MICROWAVE IMAGING FOR EARLY STAGE BREAST TUMOR DETECTION AND DISCRIMINATION VIA COMPLEX NATURAL RESONANCES

By

Fan Yang

A Thesis Submitted for the Degree of
Doctor of Philosophy

Faculty of Engineering & Information Technology, University of Technology, Sydney
March 2014
CERTIFICATION

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that this thesis has been written by me and that any help that I have received in my research work, preparing this thesis, and all sources used, have been acknowledged in this thesis. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note:
Signature removed prior to publication.

(Fan Yang)
In loving memory of my father, Zengke Yang (1951-2013)
ACKNOWLEDGEMENTS

First and foremost, I am grateful for the supervision and encouragement from my supervisor, Associate Professor Dr. Ananda Mohan Sanagavarapu who offered me with every bit of guidance and expertise. The professional skills and enthusiasm that I learned from him will be invaluable in my life. His tireless pursuits in excellent research and fruitful thoughts, advice and valuable feedback have helped me to achieve many research goals, even during in tough times during PhD work. My thesis is part of an ARC Discovery grant obtained by my supervisor.

Secondly, I am particularly thankful to my alternative supervisor Professor Hung Nguyen, who offered me the Top-up scholarship to support me to study in Centre of Health Technologies at UTS and consistently provided me advice and encouragement. I feel extremely privileged to have been his student.

In particular, I extend my gratitude to Dr. Steven Su and Dr. Li Li at UTS, for providing me with valuable advices. I am also grateful to Professor Michael Cortie and Dr. Ronald Shimmon at Faculty of Science in UTS, for supporting me work in their wonderful lab. I would also like to acknowledge my erstwhile colleague and friend Dr. Mohammed Jainul Abedin for his constructive advice and collaboration that have contributed immensely to my personal and professional time at UTS as well as my other colleagues and friends Mr. Md Delwar Hossain, Dr. Mohd Yazed Ahmad and Mr. Md Masud Rana for all the great times that we have shared. I am especially grateful to Mr. Rifai Chai, who is a source of inspiration and technical skills that help me for my measurement work.

I am deeply thankful to my family for their love, support and sacrifices. For my parents whose love and boundless backing supported me in all my pursuits. For my loving, patient and unconditional supportive wife Xiuzhi whose faithful support during my PhD pursuit is deeply appreciated. Without them, this thesis work would never have been
finished. I dedicate this thesis to the memory of my beloved father Zengke Yang, whose role in my life was, and remains immense.

I owe a great debt of gratitude to Faculty of Engineering and IT, and Graduate School at UTS for providing me with IRS scholarship to study at UTS.

Lastly, I would like to thank our faculty’s administrative officer, Rosa Tay, Phyllis Agius and Craig Shuard for their administrative support that kept us organized and were always ready to help.
ABSTRACT

In this thesis, a new microwave imaging technique for early stage breast cancer detection is developed to achieve two key aims: (i) to reconstruct the radar image of the suspicious region within the breast and (ii) to decide whether a suspicious region has malignant or benign tumors by differentiating their morphological features in terms of their complex natural resonances.

For our investigations we employ both numerical and chemical tissue mimicking breast phantoms. The breast phantom is illuminated by UWB pulses radiated from antenna elements arranged in a multistate configuration surrounding the breast. An efficient pre-processing technique is proposed to process the received pulses for the removal of early-time artifacts. To reduce the interferences of the background tissue clutter in inhomogeneous breast environment, a new time-of-arrival (TOA) auto-calibration is presented to estimate accurate TOA for confocal imaging. For determining the suspicious region within the breast, a novel and efficient data independent beam former known as Modified Weighted Delay and Sum (MWDAS) algorithm has been proposed. Once the suspicious region is localized by MWDAS method, the waveform of late-time backscattered field will be estimated using a proposed two-stage waveform estimation method. The accuracy of the waveform improves the extraction of complex natural resonances (CNR) that will be used to discriminate of whether a suspicious tissue is malignant or benign. Basing on radar target discrimination, we propose that the CNRs extracted from the late-time resonant tumor response can be closely related their morphological properties: spiculated lesion has CNR poles that differ from CNR poles of a smooth lesion. To validate our proposal, we perform FDTD simulations on 2D and 3D numerical breast phantoms that have been developed based on MRI-derived tissue dielectric properties. These simulations have revealed that the CNRs from malignant tumors have significant lower damping factors than the benign ones. These simulation
results helped to reconfirm that it is possible to distinguish malignant and benign breast tumors based on their CNRs.

To validate the proposed method of tissue discrimination, we have developed an experimental UWB imaging prototype using novel UWB sensors and tissue mimicking chemical breast phantoms to carry out preliminary preclinical experiments. Three novel end-fire compact sized UWB antennas have been proposed. After thoroughly investigating their characteristics, a novel UWB horn antenna known as BAHA that offered superior UWB performance is chosen, fabricated and measured to confirm its characteristics. A prototype experimental imaging system that incorporates 32 BAHA antenna elements forming a hemispherical UWB array is fabricated and tested using a vector network analyzer. Tissues mimicking chemical phantoms with dielectric properties similar to human breasts have been manufactured to have both adipose-tissue dominated homogeneous phantom with a dielectric contrast of 4:1 and a low-adipose inhomogeneously dense phantom with dielectric contrast of 1.7:1. Experimental results obtained using the hemispherical array prototype and phantoms have shown that dielectric inserts (12mm diameter) that mimic malignant and benign lesions can be successfully detected from both high and low dielectric contrast scenarios. Tumor mimicking lossy dielectric inserts with both irregular and smooth patterns have also been fabricated using chemicals to represent malignant and benign tumors respectively.

Finally, measured data from experimental prototype have demonstrated that tissue shape can be discriminated via CNRs. The experimental results confirmed that the proposed UWB antenna array is capable of picking up undistorted late-time signals from embedded tumor-mimicking dielectric inserts with different morphological profiles to offer reliable CNR extraction. Matrix Pencil Method is employed to extract CNRs from late time responses. Our investigations have confirmed that damping factors of the extracted CNRs from both spiculated and smooth inserts can be used to
differentiate their shapes which are quite promising for early stage breast cancer detection.
Contents

Certification... i

Acknowledgments .. iii

Abstract .. v

Contents .. viii

List of Tables ... xii

List of Figures... xiii

List of Symbols .. xvii

List of Abbreviations ... xviii

Chapter 1: Introduction .. 1

1.1 What is breast cancer? .. 1

1.2 The existing screening tools for breast cancer detection ... 2

1.3 Microwave imaging .. 3

1.4 Breast tissues and dielectric properties ... 5

1.5 Test beds using numerical and experimental breast phantoms ... 7

1.5.1 Numerical breast phantom ... 7

1.5.2 Tissue mimicking breast phantoms ... 8

1.6 Existing confocal microwave imaging and challenges ... 9

1.6.1 Data-independent beamforming .. 9

1.6.2 Data-dependent beamforming .. 10

1.6.3 Experimental microwave imaging systems .. 11

1.6.4 Design of UWB antenna elements for radar based microwave breast imaging 13

1.7 Methods to discriminate malignant tissues from benign tumors ... 14

1.7.1 Tumor morphologies .. 15

1.7.2 Breast tumor discrimination based on microwave signatures .. 16

1.8 Aims and Objectives of the thesis .. 19

1.9 Brief description of methodology .. 20

1.10 Organization of the thesis ... 21

1.11 Publications arising from this research ... 23

Chapter 2: Array Beamforming for Localizing the Suspicious Regions within Breast Phantoms ... 24

2.1 Introduction ... 24

2.2 Beamforming methods for image reconstruction ... 26

2.2.1 Confocal microwave imaging .. 26

2.2.2 The 3-D planar block-shaped numerical breast phantom ... 30
2.2.3 Reconstruction using MWDAS algorithm ... 32
 2.2.3.1 Calibration .. 32
 2.2.3.2 Integration ... 33
 2.2.3.3 Image reconstruction .. 33
2.2.4 FDTD simulation using planar block breast phantom .. 35
2.3 Data-dependent beamformer for image reconstruction .. 39
 2.3.1 Robust capon beamformer .. 40
2.4 Comparison of image reconstruction using 2-D heterogeneous dense numerical breast
phantom .. 44
2.5 Discussion ... 50

Chapter 3: Discrimination of Malignant and Benign Tumors via Complex Natural
Resonances ... 52

3.1 Introduction ... 52
3.2 Complex natural resonance (CNR) ... 55
 3.2.1 CNR extraction from conducting spheres .. 57
 3.2.2 CNR extraction from embedded conducting spheres 59
3.3 CNR extraction for numerical breast phantom ... 62
 3.3.1 General pre-processing and TOA autocalibration .. 66
 3.3.1.1 Pair-matching pre-processing method for removal of early-time content ... 66
 3.3.1.2 Time-of-arrival (TOA) autocalibration ... 69
 3.3.2 Late-time target response of breast lesion ... 74
 3.3.2.1 Steering vector estimation using RCB ... 75
 3.3.2.2 MMSE beamformer ... 77
 3.3.2.3 Simulation results .. 78
 3.3.3 Extraction of late-time resonant signal from target response 82
 3.3.4 Calibration techniques for CNR signatures ... 84
 3.3.4.1 Calibration of CNR extraction using non-penetrable PEC objects 84
 3.3.4.2 Normalized CNR error (NCR) ... 86
 3.3.5 Extracted CNRs in hemispherical numerical breast models 87
3.4 CNR extraction for MRI-derived breast phantom with dense fibroglandular tissues
(C3 breast phantom obtained from UWCEM phantom repository) 89
 3.4.1 Localization of suspicious region of breast lesion in C3 phantom 91
 3.4.1.1 Pre-processing and TOA autocalibration for C3 phantom 91
 3.4.1.2 Localization of suspicious regions in C3 phantom 93
 3.4.2 Discrimination of lesion morphologies using CNR signatures in C3 phantom .. 96
3.5 Discussion ... 99

Chapter 4: UWB Antennas for Microwave Breast Imaging ... 101

4.1 Introduction ... 101
4.2 Criteria for antenna selection ... 103
 4.2.1 Ultrawideband impedance bandwidth ... 103
 4.2.2 Transmission response ... 105
4.7.5 Measurement of antenna fidelity for BAHA

4.7.4 Measured S21

4.7.3 Investigation on effects of fabrication imperfection

4.7.2 Measured S11

4.7 Measured antenna characteristics of BAHA

4.6 Selection of the best UWB antenna

4.5.1 Performance of BAHA using FDTD simulation

4.5 Proposed antenna 3: UWB balanced antipodal horn antenna (BAHA)

4.4 Proposed antenna 2: A modified balanced antipodal Vivaldi antenna (mBAVA)

4.3 Proposed antenna 1: UWB ridged horn antenna with straight launching plane

4.2.3 Fidelity

4.7.6 Coupling efficiency

4.7.7 Radiation pattern

4.8 Effects of antenna in measurement of scattered fields for extracting CNRs from embedded targets

4.8.1 Data collection using TEM horn in simulation

4.8.2 Data collection using BAVA in measurement

4.8.3 Data collection using ridged pyramidal horn in measurement

4.8.4 Effects of antenna on extracted CNRs

4.9 Discussion

Chapter 5: Experimental Investigation on CNR based Tumor Discrimination using BAHA elements

5.1 Introduction

5.2 Tissue mimicking chemical breast phantoms

5.2.1 Inhomogeneous chemical breast phantom

5.2.2 Smooth and spiculated dielectric inserts

5.3 Development of microwave imaging system using hemispherical antenna array of 32 BAHA elements

5.3.1 Measured data acquisition

5.4 Breast imaging in homogeneous and inhomogeneous breast mimicking chemical phantoms

5.4.1 TOA autocalibration based on measured data

5.4.2 Reconstructed image in homogeneous breast phantom with large amounts of adipose tissue equivalents

5.4.3 Reconstructed image in inhomogeneous breast phantom containing dense tissues

5.5 CNR extraction calibration using PEC objects

5.5.1 Measurement setup for calibration

5.5.2 Methods for detecting late-time resonant signal for CNR extraction

5.5.3 Calibration using metallic spheres

5.5.4 Calibration using metallic spiculated objects

5.6 Discrimination of tumor mimicking dielectric inserts using CNR signatures
5.6.1 Methods of CNR extraction...175
5.6.2 Estimated late-time resonant signals..176
5.6.3 Extracted CNRs for dielectric inserts in homogeneous breast phantom..176
5.6.4 Extracted CNRs for dielectric inserts in inhomogeneous breast phantom 180
5.6.5 Normalized CNR error (NCR)..182
5.7 Discussion...184

Chapter 6: Conclusions..187
6.1 Overview..187
6.2 Summary of the thesis...187
6.3 Summary of original contributions...192
6.4 Future work..196

References...197
List of Tables

Table 1.1: Dielectric properties of tumor and normal breast tissues ..6
Table 2.4.1: Signal-to-clutter ratio (dB) for 2D breast phantom at SNR=30dB ...46
Table 2.4.2: Performance comparison of different beamforming techniques ..47
Table 3.2.1: Comparison of resonant frequency of PEC sphere (dia=1 inch) ...60
Table 3.2.2: Comparison of resonant frequency of PEC sphere (dia=1 1/8 inch)61
Table 3.2.3: Comparison of resonant frequency of PEC sphere (dia=1 5/16 inch)61
Table 3.2.4: Comparison of resonant frequency of PEC sphere (dia=1 1/2 inch)61
Table 3.4.1: Signal-to-clutter ratio (dB) for C3 breast phantom ...94
Table 3.4.2: Extracted CNRs of spiculated and smooth lesions in C3 phantom97
Table 4.2.1: Resonant frequencies of embedded spherical tumor (dia=10mm)104
Table 4.2.2: Criteria of antenna metrics ...104
Table 4.5.1: Parameters of BAHA antenna optimized by FDTD simulation ..113
Table 4.6.1: Antenna characteristics of proposed UWB antennas using FDTD simulation117
Table 4.8.1: CNRs of steel sphere (dia=15.875) extracted from simulated data using TEM horn in coupling liquid ...130
Table 4.8.2: CNRs of steel sphere (dia=15.875) extracted from measured data using BAVA in coupling liquid ...132
Table 4.8.3: CNRs of steel sphere (dia=15.875) extracted from measured data using Ridged pyramidal horn in coupling liquid ...134
Table 5.2.1: Dielectric properties of tissue mimicking chemical phantom at 6GHz141
Table 5.4.1: Signal-to-clutter ratio for images of embedded targets located at different positions inside the chemical breast phantom at SNR=15dB ..164
Table 5.5.1: Measured resonant frequency of PEC (steel) spheres ...171
Table 5.5.2: Extracted CNRs for PEC inserts ...175
Table 5.6.1: Extracted CNRs for dielectric inserts embedded in homogeneous phantom179
Table 5.6.2: Extracted CNRs for dielectric inserts embedded in inhomogeneous phantom182
Table 6.1: CNRs of steel sphere (dia=15.875mm) extracted from measured data in coupling (\(\varepsilon_r = 2.5\)) ..195
Table 6.2: CNRs of steel sphere (dia=15.875mm) extracted from simulated data in coupling (\(\varepsilon_r = 10\)) ..195
List of Figures

Figure 1.1: Breast structure .. 2
Figure 1.2: MRI-derived 2D image ... 7
Figure 1.3: Mammographic images of breast lesions .. 15
Figure 1.4: MR images of breast lesions .. 16
Figure 1.5: CNR poles for ellipsoidal tumor with different conductivity ... 17
Figure 1.6: RCS versus normalized radius of tumor .. 17
Figure 1.7: (a) CNR poles in adipose-dominated homogeneous phantom and (b) low adipose-content heterogeneous phantom ... 18
Figure 2.2.1: Antenna array configuration ... 27
Figure 2.2.2: Planar block breast phantom using FDTD ... 30
Figure 2.2.3: Block diagram depicting the procedures of MWDAS ... 32
Figure 2.2.4: Comparison of the microwave reconstruction images for a 10mm embedded tumor in planar block phantom filled with only fatty tissues .. 37
Figure 2.2.5: Comparison of microwave reconstructed images for a 2mm embedded tumor 38
Figure 2.2.6: Comparison of the microwave reconstructed images using MWDAS with different window sizes .. 39
Figure 2.4.1: Two-dimensional FDTD breast model with heterogeneously breast tissues 45
Figure 2.4.2: Reconstructed images of suspicious tumor locations ... 50
Figure 3.2.1: FDTD simulation to obtain scattered field from a PEC sphere in free space 58
Figure 3.2.2: FDTD simulation to obtain scattered field from a PEC sphere in dielectric Half-space .. 60
Figure 3.3.1: FDTD hemispherical breast models .. 64
Figure 3.3.2: Spiculated and smooth breast lesions constructed using Gaussian random sphere..... 65
Figure 3.3.3: 3D breast lesions in FDTD models .. 65
Figure 3.3.4: Aligned received signals and RMSE matrix for pair-matching pre-processing 68
Figure 3.3.5: TOA autocalibration .. 72
Figure 3.3.6: Reconstructed suspicious region in hemispherical phantom .. 79
Figure 3.3.7: Calculated fitness value using PSO for steering vector estimation at 5GHz for Hemispherical breast phantom .. 80
Figure 3.3.8: Uncertainties of steering vector for the whole bandwidth of backscattered signal 81
Figure 3.3.9: Estimated waveform using the proposed two-stage waveform estimation method 81
Figure 3.3.10: Localization of late-time resonant signal using hemispherical breast phantom 83
Figure 3.3.11: (a) Target responses from dielectric breast lesion and PEC object with the same spherical shapes (b) Extracted CNRs ... 85
Figure 3.3.12: (a) Target responses from dielectric breast lesion and PEC object with the same spiculated shapes (b) Extracted CNRs ... 86
Figure 3.3.13: Extracted CNRs of spherical and spiculated dielectric lesions at 20 different Locations in hemispherical breast phantom ... 88
Figure 3.4.1: C3 heterogeneously dense breast phantom .. 90
Figure 3.4.2: Reconstructed 6 antenna positions using C3 dense breast phantom 91
Figure 3.4.3: RMSE matrix for pair-matching pre-processing using C3 dense breast phantom 92
Figure 3.4.4: Two samples of pre-processing signals showing comparison of pre-processed signals using pair-matching and ideally obtained target responses 93
Figure 3.4.5: Reconstructed image of suspicious region in C3 dense phantom 95
Figure 3.4.6: Extracted CNRs from simulated data using four sets of spiculated and smooth Lesions in C3 phantom .. 96
Figure 3.4.7: Normalized CNR errors between extracted CNRs from breast lesion in C3 phantom ... 98
Figure 4.2.1: Antenna setup for S21 measurement or simulation immersed in coupling liquid 105
Figure 4.3.1: Proposed straight ridged horn antenna with straight launching plane, and four 200 ohm chip resistors .. 107
Figure 4.3.2: S11 of ridged horn antenna using FDTD simulation in coupling liquid 107
Figure 4.3.3: S21 of ridged horn antenna using FDTD simulation in coupling liquid 108
Figure 4.3.4: Ideal and observed responses using FDTD simulation For ridged horn antenna in coupling liquid .. 108
Figure 4.4.1: Dimensions of mBAVA .. 109
Figure 4.4.2: S11 of mBAVA using FDTD simulation in coupling liquid 110
Figure 4.4.3: S21 of mBAVA using FDTD simulation in coupling liquid 111
Figure 4.4.4: Observed and ideal responses in coupling liquid using FDTD Simulation for mBAVA ... 111
Figure 4.5.1: BAHA antenna geometry ... 112
Figure 4.5.2: Simulated results of S11 for BAHA in coupling liquid ... 114
Figure 4.5.3: Simulated results of S21 for BAHA in coupling liquid ... 115
Figure 4.5.4: Simulated results of observed and ideal responses by BAHA in coupling liquid 115
Figure 4.7.1: Pictures showing fabrication of BAHA .. 118
Figure 4.7.2: Measured and simulated S11 of BAHA when immersed in coupling liquid 119
Figure 4.7.3: Gaps between supportive substrates of BAHA .. 120
Figure 4.7.4: Simulated S11 results showing the effects of gaps between substrates due to the
Fabrication imperfection.. 120
Figure 4.7.5: Measured and simulated S21 of BAHA immersed in coupling liquid 121
Figure 4.7.6: Measured fidelity of BAHA in coupling liquid... 122
Figure 4.7.7: Simulation of NFD ... 123
Figure 4.7.8: Measured and simulated coupling efficiencies ... 124
Figure 4.7.9: Simulated radiation pattern of BAHA at 4, 6, and 10GHz when immersed
In coupling liquid... 126
Figure 4.7.10: 3D view of radiation pattern of BAHA at 7 and 9GHz .. 127
Figure 4.8.1: Simulation setup using TEM horn antennas to collect reflected data from
Immersed PEC sphere (dia=15.875mm) for CNR extraction .. 129
Figure 4.8.2: Simulated ideal and observed pulse responses from TEM horn 129
Figure 4.8.3: Measured S11 using BAVA ... 130
Figure 4.8.4: Measured response using BAVA in coupling liquid .. 131
Figure 4.8.5: Measurement setup for CNR extraction from a PEC sphere in coupling
Liquid (dia=15.875mm). .. 132
Figure 4.8.6: Fabricated ridged pyramidal horn antenna ... 133
Figure 4.8.7: Measured ideal and observed responses using ridged pyramidal horn in coupling
liquid .. 133
Figure 4.8.8: Extracted CNRs from simulated data for PEC sphere (dia=15.875mm) using TEM
horn .. 135
Figure 4.8.9: Extracted CNRs from measured data for PEC sphere (dia=15.875mm) using
BAHA, BAVA and ridged pyramidal horn ... 135
Figure 5.2.1: Methods employed for phantom fabrication .. 142
Figure 5.2.2: Procedures employed to make tissue mimicking heterogeneous breast phantom 142
Figure 5.2.3: Fabricated inhomogeneous breast phantom ... 143
Figure 5.2.4: Fabricated oil-gelatin dielectric inserts to mimic breast lesions................................. 144
Figure 5.3.1: Hemispherical UWB array with 32 proposed BAHA antennas 148
Figure 5.3.2: Experimental microwave imaging system for breast cancer detection and
discrimination ... 149
Figure 5.3.3: Measured pulse and its twin signal ... 150
Figure 5.4.1: Estimated antenna positions for TOA autocalibration based on measured data 152
Figure 5.4.2: Recorded data from UWB BAHA array for homogeneous breast phantom 154
Figure 5.4.3: Reconstructed suspicious region when dielectric insert is placed in homogeneous phantom ... 156
Figure 5.4.4: Inhomogeneous breast phantom with fibroglandular tissue content 157
Figure 5.4.5: Recorded data when dielectric insert is embedded in position-1 in an inhomogeneous breast phantom ... 158
Figure 5.4.6: Reconstructed suspicious region when dielectric insert is placed in position-1 in inhomogeneous phantom ... 160
Figure 5.4.7: Recorded data when dielectric insert is embedded in position-2 in an inhomogeneous breast phantom shown in Figure 5.4.4 .. 162
Figure 5.4.8: Reconstructed suspicious region when dielectric insert is placed in position-2 in inhomogeneous phantom ... 164
Figure 5.5.1: Spiculated and spherical metallic objects ... 166
Figure 5.5.2: Experimental setup for calibration of CNR extraction using PEC objects embedded inside coupling liquid .. 166
Figure 5.5.3: Localization of late-time resonant signal for PEC sphere of 15.875mm immersed in coupling liquid ... 169
Figure 5.5.4: Localization of late-time resonant signal for PEC sphere of 11.11mm immersed in coupling liquid ... 170
Figure 5.5.5: CNRs from metallic PEC spiculated and spherical inserts in coupling liquid 173
Figure 5.5.6: Fabricated spiculated copper inserts ... 174
Figure 5.5.7: CNRs from PEC spiculated and spherical inserts embedded in homogeneous adipose tissue dominant breast phantom 174
Figure 5.6.1: Localization of late-time resonant signal for smooth shaped dielectric insert-1 in homogeneous adipose-dominated phantom 177
Figure 5.6.2: Localization of late-time resonant signal for spiculated shaped dielectric insert-1 in homogeneous adipose-dominated phantom 178
Figure 5.6.3: Extracted CNRs from measured data for three sets of tumor mimicking dielectric inserts in homogeneous adipose-dominated breast phantom .. 179
Figure 5.6.4: Extracted CNRs from measured data for three sets of dielectric inserts embedded in inhomogeneous dense breast phantom .. 181
Figure 5.6.5: Normalized CNR errors of dielectric inserts in homogeneous adipose-dominated breast phantom .. 183
Figure 5.6.6: Normalized CNR errors of dielectric inserts in inhomogeneous dense breast phantom .. 184
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{ij}(t)$</td>
<td>Received raw data between ith to jth antennas</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Confocal point used in confocal microwave imaging</td>
</tr>
<tr>
<td>H</td>
<td>Complex conjugate transpose</td>
</tr>
<tr>
<td>W_{BF}</td>
<td>Beamforming weight</td>
</tr>
<tr>
<td>dia</td>
<td>diameter</td>
</tr>
<tr>
<td>Δt</td>
<td>Time interval used in FDTD simulation</td>
</tr>
<tr>
<td>$a(\theta)$</td>
<td>Steering vector of a narrow band signal</td>
</tr>
<tr>
<td>θ</td>
<td>The angle at which an incident narrow band signal arrive at antenna array</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>ε_r</td>
<td>Permittivity</td>
</tr>
<tr>
<td>σ</td>
<td>Conductivity</td>
</tr>
<tr>
<td>E</td>
<td>Expectation</td>
</tr>
<tr>
<td>G</td>
<td>Array gain</td>
</tr>
<tr>
<td>σ^2</td>
<td>Signal power</td>
</tr>
<tr>
<td>R</td>
<td>Cross-spectral density matrix</td>
</tr>
<tr>
<td>∂</td>
<td>Constraint parameter on steering vector</td>
</tr>
<tr>
<td>$\prod_{i=1}^{M} x_i$</td>
<td>Product over x_i from i to M</td>
</tr>
<tr>
<td>S_m</td>
<td>mth s-plane CNR pole</td>
</tr>
<tr>
<td>Z_m</td>
<td>mth z-plane CNR pole</td>
</tr>
<tr>
<td>α_m</td>
<td>mth damping factor of CNR</td>
</tr>
<tr>
<td>f_m</td>
<td>mth resonant frequency of CNR</td>
</tr>
<tr>
<td>C_m</td>
<td>mth complex amplitude of CNR</td>
</tr>
<tr>
<td>std(·)</td>
<td>Calculate the standard deviation of focused region</td>
</tr>
<tr>
<td>μ</td>
<td>TOA compensation factor</td>
</tr>
<tr>
<td>ρ</td>
<td>Constrain parameter to terminate the process of TOA autocalibration</td>
</tr>
<tr>
<td>β_{MMSE}</td>
<td>Scaling parameter used in minimum mean-square-error beamforming</td>
</tr>
<tr>
<td>n_{norm}</td>
<td>Normalized CNR error</td>
</tr>
<tr>
<td>F</td>
<td>Antenna fidelity</td>
</tr>
<tr>
<td>S_{11}</td>
<td>Reflection coefficients</td>
</tr>
<tr>
<td>S_{21}</td>
<td>Transmission coefficients</td>
</tr>
<tr>
<td>e_c</td>
<td>Antenna coupling efficiency</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAHA</td>
<td>Balanced antipodal horn antenna</td>
</tr>
<tr>
<td>BAVA</td>
<td>Balanced antipodal Vivaldi antenna</td>
</tr>
<tr>
<td>CMI</td>
<td>Confocal microwave imaging</td>
</tr>
<tr>
<td>CNR</td>
<td>Complex natural resonances</td>
</tr>
<tr>
<td>CPML</td>
<td>Convolutional perfectly matched layer</td>
</tr>
<tr>
<td>DAS</td>
<td>Delay-and-sum</td>
</tr>
<tr>
<td>DCIS</td>
<td>Ductal carcinoma in situ</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>DMAS</td>
<td>Delay-multiply-and-sum</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>GPR</td>
<td>Ground penetrating radar</td>
</tr>
<tr>
<td>iFFT</td>
<td>inverse Fast Fourier Transform</td>
</tr>
<tr>
<td>IDAS</td>
<td>Improved delay-and-sum</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobular carcinoma in situ</td>
</tr>
<tr>
<td>MAMI</td>
<td>Multistatic adaptive microwave imaging</td>
</tr>
<tr>
<td>MIST</td>
<td>Microwave-imaging-via-space-time</td>
</tr>
<tr>
<td>MWDAS</td>
<td>Modified-weighted-delay-and-sum</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum mean-square-error</td>
</tr>
<tr>
<td>MPM</td>
<td>Matrix pencil method</td>
</tr>
<tr>
<td>MVDR</td>
<td>Minimum variance distortionless beamformer</td>
</tr>
<tr>
<td>NFD</td>
<td>Near field directivity</td>
</tr>
<tr>
<td>NCR</td>
<td>Normalized CNR error</td>
</tr>
<tr>
<td>PEC</td>
<td>Perfect electric conducting</td>
</tr>
<tr>
<td>PML</td>
<td>Perfectly matched layer</td>
</tr>
<tr>
<td>RCB</td>
<td>Robust capon beamforming</td>
</tr>
<tr>
<td>RCS</td>
<td>Radar cross section</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root-mean-square-error</td>
</tr>
<tr>
<td>SCB</td>
<td>Standard capon beamforming</td>
</tr>
<tr>
<td>SEM</td>
<td>Singularity expansion method</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SCR</td>
<td>Signal-to-clutter ratio</td>
</tr>
<tr>
<td>TOA</td>
<td>Time-of-arrival</td>
</tr>
<tr>
<td>TG-RCB</td>
<td>Transmitter grouping robust capon beamforming</td>
</tr>
<tr>
<td>TSAR</td>
<td>Tissue sensing adaptive radar</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-wideband</td>
</tr>
<tr>
<td>UWCEM</td>
<td>University of Wisconsin Computational</td>
</tr>
<tr>
<td></td>
<td>Electromagnetics Laboratory</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector network analyzer</td>
</tr>
</tbody>
</table>