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ABSTRACT

The traditional materials such as reinforced concrete and structural steel have been
widely used in the construction market. These construction materials produce a large
quantity of greenhouse gases as a by-product. An environmentally sustainable solution
to decrease the production of greenhouse gases is creation of composites with other

materials such as timber to reduce the amount of steel and concrete used in construction.

Timber-concrete composites (TCC) structures, extends upon this by combining timber
and concrete in order to form a composite structural member that utilises the properties
of both materials. Since the 1990s, Timber Concrete Composite (TCC) floors have been
gaining wider recognition as being a viable and effective alternative to both reinforced
concrete and traditional timber floors. TCCs are a structural form whereby a concrete
slab is fixed to a timber joist at the interface using a suitable shear connector which
transfers shear forces and impedes slip between concrete and timber. Hence, the
strength, stiffness, location and number of shear connectors used at the composite
interface are the key factors in determining the composite action, the strength and
stiffness of a TCC system. TCC exploits the mechanical properties of each material
favourably with the concrete in compression and the timber in tension. TCCs have
several advantages over full timber construction, including improved strength (double),
stiffness (triple), vibration control, fire performance and thermal and sound insulation.
TCCs also have advantages compared to full concrete construction, including a much

higher load capacity per unit of self-weight and a lower embodied energy.

Mechanical fasteners for example screw and dowel TCC connectors are relatively
simple and easy to install, cost effective and structurally efficient connectors with lower
labour requirement. With these considerations, mechanical fasteners can be
preassembled in prefabrication or cast in situ TCC solutions. Hence, application of
mechanical fasteners in TCCs overcomes the drawbacks of alternative connection such

as notch type connection and reduces the time required to construct a TCC system.

This research investigates the experimental parametric study on the effect of different

types of high-performance concrete on mechanical properties of TCC connections and
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floors using locally available materials in Australia to evaluate their potential for use in
the construction market. A parametric study of mechanical fasteners such as crossed
SFS VB, crossed SPAX and coach screws connections in different lengths (short and
long SFS VB), angles (£30°, +45° and +60°) to the connection face and a number of
crossed SFS VB and SPAX at 45° series utilising 17mm plywood formwork interlayer
and different types of concrete was carried out. Hence, the effects of connector type,
inclination angle and length of screw and existence of plywood interlayer on mechanical
properties of the TCC connections were investigated. Moreover, two innovative TCC
shear connection systems were put forward and assessed for their suitability as a

substitute or replacement for existing connection systems using push-out test.

The application of high-performance concrete such as light-weight concrete and self-
consolidating concrete provides a great deal of benefits in TCC technology to minimize
the dead-load on the timber component or increase the concrete workability and
accelerate the process of pouring. Such weight reduction and increased workability may
be favourable in the renovation of old timber floors. The use of TCC technology is also
advantageous in new multi-storey buildings for aspects such as prefabrication and
mitigation of excess dead load — leading to saving on foundation and walls and/or

column sizes.

This research investigates the effect of different types of high-performance concrete on
the mechanical properties of TCC connections and floors using locally available

materials in Australia to evaluate their potential for use in construction market.

Push-out test was used to determine the mechanical properties and failure modes of
shear connections and once the mechanical properties of connection type were
identified, full-scale TCC modules utilising different types of shear connector and
concrete properties were subjected to four-point bending tests. Hence, the predictions of
full beam behaviour using the connection properties were validated and the effect of
shear connection and concrete type on structural behaviour of an entire floor was

investigated.

Literature reports a significant lack of information on analytical closed-form equations
to predict the strength and stiffness of TCC connections utilising vertical and inclined

fasteners to be used in the design of timber composite beams.



This study reviewed the methodology of available analytical models for prediction of
the strength and serviceability stiffness of vertically inserted single timber to timber and
TCC shear connections and validated their accuracy using the experimental push-out
test results. Moreover, an analytical strength model based on some adjustment to EYM
to predict the strength of TCC connections utilising single and crossed screws inclined
to the timber grain was proposed. This research also presented a model for the stiffness
of TCC connections using crossed inclined screws. The Winkler theory of beam on
elastic foundation proposed was extended to derive the serviceability slip modulus of

TCC connections with inclined screws which were loaded in tension and compression.

In addition, a 3-D FE model has been put forward to simulate different TCC
connections such as single and multiple wood screws and inclined coach screw utilising
the commercial FE analysis software ANSYS. The findings of this part demonstrate that
by using a simple numerical model, the behaviour of TCC connections can be
accurately modelled and can therefore be used for parametric study of changes in end
distance, edge distance, member thickness, screw diameter, screw length and number of

SCIrews.
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Anal. Analytical

AS Australian Standards

A, Cross-sectional area of the fastener at the timber-concrete interface
b Unknown parameter used in mathematical model

b Width of the LVL web
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New Zealand Standards

Thread pitch of screw

Polyvinyl alcohol-fibres

Shear flow of the TCC section

Matrix of actual displacements corresponding to the redundant
Matrix of actual displacements of the redundant action, due to the loads
The 5™ percentile strength

First moment of area for concrete slab in TCC section
Imposed action for each occupancy class
Characteristic capacity of screw

Matrix of redundant

Sample correlation coefficient

Collapse load in TCC connection

Relative humidity

Connectors spacing

Surface

Part of the surface

Connectors spacing at the beam-ends

Connectors spacing at

Sine function of angle a

Hyperbolic sine function of angle a
Self-consolidating concrete

Steel fibres reinforce concrete

Strain gauge

Serviceability limit state

Structural Timber Innovation Company

Shear flow along the beam length

Timber thickness or the embedded length of fastener in timber
Traction vector

Head side thickness of fastener in a single shear connection
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Uq
UEA
UTS
ULS

Y5percent
Yij

y(x)
Y10

Z

T

T

Point side penetration in a single shear connection

Value in standard for (n — 1) degrees of freedom and a probability of 0.1
Temperature

Tangent function of angle a

Slenderness ratio (fastener depth/fastener diameter)

Non-dimensional embedment (embedment depth/fastener diameter)
Timber-concrete composite

Displacement vector

Small slip design in design of TCC shear connector

Unequal angle

University of Technology, Sydney

Ultimate limit state

Shear force transferred between timber and concrete in TCC connector
Volume

Internal load acting on the free end of the beam on the elastic foundation
Maximum shear force at beam-end in design of TCC connectors

Shear force in the cross-section of TCC along the beam

Design shear force at connection in TCC modules

Equivalent uniformly distributed load

External work done by the external force in a TCC connection

Internal energy in a TCC connection

Without interlayer

Length parameter of fastener

Elastic transverse deformations of a connection on elastic foundation
5™ percentiles of the lower probability limit

Deformation array in flexibility matrix of the beam

Elastic deformations of a timber connection at point x along the fastener
Slip at interface of materials

Foundation depth

pi

Total potential energy

Ratio between embedment strength of timber members

Factor as a function of the fastener’s diameter to spacing ratio
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Oi

Ob,i

Oib
Of,c,max
Of t max
Ow,.c,d
Owtd
Ofc

Oft
O2 N

o2M

Ratio of of k/k;

coefficient in Canadian standard

Inclination angle of fastener to the vertical direction (90- o)
Inclination angle of fastener to the horizontal direction (90- 8)
Rotation array in flexibility matrix of the beam

Rotation at interface of materials

Mid-span deflection of a simply supported composite beam
Perpendicular component of slip in shear connector

Parallel components of slip in shear connector

Slip component parallel to the grain

Slip component transverse to the grain

Slip at interface of timber composite connection

Axial displacement of fastener

Slip at the interface of the concrete and timber in a TCC connection
Standard deviation

Stress

Ambient hydrostatic stress state of concrete

Yield stresses (tensile and compressive) in the x direction
Yield stresses (tensile and compressive) in the y direction
Yield stresses (tensile and compressive) in the z direction
Axial stress in TCC section

Bending stress in TCC section

Total normal stresses in TCC section

Extreme fibre flange design compressive stress in TCC section
Extreme fibre flange design tensile stress in TCC section
Design compressive stress of the timber web in TCC section
Design tensile stress of the timber web in TCC section
Mean flange design compressive stress in TCC section
Mean flange design tensile stress in TCC section

Tensile and bending stresses of timber in TCC section
Bending stresses of timber in TCC section

Shear yield stress of the fastener
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c

Yield stress
Strain
Shear bond coefficient

Material safety factor

Parameter of member i in stiffness model proposed by Kuenzi (1955)

slip at interface of composite materials

Axial deformations of a connection on elastic foundation
Axial deformations of a connection on elastic foundation at (x=0)
Slip measurement at specified points

Elastic deformation of connector

Slip corresponding to maximum load at connection
Deformation associated to load-drop (80% of the maximum load)
Poisson’s ratio

Poisson’s ratio in the xy plane

Poisson’s ratio in the yz plane

Poisson’s ratio in the xz plane

Design shear stress in TCC section

Maximum shear stress in the web of a box shape TCC section
Shear yield stress in the xy plane

Shear yield stress in the yz plane

Shear yield stress in the xz plane

Mass per unit volume

Characteristic mass per unit volume of timber

Mean mass per unit volume of timber

Capacity factor

Two dimensional

Three dimensional
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