AN INVESTIGATION INTO THE DYNAMICS OF VEHICLES WITH HYDRAULICALLY INTERCONNECTED SUSPENSIONS

by

.

Wade Alister Smith

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Information Technology University of Technology, Sydney

June, 2009

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed

Production Note: Signature removed prior to publication.

Wade Smith

Acknowledgements

I would like to take the opportunity to thank a number of people for their assistance, encouragement and support throughout my candidature.

First and foremost, I extend my gratitude to my supervisor, Professor Nong Zhang. His guidance was invaluable. My co-supervisor, Jeku Jeyakumaran, is also deserving of many thanks. He was always approachable and helpful.

Chris Chapman's expertise in the lab was a tremendous asset to the project, and I greatly appreciate his help. Building the half-car test rig required a lot of work and a couple of iterations, and the UTS workshop staff – Scott, Richard, Darren, Bill and Harold – are to be commended for their efforts. I would also like to thank Greg Koutchavlis for his work in getting the rig *going*. And Matt Rozyn's help with the experimentation and data processing is greatly appreciated. In programming and simulations, I sought help at times from Miao Wang, Zhan Wang and Wenlong Hu. I thank them for that. A special mention should also go to everyone at Kinetic Pty Ltd, and in particular, Ray Munday, Chris Revill and Stuart Price. The financial support of this work by the Australian Research Council (ARC LP0562440) and the University of Technology, Sydney, is gratefully acknowledged.

On the social side, it is hard to know where to begin. I'll always treasure the times in the early days, sitting next to Anthony in the office. More recently, Janitha, Fook, Debbie, Greg, Pete and Thuyen provided great friendship at UTS, while Baden, Sam and Michelle were assiduous in their provision of remote support via email. And I always looked forward to the weekend adventures with Drew, Paul and Jamie.

I would like to thank my parents, Rosemary and Graham, for their love and support over the years. My mother, in particular, deserves special thanks for all her help in the last few months.

Lastly, I want Ulli to know how much I value her company and her support, especially during the writing of this thesis. I intend to return the favour.

Wade Smith Sydney, December 2008

Table of Contents

Acknowled	gementsiii
List of Figu	iresix
List of Tab	lesxiv
Abstract	xvi
110000	
Chapter 1	Introduction1
1.1	Overview of the research
1.2	Research objectives and contribution to knowledge2
1.3	Scope of thesis
	1.3.1 Areas that are addressed
	1.3.2 Areas that are not addressed
1.4	Outline of thesis
Chapter 2	Background and Literature Review
2.1	Introduction and rationale
2.2	Structure and role of vehicle suspension systems
2.3	Interconnected suspensions
	2.3.1 Definition
	2.3.2 Raison d'être
	2.3.3 Early interconnection schemes
	2.3.4 Recent research and applications in interconnected suspensions
2.4	Kinetic suspension
	2.4.1 Hydraulically interconnected suspension (HIS)
	2.4.2 Description of system and components
	2.4.3 How the system works
	2.4.4 Recent research and state of current knowledge
	2.4.5 Areas as yet unaddressed
2.5	Summary of possible approaches
	2.5.1 Hydraulic system modelling
	2.5.2 Vehicle ride modelling
	2.5.3 Experimentation
	2.5.4 Suspension optimisation
2.6	Methods used in this thesis
2.7	Summary

Chapter 3	System Model Formulation and General Results	.31
3.1	Introduction and rationale	31
3.2	Mechanical subsystem	32
	3.2.1 Model description	32
	3.2.2 System equations	33
3.3	Mechanical-fluid system boundary conditions	34
3.4	Fluid subsystem	35
	3.4.1 Basic impedance modelling	36
3.5	Integrated system equations	37
3.6	General impedance matrix for basic wheel-pair interconnections	39
	3.6.1 Anti-synchronous half-car arrangement	39
	3.6.2 Anti-oppositional half-car arrangement	40
3.7	Independent control of modal parameters and modal decoupling	41
	3.7.1 Effect of impedance in main interconnecting lines	42
	3.7.2 Effect of impedance in an added side branch	47
3.8	Discussion	50
	3.8.1 Limitations of the model	50
3.9	Summary	51
Chapter 4	Free Vibration Analysis	53
4.1	Introduction and rationale	53
4.2	Model description	54
	4.2.1 Mechanical subsystem	54
	4.2.2 Fluid subsystem	54
4.3	Application of the system equations	56
	4.3.1 Characteristic equation	56
	4.3.2 Fluid system equations	56
4.4	Solution of the characteristic equation	58
	4.4.1 Root searching algorithm	58
	4.4.2 Interpretation of results	59
4.5	Integrated system free vibration results	61
	4.5.1 Equivalent conventional suspension parameters	62
	4.5.2 Low frequency natural modes	63
	4.5.3 High frequency natural modes	66
	4.5.4 Determination of fluid mode shapes	66
4.6	Discussion	73
	4.6.1 Alternative solution methods	73
	4.6.2 Alternative boundary model formulation	73
4 7	Summary	76

Chapter 5	Forced Vibration Analysis	77
5.1	Introduction and rationale	77
5.2	Model description	77
5.3	Application of the system equations	78
5.4	Frequency response functions	78
5.5	Road surface description	80
5.6	Performances indices	82
	5.6.1 Definitions	82
	5.6.2 Equations	83
5.7	Vehicle response	84
5.8	Ride simulation results and discussion	85
	5.8.1 Baseline HIS and conventional suspension vehicles	86
	5.8.2 Sensitivity analysis	87
5.9	High frequency simulation results and discussion	
	5.9.1 Baseline HIS and conventional suspension vehicles	
	5.9.2 Sensitivity analysis	
5.10) Summary	
Chapter 6	Nonlinear Fluid Model Comparison	98
6.1	Introduction and rationale	
6.2	Mechanical system model	98
6.3	Nonlinear fluid system model	
	6.3.1 Fluid component models	100
	6.3.2 System model and solution scheme	102
6.4	Methodology	103
6.5	Results	104
	6.5.1 Step response	104
	6.5.2 Forced vibration	107
6.6	Discussion	107
	6.6.1 Step response	107
	6.6.2 Forced vibration	108
6.7	Summary	108
Chapter 7	Experimental Verification	110
7.1	Introduction and rationale	110
7.2	Description of test facility	111
	7.2.1 General layout	111
	7.2.2 Hydraulic system layout	114
	7.2.3 Mechanical system parameters	115
	7.2.4 Instrumentation and data acquisition	116

	7.2.5 External force application	. 118
7.3	Testing methodology	.120
	7.3.1 General	. 120
	7.3.2 Free vibration	. 120
	7.3.3 Forced vibration	. 121
7.4	Application of mathematical model	. 122
	7.4.1 Initial approach	. 122
	7.4.2 Recalculation of effective valve loss coefficient	. 122
	7.4.3 Inclusion of rubber bushing model	. 123
7.5	Experimental results	. 124
	7.5.1 Free vibration	. 124
	7.5.2 Forced vibration	. 127
	7.5.3 Comparison with theory	. 131
7.6	Discussion	. 139
	7.6.1 Experimental limitations	139
	7.6.2 Unmodelled effects	140
	7.6.3 Suggestions for further testing	142
7.7	Summary	142
Chapter 8	System Optimisation and Sensitivity Analysis	144
	~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
8.1	Introduction and rationale	144
8.1 8.2	Introduction and rationale	144 145
8.1 8.2 8.3	Introduction and rationale Model Description Optimisation Background	144 145 146
8.1 8.2 8.3	Introduction and rationale Model Description Optimisation Background	144 145 146 146
8.1 8.2 8.3	Introduction and rationale Model Description Optimisation Background	144 145 146 146 146
8.1 8.2 8.3	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution	144 145 146 146 146 147
8.1 8.2 8.3	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation	144 145 146 146 146 147 147
8.1 8.2 8.3 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution. 8.3.4 Typical problem formulation Problem formulation	144 145 146 146 146 147 147 148
8.1 8.2 8.3 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement	144 145 146 146 146 147 147 148 148
8.1 8.2 8.3 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints.	144 145 146 146 146 147 147 148 148 148
8.1 8.2 8.3 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation	144 145 146 146 146 147 147 148 148 148 151
8.1 8.2 8.3 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology	144 145 146 146 146 147 147 147 148 148 148 151
8.1 8.2 8.3 8.4 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results	144 145 146 146 146 147 147 147 148 148 148 151 151 153
8.1 8.2 8.3 8.4 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results 8.5.1 Pareto optimal set	144 145 146 146 146 147 147 147 147 148 148 148 151 151 153 153
8.1 8.2 8.3 8.4 8.4	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints. 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results 8.5.1 Pareto optimal set 8.5.2 Discussion	144 145 146 146 146 147 147 147 148 148 148 151 151 153 153 158
8.1 8.2 8.3 8.4 8.4 8.5 8.5	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results 8.5.1 Pareto optimal set 8.5.2 Discussion Sensitivity analysis	144 145 146 146 146 147 147 147 148 148 148 151 151 153 153 158 160
8.1 8.2 8.3 8.4 8.4 8.5 8.5	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation 8.4.1 Problem formulation 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology 0ptimisation results 8.5.1 Pareto optimal set 8.5.2 Discussion 8.6.1 Introduction	144 145 146 146 146 147 147 147 147 148 148 148 151 151 153 153 158 160 160
8.1 8.2 8.3 8.4 8.4 8.5 8.6	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results 8.5.1 Pareto optimal set 8.5.2 Discussion 8.6.1 Introduction 8.6.2 Selection of base points and design variables	144 145 146 146 146 147 147 147 147 148 148 148 151 151 153 153 158 160 160
8.1 8.2 8.3 8.4 8.4 8.5 8.5	Introduction and rationale Model Description Optimisation Background 8.3.1 Definitions and notation 8.3.2 Pareto optimality 8.3.3 Utopia point and compromise solution 8.3.4 Typical problem formulation Problem formulation 8.4.1 Problem statement 8.4.2 Performance indices, design variables and constraints 8.4.3 Problem formulation 8.4.4 Methodology Optimisation results 8.5.1 Pareto optimal set 8.5.2 Discussion Sensitivity analysis 8.6.1 Introduction 8.6.2 Selection of base points and design variables	144 145 146 146 146 147 147 147 147 147 147 148 148 148 148 151 151 153 153 153 160 160 163

.

	8.6.5 Parameter sensitivities – road holding	167
	8.6.6 Discussion	169
8.7	Summary	171
Chapter 9	Conclusions and Recommendations	172
9.1	Summary	172
9.2	Contributions	174
9.3	Suggestions for future work	176
Appendix A	A Half-Car Equations of Motion	179
Appendix H	3 Fluid System Component Models	182
Appendix (C Publications Resulting From This Work	188
References		190

List of Figures

Figure 2.1 Hawley's interconnected suspension arrangements from the 1920s11
Figure 2.2 Schematic of the early Citroen 2CV suspension11
Figure 2.3 Moulton's Hydragas suspension system12
Figure 2.4 Zapletal's "Balanced Suspension" concept15
Figure 2.5 Smith and Walker's fully decoupled 4-wheel interconnection scheme16
Figure 2.6 Fontdecaba's HIS system17
Figure 2.7 Kinetic H2 system
Figure 2.8 Cutaway view of Kinetic damper valve20
Figure 2.9 H2 system nominal fluid flow distribution in idealised suspension modes:
(a) bounce; (b) roll; (c) pitch; and (d) articulation
Figure 3.1 Schematic of a roll-plane half-car with an HIS
Figure 3.2 Mechanical-fluid system boundary conditions
Figure 3.3 Two-port representation of hydraulic component
Figure 3.4 Schematic of a general anti-synchronous half-car HIS arrangement
Figure 3.5 Schematic of a general anti-oppositional half-car HIS arrangement40
Figure 3.6 Basic fluid line element
Figure 3.7 Schematic of half-car HIS with added side branch including fluid resistance
and capacitance: anti-synchronous (left) and anti-oppositional (right) arrangements 48
Figure 4.1 Schematic of a typical half-car HIS for anti-roll applications55
Figure 4.2 Flow chart of free vibration root searching algorithm60
Figure 4.3 Conventional suspension model for 'equivalent' parameters
Figure 4.4 Three dimensional plot of $\left \det(\hat{\mathbf{A}}(s)-s\mathbf{I})\right $ showing the four roots of the
characteristic equation corresponding to the half-car's multi-body-dominated modes64

Figure 5.9 Half-car acceleration PSDs with variation in accumulator valve loss coefficient (in kg s ⁻¹ m ⁻⁴); baseline value is $3.2 \text{ kg s}^{-1}\text{m}^{-4}$
Figure 5.10 Half-car suspension deflection and tyre force PSDs with variation in accumulator valve loss coefficient (in kg s ⁻¹ m ⁻⁴); baseline value is $3.2 \text{ kg s}^{-1}\text{m}^{-4}$ 90
Figure 5.11 Half-car acceleration PSDs with variation in fluid viscosity (in N s m^{-2}); baseline value is 0.05 N s m^{-2}
Figure 5.12 Half-car suspension deflection and tyre force PSDs with variation in fluid viscosity (in N s m^{-2}); baseline value is 0.05 N s m^{-2}
Figure 5.13 Half-car vehicle high frequency acceleration response PSDs
Figure 5.14 Half-car high frequency acceleration PSDs with variation in overall hydraulic line length (in m); baseline value is 2 m
Figure 5.15 HIS cylinder damper valve and accumulator position definition
Figure 5.16 Half-car high frequency acceleration PSDs with variation in damper valve position (in m); baseline value is 0 m
Figure 5.17 Half-car high frequency acceleration PSDs with variation in accumulator position (in m); baseline value is 1.0 m
Figure 5.18 Half-car high frequency acceleration PSDs with variation in effective pipeline bulk modulus (in GPa); baseline value is 1.4 GPa
Figure 6.1 Transient responses for 2 mm step input: bounce excitation (left) and roll excitation (right)
Figure 6.2 Transient responses for 20 mm step input: bounce excitation (left) and roll excitation (right)
Figure 6.3 Frequency response functions for left wheel input: comparison between impedance and finite element fluid system models
Figure 7.1 Half-car test rig (main view)111
Figure 7.2 Half-car test rig (top view)
Figure 7.3 Schematic of half-car test rig guide rails and roller bearings (side view) 113
Figure 7.4 Schematic of half-car test rig low friction roller bearings (top view)114
Figure 7.5 Schematic of hydraulic layout for anti-oppositional half-car testing115

Figure 7.6 Schematic of hydraulic layout for anti-synchronous half-car testing.......115 Figure 7.7 Schematic of half-car test rig data acquisition layout......117 Figure 7.8 Hydraulic actuator and servo-valve for half-car external force application 119 Figure 7.9 Schematic of half-car test rig input force system119 Figure 7.10 Inclusion of rubber top mount in the model (left side only shown) 124 Figure 7.11 Sprung mass free decay responses after short duration impulse for the halfcar rig with hydraulic system and dampers installed (mass configuration 2).....126 Transmissibilities from forced vibration testing: anti-oppositional Figure 7.12 Figure 7.13 Transmissibilities from forced vibration testing: anti-oppositional Transmissibilities from forced vibration testing: anti-synchronous Figure 7.14 Figure 7.15 Comparison between experimental and theoretical frequency responses: Figure 7.16 Comparison between experimental and theoretical frequency responses: Figure 7.17 Comparison between experimental and theoretical frequency responses: Figure 7.18 Comparison between experimental and theoretical frequency responses: Figure 7.19 Comparison between experimental and theoretical frequency responses: Figure 7.20 Comparison between experimental and theoretical frequency responses: Typical left wheel input displacement amplitude for forced vibration Figure 7.21

Pareto optimal set in the objective function space: 2-D projections; Figure 8.1 Figure 8.2 Pareto optimal set in the objective function space: $\overline{p} = 15$ bar, $\overline{p} = 20$ bar, Figure 8.3 Pareto optimal set for the HIS vehicle in the design variable space: Figure 8.4 Pareto optimal set for the HIS vehicle in the design variable space: 2-D Figure 8.5 Pareto optimal set for the conventional vehicle in the design variable Figure 8.6 Pareto optimal set for the HIS vehicle in the objective function space, Figure 8.7 Pareto optimal set for the HIS vehicle in the design variable space, Figure 8.8 Ride comfort sensitivity to changes in suspension parameters: single Figure 8.9 Ride comfort sensitivity to changes in mechanical system parameters: single Rattlespace sensitivity to changes in suspension parameters: single Figure 8.10 parameter perturbation from points $J_{I_{min}}$ (\circ), $J_{2_{min}}$ (\Box), $J_{3_{min}}$ (\diamond), and N_{min} (\triangle)166 Figure 8.11 Rattlespace sensitivity to changes in mechanical system parameters: single Figure 8.12 Road holding sensitivity to changes in suspension parameters: single Figure 8.13 Road holding sensitivity to changes in mechanical system parameters: single parameter perturbation from points $J_{1_{\min}}$ (\circ), $J_{2_{\min}}$ (\square), $J_{3_{\min}}$ (\diamond), and N_{\min} (\triangle)......169

List of Tables

Table 2.1 Wheel pair interconnections
Table 4.1 Properties of the half-car mechanical subsystem
Table 4.2 Properties of the half-car fluid subsystem
Table 4.3 Equivalent parameters of the half-car system for the first four natural
modes
Table 4.4 Four integrated system natural modes dominated by the half-car multi-body motion
Table 4.5 First four integrated system natural modes dominated by the fluid system66
Table 6.1. Comparison of results for bounce and roll modes with finite element fluid
system model and 2 mm amplitude ground input
Table 6.2 Comparison of results for bounce and roll modes with finite element fluid
system model and 20 mm amplitude ground input105
Table 6.3 Comparison of results for wheel hop modes with finite element fluid system
model and 2 mm amplitude ground input
Table 6.4 Comparison of results for wheel hop modes with finite element fluid system
model and 20 mm amplitude ground input
Table 6.5 Parameter difference comparison between impedance and FEM methods for
all modes – 2 mm and 20 mm amplitude ground input106
Table 7.1 Constant parameters of the half-car experimental rig mechanical subsystem 116
Table 7.2 Variable mass properties of the half-car experimental rig
Table 7.3 Technical specifications for the sensors used on the half-car rig117
Table 7.4 Bounce and roll natural frequencies and damping ratios from free vibration
testing: no hydraulic system installed124
Table 7.5 Bounce and roll natural frequencies and damping ratios from free vibration
testing: hydraulic system installed without damper valves; $\overline{p} = 10$ bar

Abstract

This thesis examines the dynamics of a particular class of vehicle suspension, namely *hydraulically interconnected suspension* (HIS), often claimed to break the compromise between ride and handling performance. Yet such systems have, until quite recently, received little attention in the academic literature. Ideally, interconnected schemes have the capability, unique among passive suspensions, to provide stiffness and damping characteristics dependent on the all-wheel suspension mode of operation.

The modelling approach proposed here is necessarily multidisciplinary, drawing from multi-body vibration theory and fluid dynamics. A simple half-car model is used to illustrate the basic principles and to demonstrate the application of the methodology. The half-car is treated as a lumped-mass multi-body system and the fluid circuits as continuous line elements. Individual fluid components are modelled using the impedance method, and the relationships between the fluid states at the extremities of each circuit are determined by the transfer matrix method. The resulting set of linear, frequency-dependent state-space equations, which govern the coupled dynamics of the half-car system, are derived and then applied in a variety of ways. This includes a free vibration analysis, ride comfort assessment and multi-objective optimisation. A number of key components that influence HIS performance are identified and a sensitivity analysis of their effects is presented.

Validation of the theoretical modelling is performed in two ways. First, simulations of an identical half-car using an alternative, nonlinear finite element fluid model are conducted. Second, experiments with a unique, purpose-built, half-car test rig are performed. The free and forced vibration results obtained with both methods, in general, agree very well with the proposed linear model.

The methodology presented is found to be an effective and useful way of modelling HISequipped vehicles, particularly in the frequency domain. The obtained results suggest that interconnected suspension schemes may provide, at least to some extent, an improved compromise between ride and handling. However, further investigation of this claim, including the development of a detailed full-car model, is recommended as a topic for future studies. Dear Reader, please forgive me if I have wasted your time.

.

- Leonard Cohen