Multivariate and multiway analysis of hyperspectral and fluorescence landscape data

by

Helen Rutlidge

A thesis submitted for the

Degree of Doctor of Philosophy (Science)

University of Technology, Sydney

March, 2011
Dedicated to Michael Coleman and Peter Rutledge

“For some life lasts a short while, but the memories it holds lasts forever.”

Laura Swenson
Certificate of authorship and originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are indicated in the thesis.

Helen Rutledge

31/03/2011
Acknowledgements

Whilst this has been my project for the last five years there have been a number of people who have contributed to the success of it. Firstly to Dr Brian Reedy, my supervisor, who first started me on this journey. Your guidance and encouragement have enhanced this process for me and made the project what it is.

I would like to thank Professor Peter Ralph for his suggestion and assistance with the algal cultures in this project. Thank you to Vinod Kumar and Penelope Ajani for their technical assistance with the algal cultures.

I thank Dr Dominic Hare and Christine Austin for all of their assistance with laser ablation inductively coupled plasma. Both of you were always willing to answer any questions I had and provide assistance when required.

I would also like to Fiona Burger, Jonathan Mak and Anne Rutlidge for collecting soil samples for me.

Thanks also go to everyone in Office 4.60 and other fellow students (past and present) who I have shared this journey with. You have always been willing to celebrate the good times and find the silver lining in the bad. All of you have made being at uni enjoyable.

I would like to thank my family and friends for their support and understanding whilst I have been at university. Thank you also for making sure I had a life outside my PhD.
## Table of contents

CHAPTER 1: INTRODUCTION ...............................................................................................................................2

1.1 HYRESPERCAL IMAGING ..........................................................................................................................2

1.1.1 UV-visible imaging .................................................................................................................................4

1.1.1.1 Fluorescence imaging ..........................................................................................................................6

1.1.2 Infrared imaging techniques ..................................................................................................................6

1.1.2.1 Near infrared imaging ..........................................................................................................................7

1.1.2.2 Mid-infrared mapping and imaging .......................................................................................................9

1.1.3 Raman mapping and imaging ..................................................................................................................12

1.1.4 Molecular mass spectrometry imaging .................................................................................................14

1.1.5 Elemental mapping ...............................................................................................................................16

1.1.5.1 X-ray mapping techniques ..................................................................................................................16

1.1.5.2 Laser ablation inductively coupled mass spectroscopy .....................................................................17

1.2 ANALYSIS OF HYRESPERCAL IMAGES ...............................................................................................18

1.2.1 Preprocessing methods .........................................................................................................................19

1.2.1.1 Savitzky-Golay derivatives ..................................................................................................................20

1.2.1.2 Mean-centring ....................................................................................................................................20

1.2.1.3 Variance scaling ..................................................................................................................................20

1.2.1.4 Autoscaling .......................................................................................................................................20

1.2.1.5 Vector normalisation ..........................................................................................................................21

1.2.2 Clustering techniques ............................................................................................................................21

1.2.2.1 Distance measures ..............................................................................................................................21

1.2.2.2 Hierarchical cluster analysis ..............................................................................................................22

1.2.2.3 Fuzzy C-means clustering ..................................................................................................................24

1.2.2.4 Self-organising feature map ...............................................................................................................25

1.2.3 “Factor analysis” techniques ................................................................................................................26
## Table of contents

1.2.3.1 Principal component analysis ............................................................................................................... 27

1.2.3.2 Partial least squares analysis ................................................................................................................ 28

1.2.4 **End member techniques** ....................................................................................................................... 30

1.2.4.1 Spectral angle mapper .......................................................................................................................... 30

1.2.4.2 Spectral feature fitting ........................................................................................................................ 31

1.2.4.3 Mixture tuned matched filter ............................................................................................................... 32

1.2.5 **Multiway techniques** ............................................................................................................................... 33

1.2.5.1 PARAFAC ............................................................................................................................................... 33

1.2.5.2 Tucker models ......................................................................................................................................... 34

1.2.5.3 Application of multiway techniques on hyperspectral images ...................................................... 34

1.2.6 **Dimension reduction strategies** ............................................................................................................... 35

1.3 **PROJECT AIMS** ........................................................................................................................................... 35

### CHAPTER 2: CLASSIFICATION OF HETEROGENEOUS SOLIDS USING INFRARED HYPERSPECTRAL IMAGING 37

2.1 **INTRODUCTION** ........................................................................................................................................... 37

2.1.1 Hyperspectral imaging ................................................................................................................................. 37

2.1.2 **Dimension reduction strategies** ............................................................................................................... 38

2.1.2.1 PCA on PC1 ............................................................................................................................................... 38

2.1.2.2 ASMULIM ............................................................................................................................................... 39

2.1.2.3 MOLMAP ............................................................................................................................................... 39

2.1.3 **Classification techniques** ......................................................................................................................... 39

2.1.3.1 Discriminant analysis ............................................................................................................................... 40

2.1.3.2 Soft independent modelling of class analogy ....................................................................................... 40

2.1.4 **Aims** ......................................................................................................................................................... 41

2.2 **EXPERIMENTAL AND DATA ANALYSIS METHODS** ................................................................................. 42

2.2.1 **Sample preparation** .................................................................................................................................. 42

2.2.2 **Instrumental** ............................................................................................................................................ 43

2.2.3 **Data preprocessing** ................................................................................................................................... 44
# Table of contents

2.2.4 Data analysis ....................................................................................................................................44
  2.2.4.1 ASD and MIQ methods ................................................................................................................44
  2.2.4.2 Average and median methods .......................................................................................................46
  2.2.4.3 Clustering methods ......................................................................................................................46
  2.2.4.4 PCA on PC1 ..................................................................................................................................47
  2.2.4.5 ASMULIM .....................................................................................................................................48
  2.2.4.6 Endmember techniques ................................................................................................................48

2.3 RESULTS AND DISCUSSION ..............................................................................................................49
  2.3.1 Choice of compounds .......................................................................................................................49
  2.3.2 Sampling considerations ..................................................................................................................49
  2.3.3 Particle size vs pixel size ..................................................................................................................50
  2.3.4 Comparison of classification approaches .......................................................................................51
  2.3.5 Endmember classification results ....................................................................................................56

2.4 CONCLUSIONS ....................................................................................................................................57

CHAPTER 3: CLASSIFICATION OF SUBURBAN SOIL SAMPLES USING HYPERSPECTRAL IMAGING ...59

3.1 INTRODUCTION .....................................................................................................................................59
  3.1.1 Soil ..................................................................................................................................................59
    3.1.1.1 Forensic analysis of soil ..................................................................................................................59
    3.1.1.2 Mid-infrared analysis of soil ...........................................................................................................60
    3.1.1.3 Elemental analysis of soil ..............................................................................................................60
  3.1.2 LA-ICP-MS .....................................................................................................................................62
    3.1.2.1 LA-ICP-MS calibration ..................................................................................................................62
  3.1.3 Overall aims .....................................................................................................................................63

3.2 EXPERIMENTAL AND DATA ANALYSIS METHODS ........................................................................64
  3.2.1 Preliminary study .............................................................................................................................64
    3.2.1.1 Sample preparation .......................................................................................................................64
    3.2.1.2 Infrared imaging ..........................................................................................................................65
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.3 LA-ICP-MS elemental imaging</td>
<td>65</td>
</tr>
<tr>
<td>3.2.1.4 Data analysis</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2 Final study</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2.1 Sample preparation</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2.2 Element selection</td>
<td>68</td>
</tr>
<tr>
<td>3.2.2.3 LA-ICP-MS elemental imaging</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2.4 Data analysis</td>
<td>70</td>
</tr>
<tr>
<td>3.3 RESULTS AND DISCUSSION</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1 LA-ICP-MS normalisation</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2 Preliminary soil sample set</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3 Final soil sample set</td>
<td>76</td>
</tr>
<tr>
<td>3.3.3.1 Element selection</td>
<td>76</td>
</tr>
<tr>
<td>3.3.3.2 Classification results</td>
<td>78</td>
</tr>
<tr>
<td>3.3.3.3 Comparison of different imaging approaches</td>
<td>81</td>
</tr>
<tr>
<td>3.4 CONCLUSIONS</td>
<td>82</td>
</tr>
</tbody>
</table>

**CHAPTER 4: PIGMENT ANALYSIS IN ALGAE USING FLUORESCENT LANDSCAPES AND PARAFAC**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 INTRODUCTION</td>
<td>85</td>
</tr>
<tr>
<td>4.1.1 Algae</td>
<td>85</td>
</tr>
<tr>
<td>4.1.1.1 Pigment analysis</td>
<td>85</td>
</tr>
<tr>
<td>4.1.1.2 Algal fluorescence</td>
<td>86</td>
</tr>
<tr>
<td>4.1.1.3 Adaptation of algae to light</td>
<td>87</td>
</tr>
<tr>
<td>4.1.2 Fluorescent landscapes</td>
<td>88</td>
</tr>
<tr>
<td>4.1.3 PARAFAC</td>
<td>89</td>
</tr>
<tr>
<td>4.1.4 Aims</td>
<td>89</td>
</tr>
<tr>
<td>4.2 EXPERIMENTAL AND DATA ANALYSIS METHODS</td>
<td>90</td>
</tr>
<tr>
<td>4.2.1 Samples</td>
<td>90</td>
</tr>
<tr>
<td>4.2.2 Light table</td>
<td>90</td>
</tr>
</tbody>
</table>
# Table of contents

4.2.3 Preliminary study ................................................................. 91

4.2.4 Final study ........................................................................ 91

4.2.5 Measurements ................................................................. 92

4.2.5.1 Fluorescence landscapes ............................................... 92

4.2.6 Linearity Studies .............................................................. 93

4.2.7 Data analysis ................................................................. 93

4.3 Results and discussion .......................................................... 94

4.3.1 Preliminary investigations .................................................. 94

4.3.1.1 Algal landscapes ....................................................... 94

4.3.1.2 Linearity ..................................................................... 95

4.3.2 Preliminary study ............................................................. 97

4.3.2.1 Chlorophyll a concentration ........................................ 97

4.3.2.2 PARAFAC results ..................................................... 98

4.3.3 Final study ....................................................................... 102

4.3.3.1 Chlorophyll a concentration ........................................ 102

4.3.3.2 Yield measurements ................................................... 103

4.3.3.3 PARAFAC results ..................................................... 103

4.4 Conclusions ...................................................................... 107

CHAPTER 5: APPLICATION OF PARAFAC TO LATENT FINGERPRINT VISUALISATION .............................................. 109

5.1 Introduction ........................................................................ 109

5.1.1 Fingerprints on difficult surfaces ....................................... 110

5.1.1.1 Hyperspectral imaging ............................................... 110

5.1.1.2 Fluorescence imaging ............................................... 112

5.1.1.3 Nanoparticles ......................................................... 114

5.1.1.4 Other techniques ..................................................... 115

5.1.2 Background correction ................................................... 116

5.1.3 Aims .............................................................................. 116

~ ix ~
Table of contents

5.2 EXPERIMENTAL AND DATA ANALYSIS METHODS ................................................................. 117

5.2.1 Samples ............................................................................................................................ 117
  5.2.1.1 Drink can ..................................................................................................................... 117
  5.2.1.2 Polymer banknotes .................................................................................................... 117
  5.2.1.3 Glossy printed card .................................................................................................... 118

5.2.2 Instrumental ...................................................................................................................... 118
  5.2.2.1 Polilight / Poliview system ......................................................................................... 118
  5.2.2.2 HSI Examiner™ 100 QD ......................................................................................... 119

5.2.3 Data preprocessing ........................................................................................................... 120
  5.2.3.1 Polilight / Poliview system ......................................................................................... 120
  5.2.3.2 HSI Examiner™ 100 QD ......................................................................................... 120

5.2.4 Data analysis ..................................................................................................................... 120
  5.2.4.1 PARAFAC .................................................................................................................. 120
  5.2.4.2 PCA .......................................................................................................................... 121
  5.2.4.3 MIA approach ......................................................................................................... 121

5.3 RESULTS AND DISCUSSION ........................................................................................... 121

5.3.1 Aluminium drink can ....................................................................................................... 121
  5.3.1.1 PARAFAC .................................................................................................................. 123
  5.3.1.2 PCA .......................................................................................................................... 126
  5.3.1.3 MIA approach ......................................................................................................... 127

5.3.2 Banknote (Polilight) ......................................................................................................... 128
  5.3.2.1 PARAFAC .................................................................................................................. 129
  5.3.2.2 PCA .......................................................................................................................... 130
  5.3.2.3 MIA approach ......................................................................................................... 132

5.3.3 Banknote (HSI Examiner™) .......................................................................................... 133
  5.3.3.1 PARAFAC .................................................................................................................. 135
  5.3.3.2 PCA .......................................................................................................................... 136

5.3.4 Glossy printed card (Polilight) ......................................................................................... 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4.1</td>
<td>PARAFAC</td>
<td>137</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>PCA</td>
<td>140</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Glossy Card <em>(HSI Examiner™)</em></td>
<td>140</td>
</tr>
<tr>
<td>5.3.5.1</td>
<td>PARAFAC</td>
<td>141</td>
</tr>
<tr>
<td>5.3.5.2</td>
<td>PCA</td>
<td>141</td>
</tr>
<tr>
<td>5.3.5.3</td>
<td>MIA approach</td>
<td>142</td>
</tr>
<tr>
<td>5.3.6</td>
<td>General Discussion</td>
<td>143</td>
</tr>
<tr>
<td>5.3.6.1</td>
<td>Comparison of PARAFAC and PCA</td>
<td>143</td>
</tr>
<tr>
<td>5.3.6.2</td>
<td>Background interference</td>
<td>143</td>
</tr>
<tr>
<td>5.3.6.3</td>
<td>MIA approach</td>
<td>146</td>
</tr>
<tr>
<td>5.4</td>
<td>CONCLUSIONS</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>CONCLUSIONS AND FURTHER WORK</td>
<td>149</td>
</tr>
</tbody>
</table>
List of figures

Figure 1-1 Diagrammatical representation of an hyperspectral data cube (image from Tahtouh et al.\textsuperscript{2}). ........................................................................................................................................................... 2

Figure 1-2 A portion of the electromagnetic spectrum, showing representative molecular processes that occur when light in each region is absorbed (image adapted from Harris\textsuperscript{4}). .... 3

Figure 1-3 Approximate stretching vibrations in the MIR region.\textsuperscript{8} ................................................................. 9

Figure 1-4 Classification of methods for hyperspectral image analysis (adapted from Gendrin et al.\textsuperscript{66}). ................................................................................................................................. 19

Figure 1-5 An example of a dendrogram from HCA.............................................................................................................................. 24

Figure 1-6 Schematic of the SOFM training process.\textsuperscript{245} .............................................................................................................. 26

Figure 1-7 The MIA approach (A) The scatter score plot (PC1 vs PC2). (B) The defined classes in the score plot of (A). (C) The classes in the original image.\textsuperscript{270} .............................................................................................................. 28

Figure 1-8 Diagrammatical representation of PLS, where X is the spectral data, c is the reference values, T is the common scores matrix, P and q are loading matrices, and E and f are error matrices.\textsuperscript{247} .............................................................................................................................. 29

Figure 1-9 An illustration of the difference in the way that SAM (left panel) and SFF (right panel) compare a known endmember spectrum to an unknown pixel spectrum.\textsuperscript{277} ................. 32

Figure 1-10 Diagrammatical representation of PARAFAC.............................................................................................................. 33

Figure 2-1 Schematic of the general approach to dimension reduction and classification of the resulting feature vectors. .............................................................................................................. 42

Figure 2-2 Schematic of data treatment for the MIQ method (data is treated analogously in the ASD method); "M1 S1" is Mixture 1-Sample1, etc.............................................................................................................. 45

Figure 2-3 Construction of median-interquartile range "super-spectrum" used in the MIQ method. .............................................................................................................................................. 46
Figure 2-4 Conversion of a cluster image (such as from HCA) to a feature vector for an image; this vector is simply a histogram of the number of pixels in the image that belong to each cluster........................................................................................................................................47

Figure 2-5 Representative spectra from a reflectance FTIR spectral image of Mixture 1 (25% w/w of each anthracene, anthraquinone, aspirin, and citric acid).................................................................50

Figure 2-6 Two perspectives of the discriminant scores plot obtained by classifying scores from the PCA of the single-point spectra..............................................................................................53

Figure 2-7 Two perspectives of the discriminant scores plot obtained by classifying scores from the PCA of the MIQ super-spectra from the images........................................................................54

Figure 3-1 PCA scores plot for LA-ICP-MS data using silicon as IS. ...............................................71

Figure 3-2 PCA scores plot for LA-ICP-MS elemental ratios. .........................................................72

Figure 3-3 Average MIR spectra for the soil locations.................................................................74

Figure 3-4 LDA scores plot for MIQ of MIR image data (filled circles represent the training samples and open circles test samples). ......................................................................................75

Figure 3-5 LDA scores plot for MIQ of LA-ICP-MS elemental maps (filled circles represent the training samples and open circles test samples). ..............................................................75

Figure 3-6 LDA scores plot for MIQ of LA-ICP-MS elemental maps from final sample set (filled circles represent the training samples and open circles test samples). .......................................80

Figure 3-7 PCA scores plot for MIQ of LA-ICP-MS elemental maps from final sample set (filled circles represent the training samples and open circles test samples). .......................................81

Figure 4-1 A example of a fluorescent landscape........................................................................88

Figure 4-2 Fluorescent landscape for Chaetoceros sp. ..............................................................95

Figure 4-3 Fluorescent landscape for Dunaliella tertiolecta..........................................................95

Figure 4-4 Fluorescence intensity vs. chlorophyll a concentration at chlorophyll a peak for Chaetoceros sp. ...............................................................................................................................96
Figure 4-5 Fluorescence intensity vs. chlorophyll a concentration at chlorophyll a peak for Dunaliella tertiolecta .......................................................... 97

Figure 4-6 Chlorophyll a concentration measured using Trilogy Fluorometer in the preliminary study ......................................................... 98

Figure 4-7 PARAFAC components in preliminary study .......................................................... 99

Figure 4-8 PARAFAC scores for component 1 in preliminary study ........................................ 100

Figure 4-9 PARAFAC scores for component 2 in preliminary study ........................................ 100

Figure 4-10 PARAFAC scores for component 3 in preliminary study ...................................... 101

Figure 4-11 PARAFAC scores for component 4 in preliminary study ...................................... 101

Figure 4-12 Chlorophyll a concentration measured using Trilogy Fluorometer in the final study .......................................................... 102

Figure 4-13 PARAFAC components in final study ............................................................... 103

Figure 4-14 PARAFAC scores for component 1 in final study ................................................. 105

Figure 4-15 PARAFAC scores for component 2 in final study ................................................. 105

Figure 4-16 PARAFAC scores for component 3 in final study ................................................. 106

Figure 4-17 PARAFAC scores for component 4 in final study ................................................. 106

Figure 5-1 Fluorescent image of ethyl cyanoacrylate-fumed fingerprint on aluminium drink can stained with Rhodamine 6G ($\lambda_{ex}$ 490 nm, $\lambda_{em}$ 555 nm) .......................................................... 122

Figure 5-2 Average fluorescent landscapes from different regions of aluminium drink can. 122

Figure 5-3 PARAFAC score images from ethyl cyanoacrylate-fumed fingerprint on aluminium drink stained with Rhodamine 6G. .......................................................... 124

Figure 5-4 PARAFAC score images after mean centring of fluorescent landscapes from ethyl cyanoacrylate-fumed fingerprint on aluminium drink stained with Rhodamine 6G ......... 125
Figure 5-5 PCA score images from ethyl cyanoacrylate-fumed fingerprint on aluminium drink stained with Rhodamine 6G. ................................................................. 126

Figure 5-6 PARAFAC scores scatter plot with the selected pixels green. ................................................. 127

Figure 5-7 MIA image from PARAFAC of aluminium drink can ............................................................. 128

Figure 5-8 MIA image from PCA of aluminium drink can ..................................................................... 128

Figure 5-9 Fluorescent image from Polilight of fresh fingerprint on banknote powered with Brilliant Yellow ($\lambda_{\text{ex}} = 450 \text{ nm, } \lambda_{\text{em}} = 530 \text{ nm}$). ................................................................................. 129

Figure 5-10 PARAFAC score images after mean centring of fluorescent landscapes on banknote powdered with Brilliant Yellow (Polilight). ................................................................. 131

Figure 5-11 PCA score images after mean centring of fluorescent landscapes from fingerprint on banknote powdered with Brilliant Yellow (Polilight). ......................................................... 131

Figure 5-12 MIA image from PARAFAC of banknote............................................................................. 132

Figure 5-13 MIA image from PARAFAC of banknote showing ridge detail over black intaglio printing .......................................................................................................................... 132

Figure 5-14 Fluorescent image from HSI Examiner™ of fresh fingerprint on banknote powered with Brilliant Yellow ($\lambda_{\text{ex}} = 315 - 400 \text{ nm, } \lambda_{\text{em}} = 510 \text{ nm}$). ................................................................. 133

Figure 5-15 PARAFAC score images after mean centring of fluorescent landscapes from fingerprint on banknote powdered with Brilliant Yellow (HSI Examiner™). .................................................. 134

Figure 5-16 Emission loadings from PARAFAC of banknote (HSI Examiner™). .................................. 135

Figure 5-17 PCA score images after mean centring of fluorescent landscapes from fingerprint on banknote powdered with Brilliant Yellow (HSI Examiner™). ....................................................... 136

Figure 5-18 Fluorescent image from Polilight of ethyl cyanoacrylate-fumed fingerprint on glossy printed card powered with Brilliant Orange ($\lambda_{\text{em}} = 490 \text{ nm & } \lambda_{\text{em}} = 610 \text{ nm}$). ........................................ 137

Figure 5-19 PARAFAC score images after mean centring of fluorescent landscapes from fingerprint on glossy card powdered with Brilliant Orange (Polilight). ........................................ 138
List of figures

Figure 5-20 PCA score images after mean centring of fluorescent landscapes from fingerprint on glossy card powdered with Brilliant Orange (Polilight). 139

Figure 5-21 Fluorescent image from HSI Examiner™ of ethyl cyanoacrylate fumed fingerprint on glossy printed card powdered with Brilliant Orange (λex = 450-500 nm, λem = 590 nm). 140

Figure 5-22 PARAFAC score images after mean centring of fluorescent landscapes from fingerprint on glossy card powdered with Brilliant Orange (HSI Examiner™). 141

Figure 5-23 PCA score images after mean centring of fluorescent landscapes from fingerprint on glossy card powdered with Brilliant Orange (HSI Examiner™). 142

Figure 5-24 MIA image from PARAFAC of glossy card (HSI Examiner™). 142

Figure 5-25 Comparison of fluorescent powder emission spectra and PARAFAC loadings for HSI Examiner™ datasets. 144

Figure 5-26 Comparison of fluorescent powder emission spectra and PARAFAC loadings for Polilight datasets. 145

Figure 5-27 Average emission spectra from 400-450 nm excitation of banknote using HSI Examiner™. 146
List of tables

Table 2-1 Compositions of the four powder mixtures..........................43

Table 2-2 Summary of results for image classification methods..................52

Table 3-1 Suburban soils collected for preliminary study........................64

Table 3-2 Experimental parameters for LA-ICP-MS analysis.....................66

Table 3-3 Groups for calculation of elemental ratios in preliminary study......66

Table 3-4 Suburban soils collected for final study....................................68

Table 3-5 Experimental parameters for LA-ICP-MS element selection............69

Table 3-6 Groups for calculation of elemental ratios in final study...............70

Table 3-7 LDA correct classification percentages for preliminary soil sample set...73

Table 3-8 ANOVA and Kruskal-Wallis test results for element selection study (N.B. sig. < 0.002 used due to the number of variables).................................77

Table 3-9 LDA correct classification percentages for final soil sample set........79

Table 4-1 Kodak Wratten filters used in light table for algal studies...............91

Table 4-2 Experimental parameters for Cary Eclipse Spectrophotometer in preliminary study.........................................................92

Table 4-3 Experimental parameters for Cary Eclipse Spectrophotometer in final study.................93

Table 4-4 Dilution series for linearity studies..........................................93

Table 5-1 Main constituents of latent fingerprint deposits........................429

Table 5-2 Wavelengths collected for each sample using the Polilight / Poliview system..119
List of tables

Table 5-3 Experimental parameters for collection of fluorescent images using HSI Examiner™.

.................................................................................................................................................119
### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>average-standard deviation</td>
</tr>
<tr>
<td>ASMULIM</td>
<td>analysis of a set of multivariate images</td>
</tr>
<tr>
<td>ATR</td>
<td>attenuated total reflection</td>
</tr>
<tr>
<td>chl</td>
<td>chlorophyll</td>
</tr>
<tr>
<td>DA</td>
<td>discriminant analysis</td>
</tr>
<tr>
<td>DFO</td>
<td>1,8-diazafluorene-9-one</td>
</tr>
<tr>
<td>FPA</td>
<td>focal plane array</td>
</tr>
<tr>
<td>HCA</td>
<td>hierarchical cluster analysis</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>IS</td>
<td>internal standard</td>
</tr>
<tr>
<td>LA-ICP-MS</td>
<td>laser ablation inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>LOO</td>
<td>leave-one-out</td>
</tr>
<tr>
<td>MIA</td>
<td>multivariate image analysis</td>
</tr>
<tr>
<td>MIQ</td>
<td>median-interquartile range</td>
</tr>
<tr>
<td>MIR</td>
<td>mid-infrared</td>
</tr>
<tr>
<td>NIR</td>
<td>near-infrared</td>
</tr>
<tr>
<td>PARAFAC</td>
<td>parallel factor analysis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>PCA</td>
<td>principal component analysis</td>
</tr>
<tr>
<td>SAM</td>
<td>spectral angle mapper</td>
</tr>
<tr>
<td>SIMCA</td>
<td>soft independent modelling of class analogy</td>
</tr>
<tr>
<td>SOFM</td>
<td>self organising feature map</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
Abstract

The majority of the methods that have been used for the analysis of hyperspectral images have focussed on classification of spectra within an image, and there have been few examples of using whole hyperspectral images (one image per sample) for classification purposes. In this project, feature vectors were created to capture the heterogeneity present in each hyperspectral image for subsequent classification. All of the feature vectors methods were compared to single-point spectra and literature methods. The MIQ (the median-interquartile superspectrum) achieved the best classification of a set of heterogeneous powder mixtures, classifying 100% of the external test set.

Mid-infrared (MIR) hyperspectral images and LA-ICP-MS elemental maps were collected of ‘real-world’ samples of soil collected from various locations around Sydney. For both the MIR and LA-ICP-MS data, the MIQ feature vector achieved superior classification compared to the averages alone (used to represent single-point spectra). For the Sydney soil samples, the classification performance of the LA-ICP-MS elemental maps was superior to MIR reflection hyperspectral images. For the LA-ICP-MS data, using elemental ratios for calibration proved to be a more suitable strategy than using silicon as an internal standard.

A major application of PARAFAC has been the analysis of fluorescent landscapes. In the other main area of this project, novel applications of PARAFAC were investigated. The first application explored was the use of PARAFAC and fluorescent landscapes for the characterisation of phytoplankton. Algal species were placed under different wavelengths of light and monitored over time to determine their response to these environments. PARAFAC was able to isolate components that were identified as β-carotene, chlorophyll a and b, and chlorophyll a degradation products. The advantage of using PARAFAC for the characterisation of phytoplankton is that it can simultaneously determine all pigment concentrations without the need for prior separation or extraction.

Background interference due to highly coloured / patterned and fluorescence remains an issue with many techniques of fingerprint visualisation. The second application of PARAFAC in this project was to analyse fluorescent landscapes constructed by collecting series of images of fluorescent fingerprints on these traditionally difficult backgrounds. Whilst PARAFAC successfully isolated the fluorescence due to the fingerprint, there was typically
only a small reduction in background interference. However, it is expected that PARAFAC would be more successful for samples where the background is also fluorescent, such as DFO-developed prints on fluorescent yellow paper.