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Abstract

Addition of supplementary cementing materials (SCM) to produce blended Portland
cements (PC) is a well established practice in the manufacture of construction
materials. It enables an overall reduction in the consumption of PC thereby reducing
CO, emissions. This study reports findings on the hydrothermal chemistry, physical and
mechanical properties of autoclaved PC—quartz blends where PC was partially
replaced by reactive magnesia (MgO), which requires less energy for calcination than
calcia (CaO) from their naturally occurring carbonates, and alumina-silica rich fired

clay-brick (CB) waste fines, an abundant industrial waste and a proven SCM.

The dependence of the reactivity of magnesia on the calcination temperature was
initially investigated through the hydration behaviour and an optimum reactivity at a
temperature of 600°C was identified. In order to investigate the potential of this reactive
magnesia in a cement environment, the reactivity of the magnesia with colloidal silica in
model MgO-SiO,-H,0O slurry systems was first investigated under both ‘mild’ and
‘extreme’ hydrothermal reaction conditions. Amorphous magnesium silicate hydrate (M-
S-H) phases were identified in the ‘mild’ conditions at 180°C with increasingly
crystalline phases being developed as the temperature and time were increased up to
350°C and 16 hours of hydrothermal treatment. Two different reaction sequences were
also established. For M/S ratios of 0.6, 0.8 and 1.0, the principal reaction products
were M-S-H gel and talc while for M/S ratios of 1.5 and 2.0, they were brucite,
deweylite and chrysotile serpentine. Morphological studies using SEM of the
specimens containing chrysotile revealed that the chrysotile was not of a fibrous

nature.

The addition of reactive MgO to PC in hydrothermal conditions was observed to have a
negative effect on the compressive strength. The only magnesium containing phase
observed in XRD was brucite, indicating that MgO did not take part in the reaction
during the hydration of the cement. No M-S-H phases were observed in the MgO
containing mixes. Experimental results suggested that MgO was not entirely inert as

the formation of tobermorite appeared to be retarded in the presence of brucite.

Examination of PC-quartz mortar mixes revealed that alumina-silica rich clay-brick
waste is pozzolanic where the Al,O5; provided a source of Al ions for the accelerated

formation of Al substituted 1.1nm tobermorite. Mechanical properties showed



improvements with the incorporation of CB waste in more silica-rich environments.
Moreover, drying shrinkage and resistance to carbonation were improved due to

increased crystallinity of Al-tobermorite.

For blended PC with the addition of both CB waste and reactive magnesia (in a 50/50
ratio), an apparent synergy was observed as minimal (or no) reduction in strength was
observed for up to 20% additions of the 50/50 blend. The synergy was explained by the
contrasting physical and chemical effects as a result of attaining an optimum proportion

of amorphous and crystalline material and optimum physical packing conditions.

Autoclaved MgO-SiO, only cube specimens were shown to be capable of producing
strength up to 10MPa. XRD revealed the presence of talc where the talc crystallinity
was higher in the MgO-silica fume specimens which corresponded to higher strength
specimens. This has the potential to be used for low strength applications such as

interior walls, possibly as a replacement for gypsum plasterboards.

The use of fired clay-brick waste in combination with reactive magnesia as additives for
the production of hydrothermally cured cement-based building products has the

potential to achieve an overall positive outcome from an environmental viewpoint.
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