWB antennas have been proposed. After thoroughly investigating their characteristics, a novel UWB horn antenna known as BAHA that offered superior UWB performance is chosen, fabricated and measured to confirm its characteristics. A prototype experimental imaging system that incorporates 32 BAHA antenna elements forming a hemispherical UWB array is fabricated and tested using a Tissues mimicking chemical phantoms with dielectric vector network analyzer. properties similar to human breasts have been manufactured to have both adipose-tissue dominated homogeneous phantom with a dielectric contrast of 4:1 and a low-adipose inhomogeneously dense phantom with dielectric contrast of 1.7:1. Experimental results obtained using the hemispherical array prototype and phantoms have shown that dielectric inserts (12mm diameter) that mimic malignant and benign lesions can be successfully detected from both high and low dielectric contrast scenarios. Tumor mimicking lossy dielectric inserts with both irregular and smooth patterns have also been fabricated using chemicals to represent malignant and benign tumors respectively.

Finally, measured data from experimental prototype have demonstrated that tissue shape can be discriminated via CNRs. The experimental results confirmed that the proposed UWB antenna array is capable of picking up undistorted late-time signals from embedded tumor-mimicking dielectric inserts with different morphological profiles to offer reliable CNR extraction. Matrix Pencil Method is employed to extract CNRs from late time responses. Our investigations have confirmed that damping factors of the extracted CNRs from both spiculated and smooth inserts can be used to

differentiate their shapes which are quite promising for early stage breast cancer detection.

Contents

i
iii
V
viii
xii
xiii
xvii
xviii

Chapter 1: Introduction	1
1.1 What is breast cancer?	1
1.2 The existing screening tools for breast cancer detection	2
1.3 Microwave imaging	3
1.4 Breast tissues and dielectric properties	5
1.5 Test beds using numerical and experimental breast phantoms	7
1.5.1 Numerical breast phantom	7
1.5.2 Tissue mimicking breast phantoms	8
1.6 Existing confocal microwave imaging and challenges	9
1.6.1 Data-independent beamforming	9
1.6.2 Data-dependent beamforming	10
1.6.3 Experimental microwave imaging systems	11
1.6.4 Design of UWB antenna elements for radar based microwave breast imaging	13
1.7 Methods to discriminate malignant tissues from benign tumors	14
1.7.1 Tumor morphologies	15
1.7.2 Breast tumor discrimination based on microwave signatures	16
1.8 Aims and Objectives of the thesis	19
1.9 Brief description of methodology	20
1.10 Organization of the thesis	21
1.11 Publications arising from this research	23
Chapter 2: Array Beamforming for Localizing the Suspicious Regions within Breast	
Phantoms	24
2.1 Introduction	24
2.2 Beamforming methods for image reconstruction	26

2.2.1 Confocal microwave imaging262.2.2 The 3-D planar block-shaped numerical breast phantom30

2.2.3 Reconstruction using MWDAS algorithm	32
2.2.3.1 Calibration	32
2.2.3.2 Integration	33
2.2.3.3 Image reconstruction	33
2.2.4 FDTD simulation using planar block breast phantom	35
2.3 Data-dependent beamformer for image reconstruction	39
2.3.1 Robust capon beamformer	40
2.4 Comparison of image reconstruction using 2-D heterogeneous dense numerical breast	
phantom	44
2.5 Discussion	50
Chapter 3: Discrimination of Malignant and Benign Tumors via Complex Natural	
Resonances	52
3.1 Introduction	
3.2 Complex natural resonance (CNR)	55
3 2 1 CNR extraction from conducting spheres	
3.2.2 CNR extraction from embedded conducting spheres	59
3.3 CNR extraction for numerical breast phantom	
3 3 1 General pre-processing and TOA autocalibration	
3.3.1.1 Pair-matching pre-processing method for removal of early-time content	
3 3 1 2 Time-of-arrival (TOA) autocalibration	60 69
3 3 2 Late-time target response of breast lesion	
3 3 2 1 Steering vector estimation using RCB	
3 3 2 2 MMSE beamformer	77
3 3 2 3 Simulation results	78
3 3 3 Extraction of late-time resonant signal from target response	82
3 3 4 Calibration techniques for CNR signatures	
3 3 4 1 Calibration of CNR extraction using non-nenetrable PEC objects	
3 3 4 2 Normalized CNR error (NCR)	86
3 3 5 Extracted CNRs in hemispherical numerical breast models	
3 4 CNR extraction for MRI-derived breast phantom with dense fibroglandular tissues	
(C3 breast phantom obtained from UWCEM phantom repository)	89
3.4.1 Localization of suspicious region of breast lesion in C3 phantom	91
3.4.1.1 Pre-processing and TOA autocalibration for C3 phantom	
3.4.1.2 Localization of suspicious regions in C3 phantom	
3.4.2 Discrimination of lesion morphologies using CNR signatures in C3 phantom	
3.5 Discussion	
Chapter 4: UWB Antennas for Microwave Breast Imaging	101
4.1 Introduction	101
4.2 Criteria for antenna selection	יייייייייייייייייייי 102
4 2 1 Ultrawideband impedance bandwidth	נטב 102
4 2 2 Transmission response	105

4.2.3 Fidelity	.105
4.3 Proposed antenna 1: UWB ridged horn antenna with straight launching plane	.106
4.4 Proposed antenna 2: A modified balanced antipodal Vivaldi antenna (mBAVA)	.109
4.5 Proposed antenna 3: UWB balanced antipodal horn antenna (BAHA)	.112
4.5.1 Performance of BAHA using FDTD simulation	.114
4.6 Selection of the best UWB antenna	.116
4.7 Measured antenna characteristics of BAHA	.117
4.7.1 Fabrication of BAHA	.117
4.7.2 Measured S11	.118
4.7.3 Investigation on effects of fabrication imperfection	.119
4.7.4 Measured S21	.121
4.7.5 Measurement of antenna fidelity for BAHA	.121
4.7.6 Coupling efficiency	.123
4.7.7 Radiation pattern	.125
4.8 Effects of antenna in measurement of scattered fields for extracting CNRs from embedded	
targets	.127
4.8.1 Data collection using TEM horn in simulation	.128
4.8.2 Data collection using BAVA in measurement	.130
4.8.3 Data collection using ridged pyramidal horn in measurement	.133
4.8.4 Effects of antenna on extracted CNRs	.134
4.9 Discussion	.136

Chapter 5: Experimental Investigation on CNR based Tumor Discrimination using

Chemical Phantoms	138
5.1 Introduction	138
5.2 Tissue mimicking chemical breast phantoms	141
5.2.1 Inhomogeneous chemical breast phantom	141
5.2.2 Smooth and spiculated dielectric inserts	143
5.3 Development of microwave imaging system using hemispherical antenna array of 32	
BAHA elements	145
5.3.1 Measured data acquisition	145
5.4 Breast imaging in homogeneous and inhomogeneous breast mimicking	
chemical phantoms	151
5.4.1 TOA autocalibration based on measured data	151
5.4.2 Reconstructed image in homogeneous breast phantom with large amounts	
of adipose tissue equivalents	152
5.4.3 Reconstructed image in inhomogeneous breast phantom containing dense tissues	156
5.5 CNR extraction calibration using PEC objects	165
5.5.1 Measurement setup for calibration	165
5.5.2 Methods for detecting late-time resonant signal for CNR extraction	167
5.5.3 Calibration using metallic spheres	168
5.5.4 Calibration using metallic spiculated objects	172
5.6 Discrimination of tumor mimicking dielectric inserts using CNR signatures	175

5.6.1 Methods of CNR extraction	175
5.6.2 Estimated late-time resonant signals	176
5.6.3 Extracted CNRs for dielectric inserts in homogeneous breast phantom	176
5.6.4 Extracted CNRs for dielectric inserts in inhomogeneous breast phantom	
5.6.5 Normalized CNR error (NCR)	182
5.7 Discussion	
Chapter 6: Conclusions	187
6.1 Overview	
6.2 Summary of the thesis	
6.3 Summary of original contributions	192
6.4 Future work	196
References	197

List of Tables

Table 1.1: Dielectric properties of tumor and normal breast tissues	6
Table 2.4.1: Signal-to-clutter ratio (dB) for 2D breast phantom at SNR=30dB	46
Table 2.4.2: Performance comparison of different beamforming techniques	47
Table 3.2.1: Comparison of resonant frequency of PEC sphere (dia=1 inch)	60
Table 3.2.2: Comparison of resonant frequency of PEC sphere (dia= $1^{1}/_{8}$ inch)	61
Table 3.2.3: Comparison of resonant frequency of PEC sphere (dia= $1^{5}/_{16}$ inch)	61
Table 3.2.4: Comparison of resonant frequency of PEC sphere (dia= $1^{1}/_{2}$ inch)	61
Table 3.4.1: Signal-to-clutter ratio (dB) for C3 breast phantom	94
Table 3.4.2: Extracted CNRs of spiculated and smooth lesions in C3 phantom	97
Table 4.2.1: Resonant frequencies of embedded spherical tumor (dia=10mm)	104
Table 4.2.2: Criteria of antenna metrics	104
Table 4.5.1: Parameters of BAHA antenna optimized by FDTD simulation	113
Table 4.6.1: Antenna characteristics of proposed UWB antennas using FDTD simulation	117
Table 4.8.1: CNRs of steel sphere (dia=15.875) extracted from simulated data using	
TEM horn in coupling liquid	130
Table 4.8.2: CNRs of steel sphere (dia=15.875) extracted from measured data using	
BAVA in coupling liquid	132
Table 4.8.3: CNRs of steel sphere (dia=15.875) extracted from measured data using	
Ridged pyramidal horn in coupling liquid	134
Table 5.2.1: Dielectric properties of tissue mimicking chemical phantom at 6GHz	141
Table 5.4.1: Signal-to-clutter ratio for images of embedded targets located at different positions inside the chemical breast phantom at SNR=15dB	
Table 5.5.1: Measured resonant frequency of PEC (steel) spheres	171
Table 5.5.2: Extracted CNRs for PEC inserts	175
Table 5.6.1: Extracted CNRs for dielectric inserts embedded in homogeneous phantom	179
Table 5.6.2: Extracted CNRs for dielectric inserts embedded in inhomogeneous phantom	182
Table 6.1: CNRs of steel sphere (dia=15.875mm) extracted from measured data	
in coupling ($\varepsilon_r = 2.5$)	195
Table 6.2: CNRs of steel sphere (dia=15.875mm) extracted from simulated data	
in coupling ($\varepsilon_r = 10$)	195

List of Figures

Figure 1.1: Breast structure	2
Figure 1.2: MRI-derived 2D image	7
Figure 1.3: Mammographic images of breast lesions	15
Figure 1.4: MR images of breast lesions	16
Figure 1.5: CNR poles for ellipsoidal tumor with different conductivity	17
Figure 1.6: RCS versus normalized radius of tumor	17
Figure 1.7: (a) CNR poles in adipose-dominated homogeneous phantom and (b) low adipose- content heterogeneous phantom	18
Figure 2.2.1: Antenna array configuration	27
Figure 2.2.2: Planar block breast phantom using FDTD	30
Figure 2.2.3: Block diagram depicting the procedures of MWDAS	32
Figure 2.2.4: Comparison of the microwave reconstruction images for a 10mm embedded tumor in planar block phantom filled with only fatty tissues	37
Figure 2.2.5: Comparison of microwave reconstructed images for a 2mm embedded tumor	38
Figure 2.2.6: Comparison of the microwave reconstructed images using MWDAS with different window sizes.	: 39
Figure 2.4.1: Two-dimensional FDTD breast model with heterogeneously breast tissues	45
Figure 2.4.2: Reconstructed images of suspicious tumor locations	50
Figure 3.2.1: FDTD simulation to obtain scattered field from a PEC sphere in free space	58
Figure 3.2.2: FDTD simulation to obtain scattered field from a PEC sphere in dielectric	
Half-space	60
Figure 3.3.1: FDTD hemispherical breast models	64
Figure 3.3.2: Spiculated and smooth breast lesions constructed using Gaussian random sphere	65
Figure 3.3.3: 3D breast lesions in FDTD models	65
Figure 3.3.4: Aligned received signals and RMSE matrix for pair-matching pre-processing	68
Figure 3.3.5: TOA autocalibration	72
Figure 3.3.6: Reconstructed suspicious region in hemispherical phantom	79
Figure 3.3.7: Calculated fitness value using PSO for steering vector estimation at 5GHz for	
Hemispherical breast phantom	80
Figure 3.3.8: Uncertainties of steering vector for the whole bandwidth of backscattered signal	81
Figure 3.3.9: Estimated waveform using the proposed two-stage waveform estimation method	81
Figure 3.3.10: Localization of late-time resonant signal using hemispherical breast phantom	83

Figure 3.3.11: (a) Target responses from dielectric breast lesion and PEC object with the same spherical shapes (b) Extracted CNRs	85
Figure 3.3.12: (a) Target responses from dielectric breast lesion and PEC object with the same spiculated shapes (b) Extracted CNRs	86
Figure 3.3.13: Extracted CNRs of spherical and spiculated dielectric lesions at 20 different	
Locations in hemispherical breast phantom	88
Figure 3.4.1: C3 heterogeneously dense breast phantom	90
Figure 3.4.2: Reconstructed 6 antenna positions using C3 dense breast phantom	91
Figure 3.4.3: RMSE matrix for pair-matching pre-processing using C3 dense breast phantom	92
Figure 3.4.4: Two samples of pre-processing signals showing comparison of pre-processed signals using pair-matching and ideally obtained target responses	93
Figure 3.4.5: Reconstructed image of suspicious region in C3 dense phantom	95
Figure 3.4.6: Extracted CNRs from simulated data using four sets of spiculated and smooth	
Lesions in C3 phantom	96
Figure 3.4.7: Normalized CNR errors between extracted CNRs from breast lesion in	
C3 phantom	98
Figure 4.2.1: Antenna setup for S21 measurement or simulation immersed in coupling liquid	.105
Figure 4.3.1: Proposed straight ridged horn antenna with straight launching plane,	
and four 200 ohm chip resistors	.107
Figure 4.3.2: S11 of ridged horn antenna using FDTD simulation in coupling liquid	.107
Figure 4.3.3: S21 of ridged horn antenna using FDTD simulation in coupling liquid	.108
Figure 4.3.4: Ideal and observed responses using FDTD simulation	
For ridged horn antenna in coupling liquid	.108
Figure 4.4.1: Dimensions of mBAVA	.109
Figure 4.4.2: S11 of mBAVA using FDTD simulation in coupling liquid	.110
Figure 4.4.3: S21 of mBAVA using FDTD simulation in coupling liquid	.111
Figure 4.4.4: Observed and ideal responses in coupling liquid using FDTD	
Simulation for mBAVA	.111
Figure 4.5.1: BAHA antenna geometry	.112
Figure 4.5.2: Simulated results of S11 for BAHA in coupling liquid	.114
Figure 4.5.3: Simulated results of S21 for BAHA in coupling liquid	.115
Figure 4.5.4: Simulated results of observed and ideal responses by BAHA in coupling liquid	.115
Figure 4.7.1: Pictures showing fabrication of BAHA	.118
Figure 4.7.2: Measured and simulated S11 of BAHA when immersed in coupling liquid	.119

Figure 4.7.3: Gaps between supportive substrates of BAHA	.120
Figure 4.7.4: Simulated S11 results showing the effects of gaps between substrates due to the	
Fabrication imperfection	.120
Figure 4.7.5: Measured and simulated S21 of BAHA immersed in coupling liquid	.121
Figure 4.7.6: Measured fidelity of BAHA in coupling liquid	.122
Figure 4.7.7: Simulation of NFD	.123
Figure 4.7.8: Measured and simulated coupling efficiencies	.124
Figure 4.7.9: Simulated radiation pattern of BAHA at 4, 6, and 10GHz when immersed	
In coupling liquid	.126
Figure 4.7.10: 3D view of radiation pattern of BAHA at 7 and 9GHz	.127
Figure 4.8.1: Simulation setup using TEM horn antennas to collect reflected data from	
Immersed PEC sphere (dia=15.875mm) for CNR extraction	.129
Figure 4.8.2: Simulated ideal and observed pulse responses from TEM horn	.129
Figure 4.8.3: Measured S11 using BAVA	.130
Figure 4.8.4: Measured response using BAVA in coupling liquid	.131
Figure 4.8.5: Measurement setup for CNR extraction from a PEC sphere in coupling	
Liquid (dia=15.875mm)	.132
Figure 4.8.6: Fabricated ridged pyramidal horn antenna	.133
Figure 4.8.7: Measured ideal and observed responses using ridged pyramidal horn in coupling liquid	.133
Figure 4.8.8: Extracted CNRs from simulated data for PEC sphere (dia=15.875mm) using TEM horn	.135
Figure 4.8.9: Extracted CNRs from measured data for PEC sphere (dia=15.875mm) using	
BAHA, BAVA and ridged pyramidal horn	.135
Figure 5.2.1: Methods employed for phantom fabrication	.142
Figure 5.2.2: Procedures employed to make tissue mimicking heterogeneous breast phantom	.142
Figure 5.2.3: Fabricated inhomogeneous breast phantom	.143
Figure 5.2.4: Fabricated oil-gelatin dielectric inserts to mimic breast lesions	.144
Figure 5.3.1: Hemispherical UWB array with 32 proposed BAHA antennas	.148
Figure 5.3.2: Experimental microwave imaging system for breast cancer detection and discrimination	.149
Figure 5.3.3: Measured pulse and its twin signal	.150
Figure 5.4.1: Estimated antenna positions for TOA autocalibration based on measured data	.152
Figure 5.4.2: Recorded data from UWB BAHA array for homogeneous breast phantom	.154

Figure 5.4.3: Reconstructed suspicious region when dielectric insert is placed in homogeneous phantom	156
Figure 5.4.4: Inhomogeneous breast phantom with fibroglandular tissue content	.157
Figure 5.4.5: Recorded data when dielectric insert is embedded in position-1 in an inhomogeneous breast phantom	158
Figure 5.4.6: Reconstructed suspicious region when dielectric insert is placed in position-1 in inhomogeneous phantom	160
Figure 5.4.7: Recorded data when dielectric insert is embedded in position-2 in an inhomogeneous breast phantom shown in Figure 5.4.4.	162
Figure 5.4.8: Reconstructed suspicious region when dielectric insert is placed in position-2 in inhomogeneous phantom	164
Figure 5.5.1: Spiculated and spherical metallic objects	166
Figure 5.5.2: Experimental setup for calibration of CNR extraction using PEC objects embedded inside coupling liquid	166
Figure 5.5.3: Localization of late-time resonant signal for PEC sphere of 15.875mm immersed in coupling liquid	169
Figure 5.5.4: Localization of late-time resonant signal for PEC sphere of 11.11mm immersed in coupling liquid	
Figure 5.5.5: CNRs from metallic PEC spiculated and spherical inserts in coupling liquid	173
Figure 5.5.6: Fabricated spiculated copper inserts	174
Figure 5.5.7: CNRs from PEC spiculated and spherical inserts embedded in homogeneous adipose tissue dominant breast phantom	174
Figure 5.6.1: Localization of late-time resonant signal for smooth shaped dielectric insert-1 in homogeneous adipose-dominated phantom	177
Figure 5.6.2: Localization of late-time resonant signal for spiculated shaped dielectric insert-1 in homogeneous adipose-dominated phantom	n 178
Figure 5.6.3: Extracted CNRs from measured data for three sets of tumor mimicking dielectric inserts in homogeneous adipose-dominated breast phantom	179
Figure 5.6.4: Extracted CNRs from measured data for three sets of dielectric inserts embedded in inhomogeneous dense breast phantom	181
Figure 5.6.5: Normalized CNR errors of dielectric inserts in homogeneous adipose-dominated breast phantom	183
Figure 5.6.6: Normalized CNR errors of dielectric inserts in inhomogeneous dense breast phantom	184

List of Symbols

$E_{i,j}(t)$	Received raw data between <i>i</i> th to <i>j</i> th antennas
.	Euclidean norm
r	Confocal point used in confocal microwave imaging
Н	Complex conjugate transpose
W _{BF}	Beamforming weight
dia	diameter
Δt	Time interval used in FDTD simulation
$\mathbf{a}(\theta)$	Steering vector of a narrow band signal
θ	The angle at which an incident narrow band signal arrive at
	antenna array
λ	wavelength
ε _r	permittivity
σ	conductivity
Ε	Expectation
G	Array gain
σ^2	Signal power
R	Cross-spectral density matrix
д	constraint parameter on steering vector
$\prod_{i=1}^{M} x_i$	Product over x_i from <i>i</i> to <i>M</i>
S_m	<i>m</i> th s-plane CNR pole
Z_m	<i>m</i> th z-plane CNR pole
α_m	<i>m</i> th damping factor of CNR
f_m	<i>m</i> th resonant frequency of CNR
C _m	<i>m</i> th complex amplitude of CNR
std(·)	Calculate the standard deviation of focused region
μ	TOA compensation factor
ρ	Constrain parameter to terminate the process of TOA
	autocalibration
$\beta_{\rm MMSE}$	Scaling parameter used in minimum mean-square-error
	beamforming
n _{norm}	Normalized CNR error
F	Antenna fidelity
S11	Reflection coefficients
S21	Transmission coefficients
e _c	Antenna coupling efficiency

List of Abbreviations

DAILA	
BAHA	Balanced antipodal norn antenna
BAVA	Balanced antipodal Vivaldi antenna
CMI	Confocal microwave imaging
CNR	Complex natural resonances
CPML	Convolutional perfectly matched layer
DAS	Delay-and-sum
DCIS	Ductal carcinoma in situ
DFT	Discrete Fourier transform
DMAS	Delay-multiply-and-sum
FDTD	Finite-Difference Time-Domain
GPR	Ground penetrating radar
iFFT	inverse Fast Fourier Transform
IDAS	Improved delay-and-sum
LCIS	Lobular carcinoma in situ
MAMI	Multistatic adaptive microwave imaging
MIST	Microwave-imaging-via-space-time
MWDAS	Modified-weighted-delay-and-sum
MMSE	Minimum mean-square-error
MPM	Matrix pencil method
MVDR	Minimum variance distortionless
	beamformer
NFD	Near field directivity
NCR	Normalized CNR error
PEC	Perfect electric conducting
PML	Perfectly matched layer
RCB	Robust capon beamforming
RCS	Radar cross section
RMSE	Root-mean-square-error
SCB	Standard capon beamforming
SEM	Singularity expansion method
SNR	Signal-to-noise ratio
SCR	Signal-to-clutter ratio
ТОА	Time-of-arrival
TG-RCB	Transmitter grouping robust capon
	beamforming
TSAR	Tissue sensing adaptive radar

UWB	Ultra-wideband
UWCEM	University of Wisconsin Computational
	Electromagnetics Laboratory
VNA	Vector network analyzer