A Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Link Adaptation with Limited Feedback for Future Wireless Networks

Rachod Patachaianand

Autumn 2012

University of Technology, Sydney Faculty of Engineering and Information Technology Centre for Real Time Information Networks Supervisor:

Dr. Kumbesan Sandrasegaran

Associate Professor, Faculty of Engineering and Information Technology, Centre for Real Time Information Networks, University of Technology Sydney

Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgement

I would like to thank Dr. Kumbesan Sandrasegaran, my supervisor, for the great support in both general and academic aspects he has given me throughout the years since my first semester at UTS in Master of Engineering Studies in Autumn 2005.

I would like to thank my friends in CRIN laboratory who reviewed drafts of my work and discussed some technical aspects.

Lastly, I would like to give grateful thanks to my parents, Ampol and Sunee, who support and encourage me to achieve as high education as I can, and my sister Rasana who helps me while studying in Australia.

Abstract

Link adaptation technique (LAT) is one of the radio resource management (RRM) functions necessary for future wireless network to enhance the system capacity and provide an adequate quality of service to the end users.

LAT requires knowledge of users' received singal-to-noise ratio so that scheduling and adaptive modulation and coding scheme (MCS) can be performed to optimise the system performance. The received SNR is measured by the mobile users in the downlink transmission and converted to channel state information (CSI), which is sent via feedback channel in the uplink direction to the base station. The amount of feedback required for adaptive MCS and scheduling at the BS increases with the number of users which consumes significant amount of system resources. It is critical to provide an efficient feedback algorithm for LAT to achieve high utilisation of the system resources while maintaining the system performance close to the system with perfect knowledge of CSI.

This thesis attempted to answer the following questions related to LAT with reduced CSI feedback load:

- a) Based on our current knowledge of feedback reduction techniques, can the feedback load be further reduced without scarifying the system performance?
- b) Do multiple threshold schemes perform better than single threshold schemes?
- c) How is it possible to develop a feedback technique(s) that can self-adjust the parameters associated with CSI reporting to suit the system conditions?
- d) Provided that a well-known scheduling technique creates significant delays in the scheduling process, is it possible to mitigate the delays without any need for additional feedback resources?
- e) Based on our current knowledge of CSI transmission on the uplink, can a more efficient media access control scheme for CSI reporting be developed?

Table of Contents

Chapter 1 Introduction

1.1. Brief History of Cellular Systems	1
1.2. Overview of Link Adaptation Techniques in Wireless Networks	3
1.2.1 Power Control and Rate Control	5
1.2.2 Multiuser Diversity and Opportunistic Scheduling	6
1.2.3 Channel State Information	8
1.2.4 Hybrid Automatic Repeat-Request	9
1.3 Problem Statements and Research Objectives	10
1.4 Outline and Contributions	11

Chapter 2 Backgrounds

2.1	LTE Architecture	15
2.2	LTE Physical Layer - OFDMA	16
2.3	Adaptive Modulation and Coding Scheme	17
2.4	Maximum Throughput and Proportional Fair Scheduling	21
2.5	CSI Feedback for Link Adaptation	22
2.6	Radio Resource Management Functions	26
2.7	System Modeling	27
	2.7.1 Channel Model	27
	2.7.2 Data Rate	28
	2.7.3 Scheduling Algorithms	31
	2.7.4 Feedback Scheme	32
	2.7.5 Network Load	33
2.8	Summary	33

Chapter 3 Link Adaptation with Reduced Feedback

3.1	Introduction		
3.2	Overview of Feedback Reduction Techniques		
	3.2.1 Gesbert's Selective Feedback		
05/08/12	Doctor of Philosophy in Engineering Thesis (R.Patachaianand) Copyright 2012 : University of Technology Sydney	vi	

	3.2.2 One-bit feedback	37
	3.2.3 Kim's Feedback Reduction	38
	3.2.4 Floren's Feedback Reduction	39
	3.2.5 Holter's Feedback Reduction	39
3.3	Effect of Feedback Threshold	40
	3.3.1 Gesbert's Selective Feedback	40
	3.3.2 One-bit Feedback	42
3.4	Selective Feedback Using Relative SNR	44
	3.4.1 Gesbert's Selective Feedback Using Relative SNR	44
	3.4.2 One-Bit Feedback Using Relative SNR	46
3.5	Proposed Feedback Algorithm	47
3.5	Proposed Feedback Algorithm 3.5.1 Graphical Representation of Proposed Feedback Algorithm	
3.5	•	48
3.5	3.5.1 Graphical Representation of Proposed Feedback Algorithm	48 49
3.5 3.6	3.5.1 Graphical Representation of Proposed Feedback Algorithm3.5.2 Mathematical Representation of Proposed Feedback Algorithm	48 49 50
	3.5.1 Graphical Representation of Proposed Feedback Algorithm 3.5.2 Mathematical Representation of Proposed Feedback Algorithm 3.5.3 Determining an Optimal Value for δ_{max}	48 49 50 53
	3.5.1 Graphical Representation of Proposed Feedback Algorithm 3.5.2 Mathematical Representation of Proposed Feedback Algorithm 3.5.3 Determining an Optimal Value for δ_{max} Simulation Results	48 49 50 53 56
	3.5.1 Graphical Representation of Proposed Feedback Algorithm 3.5.2 Mathematical Representation of Proposed Feedback Algorithm 3.5.3 Determining an Optimal Value for δ_{max} Simulation Results 3.6.1 Achievable Net Throughput	48 49 50 53 56 57
	3.5.1 Graphical Representation of Proposed Feedback Algorithm.3.5.2 Mathematical Representation of Proposed Feedback Algorithm3.5.3 Determining an Optimal Value for δ_{max} .Simulation Results	48 49 50 53 56 57 59

Chapter 4 Link Adaptation with Multiple Feedback Thresholds

4.1	Overview of Feedback Techniques with Multiple Thresholds	63
	4.1.1 Hassenl's Multiple Feedback Thresholds Technique	63
	4.1.2 Nam's Multiple Feedback Thresholds Technique	64
	4.1.3 So's Multiple Feedback Thresholds Technique	64
4.2	Achievable Throughput with Single Feedback Threshold	64
4.3	Achievable Throughput with Multiple Feedback Thresholds	68
4.4	Numerical Results	71
	4.4.1 Performance with Two Feedback Thresholds	74
4.5	Analysis of Suboptimal Feedback Thresholds	79
	4.5.1 Suboptimal case for System with Single Feedback Threshold	80

	4.5.2 Suboptimal case for System with Two Feedback Thresholds
4.6	Summary
Chapter 5	Automatic Feedback Threshold Setting and Hybrid Scheduling Technique
5.1	Automatic Feedback Threshold Setting
	5.1.1 Overview of Feedback Threshold Adjustment Techniques
	5.1.2 Proposed Automatic Feedback Threshold Adjustment Technique 88
	5.1.3 Selection of parameter $\Delta \gamma_{up}$
	5.1.4 Selection of parameter $\Delta \gamma_{dw}$
5.2	Performance of Proposed Feedback Reduction Technique
	5.2.1 Sum Rate Performance
	5.2.2 Feedback Load and Feedback Outage Performance
	5.2.3 Value of Automatically Adjusted Feedback Threshold
	5.2.4 Fairness Performance
5.3	Hybrid Scheduling Policy with Reduced Feedback
	5.3.1 Scheduling Delay Problem with PF Scheduling
	5.3.2 Overview of Delay-Aware Scheduling Algorithms
	5.3.3 Hybrid Scheduling with Reduced Feedback
	5.3.4 Determining Optimal Feedback Threshold for Hybrid PFS-FIFO 103
5.4	Performance of Hybrid PFS-FIFO106
5.5	Performance of Exponential Rule in Heavily Loaded Networks 109
5.6	Implementation Issue113
5.7	Summary

Chapter 6 Adaptive Feedback for OFDMA Systems

6.1	Introduction	
6.2	Overview of Feedback Reduction for OFDMA Systems	117
	6.2.1 Best M Feedback	
	6.2.2 One-Bit Feedback Reduction	
	6.2.3 Average Best M Feedback	
6.3	Proposed Adaptive Feedback Reduction Technique	
	6.3.1 CSI Reporting Scheme	
2/12	Doctor of Philosophy in Engineering Thesis (R.Patachaianand)	viii

	6.3.2 MCS with Reconstruction of SNR from ACK/NACK	125
6.4	Simulation Descriptions	126
6.5	Simulation Results	129
6.6	Summary	137

Chapter 7 Opportunistic Contention-based Feedback for OFDMA

7.1	Overview of Contention-based Feedback Techniques	
7.2	Proposed Contention-based Feedback Protocol	139
7.3	Simulation Description	144
7.4	Simulation Results	145
	7.4.1 Performance of RT Users	145
	7.4.2 Performance of NRT Users	146
7.5	Summary	

Chapter 8 Conclusion and Future Work

8.1	Conclusions	
8.2	Future Work	155
References		157

List of Figures

Figure 1.1 Evolution of radio access technologies	3
Figure 1.2 Typical radio fading channel.	4
Figure 1.3 Interconnection of link adaptation, scheduling, HARQ & CSI report	5
Figure 1.4 (a) Power control (b) Rate control	6
Figure 1.5 Multiuser system with opportunistic scheduling.	8
Figure 2.1 UTRAN and E-UTRAN architecture	15
Figure 2.2 LTE OFDMA physical layer structure	16
Figure 2.3 Different M-QAM	17
Figure 2.4 BER performance of MQAM	18
Figure 2.5 (a) BER of MQAM in Rayleigh fading channel	18
Figure 2.6 SNR level and MCS states mapping	20
Figure 2.7 Spectral efficiency vs average SNR	21
Figure 2.8 BER performance vs average SNR	21
Figure 2.9 Typical adaptive modulation system with feedback	23
Figure 2.10 Frequency selective fading	24
Figure 2.11 Summary of focus of this thesis	26
Figure 2.12 Interfaces between radio resource management functions	27
Figure 2.13 Relationship between SNR modes and MCS	30
Figure 2.14 Relationship between SNR and supportable throughput	30
Figure 2.15 Relationship between MCS mode and supportable throughput	31
Figure 3.1 Performance of multiuser system with B-bits selective feedback	41
Figure 3.2 Probability of feedback outage and its derivative	42
Figure 3.3 Performance of multiuser system with one-bit selective feedback	43
Figure 3.4 (a) Received SNR and (b) Relative SNR45	
Figure 3.5 Selective CSI commands	46
Figure 3.6 One-bit CSI commands	46
Figure 3.7 (a) Supportable MCS, and (b) Difference in MCS, $\delta_k(t)$	48

UNIVERSITY OF TECHNOLOGY SYDNEY

Figure 3.8 Solution of Equation 3.19	52
Figure 3.9 Net throughput versus feedback threshold	56
Figure 3.10 Net throughput versus number of users	58
Figure 3.11 Feedback load versus number of users with optimal thresholds	59
Figure 3.12 Feedback load comparison	60
Figure 3.13 MCS error probability versus thresholds	61

Figure 4.1 Achievable sum-rate of system with one-bit feedback with various <i>K</i>	66
Figure 4.2 The optimal feedback thresholds vs number of active users	67
Figure 4.3 The achievable sum-rate with optimal threshold	68
Figure 4.4 System with <i>j</i> feedback thresholds	69
Figure 4.5 Diagram showing the sum rate of multiple thresholds	70
Figure 4.6 Validation of the proposed closed-form expression	72
Figure 4.7 Spectral efficiency versus number of thresholds	73
Figure 4.8 System with two feedback thresholds	74
Figure 4.9 Achievable sum-rate capacity with two feedback thresholds	75
Figure 4.10 Achievable sum-rate as function of α_0 and α_1 when $K = 20$	77
Figure 4.11 Achievable sum-rate as function of α_0 and α_1 when K =100	77
Figure 4.12 Optimal α_0 and α_1 versus number of users <i>K</i>	78
Figure 4.13 Comparison of feedback outage	79
Figure 4.14 Spectral efficiency when threshold is calculated from Equation 4.13	81
Figure 4.15 Average number of users sending feedback at different K.	81
Figure 4.16 Spectral efficiency of system with suboptimal feedback thresholds	82
Figure 4.17 Ratio of optimal α_o and optimal α_l for each number of users K	83
Figure 4.18 Achievable sum-rate of system with two feedback thresholds	84
Figure 4.19 Comparison of achievable sum-rate	85
Figure 4.20 Normalised spectral efficiency	86

Figure 5.1 Achievable sum rate of the proposed feedback reduction technique	90
Figure 5.2 Feedback outage probability of the proposed technique	90
Figure 5.3 Average number of users sending feedback of the proposed technique	91
Figure 5.4 Achievable sum rate of the proposed feedback reduction technique	94

Figure 5.5 Feedback outage probability of the proposed technique	95
Figure 5.6 Average number of users sending feedback	95
Figure 5.7 The values of feedback thresholds	96
Figure 5.8 Fairness of the proposed feedback reduction technique	96
Figure 5.9 CDF of scheduling delays with PF policy	98
Figure 5.10 Flowchart of the HPF algorithm	102
Figure 5.11 Sum rate as a function of feedback outage	104
Figure 5.12 Probability that delays exceeds 2.5 times of the average delay	105
Figure 5.13 Total sum rate taking into account the loss due to excessive delays	105
Figure 5.14 Scheduling delays CDF of HPF and PFS	106
Figure 5.15 Exceed delay probability of HPF and PFS	107
Figure 5.16 Average of maximum scheduling delay for HPF and PFS	107
Figure 5.17 Total sum rate of HPF and PFS	108
Figure 5.18 Normalised feedback load of the proposed HPF technique	109
Figure 5.19 Total sum rate of HPF, EXPR and FIFO	110
Figure 5.20 Snapshot showing the scheduling delays of a system with 100 users	111
Figure 5.21 CDF of scheduling delays for a system with $K = 100$	112
Figure 5.22 Exponential term of EXPR, $K = 100$	112
Figure 6.1 Achievable sum rate of multiuser system with best M feedback	118
Figure 6.2 Outage probability of best M feedback	119
Figure 6.3 Achievable sum rate of average best M feedback reduction technique	121
Figure 6.4 The procedure of the proposed feedback scheme	124
Figure 6.5 Use of HARQ for LAT	126
Figure 6.6 Performance comparison with average best M (fixed M)	130
Figure 6.7 Comparison of normalised sum-rate	132
Figure 6.8 Comparison of parameter M	133
Figure 6.9 Snapshot of adaptive parameter M	134
Figure 6.10 Snapshot of SNR reconstruction from ACK/NACK	134
Figure 6.11 Average of SNR reconstructed from N/ACK vs. real SNR, $K = 2$	135
Figure 6.12 Average of SNR reconstructed from N/ACK vs. real SNR, K = 20	135
Figure 6.13 Effect of adaptive M updating step sizes	136

Figure 7.1 Frame structure of Tang's contention-based feedback protocol	139
Figure 7.2 The proposed feedback procedure	141
Figure 7.3 Proposed selection criterion	142
Figure 7.4 Achievable average sum-rate RT users	146
Figure 7.5 The achievable average sum-rate versus number of users, $S = 5$	147
Figure 7.6 The achievable average sum-rate versus number of users, $S = 10$	147
Figure 7.7 Effect of γ_{th} on the sum rate	148
Figure 7.8 Sum rate when M changes	149
Figure 7.9 Average sum-rate versus the number of minislots per subchannel (<i>M</i>).	150
Figure 7.10 Effect of the parameter γ_{th} .	151

List of Tables

Table 2.1 Summary of contributions regarding to feedback reduction aspects	25
Table 2.2: SNR to MCS mapping table	29
Table 3.1 Summary of Simulation Parameters	53
Table 3.2: Optimal Feedback Thresholds	54
Table 3.3 Achievable net throughput of the proposed technique	58
Table 4.1 Achievable sum rate for $J = 1$ to 8 compared with full-CSI	73
Table 4.2 Achievable sum rate for $J = 1$ and 2 for $K = 2$ to 100	75
Table 5.1 Simulation parameters	93
Table 5.2: Performance improvement of HPS compared with PFS	108
Table 5.3 Total sum rate of HPF, EXPR and the improvement .	110
Table 6.1 MCS modes	127
Table 6.2 Simulation parameters for the proposed adaptive feedback technique	129
Table 6.3 Performance improvement: Proposed, average best M and Best M	131
Table 7.1 Simulation parameters	144
Table 7.2 Sum rate comparison for various K when S=5	147
Table 7.3 Sum rate comparison for various S when $K = 100$	150