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Abstract 

 

Through estimations of above- and below-ground standing biomass, annual biomass 

increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 

efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-

forest savanna in northern Australia. This carbon balance is compared to estimates of carbon 

fluxes derived from eddy covariance measurements conducted at the same site. 

 

The total carbon (C) stock of the savanna was 204  53 t C ha
-1

, with approximately 84% 

below-ground and 16% above-ground.  Soil organic carbon content (0-1 m) was 151  33 t C 

ha
-1

, accounting for about 74% of the total carbon content in the ecosystem.  Vegetation 

biomass was 53  20 t C ha
-1

, 39% of which was found in the root component and 61% in 

above-ground components (trees, shrubs, grasses). Annual gross primary production (GPP) 

was 20.8 t C ha
-1

, of which 27% occurred in above-ground components and 73% below-

ground components.  Net primary production (NPP) was 11 t C ha
-1

 y
-1

, of which 8.0 t C ha
-1

 

(73%) was contributed by below-ground net primary production and 3.0 t C ha
-1

 production 

(27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 t C ha
-1

 y
-

1
.  The wet season plays a critical role in controlling carbon flux on a yearly basis. 

Approximately three-quarters of the carbon flux (above-ground, below-ground and total 

ecosystem) occurs during the 5-6 months of the wet season. This savanna site is a carbon sink 

during the wet season, but becomes a source during the dry season.  Annual net ecosystem 

production (NEP) was 3.8 t C ha
-1

 y
-1

. The loss of carbon due to fire is significant and the 
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long-term sequestration potential (NBP) is approximately 40% of the value for NEP at 1.5 t C 

ha
-1

 y
-1

, although there is a degree of uncertainty associated with this estimate. 

 

 

Key words: CO2, carbon cycling, wet-dry tropics, carbon source-sink relationships, NEP, NBP 
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Introduction 

 

Savannas, covering at least 16 million km
2
 of the earth's land surface, are found in Africa, 

Australia, South America, India and Southeast Asia and occupy the latitudinal zone between 

evergreen tropical rainforest and mid-latitude deserts (Scholes and Hall 1996).  Savanna are  

characterised by climates with distinct wet and dry seasons and this has induced 

correspondingly strong patterns in physiological and eco-physiological processes (Eamus and 

Prior 2001).  Savannas account for approximately 58.7 Pg of biomass, approximately 30% the 

global carbon store of terrestrial ecosystems and savannas therefore have the potential to 

significantly influence global carbon cycling.  Scurlock and Hall (1998) and Lal (2002) 

suggest that tropical savannas and grasslands play a more significant role in global carbon 

sequestration than previously thought, with soil carbon storage of particular significance. 

 

Also of global importance is the extensive annual biomass burning that occurs in savanna 

ecosystems during the dry season, which results in a large quantity of carbon and other trace 

greenhouse gases (methane, NOx) being released to the atmosphere (Beringer et al. 1995).  In 

the wet-dry tropics of northern Australia, tropical savanna is the dominant vegetation type and 

approximately 75% of Australia's total land area that is burnt annually occurs in this region 

(AGO-NGGI 2000).  These Australian savannas occupy an area of almost 2 million km
2
, 

which is 12 % of the worlds savannas biome and some of the world's most extensive and intact 

Eucalypt open-forest is located here. Given the size of this ecosystem and the extent of 

burning, it is likely that savannas will have a major impact on continental-scale carbon 

balance.  
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North Australian savannas are dominated by Eucalyptus tree species which form an open 

overstorey canopy (<50 % cover) and a variety of annual and perennial C4 grasses dominating 

the understorey (Williams et al. 1997).  These savannas have been subjected to minimal 

anthropogenic disturbance when compared to Eucalypt dominated ecosystems of southern 

Australia (Tothill at al. 1985).  While there is an extensive ecological literature describing 

savannas of Australia, plus knowledge of ecophysiological processes at leaf (Eamus et al. 

1998, 2000), tree (O'Grady et al. 1999, Eamus et al. 1999a, Myers et al. 1997), canopy and 

stand scale (Hutley et al. 2000, 2001,O'Grady et al. 2000, Eamus et al. 2001), there are no 

detailed studies of the carbon balance for these savannas (House and Hall, 2001).  Most 

productivity studies of Australia's tropical savanna have concentrated on the herbaceous layer, 

with a focus on agricultural potential (eg Mott et al.1985, Williams et al. 1985). 

 

In this paper, a range of measurements has been integrated to establish a carbon balance for a 

tropical savanna site of coastal northern Australia.  Carbon pool size and fluxes have been 

estimated on a seasonal and annual basis to address the following questions: What are the 

fluxes of carbon to and from these tropical savannas? What are the allocation patterns of 

carbon among above- and below-ground components? Are there seasonal differences in 

carbon storage and carbon distribution? What are the seasonal and annual budgets of carbon 

for this ecosystem?  We also approximate the impact of fire on the carbon balance of these 

ecosystems.  For comparative purposes, we have generated data tables, providing values for a 

wide range of parameters using a similar approach to that of Malhi et al. (1999). 
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Materials and methods 

Study sites 

To obtain a typical range of values for the carbon balance components, four study sites were 

used, all located within a 65 km radius of Darwin, Northern Territory, Australia. Sites were 

located at a) Howard Springs (12°28'S, 131°08'E) , b) Humpty Doo (12°36'S, 131°10'E), c) the 

Territory Wildlife Park (12°42'S, 131°0'E) and d) a fourth site at Gunn Point (12°14'S, 

131°05'E ). The vegetation at all sites was Eucalypt open-forest savanna with an overstorey 

dominated by Eucalyptus tetrodonta (F. Muell) and Eucalyptus miniata (Cunn. Ex Schauer).  

These two species contribute > 70% to the overstorey leaf area index (LAI) and standing 

biomass (O'Grady et al. 2000).  Sub-dominant tree species include Erythrophyleum 

chlorostachys (F. Muell), Terminalia ferdinandiana (F. Muell), Eucalyptus porrecta (S.T. 

Blake) and Eucalyptus bleeseri (Blakely). The understorey is comprised of semi-deciduous 

and deciduous small trees and shrubs with a seasonally continuous cover of annual and, to a 

small extent, perennial C4 grasses. Overstorey leaf area index of these sites typically ranges 

from 0.6 to 1 with basal areas approximately 8-12 m
2
 ha

-1
 (O'Grady et al. 2000), with 

understorey LAI being far more seasonally dynamic and ranging from 0.2 to 1.5.  

 

The sites used in this study are representative of coastal, mesic savanna vegetation of northern 

Australia. These sites are frequently burnt and receive annual rainfall in excess of 1200 mm 

and are dominated by E. tetrodonta and E. miniata with Sorghum spp frequently occurring in 

the understorey (Wilson 1990). This, and other closely associated Eucalypt dominated savanna 

types also occur in coastal savanna areas of north-western Western Australia to the Gulf of 
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Carpentaria region of northern Queensland and occupy up to 200 000 km
2
 in northern 

Australia. 

 

In the Darwin region, where the current site were located, Eucalyptus tetrodonta and E. 

miniata dominated open-forests are commonly associated with lateritic red and yellow earths 

(Cole 1986), which tend to have A horizons of well drained, highly weathered sands with a 

massive and earthy structure.  Transition at 15-30 cm to a sandy loam B horizon is gradational 

and can extend up to 1-2 m, where ferricrete boulders occur in a matrix of mottled, heavy 

clays forming a duricrust of low permeability and variable depth (Calder and Day 1982). 

Prominent macropores, often containing tree roots, are found in this layer. Rounded ferricrete 

gravels can occur on the sandy soil surface and throughout the profile up to 20 % by volume.  

Dry bulk densities of these soils range from approximately 1.4 kg m
-3

 at the surface to 1.7 kg 

m
-3

 at depth (2 m). 

 

The climate of the region is wet-dry tropical and rainfall is distinctly seasonal, with a wet 

season occurring from November to April.  During this period, greater than  90% of the 1700 

mm annual rainfall occurs. The dry season occurs from May to October with little or no 

rainfall. Temperatures remain high throughout the year with mean daily maximum 

temperatures at the Darwin Airport (35 km from the field site) ranging from 30.4 
o
C (July) to 

33.1 
o
C (October and November). Maximum and minimum temperatures have a range of 7 

o
C 

(wet season) to 11 
o
C (dry season) (McDonald and McAlpine 1991).  
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Measurements and calculations 

A. Carbon stocks 

 

All measures of carbon pools and fluxes were derived from the suite of measurements 

conducted at the four sites. A brief description of these parameters, methods and their 

estimation is given in Table 1. The magnitude of carbon pools (above- and below-ground 

biomass, soil organic matter) and fluxes between these pools (litterfall, soil respiration, root 

turnover, growth increment) have been integrated to calculate above- and below-ground 

allocation and derive a carbon balance.  The range of methods used are briefly described 

below, with further details available in cited publications. 

 

Above-ground biomass (AGB) was estimated from plot-based measurements of tree diameter 

at breast height (DBH) and tree height.  Three 20 x 20 m plots were located at each site and 

biomass components (wood, bark, branch, leaf) were estimated from 48 harvested trees from 

six dominant tree species (E.  tetrodonta, E.  miniata,  E.  chlorostachys, T.  ferdinandiana, E.  

porrecta and E.  bleeseri). These species account for 95 % of the standing biomass in these 

open-forest savannas (O'Grady et al. 2000).  Allometric regression equations (power function) 

relating relationships between tree diameter at the breast height (DBH) and biomass 

components have been developed for these species at these sites (O'Grady et al. 2000, Chen 

2002).  Relationships between total tree biomass (W) and DBH were highly significant, with 

correlation coefficients > 0.93 and confidence can be placed in the use of these functions to 

estimate AGB.  The carbon content of above-ground biomass was assumed to be 50% of dry 

weight (Gifford 2000a). 
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Below-ground biomass (BGB) was estimated using the trench method (Komiyama et al. 1987, 

Eamus et al. 2002).  Eight trenches were dug at the Humpty Doo study site, with two mature 

trees of the same species included at the ends of each trench.  Trenches were 3 m  4 m or 4 m 

 5 m, with the depth of 0.6 to 2 m, depending the size of the trees included in the trench 

(Eamus et al. 2002).  A 5 ton excavator with a 300 mm wide bucket was used to excavate soil 

blocks within each trench. Roots from soil block were extracted manually and sorted into 

coarse (> 2 mm diameter) and fine (< 2 mm diameter) roots.  Root biomass was recorded 

following oven drying at 70 
o
C to a constant weight. The carbon content of below-ground 

biomass was assumed to be 49 % of dry weight (Gifford 2000b).  Fine root biomass, 

production and turnover was measured using root ingrowth bags (Smit et al. 2000).   

 

Soil carbon stock was estimated using soil organic carbon content and soil bulk density. At 

each study site, three plots were chosen for soil sampling.  Soil samples were collected using 

an auger at 5, 20, 30, 50, 80 and 100 cm depths and soil organic carbon (SOC) was determined 

by an improved Walkley-Black wet digestion method (Heanes 1984).  Percent SOC values 

were converted to soil carbon stock (t C ha
-1

) using a bulk density for each soil layer.  Bulk 

density was determined from pits dug at the Howard Springs site to depth and the profile 

sampled by taking 3-5 replicate soil samples using 10 cm diameter metal rings of 100 cm
3
 

volume (A. O'Grady per comm.). Bulk densities ranged from 1.42 at 5 cm depth to 1.7 g cm
-3

 

at 1 m. 

 

B. Above-ground carbon flux 

Table 1 

here please 
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Above-ground net primary production (ANPP) was estimated by summing annual increments 

of all components of biomass plus litterfall. AGB included tree and understorey components. 

Tree growth and productivity was calculated from increments of tree diameter and an 

allometric regression equation relating tree diameter to above-ground biomass (O'Grady et al. 

2000).  Annual increment of understorey biomass was calculated from seasonal maximum and 

minimum values of understorey biomass, measured monthly for one year, using destructive 

harvests of 5 randomly located replicate 1 m
2
 plots sampled at 3 different locations at the site.  

Litterfall was measured using 18 litter traps over a two year period (1998 to 2000) at the 

Wildlife Park site.  Traps, with an area of 2463 cm
2
 for each, were set 80 cm above the ground 

and litter (leaves, bark and fruit) were collected at monthly intervals and dry weight 

determined. 

 

Above-ground tree respiration was divided into four sources: leaf construction respiration 

(Rlc), leaf maintenance respiration (Rlm), woody components construction respiration (Rwc) and 

woody components maintenance respiration (Rwm). Construction respiration of leaf and woody 

components was calculated using leaf and woody biomass increment multiplied by the 

construction constant of 0.25 g C g C
-1

 (Keith et al. 1997). This  assumed that construction 

respiration consumes 25% of the carbon allocated annually to each biomass component (Ryan 

1991).  Leaf maintenance respiration (Rlm) was calculated using the following equation from 

Ryan (1991): 

 

Rlm = (Ntot) (27 exp(0.07Ta)) 
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where Ntot (g N m
-2

) is the total leaf nitrogen content obtained from leaf nitrogen concentration 

 leaf biomass, and Ta (
0
C) is the average annual temperature. Leaf nitrogen concentration 

data was taken from Eamus and Prichard (1998) for both E. tetrodonta and E. miniata.  Wood 

maintenance respiration (Rwm) was calculated using the following equation developed by Ryan 

and Waring (1992): 

 

Rwm = 0.00486Vs exp (0.0663Ta)   

 

where Vs (cm
3
) is sapwood volume.  Sapwood volume for a stand was calculated using 

regression equations derived between sapwood basal area and tree diameter for each dominant 

Eucalypt species present in plots at the Howard Springs and Humpty Doo sites.  These 

relationships (sapwood area and DBH) have been previously established at these sites for the 

dominate tree species by O'Grady et al. (1999).  Above-ground gross primary production 

(AGPP) is the sum of ANPP and above-ground tree respiration. 

 

C.  Below-ground carbon flux 

 

Below-ground carbon fluxes were estimated from measures of coarse and fine root production.  

Fine root production was estimated using ingrowth bags and coarse root production was 

estimated from a simple allometric equation which assumes that coarse root production is 

proportional to above ground NPP (Johnson and Risser 1974): 
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NPPcr =  (ANPP / AGB)  Bcr                                 

 

where NPPcr is coarse root net primary production, ANPP is above-ground net primary 

production, AGB is above-ground biomass, and Bcr is coarse root biomass.  Root respiration 

was assumed to be 50% of total soil respiration (Keith et al. 1997). 

 

Fine root production (NPPfr) was estimated using ingrowth bags (Smit et al. 2000).  A total of 

72 ingrowth bags were employed during the study.  At the Howard Springs site, soil cores 

were dug to a depth of 50 cm, with soil collected and divided into two depth zones, 0-25 cm 

and 25- 50 cm. All roots from soil of each depth zone were carefully removed, and the 

resulting root-free soil was used to fill ingrowth mesh bags. Bags filled with root-free soil 

were then inserted into 7  50 cm deep holes.  Rate of ingrowth of new fine roots 

(productivity) was determined by sequential re-sampling of the mesh bags over a 1 year period 

(December 1999 to December 2000). 

 

Soil carbon efflux was measured using a closed chamber technique (Rochette et al. 1997, 

Chen et al. 2002).  A polythene chamber with dimensions of 20  21.5 12 cm, giving a 

ground area of 430 cm
2
, and an enclosed volume of 5160 cm

3
 was used. Inlet and outlet gas 

lines were connected to a portable infra-red gas analyser (LI-6200, LiCor Inc., Lincoln, 

Nebraska, USA). Within the chamber, a 12 V fan mixed air to be sampled by the CO2 

analyser.  The CO2 concentration of air entering the IRGA was noted and then scrubbed of 

CO2 to approximately 50 μmol mol
-1

 below ambient concentration and measurement 
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commenced at this within-chamber concentration.  The CO2 soil efflux (Fcs) was calculated 

using the rate of change of CO2 concentration in the system [CO2]: 

 

Fcs = 
A

V

M

M

t v

w2CO
, 

 

where V is the total volume of the system, A is the area covered by the chamber and Mw and 

Mv are the molecular weight and volume of CO2, respectively.  Estimates of Fcs were made 

every 4 hours over a 2-3 day period each month for over a 2 year period (September 1998 to 

January 2001). Monthly mean Fcs was calculated from each measurement time, based on 18 

rate estimates, being 3  1 minute estimates from 6 replicate plots. Further details of these 

measurements are given by Chen et al. (2002). 

 

D. Production indices 

 

Gross Primary Production (GPP) is defined as the total carbon assimilated by photosynthesis, 

minus photorespiration.  Net Primary Production (NPP) is defined as the difference between 

GPP and autotrophic respiration (Ra), representing the net result of CO2 fixation by 

photosynthesis and CO2 loss via plant respiration.  Net Ecosystem Production (NEP) is the net 

carbon balance of an ecosystem over some time period (usually a year) and represents net 

carbon fixation by photosynthesis and losses by autotrophic plus heterotrophic respiration 

(respiration of soil organisms, Rh) (Kirschbaum, 2001).  As NEP reflects the annual change in 

C stored at an ecosystem scale, it indicates whether the ecosystem is a carbon "sink" or 

"source" for CO2 relative to the atmosphere.  In addition, Net Biome Production (NBP) is 
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defined as the difference between NEP and non-respiratory carbon losses (Lc) due to events 

such as fire, storm damage, herbivory (insect plagues) and harvest (Schultze et al. 2000).  NBP 

represents long-term change of carbon storage and productivity in an ecosystem by including 

losses of carbon due to disturbance (Schulze et al. 2000).  

 

Results 

Carbon stocks in tropical savanna of northern Australia 

 

Table 2 gives the carbon stocks of different components of the savanna ecosystem.  Data have 

been averaged using data from the three sites (Howard Springs, Humpty Doo and Territory 

Wildlife Park).  The mean total carbon pool was 204 t C ha
-1

 (range 136 to 286 t C ha
-1

)  with 

approximately 84% of the carbon stored below-ground (soil plus roots).  Approximately 74% 

of the total C was stored in the mineral soil as soil organic carbon (mean 151.3 t ha
-1

, Table 2).  

Carbon stored in the tree component was the next largest pool, which accounted for 24% of 

the total carbon, followed by understorey (0.5%), litter-layer (0.5%) and dead stems (0.5%). 

Eucalypt species dominated the total carbon stored in vegetation, which was 50 t C ha
-1

 (range 

23 to 76.0 t C ha
-1

).  Above-ground woody components accounted for 64% of the total 

vegetation pool (53 t C ha
-1

, live plus dead components) with total root carbon at 19 t ha
-1

 or 

36 % of the total vegetation pool. 

 

Above-ground carbon flux 

 

Table 2  

here 

please 
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Table 3 provides wet and dry season and annual estimates of carbon fluxes between the 

various carbon pools for the study sites.  Total carbon flux above-ground was calculated by 

summing the carbon fluxes associated with tree biomass increment, litterfall, understorey 

biomass increment, plus construction and maintenance respiration.  This sum is AGPP (Table 

3).  In the present study, the total carbon flux above-ground was 5.7 t C ha
-1

 y
-1

, of which tree 

biomass increment accounted for 28%, foliage respiration accounted for 26%, wood 

respiration accounted for 21%, litterfall accounted for 16% and understorey biomass 

increment accounted for 9%. 

 

Mean annual tree increment was 4.2  0.95 mm y
-1

, although this estimate is based on records 

from 10 of the original 20 stems, as dendrometers were damaged by fire during the dry season. 

During the dry season there was no tree growth and biomass increment was zero and on some 

stems, shrinkage was observed.  During the wet season, mean stem diameter increment was as 

high as 0.8 mm month
-1

 and in terms of seasonal C flux above-ground, the wet season 

accounted for approximately 75% and the dry season 25%.  Only litterfall was larger in the 

dry season than in the wet season.  For all other components, fluxes during the wet season 

were larger than during the dry season (Table 3). 

 

Below-ground carbon flux  

 

Total C flux below-ground (BGPP) was 15.1 t C ha
-1

 y
-1

 (Table 3).  This was calculated by 

summing root production of both coarse and fine root, plus root respiration.  Root production 

and root respiration comprised approximately 53% and 47% of BGPP respectively. More than 

Table 3  

here  please 



 16 

70% of root respiration occurred during the wet season.  The fine root component was the 

dominant contributor to total root biomass increment and accounted for more than 87% of the 

total root biomass production of 8 t ha C y
-1

.  Moreover, 81% of the fine root production 

occurred during the wet season, when over 77% of the annual below ground carbon flux 

occurred (Table 3). 

 

Ecosystem carbon flux 

 

The total ecosystem carbon flux (GPP) was 20.8 t C ha
-1

 y
-1

, of which 76 % occurred in the 

wet season and 24 % in the dry season (Table 3). Carbon flux below-ground was higher than 

carbon flux above-ground, and the former accounted for approximately 70% of total carbon 

flux.  

 

Carbon budget of a tropical savanna 

 

The carbon balance of these savannas is summarised in Figure 1, using data from Table 3.  

Integrating all above and below ground fluxes, production indices can be calculated.  Net 

Ecosystem Production (NEP) was calculated by subtracting heterotrophic respiration (Rh) 

from NPP, which gave a value of 3.8 t C ha
-1

 y
-1

 (Table 3), suggesting that this savanna was a 

relatively strong carbon sink.  Although the ecosystem as a whole sequestered carbon over the 

entire year, this sequestration was strongly seasonal and was dominated by wet season fluxes.  
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The ecosystem was a carbon source during the dry season with the vale of -0.2 t C ha
-1 

y
-1

 

(Table 3). 

 

Net Biome Production (NBP) was calculated as NEP minus carbon losses due to disturbance, 

which, for these frequently burnt savannas, equates to losses due to fire.  According to data 

presented by the Australian Greenhouse Gas Inventory (AGO-NGGIC 2000), average fuel 

load was 4 t ha
-1

 y
-1

 during the period 1994 to 1997 for the Northern Territory.  Burning 

efficiency, the ratio of fuel pyrolised to fuel load within areas over which flames have passed 

(Russell-Smith et al. 2002), was 0.72 for all savanna fires in Australia.  As a result, the annual 

mass of fuel burnt by fires in the savannas of northern Australia was approximately 2.9 t DM 

ha
-1

 y
-1

 (fuel load multiplied by burning efficiency factor) or approximately 1.5 t C ha
-1

 y
-1

 

(annual mass of fuel burnt multiplied by carbon fraction of biomass), assuming that the carbon 

fraction of biomass is approximately 0.5 (Edwards et al. 1981).  Using an NEP of 3.8 t C ha
-1

 

y
-1

, NBP was estimated at 2.3 t C ha
-1

 y
-1

 (NBP = NEP-Fire losses, 2.3 t C ha
-1

 y
-1

 = 3.8 - 1.5 t 

C ha
-1

 y
-1

) for this savanna.  Like NEP, NBP was negative in the dry season (-1.7 t C ha
-1

 

period
-1

) becoming positive during the wet season (4.0 t C ha
-1

 period
-1

). The production 

efficiency of the savanna (NPP/GPP) was approximately 53% (Table 3), close to the often 

assumed ratio of NPP/GPP of 0.5.  Malhi et al. (1999) obtained similar production efficiencies 

for tropical (51%), temperate (55%) and boreal (54%) ecosystems. 

 

The mean residence time for carbon for biomass, soil component and the ecosystem as a 

whole can be calculated by dividing the total carbon stocks (Table 2) by the rates of carbon 

Figure 1  

here 

please 
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input (Table 3).  Mean carbon residence times for biomass, soil and the ecosystem was 5, 17 

and 19 years respectively (Table 3). 

 

Discussion 

Carbon stocks in the savannas of northern Australia 

 

Carbon stocks (as opposed to biomass) of the vegetation component in these savannas was 53 

t C ha
-1

 (Table 2) and is on the lower end of the global range of carbon stocks in vegetation 

estimated for tropical savannas (20-150 t C ha
-1

, Tiessen et al. 1998).  The value is 

significantly lower than estimates for tropical forests, where above-ground biomass carbon 

stocks range from 70 to 179 t C ha
-1

 (Delaney et al. 1997, Malhi et al. 1999).  The sites of the 

present study are closer to values given by Scholes and Hall (1996) for tropical dry forest 

(74.7 t ha
-1

) reflecting the significant woody component of these savannas and the seasonality 

of rainfall.  Scholes and Hall (1996) also report 37.4 t ha
-1

 carbon density for woodlands and 

11.3 t C ha
-1

 dry savannas.  

 

Below-ground biomass carbon was 19 t C ha
-1

, approximately 35% of the total biomass carbon 

stock, which is a higher percentage than that commonly observed in drought deciduous forests 

(20%) or moist, broad-leaved woodlands and savannas (25%) and in arid savannas (30%) 

(Scholes and Hall 1996).  Like the seasonal patterns of ANPP, high below-ground carbon flux 

relative to above-ground at these sites reflects the pronounced seasonality of rainfall of this 

climate zone, which has two consequences for root distribution and production.  First, there is 
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significant investment of carbon in root systems of the dominant Eucalypt species, via the 

development of large lignotubers that enable carbon storage and vegetative re-growth 

following the frequent fire occurrence of these savannas (Williams et al. 1999). These 

savannas are dominated by evergreen trees which transpire all year (O'Grady et al 1999).  

Investment in below-ground carbon is evident in the deep root systems of mature Eucalypt 

trees, which enables extraction of water from the sub-soil (Kelley et al. 2002) during the long 

dry season, maintaining stand transpiration at a constant rate all year (O'Grady et al 1999). 

While the root biomass of trees tends to be concentrated in the upper 50 cm of soil (Eamus et 

al. 2002), roots grow to considerable depth, up to 5 m (Kelley et al. 2002) and we have 

observed roots to 9 m (A. O'Grady, pers comm.), although the biomass at these depths was 

small.  Secondly, seasonal rainfall results in highly seasonal rates of fine root production and 

turnover and 80% of the annual fine root production of 7 t ha
-1

 y
-1

 occurs during the wet 

season.  While fine roots are less than 3% of the total root biomass, their rate of production (7 

t ha
-1

) is far higher than coarse root production of 1 t ha
-1

 y
-1

.  Such high wet season root 

production is likely to provide the bulk of the annual nutrient uptake.  Fine root growth is 

correlated with tree growth, which only occurred during the wet season (Table 3, Item 1).   

 

This dormancy in stem growth occurs despite the maitainence of dry season photosynthetic 

(and transpiration) rates by tree evergreen species (E. tetrodonta and E. miniata) during the 

dry season.  Eamus et al. (1999) observed only modest (approximately 10-15%) declines in 

assimilation rate per unit leaf area for these species during the dry season relative to the wet. 

Carbon fixed during the dry season is not utilised for shoot growth or significant leaf 

production and below-ground storage, especially in lignotubers and dry season flowering and 
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fruiting (Setterfield and Williams 1996), is likely to be a significant sink for this carbon.  

Mucha (1979) observed a similar confinement of stem increment in E. tetrodonta to the wet 

season, with growth increment of 3 mm per month occurring during January and February, 

higher than rates of increment as observed in this study.  Hoffmann (2002) also observed 

strongly seasonal growth, despite relatively aseasonal patterns of gas exchange in evergreen 

trees of cerrado savannas of south-central Brazil and stored carbon is likely to be used to 

initiate fine root growth and leaf production prior to the on-set of wet season rains. 

 

Significant investment in root systems also reflects the low nutrient status of the ancient, 

leached soils of this region, which are characterised by low cation exchange capacity and 

water holding capacity (Calder and Day 1982).  Another factor influencing the ratio of carbon 

flux between above- and below-ground pools is the frequent occurrence of fire in these 

savannas.  When subject to late-dry season burning, Williams et al. (1999) reported a decrease 

of 27% of live-tree basal area in open-forest savannas of Kakadu National Park, savanna 

communities that are floristically and structural similar to sites used in this study.  Fire had 

significant impacts on the survivorship of large (> 30 cm DBH) trees and we conclude that fire 

would limit above-ground biomass and productivity in these frequently burnt savannas.  A 

further limit to production is due to termite damage and hollowing of tree boles, a common 

occurrence in the dominant tree species of these savannas (Andersen and Lonsdale 1990). As 

trees age, termite damage can become extensive and is further compounded by fire, as flames 

penetrate boles via cavities formed from the action of termites.  These duel processes constrain 

the production of above-ground biomass.  Thus the high incidence of lignotubers and frequent 
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loss of above-ground biomass due to fire results in an increase in the fraction of total NPP that 

occurs below-ground.  

 

In woodlands and savannas, soil organic carbon tends to be more than three-quarters of the 

total ecosystem carbon stock (Scholes and Hall 1996). However, in comparison with tropical 

forests or temperate grasslands, savannas generally have a low soil organic carbon content due 

to high soil respiration rates (Chen et al. 2002) and soil carbon losses occur due to frequent 

burning (Kalpage 1974, Montgomery and Askew 1983). Soil organic carbon content of 

savannas generally increases with increasing soil clay content, rainfall, tree cover and 

decreasing temperature (Scholes and Hall 1996). The soil organic carbon density in these 

Eucalypt open forest savannas (151  33 t C ha
-1

 or 15.1  3.3 kg C m
-2

) was significantly 

higher than the savanna mean (5.65  4.60 kg C m
-2

) and was similar to the mean for tropical 

woodlands (11.8  5.43 kg C m
-2

) as given by  Scholes and Hall (1996).  The high levels of 

soil organic carbon of these savannas was mainly due to high below-ground carbon allocation 

and fine root productivity of the wet season. 

 

North Australian savanna productivity 

 

Murphy and Lugo (1995) reported the range of total or ecosystem NPP for tropical dry forests 

and savanna as 8-21 t DM ha
-1

 y
-1

, with 6-16 t DM ha
-1

 y
-1 

for ANPP.  For total NPP, this is 

approximately 4-10 t C ha
-1

 y
-1

, and 3-8 t C ha
-1

 y
-1

 ANPP.  At the Howard Springs/Humpty 

Doo sites, total NPP was at the top of this range, yet ANPP is at the bottom of this range, at 3 t 

C ha
-1

 y
-1

 (Table 4).  This pattern of average to high NPP for these savannas, but low ANPP is 
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also seen in Table 4, with NPP comparable to other savannas and drought-deciduous 

woodlands, although ANPP is significantly lower (Table 4).  This further indicates that 

savannas of northern Australia have relatively high below-ground carbon allocation (see ratio 

the of ANPP/NPP, Table 4).  In fact BNPP accounted for 70% of NPP, and fine root net 

primary production (NPPfr) accounting for 87% of the total BNPP.  Therefore, fine root 

production in any given year largely determines ecosystem NPP for these savannas.   

 

This finding concurs with conclusions of Janos et al. (2002), who describe the fine root system 

of these savanna as essentially deciduous, with little production during the dry season.  This 

seasonal cycle of root production is accompanied by large seasonal changes of soil CO2 efflux 

(Chen at al. 2002), with 71% of annual CO2 efflux occurring in the wet season. The wet 

season pulse of fine root production also coincides with rapid growth of C4 annual grasses 

(Sorghum spp and Heteropogon spp) of the understorey.  This seasonal growth, dominated by 

the grassy understorey, represents a major seasonal sequestration of carbon in these savannas, 

although much of this 'grass carbon' can be lost the following dry season to fire or, if unburnt, 

is decomposed over subsequent wet seasons.  This seasonal cycle of grass growth also 

dominates the seasonal pattern of canopy-scale fluxes of water vapour (Hutley et al. 2000) and 

CO2 (Eamus et al. 2001) for this site. 

 

The high NPPfr as observed in this study supports the view that the inherent capacity for 

productivity of savanna ecosystems is not greatly lower than that of other forest ecosystems 

(Scholes and Hall 1996).  The wet season represents a period of high soil water and nutrient 

availability. Using annual incident solar radiation, energy conversion efficiency and energy 
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content of woody biomass, Linder (1985) calculated the potential biomass production for 

Darwin to be 111 t DM ha
-1

 y
-1

, the highest value of any region in Australia.  Using these 

simple parameters, tropical savannas of Northern Australia should have higher NPP and AGB 

relative to temperate Australian woodlands, given the high year-round radiation loads and 

non-limiting temperatures for growth, coupled with high annual rainfall.  This potential NPP is 

well in excess of that measured for these savannas (22.2 t DM ha
-1

 y
-1

) and is an overestimate 

as it does not consider the seasonal distribution of rainfall, seasonality of available moisture, 

low soil nutrient status and the effects of frequent fires, all of which limit NPP. 

 

A striking feature of these savannas is the high rate of NPP relative to the biomass and total 

carbon storage, ie the short residence time (Table 5).  The mean residence time for biomass 

carbon in savannas is between 5 - 9 years (Table 5), while the residence time for temperate, 

boreal and tropical forest biomass is over 10 years (Malhi et al. 1999). Using data given in 

Scholes and Hall (1996), the average residence time for savanna is 3.4, similar to that 

estimated in this study (Table 5).  Clearly, carbon within the biomass of savannas is quickly 

turned over and returned to the atmosphere.  While savannas have relative low carbon stocks, 

they have a large potential to influence carbon cycling at regional and global scales because of 

their extensive area, short residence time and concomitant high rate of cycling. This short 

residence time is attributed to the distinct wet-dry seasons and highly pulsed productivity and 

frequent atmospheric emission of carbon via biomass burning. This rapid development of fuel 

and the frequent occurrence of fires results in a cyclical pattern of carbon flux between the 

ecosystem and the atmosphere.  For savanna patches burnt annually, the residence of carbon 

stored with the grass biomass would be approximately 1 year.  As expected however, the 

Table 5  

here please  
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turnover of soil carbon is slower and is the order of 20 years, similar to soil carbon turnover of 

tropical forest (Malhi et al. 1999). 

 

Seasonal sink strength of tropical savannas of northern Australia  

 

In the present study, NEP was positive (3.8 t C ha
-1

 y
-1

), indicating that the sites studied are a 

relatively strong carbon sink, sequestering approximately 14 t CO2 ha
-1

 y
-1

.  This value of NEP 

is comparable to Sahelian fallow savanna (0.32 t C ha
-1

 y
-1

, Hanan et al. 1998), Amazonian 

rainforest (1 t C ha
-1

 y
-1

, Grace et al. 1995 and 5.9 t C ha
-1

 y
-1

, Malhi et al. 1999) and for 

temperate deciduous forest (2-5 t C ha
-1

 y
-1

, Goulden et al. 1996, Greco and Baldocchi 1996, 

5.9 t C ha
-1

 y
-1

 Malhi et al 1999).  

 

Recently, Eamus et al. (2001) estimated NEP for the Howard Springs site using eddy 

covariance derived estimates of CO2 fluxes.  The eddy covariance method is a reliable method 

for estimating NEP (Landsberg and Gower 1997, Steffen et al. 1998) as net carbon balance 

can be measured by integrating fluxes over diurnal, seasonal and annual cycles (Malhi et al. 

1999).  Integration of daily fluxes measured at the Howard Springs site provided an annual 

estimate of NEP at 2.82 t C ha
-1

 y
-1

, in reasonable agreement with the estimate provided by 

this study using a biomass-inventory approach.  If a carbon content of roots is assumed to be 

43% (Gifford 1999), the calculated NEP is 2.8 t ha
-1

 y
-1

 , identical to the value given by the 

flux measurements.  Sensitivity of calculated NEP indicates the dominance of root 

productivity to ecosystem productivity in this savanna.  A comparison of carbon sink strength 

for terrestrial ecosystems based on eddy flux and forest inventory estimates have lead to 
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conflicting results (Schulze et al. 2000) and it is rare to have two independent studies, 

conducted at the same site, using differing methodologies, converge to similar values of NEP. 

 

From an analyses of tree size class distributions of these coastal open forests of the Darwin 

region, Wilson and Bowman (1987) and O'Grady et al. (2000) concluded that these forests are 

dominated by small trees (DBH < 20 cm) and are young and actively growing following the 

major disturbance of Cyclone Tracey in 1974 and the recurrent impact of fire. Consequently, a 

sink strength in the order of 2-4 t C ha
-1

 y
-1

 is possible despite a low LAI (0.6-2.5, dry to wet 

season), and would represent a maximal value of NEP for this savanna type. 

 

Net ecosystem productivity was negative (-0.2 t C ha
-1

 season
-1

) during the dry season (May to 

October) and was positive (4 t C ha
-1

 period
-1

) in the wet season (November to April).  This 

indicates that the savanna ecosystems of northern Australia were both a seasonal carbon 

source and a seasonal carbon sink.  During the dry season, there was no net tree growth and no 

coarse root growth (zero increment).  Fine root production during this period accounted for 

less than 20% of total annual production. As a consequence, dry season NPP was only 1.9 t  

ha
-1

 compared to 9.1 t ha
-1

 for the wet season.  Mean daily temperatures are not strongly 

seasonal and maintenance respiration rates continued over the dry season at rates similar to 

those in the wet. The maintenance of autotrophic respiration (Ra) for the duration of the annual 

wet-dry cycle, coupled with a strongly seasonal pattern of GPP resulted in this ecosystem 

becoming a net carbon source during the dry season. 
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All productivity indices (GPP, NPP, NEP) describe a savanna ecosystem where carbon fluxes 

are tightly coupled to seasonal patterns of rainfall and resultant changes to soil and 

atmospheric water content. This feature has been observed at leaf (Prior et al. 1997a,b, Eamus 

et al. 1999) and canopy scale (Hutley et al. 2000, 2001, Eamus et al. 2001) and is evident at 

the ecosystem scale (this study).  This fact indicates that size and timing of the wet season 

plays a critical role in controlling the carbon balance of tropical savannas. 

 

True savanna sink strength - Net Biome Productivity 

 

It is likely that this value of NEP presented here overestimates the long-term carbon sink 

strength, NBP.  NBP is used to further describe long-term dynamics of carbon storage of an 

ecosystem as non-respiratory losses are taken into accounted (Schulze et al. 2000).  The 

temporal scale of NBP is longer than short-term indices of production such as NEP, NPP and 

GPP and reflects the frequency of longer-term episodic disturbances, which for these savanna 

ecosystem, is likely to be dominated by carbon losses due to fire and cyclones.  Fires of the 

humid savannas of northern Australia are wide spread and account for 50-70% of all fires of 

the Australia continent, consuming up to 23.6 Mt of biomass per annum (Russell-Smith et al. 

2002). Therefore a true assessment of tropical savanna carbon sink strength must include some 

estimate of this loss, thereby allowing a calculation of NBP. 

 

For estimation of the amount of carbon losses from fire, the following equation was employed: 

 

Lc = Bfl    c                                                                
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where, Lc is the amount of carbon lost due to fire (t C ha
-1

), Bfl is fuel load,  is combustion 

efficiency of fires and c is the carbon fraction of the biomass (= 0.5). 

 

Fuel loads do not exceed 10 t ha
-1

 across the tropical savanna because of the effect of frequent 

fires and decomposition processes (Williams et al. 1999). In Australia, Walker (1981) reported 

the fuel load of monsoon tall-grass and mid-grass systems of 4 and 1 t ha
-1

, respectively.  

Between 1994 to 1997, fuel loads in savannas of the Northern Territory ranged from 3 to 5 t 

ha
-1

 (Russell-Smith et al. 2001), with a mean of 4 t ha
-1

.  In the present study, grass biomass 

was typically 2 t ha
-1

 with litterfall and understorey production 1.7 and 0.9 t ha
-1

 y
-1

 

respectively, giving a value of approximately 4.6 t ha
-1

 y
-1

.  The combustion efficiency of fuel 

was assumed to be 0.72 as given by the Australian National Greenhouse Gas Inventory (2000).  

This gives a carbon loss due to fire of approximately 1.5 t C ha
-1 

y
-1

 
 
if burnt, giving an NBP of 

2.3 t C ha
-1

 y
-1

 (Table 8.3).  This means that losses due to fire account for only 14% of NPP in 

this savanna ecosystem. This is similar to the value given by Scholes and Hall (1996) and 

supports the view that even in annually burned savannas, a small fraction (<20%) of the NPP 

is consumed by fire (Scholes and Hall 1996).  Two-thirds ecosystem NPP occurs below-

ground, with roots and lignotubers protected from fire. 

 

To demonstrate the impact of fire on NEP, we can compare emissions of carbon due to 

burning from the NT as given by Beringer et al. (1995).  Using these data, collected during a 

low fire year (1992), 5% of the total area of the NT was burnt and resulted in an emission from 

Eucalypt savanna areas of 9 Mt of carbon.  Assuming an NEP for this area (53 000 km
-2

, 
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Beringer et al. 1995) of 3 t C ha
-1

 y
-1

 (this area includes regions of lower rainfall than current 

site) gives a carbon sink strength of 16 Mt, suggesting 50% of sequestered carbon could be 

lost to fire.  However, average fire years result in burning of between 10-15% of the NT, with 

fires distributed mostly in humid savanna Eucalypt communities (AGO-NGGI 2000).  In the 

NT, E. tetrodonta / E. miniata dominated savanna occupies approximately 130 000 km
-2

 above 

15 
o
S latitude (Wilson et al. 1990) and assuming an NEP of 3 t ha

-1
 y

-1
 for this area gives a 

sequestration of approximately 40 Mt C y
-1

.  Simple scaling of the Beringer et al. (1995) 

estimates for the humid savanna to this larger burnt area of an 'average' year would result in an 

a loss of carbon due to fire of approximately 20 Mt, again 50% of the carbon sequestered in 

any year.  At a regional scale, extreme fire years could possibly result in no net gain or even a 

temporary annual net source of carbon for the region. Much of this fire-emitted carbon is lost 

to the region following fire as there is little or no fixation by savanna vegetation during the 

mid to late dry season.  In addition, atmospheric flow models for northern Australia for the dry 

season months suggest a mass transport of smoke and fire emissions from northern Australia 

towards south-east Asia (Tapper 2001), representing a net loss to the region. 

 

There is a deal of uncertainty in these estimates, but they do suggest that the impact of fire 

may is significant and NBP for the mesic, coastal savannas of northern Australia could range 

from near 0 to almost 3 t ha
-1

 y
-1

, depending on fire occurrence and intensity.  More precise 

spatial estimates of CO2 flux and fire emission are clearly required to estimate the true 

source/sink strength of Australia's tropical savannas. 
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Conclusions 

 

Data provided in this paper describes a savanna with generally low above-ground biomass, 

given a climate of high annual rainfall and temperatures.  Above-ground biomass and 

productivity appears to be constrained by the wet-dry cyclical climate and the resultant fire 

regime. In other savanna ecosystems, fire can be a stimulatory process, via increased nutrient 

availability and a release of competition (Hoffmann 2002).  However, in these savannas, 

where fire is frequent and widespread, it ultimately constrains productivity.   Ecosystem 

productivity is dominated by the annual pulse of fine root and grass growth and residence time 

of carbon is short. Shifts in fire regime, either via climate change and predicted increases in 

fire occurrence for northern Australia (Cary 2002) or via altered land management, will have  

profound impacts on carbon sequestration rates of this biome. 
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Table 1  Sources of data used to calculate components of the savanna carbon balance.  

Measurements were divided into wet (November to April) and dry (May to October) seasons. 

Component Definition Data source 

Bab Above-ground 

biomass 

production 

Annual increment in DBH of 20 trees monitored using 

dendrometers 

Biomass components (leaf, branch and stem) calculated 

using regression equations (O'Grady et al. 2000) 

Production of all components calculated from increment 

in tree DBH 

Bcr coarse root 

production 

Derived from Johnson and Risser 1974, using AGB, 

Bab and BGB. 

AGB and BGB were measured using a harvesting 

method (Satoo and Madgwick 1982) and trench method 

(Komiyama et al. 1987) 

Bfr fine root 

production 

Measured using root ingrowth bags and root window 

methods (Vogt et al. 1998) 

Rlc leaf construction 

respiration 

Derived from Ryan (1991) and Keith et al. (1997) using 

leaf production 

Rlm leaf maintenance 

respiration 

Derived from Ryan (1991) using average temperature of 

Darwin airport and total leaf N content for dominant 

Eucalypt tree from Eamus and Prichard (1998) 

Rwc wood Derived from Ryan (1991), Keith et al. (1997) using 
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construction 

respiration 

woody (branch and stem) production 

Rwm wood 

maintenance 

respiration 

Derived from Ryan and Waring (1992) using an average 

temperature in Darwin airport and sapwood volume 

(O'Grady 1999) 

Fcs soil CO2 flux Soil respiration was measured using close chamber 

technique (Chen et al. 2002). 

Rr root respiration Assumed to be 50% of total soil respiration (Keith et al. 

1997) 

Lc carbon loss due to 

fire 

Derived from AGO-NGGIC 1994 using savanna fuel 

loads of 4.0 t ha
-1

 and combustion efficiency of 0.72 
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Table 2 Estimated stocks of carbon (t C ha
-1

) in Eucalypt open forest savannas of Northern 

Australia based on measurements at a range of sites, Howard Springs, Humpty Doo and the 

Wildlife Park. 

 

Parameter Range Mean (s.d.) 

Above ground   

(1) tree foliage 0.6 - 1.1 0.9 (0.2) 

(2) tree branches 4.2 - 12.2 8.2 (2.5) 

(3) tree stems 12.9 - 28.0 21.7 (4.8) 

(4) above-ground live tree = (1)+(2)+(3) 17.7 - 41.2 30.7 (7.3) 

(5) dead stems 0.2 - 3.2 0.9 (0.9) 

(6) understorey 0.7 - 1.5 1.0 (0.3) 

(7) litter-layer 0.8 - 1.4 1.0 (0.2) 

(8) Total above-ground = (4)+(5)+(6)+(7) 19.4 - 47.3 33.6 (7.7) 

Below-ground   

(9) fine roots 0.2 - 0.8 0.5 (0.2) 

(10) coarse roots 5.2 – 38.8 18.9 (12.4) 

(11) Total roots = (9)+(10) 5.4 – 39.6 19.3 (12.6) 

(12) soil organic matter 111.5 – 198.9 151.3 (32.9) 

(13) Total below-ground = (11)+(12) 116.9 – 238.5 170.6 (45.5) 

Ecosystem    

(14) Total live tree = (4)+(11) 23.1 – 80.8 50.0 (19.9) 

(15) Total vegetation = (8)+(11) 24.8 – 86.9 52.9 (20.3) 
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(16) Ecosystem total = (8)+(13) 136.3 – 285.8 204.2 (53.2) 

Ratios    

Above-ground live tree/ Total live tree = (4)/(14)  0.61 

Total above-ground/ Total vegetation = (8)/(15  0.64 

Total above-ground/ Ecosystem total = (8)/(16)  0.16 

Total below-ground/ Ecosystem total = (13)/(16)  0.84 

Total live tree/ Ecosystem total = (14)/(16)  0.24 

Soil organic matter/ Ecosystem total = (12)/(16)  0.74 
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Table 3  Seasonal and annual C fluxes (t C ha
-1

 season
-1

 or t C ha
-1

  y
-1

) for a Eucalypt open 

forest savanna of northern Australia. 

 

Processes Dry 

season 

Wet 

season 

Annual 

Above-ground    

(1) net tree biomass increment 0.0 1.6 1.6 

(2) litter-fall 0.6 0.3 0.9 

(3) net understorey biomass increment 0.0 0.5 0.5 

(4) respiration of tree foliage 0.7 0.8 1.5 

(5) respiration of tree wood 0.2 1.0 1.2 

(6) C allocation above-ground = (1)+(2)+(3)+(4)+(5) 1.5 4.2 5.7 

Below-ground    

(7) net coarse root biomass increment 0.0 1.0 1.0 

(8) net fine root production 1.3 5.7 7.0 

(9) respiration of roots  2.1 5.0 7.1 

(10) Total soil respiration 4.2 10.1 14.3 

(11) C allocation below-ground = (7)+(8)+(9) 3.4 11.7 15.1 

Soil    

(12) C input = (2)+(7)+(8) 1.9 7.0 8.9 

(13) C output = (17) 2.1 5.1 7.2 

(14) net soil C exchange = (12)-(13) -0.2 1.9 1.7 

Ecosystem    
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(15) Total respiration = (4)+(5)+(10)  5.1 11.9 17.0 

(16) autotrophic respiration = (4)+(5)+(9) 3.0 6.8 9.8 

(17) heterotrophic respiration = (15)-(16) 2.1 5.1 7.2 

(18) C allocation ecosystem total = (6)+(11) 4.9 15.9 20.8 

(19) Lc = fuel burnt 1.5 0.0 1.5 

Ratios    

(20) C allocation above-ground/ ecosystem = (6)/(18) 30.6% 26.4% 27.4% 

(21) C allocation below-ground/ ecosystem = (11)/(18) 69.4% 73.6% 72.6% 

(22) C allocation above-ground/below-ground = (6)/(11) 44.1% 35.9% 37.7% 

Productivity    

(23) NPP = (1)+(2)+(3)+(7)+(8) 1.9 9.1 11.0 

(24) GPP = (23)+(16) 4.9 15.9 20.8 

(25) NEP = (23)-(17) -0.2 4.0 3.8 

(26) NBP = (25)-(19) -1.7 4.0 2.3 

(27) NPP/GPP = (23)/(24) 38.8% 57.2% 52.9% 

Mean carbon residence time (years)    

(28) Biomass   5 

(29) Soil and litter   17 

(30) Total ecosystem   19 

 

 

 

 



 48 

Table 4 Comparison of ANPP (t C ha
-1

 y
-1

), NPP (t C ha
-1

 y
-1

) and ratio of ANPP/NPP for 

savanna ecosystems, other Australian Eucalypt communities and tropical forests.* 

Forest type ANPP NPP ANPP 

/NPP 

Rainfall 

(mm) 

Reference 

 

Savannas      

Eucalypt open-forest savanna, 

NT 

3.0 11.0 0.27 1750 This study 

Drought-deciduous woodland 9.7 12.7 0.76  Menaut and Cesar 

(1979)** 

Tropical savanna (global mean)  5   300- Scholes and Hall 

(1996) 

Drought-deciduous woodland 

(Sth America) 

2.1 4.4 0.48  Scholes and Hall 

(1996) 

Sahelian shrub savanna  2.2   450 Hanan et al. (1998) 

Trachypogon savanna (Sth 

America) 

4.6   1300 San Jose and Montes 

(1989) 

Drought-deciduous woodland, 7.5 15.7 0.48  Menaut and Cesar 

(1979)** 

Drought-deciduous woodland, 8.6 13.2 0.65  Menaut and Cesar 

(1979)** 

Drought-deciduous woodland, 6.5 12.3 0.53  Menaut and Cesar 

(1979)** 

Tropical grasslands (Thailand) 7.2 10.0 0.72  Long et al. (1992)** 

Tropical grasslands (Australia) 2.3 3.6 0.64  Christie (1978)** 

Australian Eucalyptus forests      
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Eucalypt woodlands, Box-

ironbark forest 

0.5-2.0   350-

500 

Grierson et al. (1992) 

E. regnans (young) 9   1000 Grierson et al. (1992) 

E. regnans (mature) 6.5   1000 " 

E. regnans (regenerating) 36    Attiwill (1991) 

E. obliqua (45 year old) 14    Attiwill (1979) 

E. pauciflora (mature) 12 17 0.71 1200 Keith et al. (1997) 

Tropical forest      

Tropical rainforest (global 

mean) 

8.7 15.6 0.56 2200 Malhi et al. (1999) 

*ANPP is above-ground NPP and NPP includes both above and below ground, **cited in 

Scholes and Hall (1996). 
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Table 5  Ratio of total biomass carbon to NPP (carbon residence time) for a range of 

ecosystems. 

 

Ecosystem Residence time (y) Reference 

Savanna 5 This study 

Savanna (global mean) 3.4 Scholes and Hall (1996) 

Savannas (global mean) 4.4 Whittaker and Likens (1973)** 

Woodland and 

shrubland (global mean) 

8.6 Whittaker and Likens (1973)** 

Tropical rainforest  16 Malhi et al. (1999) 

Temperate forest 10 Malhi et al. (1999) 

Boreal forest 12 Malhi et al. (1999) 

** cited from Scholes and Hall (1996). 
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ΔBcr 1.0 

ΔBfr 5.7 

GPP 15.9 
Rt 11.9 Rh 5.1 

Rl 0.8 

Rw 1.0 

Rr 5.0 

Ra 6.8 

L 0.3 

Δ Bab 1.6 

1.6 

Δsoc 1.9 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔBcr 0 

ΔBfr 1.3 

GPP 4.9 Rt 5.1 Rh 2.1 

Rl 0.7 

Rw 0.2 

Rr 2.1 

Ra 3.0 

L 0.6 

Δ Bab 

0 

Δsoc -0.2 

(a) 
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ΔBcr 1.0 

ΔBfr 7.0 

GPP 20.8 Rt 17.0 Rh 7.2 

Rl 1.5 

Rw 1.2 

Rr 7.1 

Ra 9.8 

L 0.9 

Δ Bab 1.6 

Δsoc 1.7 

(c) 

 

Figure 1 Estimated seasonal and annual carbon flux in the savanna studied. All units are t C 

ha
-1

 season
-1

 or t C ha
-1

 y
-1

. (a) dry season; (b) wet season; (c) annual. GPP, gross primary 

production; Rt, total respiration; Rh, heterotrophic respiration; Ra, autotrophic respiration; Rl, 

leaf respiration, Rw woody respiration, Rr, root respiration; L, litterfall; ΔBab, above-ground 

biomass increment; ΔBfr, fine root biomass increment; ΔBcr, coarse root biomass increment; 

Δsoc, soil organic carbon change. 

 


