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Abstract 21 

Rainfall, temperature, and solar radiation are important climate factors, which determine crop 22 

growth, development and yield from instantaneous to decadal scales. We propose to identify 23 

year patterns of climate impact on yield on the basis of rain and non-rain weather. There are 24 

interrelated impacts of climatic factors on crop production within a specific pattern.  25 

Historical wheat yield data in Queensland during 1889-2004 were used. The influence of 26 

meteorological conditions on wheat yields was derived from statistical yield data which were 27 

detrended by nine-year-smoothing averages to remove the effects of technological 28 

improvements on wheat yields over time. Climate affects crop growth and development 29 

differently over different growth stages. Therefore, we considered the climate effects at both 30 

vegetative and reproductive stages (before and after flowering date respectively) on yield. 31 

Cluster analysis was employed to identify the year patterns of climate impact.  Five patterns 32 

were significantly classified. Precipitation during the vegetative stage was the dominant and 33 

beneficial factor for wheat yields while increasing maximum temperature had a negative 34 

influence. Crop yields were strongly dependent on solar radiation under normal rainfall 35 

conditions. As the effect of rainfall on soil water is relatively long lasting, its beneficial effect 36 

in vegetative stage was higher than its effect during the reproductive stage.  37 

The Agricultural Production Systems sIMulator (APSIM) was evaluated using long-term 38 

historical data to determine whether the model could reasonably simulate effects of climate 39 

factors for each year pattern. The model provided good estimates of wheat yield when 40 

conditions resulted in medium yield levels, however in extremely low or high yield years, 41 

corresponding to extremely low or high precipitation in the vegetative stage, the model 42 
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tended to underestimate or overestimate. Under high growing season precipitation, 43 

simulations responded more favorably to reproductive stage rainfall than measured yields.  44 

 45 

Key words: Climate pattern, climate variability, yield, model validation, APSIM 46 

47 
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1. Introduction 48 

Crop growth, development and grain yields are greatly influenced by climatic factors, 49 

including solar radiation, precipitation, and temperature. These factors are closely related and 50 

affect yield in different ways. Consequently, understanding the factors that determine crop 51 

yield is essential to forecasting regional crop production, improving crop management 52 

techniques and adopting feasible strategies to deal with climate change (e.g., Qian et al., 2008; 53 

Yu et al., 2008). 54 

Numerous studies have attempted to quantify the crop-climate relationship through the 55 

application of statistical regression analysis over the entire and/or critical growing period 56 

(Nicholls, 1997; Lobell and Asner, 2003; Lobell et al., 2006, 2007). Nicholls (1997) 57 

attributed the increase in wheat yields in Australia to the decrease in frost frequency. Lobell 58 

and Asner (2003) reported significant relationships between growing season temperatures and 59 

corn and soybean yields based on county level data in the USA. Huff and Neill (1982) 60 

concluded that precipitation controlled the corn yields over five Midwestern states in the 61 

USA. A number of studies have shown that yields from a variety of crops were linearly 62 

related to seasonal crop water use or available water at planting as influenced by precipitation 63 

in dry regions (Nielsen, 1997, 1998, 2001; Nielsen et al., 2002, 2006). Large-scale climate 64 

events, such as ENSO and Monsoon, also affect crop yields, through alterations in rainfall 65 

and temperature regime (Hansen et al., 1998; Podestá et al., 1999, 2002; Potgieter et al., 2005; 66 

Sultan et al., 2005). These studies illustrated definitive correlations among crop yields and 67 

climatic factors. However, those climatic factors influencing crop yields are often correlated 68 

with each other. For example, rainfall increases soil water, but is also associated with 69 
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decreases in solar radiation and daytime temperature. In humid areas where precipitation is 70 

abundant but solar radiation is limited, the latter can be the dominant factor defining crop 71 

yield, whereas in dry regions where precipitation is low, yield is mainly limited by water 72 

availability (Yu et al., 2001). Furthermore, the limiting climatic factors for crop yield may 73 

change with growth stages. 74 

Wheat yield varies from year to year because of the effect of management practices and 75 

weather conditions (Thompson, 1969; Baier, 1973). The general increase in yield over time 76 

came from technological improvements such as adoption of new cultivars and 77 

increasechanges in nitrogen application and other management options. Through some 78 

statistical approaches such as fitting, filtering (Chatfield, 1996; Manly, 1997), the time trend 79 

of crop yield due to technologicaly improvements can be approximately eliminated, i.e., 80 

detrending, which provided pathways for studying the impact of climate variations on crop 81 

yield. 82 

In previous work, crop yields were defined in three general categories: potential, 83 

attainable and actual yield levels (Rabbinge, 1993). Potential yield was defined as the crop 84 

yield determined only by solar radiation and temperature. When available soil water or 85 

nutrients cannot meet the demands of crop growth, potential yield will decline to the 86 

attainable yield level. Crop growth can also be affected by pests, diseases, and weeds, 87 

resulting in actual crop yield. The gap between actual and attainable yields can be bridged 88 

through the use of pesticides, fungicides and herbicides and other effective counter measures. 89 

However, climatic factors, such as temperature and solar radiation cannot be controlled by 90 

farmers over large areas, and the deficiency in precipitation can only be compensated for if 91 
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irrigation is applied.  92 

Since the factors limiting crop yields are variable with different climate scenarios 93 

(Eghball and Varvel, 1997; Lamb et al., 1997), it is necessary to quantify their relationships 94 

separately. Applying cluster analysis to multi-year crop yield data may be an effective means 95 

to identify temporal yield patterns (Jaynes et al., 2003). Cluster analysis has been widely 96 

adopted to examine crop-climate interactions (Dobermann et al., 2003; Jaynes et al., 2003; 97 

Perez-Quezada et al., 2003; Roel and Plant, 2004a, b; Jaynes et al., 2005), including the 98 

effects of ENSO on crop yields (Potgieter et al., 2005). It provides a basis to identify the 99 

underlying limiting climatic factors for crop yields over long time periods given that non-100 

climatic effect such as improved varieties and management practices can be statistically 101 

eliminated. 102 

An alternative to cluster analysis and other statistical methods that can help define 103 

relationships between crop yield and climate is the use of crop models, such as APSIM 104 

(Keating et al., 2003), CERES (Ritchie et al., 1998), ORYZA (Bouman and Van Lar, 2006), 105 

WOFOST (World Food Study, Van Keulen et al., 1986) and RZWQM (Root Zone Water 106 

Quality Model, Ahuja et al., 2000). Crop models are designed to describe crop growth and 107 

development processes in simple or complex manners, which can help to understand climate 108 

constraints on crop growth and yield (Ritchie et al., 1998). As crop models are always a 109 

simplification of the real system, they must be validated against experimental data for their 110 

suitability under specific climate and soil conditions (Wallach, 2006). Crop models are 111 

regularly validated against experimental data over several years, but confidence in the model 112 

outputs may be low due to the fact that model validation may not have covered the very large 113 
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range of weather conditions normally encountered in the long-term weather record. 114 

A key problem in the modeling community is that model validation generally lacks 115 

sufficient data over the long term (multi-decadal) to represent all possible climatic patterns in 116 

a specific area (Yunusa et al., 2004). Crop models cannot be validated for every climatic 117 

condition and also may have limitations with respect to scaling-up to wider climatic 118 

conditions. This deficiency of crop models can produce uncertainty with respect to model 119 

applications. 120 

Information derived from statistical methods based on cluster analysis and correlation 121 

analysis can be useful for evaluating crop models’ performance to interpret the interactive 122 

effects of climatic factors on crop yields over long time periods. Therefore, the aims of this 123 

paper are twofold: (1) to identify the factors which limited winter wheat yields at different 124 

growth stages in Queensland, Australia; and (2) to identify interactive effects of climatic 125 

factors on wheat yields by validating computer model simulations of wheat yield against 126 

long-term historical yield data. 127 

2. Materials and methods 128 

2.1. Climatic data 129 

Well-processed and quality-checked historical climatic data (daily maximum and 130 

minimum temperatures, solar radiation, and precipitation) during the period from 1889 to 131 

2004 at Dalby (–27.18º in latitude, 151.26º in longitude), Darling Downs of Queensland, 132 

Australia were obtained from Australian Bureau of Meteorology (see the web of SILO at 133 

http://www.bom.gov.au/silo/). Each climatic variable during May-Nov. was selected for 134 
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analysis. This time period represents the growing season length for winter wheat in 135 

Queensland, Australia (Hochman et al., 2009). The wheat growing season was simply divided 136 

into two stages: vegetative (sowing to flowering stages) and reproductive (flowering to 137 

maturity stages), corresponding to the periods of May to Sep. and Oct.-Nov. respectively. 138 

Fig. 1 shows the variation of precipitation during both vegetative and reproductive stages. 139 

During the vegetative stage, precipitation ranged from 32 to 450 mm (average, μ=179 mm; 140 

standard deviation, σ=82 mm). During the reproductive stage, it fluctuated between 28 and 141 

328 mm (μ =134 mm; σ=69 mm). The precipitation during the vegetative stage was less 142 

variable than that during reproductive stage, and no significant trend was found in either 143 

stage (Fig. 1). 144 

2.2. Wheat yields  145 

Historical wheat yield data from 1889 to 2004 in Queensland, Australia, were obtained from 146 

the Australian Bureau of Agricultural Resources Economics (ABARE, 147 

http://www.abareconomics.com). Wheat yield in Queensland varied widely from year to year 148 

during the period between 1889 and 2004. The average wheat yield (μ) was 1,133 kg ha
-1

 149 

(σ=436 kg ha
-1

) (Fig. 2). The yield fluctuated over a baseline of a time trend of yield increase 150 

due to technological improvements. The yield trend in the i
th
 year was the average yield over 151 

9nine-years with respective 4 years before and after the i
th
 year. To eliminate non-climatic 152 

effects on yields, the detrended yield was obtained by subtracting trend yield from the actual 153 

yield. This 9-year smoothing average method was applied to remove trends in yields.assumed 154 

to eliminate period variation of climate (Handler and Handler, 1983). Due to higher 155 

production in recent decades, the detrended yield varied greatly. So, we divided detrended 156 
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yield by the average yields to get similar amplitude of yield variation during 1889-2004. In 157 

short, the detrended yield is the difference between the actual yield in the i
th

 year (Yi) and 158 

nine-year-smoothing average yield (Y0). The relative detrended yield is the ratio of 159 

detrendted and the average yield, i.e., (Yi-Y0) /Y0, which is mainly related to weather 160 

conditions. 161 

Since the high-quality and long-term yield data were available at the state level, we 162 

choose to use climate data at one site to avoid averaging meteorological variables over space. 163 

We selected Dalby to represent the climate of the entire wheat belt of Queensland. Dalby is 164 

located in the main producing region of Darling Downs, in Queensland. The wheat yields and 165 

planted areas at Darling Downs and the entire state in limited years were compared to justify 166 

the method (Fig. 3). A reasonable 1:1 relationship (r
2
 = 0.92) existed for wheat yields. 167 

Therefore, the yield data of the entire Queensland state correspond well with that of Darling 168 

Downs. 169 

2.3. Methods of cluster analysis for year pattern identification 170 

Crops accumulate biomass and develop reproductive apparatus in vegetative growth, which 171 

occurs before flowering. After that, crops experience reproductive growth, when part of 172 

photosynthate is allocated to seeds and carbohydrate previously stored in leaves and stems is 173 

transported to seeds. These two growth stages have diverse assimilate partitioning, which 174 

may respond to climate differently (Hay and Porter, 2006). The average values of climatic 175 

variables were calculated for each growth stage of a year.  176 

To identify significant climatic factors influencing wheat yield, a two-step procedure 177 
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was considered. First, we assumed climate determined yield, and grouped rainfall, 178 

temperature and radiation into 8 clusters. Second, we tested whether wheat yield distribution 179 

in each cluster is significantly different to any other one. Cluster analysis was applied to 180 

identify agro-climatological year patterns in Queensland, Australia, based on historical 181 

meteorological data. The K-means method of clustering was adopted using SPSS (SPSS 16.0) 182 

after maximum and minimum temperatures, precipitation and solar radiation averaged or 183 

summed from daily values for both vegetative and reproductive stages were standardized.   184 

The yield and corresponding meteorological variables (rainfall, temperature, and solar 185 

radiation) in two periods were used to classify clusters. Different groups (patterns) can be 186 

divided with significance and non-significance levels. We applied the Kolmogorov–Smirnov 187 

(K-S) tests to ensure each cluster is significantly different from others. Two patterns were 188 

aggregated into one, if there is no significant difference between them. The method was 189 

repeated until the difference between any patterns was significant. 190 

2.4. APSIM simulations 191 

The APSIM was developed and used for improving risk management under variable climate 192 

(McCown et al., 1996; Keating et al., 2003). It is a crop model that is able to simulate crop 193 

growth and development, soil water and nitrogen dynamics and the interactions among 194 

climate, soil, crop and management practices. These processes are represented as modules 195 

which can be readily connected to a central interface engine to simulate cropping systems 196 

using conditional rules. The model runs on a daily time-step with daily weather information 197 

(maximum and minimum temperature, rainfall and solar radiation). The APSIM version 5.3 198 

was applied to simulate the effects of climatic factors on wheat yields based on long-term 199 
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historical yield data in Queensland, Australia. 200 

The APSIM has been widely tested against field measurements under a range of growing 201 

conditions in Australia (Asseng et al., 1998, 2000; Probert et al., 1998). In the simulations of 202 

this study, specific soil characteristics (i.e., saturated water content, drained upper limit, lower 203 

limit, bulk density, and nutrient properties, such as soil organic C, organic C biomass fraction, 204 

inert organic C fraction, and nitrate concentration) required for the APSIM model were based 205 

on Probert et al. (1998). The crop genetic parameters were obtained from Asseng and van 206 

Herwaarden (2003). The parameterized APSIM model was used to simulate wheat yield with 207 

the historical climate data from 1889 to 2004. The same wheat variety was used for all 208 

simulations, which permits analysis of the impact of only climate variations on crop growth. 209 

3. Results 210 

3.1. Wheat yield-climatic relationships 211 

The relative detrended yields were significantly (P 0.001) correlated with maximum and 212 

minimum temperatures, solar radiation, and precipitation during the vegetative stage. 213 

However, during the reproductive stage, only maximum and minimum temperatures showed 214 

significant correlation with the relative detrended yields, not precipitation and solar radiation 215 

(Table 1). 216 

These apparent relationships between yield and sole climatic variable may not reflect its 217 

actual effect. Rainfall is normally the dominant factor affecting wheat production in this 218 

region, but temperatures and solar radiation will affect wheat yields as well, and precipitation 219 

is related to both temperature and solar radiation. Fig. 4 shows correlations between 220 
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temperature and precipitation, and between solar radiation and precipitation averaged over 221 

the entire wheat growing period (May–Nov.). Maximum temperature and solar radiation 222 

significantly decreased when precipitation increased. Precipitation contributed 44.8% in the 223 

variation of maximum temperature and 42.4% in that of solar radiation. Although minimum 224 

temperature increased with precipitation, the increase rate was 0.28 degree/100 mm and 225 

rainfall only contributed 11.7% in its variation, which is too small to be considered (Fig. 4). 226 

Rain and non-rain weather are two distinct types of meteorological phenomena that 227 

interact and influence crop growth. In both vegetative and reproductive periods, high 228 

precipitation was usually accompanied by low maximum temperature and low solar radiation 229 

(Fig.4, Table 2). Precipitation also showed a close relationship with minimum temperature in 230 

the vegetative stage, but it was not significant during the reproductive period (Table 2). 231 

Direct and indirect effects of precipitation on wheat yield are illustrated in the Fig. 5. 232 

Precipitation events increase soil water content, and decrease solar radiation and daily 233 

temperature. Effects of soil water, solar radiation, and temperature on wheat yield can be 234 

positive or negative. Different combinations of these variables contributed to different levels 235 

of crop yield. Solar radiation and temperature regularly exert simultaneous effects on crop 236 

growth. However, precipitation events are discrete, and have potentially long term-effects on 237 

soil water. Therefore, precipitation during the vegetative phase plays the most important role 238 

in affecting crop yield among all climatic factors considered. 239 

3.2 Climatic year patterns of wheat yield 240 

After cluster analysis was applied to yield and meteorological variables during both 241 
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vegetative and reproductive stages and the relative detrended wheat yield data, five climatic 242 

year patterns for wheat yield were identified (Pattern A, B, C, D, and E in Fig. 6). The mean 243 

of each pattern were –0.384, –0.192, 0.012, 0.196, and 0.376, respectively (Fig. 6).  244 

As shown in Table 1, precipitation during the vegetative stage for the five patterns 245 

exhibited large differences, from 96 mm to 337 mm. In the highest precipitation pattern (E), 246 

solar radiation was lowest (2248 MJ m
-2

), the maximum temperature was lowest (20.3 ºC), 247 

but the minimum temperature was highest (7.7 ºC). In contrast, solar radiation in the lowest 248 

precipitation pattern (A) was larger (2452 MJ m
-2

), the maximum temperature was highest 249 

(22.3 ºC), but the minimum temperature was lowest (6.3 ºC). Solar radiation varied from 250 

2340 to 2470 MJ m
-2

, and precipitation varied from 96 to 220 mm across the other three 251 

patterns (B, C, and D). Greater precipitation during the vegetative stage increased crop yield. 252 

Considering all of the climatic variables, precipitation during the vegetative stage is the 253 

dominant factor determining wheat yield. This also influences changes of other climate 254 

variables. Rainfall decreased maximum temperature and solar radiation, which resulted in 255 

their negative correlation with relative detrended yield when rainfall is favorable for wheat in 256 

the vegetative stage. 257 

No significant correlation existed between crop yields and precipitation or solar radiation 258 

during the reproductive stage (Figs. 7f and 7h). Crop yields were significantly correlated with 259 

maximum and minimum temperatures. Maximum temperature during the reproductive stage 260 

in Queensland region exceeded the optimal temperature for crop growth and limited yield 261 

formation, and minimum temperature is high enough to limit crop yield probably through its 262 

impact on respiration. 263 
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The direct and indirect impacts of precipitation can be advantageous or disadvantageous 264 

to wheat yield, as shown in Fig. 7. Precipitation during the reproductive stage did not show a 265 

significant correlation with crop yield. The highest precipitation (178 mm) produced medium 266 

yield (Pattern C, Table 1), which is obviously less than the crop yield for the Pattern E where 267 

precipitation was 151 mm. This negative impact of precipitation on crop yield may directly 268 

come from water-logging due to excessive precipitation, and may also indirectly come from 269 

the effects of decreased solar radiation, which was co-varied with the precipitation since the 270 

reproductive precipitation was found to be significantly and negatively correlated with 271 

maximum temperature and solar radiation (Table. 2). Higher wheat yields were produced 272 

under cooler temperatures. Patterns A and D were similar to each other in terms of 273 

precipitation (88 mm and 97 mm) and solar radiation (1506 MJ m
-2

 and 1466 MJ m
-2

), but 274 

relative detrended wheat yields were very different (–0.384 and 0.196), indicating that during 275 

the reproductive stage crop yields were more influenced by maximum temperature (Table 1 276 

and Fig. 7). 277 

In terms of the total precipitation during the entire growing season, patterns C and D had 278 

similar levels of total precipitation (357 mm vs. 317 mm), but the relative detrended crop 279 

yields showed large differences. This is mainly due to the difference in the distribution of 280 

precipitation between the two growth stages. Pattern B was characterized by low precipitation 281 

in the vegetative stage and medium precipitation in the reproductive stage, which led to a low 282 

crop yield. This pattern was called “the low vegetative rainfall-medium reproductive rainfall-283 

low yield (LML)”. In contrast, pattern D had high vegetative precipitation and low 284 

reproductive precipitation, which contributed to a high crop yield. The pattern was called 285 



 15 

“high vegetative rainfall-low reproductive rainfall-high yield (HLH)”. Pattern C had medium 286 

vegetative precipitation and highest reproductive precipitation, which produced a medium 287 

crop yield, the MHM pattern (medium vegetative rainfall-high reproductive rainfall-medium 288 

yield). For the lowest yield level, the climatic conditions are characterized by lowest 289 

vegetative precipitation and lowest reproductive precipitation, termed as the LLL pattern. The 290 

highest yield level was associated with the highest vegetative precipitation and higher 291 

reproductive precipitation, called HMH. We found that much more precipitation during the 292 

vegetative stage contributed to higher crop yield (Patters D and E), while higher reproductive 293 

stage precipitation did not (Patterns B and C) (Fig. 7). This demonstrated that vegetative 294 

precipitation had the largest impact on final crop yields. For pattern A, due to extremely low 295 

precipitation in both growth stages, with a total value of 197 mm during the entire growing 296 

season, crop yields were extremely low (–0.384). The total solar radiation during the entire 297 

growing period was relatively high (3958 MJ m
-2

) and the maximum temperature was high 298 

(24.8 ºC) in the LLL years (Pattern A). In the HMH years (Pattern E), the cumulative growing 299 

season solar radiation (3606 MJ m
-2

) was considerably low and the maximum temperature 300 

was also low (22.4 ºC). For the other three patterns (B, C, and D), the cumulative growing 301 

season solar radiation were 3913, 3714, 3829 MJ m
-2

, respectively, indicating that crop yields 302 

increased with cumulative growing season solar radiation and that crop yields are strongly 303 

dependent on total solar radiation under normal rainfall conditions (Fig. 7). Solar radiation 304 

was not significantly correlated with crop yield during the reproductive stage (Table 1). 305 

However, crop yields may increase with increasing solar radiation under conditions when 306 

precipitation is not limiting to crop yield. 307 
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3.3. APSIM validity against statistical yields 308 

Comparisons were made to investigate whether the APSIM model could interpret the 309 

interactive effects of temperature, precipitation and solar radiation, which can be negative or 310 

positive, on wheat yield. Modeled yields are not influenced by contributions from agricultural 311 

technological advances. There is no significant increasing or decreasing trend for modeled 312 

crop yields due to the use of the same cultivar and same practices for all of the simulation 313 

years during the period of 1889–2004. 314 

We therefore applied the same normalization method deriving the relative detrended 315 

yield to the modeled yields as applied previously to the historical wheat yield data. Fig. 8 316 

showed the comparison between statistical and simulated relative yields for the five climatic 317 

patterns. Generally, the simulated yields corresponded well with statistically relative yields 318 

for patterns B, C and D (the three intermediate yield levels). However, the model 319 

underestimated the yields in the lowest yield level (A) and overestimated the yields in the 320 

highest yield level (E). This suggests that the model could be able to account for the effects of 321 

temperature, rainfall and solar radiation on wheat yields in majority of years. But for the 322 

lowest and highest yield years, corresponding to extremely dry and wet years, especially in 323 

the reproductive stage, the model exaggerated the effects of precipitation on wheat yield. The 324 

APSIM-simulated leaf area index (LAI) and total biomass was plotted for typical years in 325 

each pattern. Simulated LAI and biomass differed much among pattern years. High yield 326 

corresponded to high LAI and biomass, and LAI and biomass were low in low yield pattern 327 

years (Fig. 9). The coherence between the simulated yield and LAI and biomass indicated 328 

that yield is closely related to LAI or biomass, which is well described by the APSIM model. 329 
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Fig. 10 shows the average statistically relative yields for the five yield patterns plotted 330 

against the modeled relative yields. Although the coefficient of determination for the 331 

regression of modeled relative yields against statistically relative yields was high (0.95), the 332 

discrepancies in extremely dry and wet years were significant (regression slope = 1.51). The 333 

deficiency of the APSIM model is thus characterized as overestimating yield in very wet 334 

years and underestimating yield in very dry years. 335 

4. Conclusion and discussion 336 

Climate warming over the last century has ranged between 0.056–0.092 degree/decade (IPCC, 337 

2007). Temperature variability ranged from 3110 to 3763 degree days in the growing season 338 

in the study area. For annual crops, this is much higher than the warming trend. 339 

As rainfall in vegetative and reproductive stages exerted different effects on wheat yield, 340 

its variation will have significant implication for wheat production. Decreases in rainfall in 341 

the vegetative stage and increases in reproductive stage (Fig. 1) reduce wheat production. 342 

Maximum temperature, minimum temperature, and solar radiation were closely 343 

correlated with precipitation. These variables had measurable influences on wheat yields in 344 

Queensland. However, precipitation is considered to be the most important driving force. Our 345 

analysis suggested that the amount of precipitation in May-Sep. can be used to forecast final 346 

crop yields in advance of harvest. This will help farmers to better manage their farms prior to 347 

and post harvest (i.e. storage, transportation and labor arrangement). Thus, depending on 348 

seasonal forecasts, farmers may apply the appropriate nitrogen treatment to meet the demands 349 

of crop growth since the peak demand for nitrogen is during the phase when crops grow 350 
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fastest (Angus, 2001). When total precipitation during the period from May to Sep. is high 351 

( 214 mm), farmers need to apply more fertilizer to obtain higher yields. Otherwise reducing 352 

fertilizer rate is necessary to avoid economic loss. During the reproductive stage, increased 353 

precipitation may not increase wheat yields, possibly due to lower solar radiation from 354 

increased cloudiness in years with high rates of precipitation. The inter-relationship between 355 

precipitation and solar radiation makes both of them not significantly correlated with wheat 356 

yields during the reproductive stage. Maximum temperature during this stage had a much 357 

larger influence. High wheat yields were associated with low daytime temperatures, as 358 

reported for rice (Yu et al., 2001), corn and soybean (Lobell and Asner, 2003). A possible 359 

reason for this is that high temperatures induce heat injury to the photosynthetic mechanism 360 

(Harding et al., 1990; Law and Crafts-Brandner, 1999; Sharma and Singh 1999).  361 

Crop yield is defined by abiotic stresses over time scales of diurnal, daily, seasonal 362 

variations of climate and soil conditions. The crop growth modelling is run on daily time step, 363 

whereas the year-pattern identification in this study is based on seasonal variation, i.e., two 364 

periods of May–Sep. and Oct. –Nov.. The Australian wheat-belt is a region of very high 365 

rainfall variability. This characteristic determines distinct year patterns which can be 366 

attributed to large scale climate events, such as El Niño and Southern Oscillation (ENSO). 367 

Queensland received much more rain in La Niña years and experienced drought in El Niño 368 

years (Stone, 1998). Variability in these year patterns of climate will result in rainfall 369 

variation at hourly or daily time scales which may impact crop growth. For example, midday 370 

depression of photosynthesis due to water stress and extreme high temperature may be more 371 

frequent in drought years. Therefore, yield which varies annually within each year pattern 372 



 19 

may be influenced by the diverse daily variation of climatic factors.  373 

The APSIM model had high capability to estimate wheat yields in years when 374 

precipitation was moderate (about 400–500 mm during the growing season). When growing 375 

season precipitation was either low or too large, the model significantly underestimated or 376 

overestimated wheat yields. 377 

Climatic factors play crucial roles in determining crop yield. To understand crop-climate 378 

relations under different climatic scenarios crop models can be very useful for regional crop 379 

yield prediction and for determining effective management practices. From the perspective of 380 

climate change, understanding relationships between climate and yield can help to predict 381 

and monitor crop production and to ensure food security. The results of this paper are 382 

valuable for crop modelers and model users. Crop models must be comprehensively 383 

evaluated over long time periods so that all possible climatic scenarios can be covered. Once 384 

a CSM has been validated over multiple years, it is easy to judge which annual patterns can 385 

or cannot be simulated well. With the knowledge derived from regression analysis of crop 386 

yield to climatic factors, crop modelers will be able to improve crop models, and model users 387 

will be able to judge model accuracy under different climatic scenarios. 388 

389 



 20 

Acknowledgement This research was supported by  390 

References 391 

ABARE, Australian Bureau of Agricultural and Resource Economics, 392 

http://www.abareconomics.com/. 393 

Ahuja LR, Rojas KW, Hanson JD, Shaffer MJ and Ma L. 2000. Root Zone Water Quality 394 

Model. Water Resources Publications, Highland Ranch, CO. 395 

Angus JF. 2001. Nitrogen supply and demand in Australian agriculture. Aust. J. Exp. Agr., 41: 396 

277-288. 397 

Asseng  S, Keating BA, Fillery IRP, Gregory PJ, Bowden JW, Turner NC, Palta JA and 398 

Abrecht DG. 1998. Performance of the APSIM-wheat model in Western Australia. Field 399 

Crop Research. 57: 163-179. 400 

Asseng S and van Herwaarden AF. 2003. Analysis of the benefits to wheat yield from 401 

assimilates stored prior to grain filling in a range of environments. Plant Soil. 256: 217-402 

229. 403 

Asseng S, van Keulen H and Stol W. 2000. Performance and application of the APSIM N-404 

wheat model in the Netherlands. European Journal of Agronomy. 12: 37-54. 405 

Baier W. 1973. Crop-weather analysis model: review and model development. Journal of 406 

Applied Meteorology. 12: 937-947. 407 

Bouman BAM van Laar HH. 2006. Description and evaluation of the rice growth model 408 

ORYZA2000 under nitrogen-limited conditions. Agricultural Systems. 87: 249-273. 409 

Formatted: Font: Bol d



 21 

Chatfield C. 1996. The analysis of time series. An introduction (5th edn). Chapman & Hall, 410 

London, pp. 12-17. 411 

Dobermann A, Ping JL, Adamchuk VI, Simbahan GC and Ferguson RB. 2003. Classification 412 

of crop yield variability in irrigated production fields. Agronomy Journal. 95: 1105-413 

1120. 414 

Eghball B and GE Varvel, 1997. Fractal analysis of temporal yield site-specific management. 415 

Agronomy Journal. 89: 851-855. 416 

Handler P and Handler E. 1983. Climatic anomalies in the tropical Pacific Ocean and corn 417 

yields in the United States. Science. 220: 1155-1156. 418 

Hansen JW, Hodges AW and Jones JW. 1998. ENSO influences on agriculture in the 419 

southeastern United States. Journal of Climate. 11: 404-411. 420 

Harding SA, Guikema JA and Paulsen GM. 1990. Photosynthetic decline from high 421 

temperature stress during maturation of wheat. I. Interaction with senescence processes. 422 

Plant Physiology. 92: 648-653.  423 

Hay R, Porter J, 2006. The Physiology of Crop Yield. Blackwell Publishing. Oxford, UK. 424 

pp145-151. 425 

Hochman Z, Holzworth D and Hunt JR. 2009. Potential to improve on-farm wheat yield and 426 

WUE in Australia. Crop and Pasture Science, 60: 708-716.  427 

Huff FA and Neill JC. 1982. Effects of natural climatic fluctuations on the temporal and 428 

spatial variation in crop yields. Journal of Applied Meteorology. 21: 540-550. 429 

http://apps.isiknowledge.com.ezproxy.lib.uts.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=N16kFN2Ll7bFCI6g3I4&field=AU&value=Hochman%20Z&ut=000268643000002&pos=1
http://apps.isiknowledge.com.ezproxy.lib.uts.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=N16kFN2Ll7bFCI6g3I4&field=AU&value=Hunt%20JR&ut=000268643000002&pos=3


 22 

IPCC, 2007. Climate Change 2007: Synthesis Report.  430 

Jaynes DB, Kaspar TC, Colvin TS and James DE. 2003. Cluster analysis of spatiotemporal 431 

corn yield patterns in an Iowa field. Agronomy Journal. 95: 574-586. 432 

Jaynes DB, Colvin TS and Kaspar TC. 2005. Identifying potential soybean management 433 

zones from multi-year yield data. Computers and Electrics in Agriculture. 46: 309-327. 434 

Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, 435 

Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, 436 

Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, 437 

Freebairn DM and Smith CJ. 2003. An overview of APSIM, a model designed for 438 

farming systems simulation. European Journal of Agronomy. 18: 267-288. 439 

Lamb JA, Dowdy RH, Anderson JL and Rehm GW. 1997. Spatial and temporal stability of 440 

corn grain yields. Journal of Production Agriculture. 10: 410-414. 441 

Law RD and Crafts-Brandner SJ. 1999. Inhibition and acclimation of photosynthesis to 442 

heat stress is closely correlated with activation of ribulose-1,5-bisphosphate 443 

carboxylase/oxygenase. Plant Physiology. 120: 173-182. 444 

Lobell DB and Asner GP. 2003. Climate and management contributions to recent trends in 445 

U.S. agricultural yields. Science. 299: 1032. 446 

Lobell DB, Field CB, Cahill KN and Bonfils C. 2006. Impacts of future climate change on 447 

California perennial crop yields: model projects with climate and crop uncertainties. 448 

Agricultural and forest Meteorology. 141: 208-218. 449 

Lobell DB, Cahill KN and Field CB. 2007. Historical effects of temperature and precipitation 450 



 23 

on California crop yields. Climate Change. 81: 187–203.  451 

Manly BFJ. 1997. Randomization, bootstrap and Monte Carlo methods in biology (2nd ed). 452 

Chapman & Hall, London, pp. 225–236. 453 

McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP and Freebairn DM. 1996. 454 

APSIM: a novel software system for model development, model testing and simulation 455 

in agricultural systems research. Agricultural Systems. 50: 255-271. 456 

Nicholls N. 1997. Increased Australian wheat yield due to recent climate trends. Nature. 387: 457 

484-485. 458 

Nielsen DC. 1997. Water use and yield of canola under dryland conditions in the central 459 

Great Plains. Journal of Production Agriculture. 10: 307-313. 460 

Nielsen DC. 1998. Comparison of three alternative oilseed crops for the central Great Plains. 461 

Journal of Production Agriculture. 11: 336-241. 462 

Nielsen DC, Vigil MF, Anderson RL, Bowman RA, Benjamin JG and Halvorson AD. 2002. 463 

Cropping system influence on planting water content and yield of winter wheat. 464 

Agronomy Journal. 94: 962-967. 465 

Nielsen DC, Vigil MF and Benjamin JG. 2006. Forage yield response to water use for 466 

dryland corn, millet, and triticale in the central Great Plains. Agronomy Journal. 70: 467 

1522-1531. 468 

Perez-Quezada JF, Pettygrove GS and Plant RE. 2003. Spatial-temporal analysis of yield and 469 

the influence of soil factors in two fields in the Sacramento Valley, California. 470 

Agronomy Journal. 95: 676-687. 471 



 24 

Podestá GP, Letson D, Messina C, Royce F, Ferreyra RA, Jones J, Hansen J, Llovet I, 472 

Grondona M and O’Brien JJ. 2002. Use of ENSO-related climate information in 473 

agricultural decision making in Argentina, a pilot experience. Agricultural Systems. 74: 474 

371-392. 475 

Podestá GP, Messina CD, Grondona MO and Magrin GO. 1999. Associations between grain 476 

crop yields in Central-Eastern Argentina and El Niño-Southern Oscillation. Journal of 477 

Applied Meteorology. 38: 1488-1498. 478 

Potgieter AB, Hammer GL, Meinke H, Stone RC and Goddard L. 2005. Three putative types 479 

of El Niño revealed by spatial variability in impact on Australian wheat yield. Journal 480 

of Climate. 18: 1566–1574. 481 

Probert ME, Dimes JP, Keating BA, Dalal RC and Strong WM. 1998. APSIM's water and 482 

nitrogen modules and simulation of the dynamics of water and nitrogen in fallow 483 

systems. Agricultural Systems. 56:1-28. 484 

Qian B, Jong RD and Gameda S. 2008. Multivariate analysis of water-related agroclimatic 485 

factors limiting spring wheat yields on the Canadian prairies. European Journal of 486 

Agronomy.  30: 140-150. doi:10.1016/j.eja.2008.09.003. 487 

Rabbinge R. 1993. The ecological background of food production. In: Chadwick DJ, Marsh J 488 

(eds) Crop protection and sustainable agriculture. Ciba Found Symp. 177: 2-29. 489 

Ritchie JT. Singh U, Godwin D and Bowen WT. 1998. Cereal growth, development, and yield. 490 

In: GY Tsuji, G Hoogenboom and PK Thornton, Editors, Understanding Options for 491 

Agricultural Production, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 492 



 25 

79-98. 493 

Roel A and Plant E. 2004a. Spatiotemporal analysis of rice yield variability in two California 494 

fields. Agronomy Journal. 96:77-90. 495 

Roel A and Plant E. 2004b. Factors underlying yield variability in two California rice fields. 496 

Agronomy Journal. 96:1481-1494. 497 

Sharma AR and Singh DP. 1999. Rice. In: Smith DL, Hamel C (eds) Crop yield, physiology 498 

and processes. Springer, Berlin Heidelberg. New York, pp 109-168. 499 

Sultan B, Baron C, Dingkuhn M, Sarr B and Janicot S. 2005. Agricultural impacts of large-500 

scale variability of the West African monsoon. Agricultural and Forest Meteorology. 501 

128: 93-100. 502 

Thompson LM. 1969. Weather and technology in the production of corn in the U.S. Corn 503 

Belt. Agronomy Journal. 61:453–456. 504 

Van Keulen, H and Wolf J. (Eds.), 1986. Modelling of Agricultural Production: Weather, 505 

Soils and Crops. Simulation Monographs. Pudoc, Wageningen, The Netherlands, p. 506 

479. 507 

Wallach D. 2006. Evaluating crop models. In: Wallach D, Mkowski D and Jones JW. (Eds.), 508 

Working with dynamic crop models: evaluation, analysis, parameterization and 509 

applications. Elsevier Publishers, Amsterdam, the Netherlands, pp. 11-50. 510 

Yu Q, Wang EL and Smith CJ. 2008. A modelling investigation into the economic and 511 

environmental values of ‘perfect’ climate forecasts for wheat production under 512 

contrasting rainfall conditions. International Journal of Climatology. 28: 255-266. 513 



 26 

Yu Q, Hengsdijk H and Liu JD. 2001. Application of a progressive-difference method to 514 

identify climatic factors causing variation in the rice yield in the Yangtze Delta, China. 515 

International Journal of Biometeorology. 45: 53-58. 516 

Yunusa IAM, Bellotti WD, Moore AD, Probert ME, Baldock JA and Miyan SM. 2004. An 517 

exploratory evaluation of APSIM to simulate growth and yield processes for winter 518 

cereals in rotation systems in South Australia. Australian Journal of Experimental 519 

Agriculture. 44: 787-800. 520 

521 



 27 

Legends of figures 522 

Fig. 1. Variations of precipitation during the periods of May-Sep. (Precip5-9, solid curve) and 523 

Oct.-Nov. (Precip10-11, dash curve) at Dalby in Queensland, Australia. 524 

Fig. 2. Variations of actual yield (solid) and relative detrended yield (dash) during the period 525 

of 1889-2004 at Dalby in Queensland, Australia. 526 

Fig. 3. Comparisons of wheat yields (a) and wheat growth areas (b) between Darling Downs 527 

and Queensland. The solid line in the top panel (a) represents the linear regression, r is the 528 

correlation coefficient, and the dashed lines on each side of it represent the upper and lower 529 

95% confidence limits. The symbol 
**

 indicates  statistical significance at 0.01 level. 530 

Fig. 4. Inter-correlations between precipitation (Precip) and maximum (Tmax) and minimum 531 

(Tmin) temperatures, and solar radiation (Ra) during the wheat growing period at Dalby in 532 

Queensland, Australia. The solid line represents the linear trend for each variable. The 533 

symbol ** indicates statistical significance at 0.01 level. 534 

Fig. 5. The scheme showing the relationship between precipitation and soil water, solar 535 

radiation, and daily temperature, and their effects on crop growth and yield. + indicates 536 

positive feedback and – negative. +/- indicates that the impact can be either positive or 537 

negative. 538 

Fig. 6. Cluster analysis for the relative detrended wheat yields during the period 1889-2004 in 539 

Queensland, Australia. A, B, C, D, and E represent the relative detrended yields, –0.384, –540 

0.192, 0.012, 0.196, and 0.376, respectively. Horizontal bars and upper and lower edges of 541 

boxes indicate 10, 25, 75, and 90 percentiles, thick black line and filled circle are the median 542 
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and average, respectively. The crosses indicate all the outliers. 543 

Fig. 7. Relationship between relative detrended yield and the maximum temperature (Tmax), 544 

the minimum temperature (Tmin), precipitation (Precip), and solar radiation (Ra) during the 545 

periods of May-Sep. (indicated as 5-9) (a, c, e, and g) and Oct.-Nov. (indicated as 10-11) (b, d, 546 

f, and h). A, B, C, D, and E represent the relative detrended yields, –0.384, –0.192, 0.012, 547 

0.196, and 0.376, respectively. Horizontal bars and upper and lower edges of boxes indicate 548 

10, 25, 75, and 90 percentiles, thick black line and filled circle are the median and average, 549 

respectively. 550 

Fig. 8. Comparison between statistically and simulated relative yields during the period of 551 

1889–2004 in Queensland, Australia. Five clusters, A, B, C, D, and E represent the relative 552 

detrended yields, –0.384, –0.192, 0.012, 0.196, and 0.376, respectively. The solid line is the 553 

linear regression equation for the mean values. The dash line indicates the 1:1 line. 554 

Fig. 9. APSIM-simulated biomass and LAI for five patterns of climate impact.   555 

Fig. 10. Comparison between average statistically relative yield and average simulated 556 

relative yield by APSIM. A, B, C, D, and E represent the relative detrended yields, –0.384, –557 

0.192, 0.012, 0.196, and 0.376, respectively. The circle inside the box represents the mean 558 

yield, and the square inside the box indicates the median yield. The left and bottom edges of 559 

the box represent the 5 percentiles, and the right and top edges of the box represent 95 560 

percentiles. The bottom-left and top-right corners indicate 25 and 75 percentiles, respectively. 561 

The solid line is the linear regression equation for the mean values. The dash line indicates 562 

the 1:1 line. 563 

564 
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Table 1. Mean values of the relative detrended wheat yield, the maximum (Tmax, ºC) and 565 

minimum (Tmin, ºC) temperatures, precipitation (Precip, mm), and solar radiation (Ra, MJ m
-2

) 566 

corresponding to specific cluster during the periods May-Sep. (5-9) and Oct.-Nov. (10-11). 567 

The slope is the slope of linear regression between the relative detrended wheat yield and 568 

meteorological variables for five clusters and r is the correlation coefficient. And ‘n’ is the 569 

number of data points for each cluster. The ‘Yield’ represents the relative detrended yield, 570 

which is –0.384, –0.192, 0.012, 0.196, and 0.376 for clusters A, B, C, D, and E, respectively. 571 

The symbols *, ** indicate the statistical significance at 0.05 and 0.01 levels.  572 

 573 

574 

 n Yield Tmax5-9 Tmax10-11 Tmin5-9 Tmin10-11 Precip5-9 Precip10-11 Ra5-9 Ra10-11 

R   –0.49** –0.34** 0.32** –0.22* 0.56** 0.10 –0.43** –0.17 

Slope   –0.184 –0.068 0.093 –0.078 0.002 0.0005 –0.002 –0.001 

A 15 –0.384 22.3 30.9 6.3 14.7 109 88 2452 1506 

B 23 –0.192 21.7 29.4 5.0 14.1 96 129 2470 1443 

C 38 0.012 21.0 27.6 6.5 13.7 179 178 2340 1374 

D 29 0.196 20.8 30.0 6.4 14.1 220 97 2362 1466 

E 11 0.376 20.3 27.6 7.7 13.8 337 151 2248 1357 
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Table 2. Inter-correlations between precipitation (Precip) and maximum temperature (Tmax, 575 

ºC), minimum temperature (Tmin, ºC), and solar radiation (Ra, MJ m
-2

) during the periods 576 

May-Sep. (5-9) and Oct.-Nov. (10-11). The symbol * indicates the linear relationship between 577 

precipitation and other climatic variables significant at 0.01 level, and n.a. represents “not 578 

applicable” for correlation. 579 

 Tmax5-9 Tmax10-11 Tmin5-9 Tmin10-11 Ra5-9 Ra10-11 

Precip5-9 –0.0058* n.a. 0.0072* n.a. –0.6704* n.a. 

Precip10-11 n.a. –0.0157* n.a. 0.0006 n.a. –0.6465* 

 580 

581 
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