INVESTIGATION OF MAGNESIA REACTIVITY IN BLENDED CEMENT SYSTEMS UNDER HYDROTHERMAL CONDITIONS

by
Barry Liu

Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

2009
Certificate of Authorship / Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis.

[Signature]

Barry Liu
Acknowledgements

I am deeply indebted to my supervisors Professor Abhi Ray and Dr. Paul Thomas for their continual guidance and assistance rendered throughout this project. Their invaluable experience and input are greatly appreciated.

I am grateful to Dr. Danielle Klimesch for her support, practical assistance and insightful suggestions.

I would also like to show my appreciation for the following people who ensured that my experiments progressed smoothly and efficiently: Mr. Jean-Pierre Guerbois for sharing his knowledge on the thermal analysis and autoclaving techniques, Dr. Norm Booth for his help with mechanical testing, Dr. Ronald Shimmon for his expertise in solid-state NMR spectroscopy, Ms. Katie McBean and Dr. Ric Wuhrer for their assistance in ESEM, and Mr. Mark Berkahn for his training in using the x-ray diffractometer.

A special thank you is reserved for Patricia Pang for her selfless and unconditional support. Her love, support and constant encouragement has made this study a memorable experience. Above all, I must thank my family and friends who have helped and supported me through the years.
Abstract

Addition of supplementary cementing materials (SCM) to produce blended Portland cements (PC) is a well established practice in the manufacture of construction materials. It enables an overall reduction in the consumption of PC thereby reducing CO₂ emissions. This study reports findings on the hydrothermal chemistry, physical and mechanical properties of autoclaved PC-quartz blends where PC was partially replaced by reactive magnesia (MgO), which requires less energy for calcination than calcia (CaO) from their naturally occurring carbonates, and alumina-silica rich fired clay-brick (CB) waste fines, an abundant industrial waste and a proven SCM.

The dependence of the reactivity of magnesia on the calcination temperature was initially investigated through the hydration behaviour and an optimum reactivity at a temperature of 600°C was identified. In order to investigate the potential of this reactive magnesia in a cement environment, the reactivity of the magnesia with colloidal silica in model MgO-SiO₂-H₂O slurry systems was first investigated under both ‘mild’ and ‘extreme’ hydrothermal reaction conditions. Amorphous magnesium silicate hydrate (M-S-H) phases were identified in the ‘mild’ conditions at 180°C with increasingly crystalline phases being developed as the temperature and time were increased up to 350°C and 16 hours of hydrothermal treatment. Two different reaction sequences were also established. For M/S ratios of 0.6, 0.8 and 1.0, the principal reaction products were M-S-H gel and talc while for M/S ratios of 1.5 and 2.0, they were brucite, deweylite and chrysotile serpentine. Morphological studies using SEM of the specimens containing chrysotile revealed that the chrysotile was not of a fibrous nature.

The addition of reactive MgO to PC in hydrothermal conditions was observed to have a negative effect on the compressive strength. The only magnesium containing phase observed in XRD was brucite, indicating that MgO did not take part in the reaction during the hydration of the cement. No M-S-H phases were observed in the MgO containing mixes. Experimental results suggested that MgO was not entirely inert as the formation of tobermorite appeared to be retarded in the presence of brucite.

Examination of PC-quartz mortar mixes revealed that alumina-silica rich clay-brick waste is pozzolanic where the Al₂O₃ provided a source of Al ions for the accelerated formation of Al substituted 1.1nm tobermorite. Mechanical properties showed
improvements with the incorporation of CB waste in more silica-rich environments. Moreover, drying shrinkage and resistance to carbonation were improved due to increased crystallinity of Al-tobermorite.

For blended PC with the addition of both CB waste and reactive magnesia (in a 50/50 ratio), an apparent synergy was observed as minimal (or no) reduction in strength was observed for up to 20% additions of the 50/50 blend. The synergy was explained by the contrasting physical and chemical effects as a result of attaining an optimum proportion of amorphous and crystalline material and optimum physical packing conditions.

Autoclaved MgO-SiO₂ only cube specimens were shown to be capable of producing strength up to 10MPa. XRD revealed the presence of talc where the talc crystallinity was higher in the MgO-silica fume specimens which corresponded to higher strength specimens. This has the potential to be used for low strength applications such as interior walls, possibly as a replacement for gypsum plasterboards.

The use of fired clay-brick waste in combination with reactive magnesia as additives for the production of hydrothermally cured cement-based building products has the potential to achieve an overall positive outcome from an environmental viewpoint.
Table of Contents

Abstract ... i

Table of Contents .. iii

List of Publications by the Author .. vii

List of Abbreviations .. viii

List of Tables ... x

List of Figures ... xii

Appendices .. xix

1 Introduction... 1
1.1 Preface ... 1
1.2 Portland Cement .. 2
1.2.1 Manufacture of Portland Cement ... 2
1.2.2 Energy Consumption and CO₂ Emission Considerations 4
1.3 Supplementary Cementing Materials (SCM) ... 5
1.4 Clay-Brick (CB) Waste ... 8
1.4.1 Production of Clay-Brick ... 9
1.4.2 Clay-Brick Waste as Partial Cement Replacement in Concrete 10
1.5 Magnesium Oxide ... 13
1.5.1 Sources and Production of Magnesia (MgO) .. 13
1.5.2 General Applications of Magnesia ... 16
1.5.3 Magnesia as a Supplementary Material in Cement .. 18
1.6 Chemistry of the Autoclave Process ... 20
1.7 Research Objectives ... 24
1.8 Structure of the Thesis ... 25

2 Background ... 27
3.4 Evaluation of Specimens
3.4.1 Compressive Strength
3.4.2 Drying Shrinkage
3.4.3 Degree of Carbonation (DoC)

3.5 Methods of Characterisation
3.5.1 X-ray Diffraction (XRD)
3.5.2 X-Ray Fluorescence (XRF)
3.5.3 Scanning Electron Microscopy (SEM)
3.5.4 Thermal Analysis (TA)
3.5.5 27Al and 29Si Nuclear Magnetic Resonance (NMR) Spectroscopy
3.5.6 BET Surface Area
3.5.7 Acid-Insoluble Residue (AIR) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)

4 Hydration of Differently Calcined Magnesia
4.1 Preface
4.2 Results
4.2.1 Degree of Calcination
4.2.2 Scanning Electron Microscopy
4.2.3 Degree of Hydration
4.2.4 Summary

5 Phase Development of Hydrothermally Treated MgO-SiO$_2$-H$_2$O System
5.1 Preface
5.2 Results
5.2.1 X-Ray Diffraction
5.2.2 Scanning Electron Microscopy
5.2.3 Thermal Analysis
5.2.4 29Si MAS Nuclear Magnetic Resonance
5.2.5 MgO-Al$_2$O$_3$-SiO$_2$-H$_2$O System
5.2.6 Summary

6 Hydrothermally Cured PC-Quartz Pastes with Clay-Brick Waste and Reactive Magnesia Additions
6.1 Preface
6.2 Workability
6.3 Results of Constant Ca/Si = 0.58 Specimens
6.3.1 Compressive Strength
6.3.2 X-Ray Diffraction
6.3.3 Scanning Electron Microscopy
6.3.4 Thermal Analysis ...173
6.3.5 27Al Nuclear Magnetic Resonance ...175
6.3.6 Evaluation of Acid-Insoluble Residue ..178
6.3.7 Degree of Carbonation ...183
6.3.8 Physical Properties ...185
6.3.9 Drying Shrinkage ...187
6.4 Results of Constant Ca/Si = 0.49 Specimens ...189
6.4.1 Compressive Strength ...189
6.4.2 X-Ray Diffraction ...190
6.4.3 Scanning Electron Microscopy ...192
6.4.4 Thermal Analysis ...195
6.4.5 27Al Nuclear Magnetic Resonance ...196
6.4.6 Evaluation of Acid-Insoluble Residue ...196
6.4.7 Degree of Carbonation ...197
6.4.8 Physical Properties ..199
6.4.9 Drying Shrinkage ..200
6.5 Results of Constant Ca/Si = 0.41 Specimens ...202
6.5.1 Compressive Strength ...202
6.5.2 X-Ray Diffraction ...203
6.5.3 Scanning Electron Microscopy ...205
6.5.4 Thermal Analysis ...208
6.5.5 27Al Nuclear Magnetic Resonance ...208
6.5.6 Evaluation of Acid-Insoluble Residue ...209
6.5.7 Degree of Carbonation ...210
6.5.8 Physical Properties ..210
6.5.9 Drying Shrinkage ..212
6.6 Strength Development of Autoclaved Cement Blends with Addition of MgO Calcined at 850°C ...214
6.7 Strength Development of Autoclaved MgO-SiO$_2$ Only Cubes Specimens216
6.7.1 Compressive Strength ...216
6.7.2 X-Ray Diffraction ...217
6.7.3 Scanning Electron Microscopy ...219
6.7.4 Thermal Analysis ...220
6.7.5 29Si MAS Nuclear Magnetic Resonance ..222
7 Conclusions ...224
List of Publications by the Author

List of Abbreviations

AAC Autoclaved Aerated Concrete
AFm $\text{Al}_2\text{O}_3\text{-Fe}_2\text{O}_3$-mono phase, $[\text{Ca}_2(\text{Al},\text{Fe})(\text{OH})_6] \times x\text{H}_2\text{O}$, $X = $ one formula unit of a singly charged anion, or half a formula unit of a doubly charged anion.

(AI)-C-S-H Al substituted C-S-H
AIR Acid Insoluble Residue
ASTM American Society for Testing and Materials
ATH Aluminium Trihydrate
C$_2$S Dicalcium Silicate
C$_2$SH Dicalcium Silicate Hydrate
C$_3$A Tricalcium Aluminate
C$_3$AH$_6$ Hydrogarnet
C$_3$ASH$_4$ Katoite
C$_3$AS$_3$ Grossular
C$_5$S Tricalcium Silicate
C$_6$AF Tetracalcium Aluminoferrite
C$_6$S$_3$H Xonotlite
CB Clay-Brick
CH Calcium Hydroxide (Portlandite)
CS Wollastonite
C-S-H Calcium Silicate Hydrate
DDT 2$^\text{nd}$ Derivative Differential Thermal
DoC Degree of Carbonation
DTA Differential Thermal Analysis
EGA Evolved Gas Analysis
ESEM Environmental Scanning Electron Microscope
FESEM Field Emission Scanning Electron Microscope
FID Free-Induction Decay
FT Fourier Transform
GGBFS Ground Granulated Blast-Furnace Slag
ICCD International Centre for Diffraction Data
ICP-OES Inductively Coupled Plasma - Optical Emission Spectroscopy
JCPDS Joint Committee on Powder Diffraction Standards
LOI Loss on Ignition
M/S MgO/SiO$_2$ Ratio
M-A-S-H Magnesium Aluminium Silicate Hydrate
M-S-H Magnesium Silicate Hydrate
MAS Magic Angle Spinning
MK Metakaolin
MPa Megapascal
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>PC</td>
<td>Portland Cement</td>
</tr>
<tr>
<td>PFA</td>
<td>Pulverised Fuel Ash</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>PSA</td>
<td>Particle Size Analyses</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>SCM</td>
<td>Supplementary Cementing Materials</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilylation</td>
</tr>
<tr>
<td>WDS</td>
<td>Wavelength Dispersive Spectrometry</td>
</tr>
<tr>
<td>w/c</td>
<td>Water/Cement Ratio</td>
</tr>
<tr>
<td>w/s</td>
<td>Water/Solid Ratio</td>
</tr>
<tr>
<td>wt.%</td>
<td>Weight Percent</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence</td>
</tr>
</tbody>
</table>
List of Tables

Table 1.1 Main Clinker Compounds (Shreve and Brink 1977)...2
Table 1.2 Approximate composition limits of Portland cement (Neville and Brooks 1987).
 Oxides are given in mass percent...3
Table 1.3 Worldwide reserves of magnesite (Kramer 2006)..14
Table 1.4 Terms related to the production conditions and resultant MgO properties (Manocha 2000)...17
Table 2.1 29Si NMR notation examples with and without Al substitution modified from LaRosa Thompson (1995). ..33
Table 2.2 Hydration states of tobermorite (Taylor 1992)..40
Table 3.1 Chemical compositions of raw materials used. Oxides and LOI are in mass percentage...97
Table 3.2 Definitions and criteria for C-S-H and tobermorite (T) used in this thesis (Kalousek 1969; Mitsuda and Taylor 1975)..110
Table 4.1 Calcination results: (i) Degree of calcination based on the mass loss of the
decarbonation peak compared to their respective uncalcined raw material. (ii) BET surface
area of calcined magnesias and raw materials. (iii) Crystallite size determined from
periclase (200) X-ray diffraction line..123
Table 5.1 Phases identified by x-ray diffraction...137
Table 6.1 Chemical compositions of mortar specimens made with constant Ca/Si ratio of 0.58. ..159
Table 6.2 Chemical compositions of mortar specimens made with constant Ca/Si ratio of 0.49. ..159
Table 6.3 Chemical compositions of mortar specimens made with constant Ca/Si ratio of 0.41. ..160
Table 6.4 Mix design of MgO-quartz sand and MgO-silica fume blends..160
Table 6.5 Volume of Glenium 51 superplasticiser required to achieve comparable flow to the
control specimens...162
Table 6.6 List of the absolute values of the average compressive strength versus % addition. The
0% addition values are used as a reference for the normalisation of the data in Figure 6.2.163
Table 6.7 Average compressive strength for autoclaved blends. The 0% addition (control specimens) values are used as a reference for the normalisation of the data in Figure 6.3.165
Table 6.8 Average compressive strengths for autoclaved blends. The 0% addition (control specimens) strengths are used as a reference for the normalisation of the data presented in Figure 6.21..189
Table 6.9 Average compressive strength values for autoclaved blends. The 0% addition (control specimens) values are used as a reference for the normalisation of the data in Figure 6.32. ..202
Table 6.10 Average compressive strength values for autoclaved cement blends with the addition of MgO calcined at 850°C. The 0% addition (control specimens) values are used as a reference for the normalisation of the data in Figure 6.42. ..214
Table B.1 29Si NMR peak positions of M-S-H specimens...274
Table C.1 Physical properties of autoclaved prisms made with constant Ca/Si = 0.58........279
Table C.2 Physical properties of autoclaved prisms made with constant Ca/Si = 0.49........289
Table C.3 Physical properties of autoclaved prisms made with constant Ca/Si = 0.41........299
List of Figures

Figure 1.1 Schematic diagram of a dry process cement plant ... 3
Figure 1.2 Global greenhouse gas emissions (CO₂eq.) in year 2000 and contribution of cement production (Rehan and Nehdi 2005). .. 4
Figure 1.3 Locations of magnesia production in Australia (Shand 2006). .. 16
Figure 1.4 Effects of partial replacement of cement by finely ground silica on the compressive strengths of mixes cured normally and in the autoclave. From Menzel (1934). 21
Figure 1.5 XRD powder diffraction pattern (spacings in Å, where 1Å = 0.1nm) of a fully reacted 23 years old β-C₃S paste. From Taylor (1997). .. 28
Figure 1.6 A single layer of 1.4 nm tobermorite (A and B) in bc- and ac-projections, respectively. In ac-projections the chains are seen end on. The suggested structure for a single layer of jennite (C) is consisting of chains of silica tetrahedra (Δ) and Ca (●) oxide sheets. B = bridging tetrahedron, P = paired tetrahedron, H = hydroxyl groups. From Taylor (1997). ... 30
Figure 1.7 Silicate chain of the type present in jennite and 1.4nm tobermorite, showing the probable positions of the H atoms (marked A) and suggest modification (at B) by the omission of a bridging tetrahedron. The oxygen atoms at the bottom of this diagram are also part of the central CaO₂ layer. From Taylor (1986). .. 31
Figure 1.8 Percentages of the total silicon in C₃S or alite pastes recovered as monomer, dimer and polymer by a trimethylsilylation method. From Mohan and Taylor (1982). 34
Figure 1.9 XRD patterns of samples cured for 2 hours at 150°C made from CaO-silicic acid mixtures of various Ca/Si as indicated. C = C-S-H, P = portlandite, T = tobermorite. From Okada et al. (1994a). ... 37
Figure 1.10 TG curves of samples made with Ca/Si = 1.5, 1.3, 1.0, 0.8, 0.6 and 0.5 (bottom to top). From Mitsuda et al. (1986). ... 38
Figure 1.11 Q³/Q¹ intensity ratio vs. bulk Ca/Si ratio shows gradual decrease for 150°C and 180°C cured samples; a more abrupt transition occurs for 120°C curing (Okada et al. 1994a). 39
Figure 1.12 ‘Anomalous’ tobermorite Ca₅Si₆O₁₆(OH)₂·4H₂O. The bridging tetrahedra in one chain are bonded to those in the chain across the interlayer region forming double-chains (Q³). From Komarneni and Tsuji (1989). ... 42
Figure 1.13 A three dimensional view of ‘normal’ tobermorite comprised of single dreierketten chains. The dotted Ca-atoms (Ca5 and Ca6) are statistically distributed among these sites. From Hamid (1981). ... 43
Figure 1.14 Schematic model of C-S-H. From Sato and Grutzeck (1992). .. 46
Figure 1.15 Dependence of the percentage of Al⁴ and Al⁶ on the Ca/Si ratio of the C-S-H phases. From Stade and Müller (1987). ... 48
Figure 1.16 Schematic representation of: (a) unsubstituted pentameric silicate chain with (b) Al substitution in the bridging site or (c) a non-bridging site. Richardson et al. (1993) found case (b) to be the most likely arrangement of Al and Si tetrahedra. 49
Figure 2.13 Different types of configurations for the Si substitution by Al in (Al)-C-S-H with the corresponding approximate chemical shifts. Modified from Faucon et al. (1999)......50

Figure 2.14 Differential thermal analysis curves of C/(S+A) = 0.8 reaction products: (1) pure tobermorite; (2) tobermorite containing 5.7% combined Al₂O₃; (3) C₃ASH₄ containing 9.3% combined Al₂O₃; (4) products containing 14.4% Al₂O₃; (5) products containing 20.7% Al₂O₃. From Kalousek (1957)..57

Figure 2.15 XRD patterns of autoclaved CaO-metakaolin-fume quartz mixtures with Al/(A1+Si) ratios of a) 0.03 and b) 0.13, hydrothermally cured at 180°C for 1, 2, 4, 9 and 23 hours. H = hydrogarnet, T = tobermorite, Q = quartz, C = C-S-H, P = portlandite. From Klimesch and Ray (1998)...61

Figure 2.16 Stepwise processes involved in thermal dissociation of magnesite. From Shand (2006). ..69

Figure 2.17 Calcination of MgCO₃ to active (dilated lattice) and inert (normal lattice) MgO. Modified from Eubank (1951)..70

Figure 2.18 Schematic diagram of a crystal plane of MgO, produced by low temperature calcination, which is pseudomorphous after MgCO₃. From Eubank (1951)..........................71

Figure 2.19 Effect of time and temperature of calcination of natural magnesite on the BET specific surface area. From Fernández et al. (1999)...73

Figure 2.20 Schematic of the pathway of particle sintering. From Shand (2006)..........................75

Figure 2.21 Hydration mechanisms of polycrystalline magnesia. From Salomão et al. (2007)..79

Figure 2.22 Average compressive strength of cube mortar specimens containing 0, 10 and 20% replacement by mass of PC by MgO. From Lawry et al. (2005).................................82

Figure 2.23 Unconfined compressive strength (UCS) versus binder composition for specimens air-cured for 28 days. From Vandepererre et al. (2006)...83

Figure 2.24 Diagram showing composition (in moles) of the several phases in the system, MgO-SiO₂-H₂O. From Bowen and Tuttle (1940). ...85

Figure 2.25 Structure of serpentine layer: (a) tetrahedral Si₂O₅ network in plan, (b) tetrahedral network as viewed along y-axis, (c) tri-octahedral component of serpentine layer (plan), (d) serpentine layer as viewed along y-axis. From Zussman (1954)..................................88

Figure 2.26 X-ray pattern of a typical deweylite, with basal reflections from the talc (T) and serpentine (S) indicated. From Bish and Brindley (1978)...89

Figure 2.27 The structure of brucite (Deer et al. 1966)..90

Figure 2.28 DTA curves of bentonite-MgO mixtures (M/S = 1.63), cured at 126°C for different periods. From Wang and Handy (1966)..91

Figure 2.29 XRD patterns showing the transition from M-S-H to poorly crystalline talc to highly crystalline talc. From Mitsuda (1977)..94

Figure 3.1 Particle size distribution of type 200G ground quartz sand. ..98

Figure 3.2 Particle size distributions of the CB after various milling times (minutes).99

Figure 3.3 Particle size distribution of natural magnesite used..100

Figure 3.4 Bomb setup in a fan-forced oven...104

Figure 3.5 ²⁹Si NMR chemical shift ranges for phases with Si in tetrahedral co-ordination. The shifts and regions related to cement phases are highlighted in black (Engelhardt and Michel 1987)...116
Figure 4.1. X-ray diffraction patterns of (a) natural magnesite and calcined natural magnesite and (b) basic MgCO₃ and calcined basic MgCO₃. M = Magnesite, P = Periclase (MgO), T = Talc (Mg₃Si₄O₁₀(OH)₂), Q = Quartz, D = Dolomite (CaMg(CO₃)₂).

Figure 4.2. BET surface area of calcined and uncalcined natural magnesite and basic MgCO₃.

Figure 4.3. SEM micrograph of (a) raw natural magnesite; and (b) the N600 specimen showing the presence of fine protrusions on the surfaces of MgO particles.

Figure 4.4. SEM micrograph of (a) the N1000 specimen showing growth of the fine protrusions and; (b) raw basic MgCO₃ with randomly ordered scaly particles.

Figure 4.5. SEM micrograph of (a) the B600 specimen and; (b) raw basic MgCO₃ with relatively smaller changes in the crystallite size compared to the natural MgO.

Figure 4.6. Degree of hydration, in a constant RH atmosphere, of calcined natural MgO to Mg(OH)₂ (Corrected for impurities).

Figure 4.7. Degree of hydration, in a constant RH atmosphere, of basic MgO to Mg(OH)₂.

Figure 5.1. XRD patterns of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 16 hours. • = M-S-H gel, B = brucite, T = talc (JCPDS #02-0571), C = chrysotile (JCPDS #02-0350), S = amorphous SiO₂ (JCPDS #29-0085), D = dawdylite (Speakman and Majumdar 1971; Bish and Brindley 1978), with basal reflections from the talc (T) and serpentine (S) indicated by the subscript.

Figure 5.2 SEM micrograph of specimens made with M/S = 0.6 treated at (a) 180°C for 8 hours and, (b) and (c) 350°C for 16 hours.

Figure 5.3 SEM micrograph of specimens made with M/S = 0.8 treated at (a) 180°C for 8 hours and, (b) and (c) 350°C for 16 hours.

Figure 5.4 SEM micrograph of specimens made with M/S = 1.5 treated at (a) 180°C for 8 hours and (b) 350°C for 8 hours.

Figure 5.5 SEM micrograph of specimens made with M/S = 2.0 treated at (a) 180°C for 8 hours and (b) 300°C for 16 hours.

Figure 5.6 DTA curves of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 16 hours.

Figure 5.7 TGA/EGA curves of the MS2.0-250°C-8H specimen.

Figure 5.8 XRD patterns of specimens heated to 1000°C. E = Enstatite (JCPDS #019-0768), F = Forsterite (JCPDS #034-0189) and CE = Clinoenstatite (JCPDS #035-0610).

Figure 5.9 ²⁹Si NMR single pulse spectra of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 16 hours.

Figure 5.10 X-ray diffraction patterns of specimens made with M/S ratio of 1.0 hydrothermally treated at 180°, 250°, 300° and 350°C for 16 hours with 10% gibbsite additions.

Figure 5.11 X-ray diffraction patterns of specimens made with M/S ratio of 1.0 hydrothermally treated at 300°C for 8 hours with 10, 20 and 30% of gibbsite additions. Bo = Boehmite (JCPDS #021-1307).

Figure 6.1 Average flow for C, M, and CM series, with associated error.
Figure 6.2 Normalised compressive strength curves for autoclaved blends containing Glenium 51 superplasticiser with constant Ca/Si of 0.58. The normalised data are calculated as a percentage relative to the control specimens for a particular autoclave run. Strength curves for M and CM series without Glenium 51 superplasticiser are included for comparison (denoted by dashed lines).

Figure 6.3 Normalised average compressive strength curves for autoclaved blends. The normalised data are calculated as a percentage relative to the control specimens for a particular autoclave run.

Figure 6.4 XRD patterns of (a) CM series specimens, (b) M series specimens and (c) C series specimens, additions at 0, 5, 10, 15 and 20%. T = tobermorite, Q = quartz, B = brucite, C = calcite, M = magnesite, H = hydrogarnet.

Figure 6.5 Ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks versus percentage addition. The $H_{0.308}/H_{1.1}$ ratio is inversely proportional to crystallinity.

Figure 6.6 SEM micrographs of (a) control specimen, (b) 20% MgO addition specimen (M20), (c) 20% CB fines addition specimen (C20) and (d) 20% CB + MgO addition specimen (CM20).

Figure 6.7 DTA curves of CM series specimens (CB + MgO additions) at 0, 5, 10, 15 and 20%.

Figure 6.8 Total bulk Al$_2$O$_3$ content in the initial mix versus the variation in the β-CS exotherm temperature.

Figure 6.9 27Al NMR single pulse spectra of (a) C series specimens, (b) M series specimens and (c) CM series specimens. *-spinning side band.

Figure 6.10...

Figure 6.11 27Al MAS NMR spectra of calcined MgO derived from natural magnesite.

Figure 6.12 Average acid-insoluble residue versus percentage addition.

Figure 6.13 Composition of bulk and combined AIR of autoclaved blends with MgO addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO.

Figure 6.14 Composition of bulk and combined AIR of autoclaved blends with CB addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO.

Figure 6.15 Composition of bulk and combined AIR of autoclaved blends with CB + MgO addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO.

Figure 6.16 Degree of carbonation of selected autoclaved blends.

Figure 6.17 XRD patterns of carbonated CM series specimens (CB + MgO) additions at 0, 5, 10, 15 and 20%. T = tobermorite, Q = quartz, B = brucite, C = calcite, M = magnesite, H = hydrogarnet.

Figure 6.18 Bulk density of autoclaved prisms as a function of compressive strength.

Figure 6.19 Average drying shrinkage values of selected specimens after approximately 28 days.

Figure 6.20 Drying shrinkage versus the degree of crystallinity of tobermorite calculated from ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks. The estimated trend curve is drawn to accentuate the observed trend; it is not a calculated mean curve.
Figure 6.21 Normalised average compressive strength curves for autoclaved blends. The normalised data are calculated as a percentage relative to the control specimens for a particular autoclave run. ... 190
Figure 6.22 Integrated intensities of 1.1 nm Al-tobermorite peak versus percentage addition. 191
Figure 6.23 Ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks versus percentage addition. .. 192
Figure 6.24 SEM micrographs of (a) the control specimen showing platy lath-like tobermorite, (b) the M20 specimen showing lath needle-like tobermorite, (c) the C20 specimen showing dense crystalline platy tobermorite and (d) the CM20 specimen showing dense lath-like tobermorite. ... 194
Figure 6.25 Total bulk Al₂O₃ content in the initial raw mix versus the variation in the β-CS formation temperature. .. 196
Figure 6.26 Average acid-insoluble residue versus percentage addition. .. 197
Figure 6.27 Degree of carbonation of selected autoclaved blends. .. 198
Figure 6.28 XRD patterns of carbonated M series specimens (MgO only) additions at 0, 5, 10, 15 and 20%. T = tobermorite, Q = quartz, B = brucite, C = calcite, M = magnesite, H = hydrogarnet. ... 198
Figure 6.29 Bulk density of autoclaved prisms as a function of compressive strength. 199
Figure 6.30 Average drying shrinkage of selected specimens after approximately 28 days. 200
Figure 6.31 Drying shrinkage versus the degree of crystallinity of tobermorite calculated from ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks. .. 201
Figure 6.32 Normalised average compressive strength curves for autoclaved blends. The normalised data are calculated as a percentage relative to the control specimens for a particular autoclave run. .. 203
Figure 6.33 Integrated intensities of 1.1 nm Al-tobermorite peak versus percentage addition. 204
Figure 6.34 Ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks versus percentage addition. .. 205
Figure 6.35 SEM micrographs of (a) the control specimen showing lath-like tobermorite, (b) the M20 specimen showing lath needle-like tobermorite, (c) the C20 specimen showing lath-like tobermorite and (d) the CM20 specimen showing dense lath-like tobermorite. ... 207
Figure 6.36 Total bulk Al₂O₃ content in the initial raw mix versus the variation in the β-CS formation temperature. .. 208
Figure 6.37 Average acid-insoluble residue versus percentage addition. .. 209
Figure 6.38 Degree of carbonation of selected autoclaved blends. .. 210
Figure 6.39 Bulk density of autoclaved prisms as a function of compressive strength. 211
Figure 6.40 Average drying shrinkage values of selected specimens after approximately 28 days. .. 212
Figure 6.41 Drying shrinkage versus the degree of crystallinity of tobermorite calculated from ratio of peak heights of the 0.308 nm and 1.1 nm XRD peaks. .. 213
Figure 6.42 Normalised average compressive strength curves for autoclaved cement blends with the addition of MgO calcined at 850°C. The normalised data are calculated as a percentage relative to the control specimens. .. 215

xvi
Figure 6.43 Average compressive strength values of autoclaved MgO-quartz sand and MgO-silica fume blends...216

Figure 6.44 XRD patterns of (a) MQ series specimens and (b) MSF series specimens at 40, 50 and 60 wt.% MgO. B = brucite, D = dolomite, Q = quartz, T = talc (JCPDS #02-0571). 218

Figure 6.45 SEM micrographs of (a) MQ60 and (b) MSF60 specimens...220

Figure 6.46 DTA curves of (a) MQ series and (b) MSF series specimens...221

Figure 6.47 29Si NMR single pulse spectra of (a) MQ series and (b) MSF series specimens..223

Figure A.1 (a) XRD pattern, (b) DTA-TGA curves and (c) 27Al MAS NMR spectra of Goliath Cement (OPC)..245

Figure A.2 (a) XRD pattern, (b) DTA-TGA curves and (c) 27Al MAS NMR spectra of ground quartz sand..247

Figure A.3 (a) XRD pattern, (b) DTA-TGA curves and (c) 27Al MAS NMR spectra of natural magnesite..249

Figure A.4 (a) XRD pattern and (b) DTA-TGA curves of basic magnesium carbonate..............250

Figure A.5 (a) XRD pattern, (b) DTA-TGA curves, (c) 27Al and (d) 29Si MAS NMR spectra of clay-brick fines. *- spinning side band...252

Figure A.6 (a) XRD pattern, (b) DTA-TGA curves and (c) 29Si MAS NMR spectra of silica fume..254

Figure A.7 (a) XRD pattern and (b) 29Si MAS NMR spectra of colloidal silica.......................255

Figure A.8 (a) XRD pattern, (b) DTA-TGA curve and (c) 27Al MAS NMR spectra of gibbsite. ...257

Figure B.1 XRD patterns of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 4 hours. • = M-S-H gel, B = brucite, T = talc, C = chrysotile, D = deweylite, with basal reflections from the talc (T) and serpentine (S) indicated by the subscript. ...260

Figure B.2 XRD patterns of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 8 hours. • = M-S-H gel, B = brucite, T = talc, C = chrysotile, D = deweylite, with basal reflections from the talc (T) and serpentine (S) indicated by the subscript. ...263

Figure B.3 DTA curves of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 4 hours.....266

Figure B.4 DTA curves of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 8 hours....268

Figure B.5 29Si NMR single pulse spectra of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 4 hours..271

Figure B.6 29Si NMR single pulse spectra of (a) M/S = 0.6, (b) M/S = 0.8, (c) M/S = 1.0, (d) M/S = 1.5 and (e) M/S = 2.0 specimens hydrothermally treated at 180, 250, 300 and 350°C for 8 hours........273

Figure C.1 DTA curves of (a) M series and (b) C series specimens made with constant Ca/Si = 0.58, additions at 0, 5, 10, 15 and 20%..277

Figure C.2 XRD patterns of carbonated M series specimens made with constant Ca/Si = 0.58 for MgO additions at 0, 5, 10, 15 and 20% ...278
Figure C.3 XRD patterns of carbonated C series specimens made with constant Ca/Si = 0.58 for MgO additions at 0, 5, 10, 15 and 20%.

Figure C.4 XRD patterns of (a) M series, (b) C series and (c) CM series specimens made with constant Ca/Si = 0.49, additions at 0, 5, 10, 15 and 20%.

Figure C.5 DTA curves of (a) M series, (b) C series and (c) CM series specimens made with constant Ca/Si = 0.49, additions at 0, 5, 10, 15 and 20%.

Figure C.6 27Al NMR single pulse spectra of (a) C series specimens, (b) M series specimens and (c) CM series specimens. *-spinning side band.

Figure C.7 Composition of bulk and combined AIR of autoclaved blends with MgO addition:
(a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.8 Composition of bulk and combined AIR of autoclaved blends with CB addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.9 Composition of bulk and combined AIR of autoclaved blends with CB + MgO addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.10 XRD patterns of carbonated (a) C series and (b) CM series specimens made with constant Ca/Si = 0.49.

Figure C.11 XRD patterns of (a) M series, (b) C series and (c) CM series specimens made with constant Ca/Si = 0.41, additions at 0, 5, 10, 15, 20 and 40%.

Figure C.12 DTA curves of (a) M series and (b) C series specimens made with constant Ca/Si = 0.41, additions at 0, 5, 10, 15 and 20%.

Figure C.13 27Al NMR single pulse spectra of (a) C series specimens, (b) M series specimens and (c) CM series specimens. *-spinning side band.

Figure C.14 Composition of bulk and combined AIR of autoclaved blends with MgO addition:
(a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.15 Composition of bulk and combined AIR of autoclaved blends with CB addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.16 Composition of bulk and combined AIR of autoclaved blends with CB + MgO addition: (a) % SiO$_2$; (b) % Al$_2$O$_3$; (c) % MgO

Figure C.17 XRD patterns of carbonated (a) M series, (b) C series and (c) CM series specimens made with constant Ca/Si = 0.41.
Appendices

Appendix A: Starting Materials ...244

Appendix B: Phase Development of Hydrothermally Treated MgO-SiO₂-H₂O System ...258

Appendix C: Hydrothermally Cured PC-Quartz Pastes with Clay-Brick Waste and Reactive Magnesia Additions ...276