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Abstract. In the absence of high-resolution estimates of the

components of surface energy balance for China, we devel-

oped an algorithm based on the surface energy balance sys-

tem (SEBS) to generate a data set of land-surface energy and

water fluxes on a monthly timescale from 2001 to 2010 at a

0.1× 0.1◦ spatial resolution by using multi-satellite and me-

teorological forcing data. A remote-sensing-based method

was developed to estimate canopy height, which was used

to calculate roughness length and flux dynamics. The land-

surface flux data set was validated against “ground-truth”

observations from 11 flux tower stations in China. The esti-

mated fluxes correlate well with the stations’ measurements

for different vegetation types and climatic conditions (aver-

age bias = 11.2 Wm−2, RMSE = 22.7 Wm−2). The quality

of the data product was also assessed against the GLDAS

data set. The results show that our method is efficient for

producing a high-resolution data set of surface energy flux

for the Chinese landmass from satellite data. The validation

results demonstrate that more accurate downward long-wave

radiation data sets are needed to be able to estimate turbulent

fluxes and evapotranspiration accurately when using the sur-

face energy balance model. Trend analysis of land-surface ra-

diation and energy exchange fluxes revealed that the Tibetan

Plateau has undergone relatively stronger climatic change

than other parts of China during the last 10 years. The ca-

pability of the data set to provide spatial and temporal in-

formation on water-cycle and land–atmosphere interactions

for the Chinese landmass is examined. The product is free to

download for studies of the water cycle and environmental

change in China.

1 Introduction

As China is one of the fastest growing and urbanizing

economies in the world, changes in land cover and land use

can significantly influence the environment by altering land–

atmosphere energy and water exchanges (Suh and Lee, 2004;

Lin et al., 2009). For instance, rapid urban expansion has

substantially changed land-surface heat fluxes in the Pearl

River delta (PRD) (Lin et al., 2009), and has increased sensi-

ble heat fluxes in the Beijing metropolitan area (C. Zhang et

al., 2009). The variability of surface energy balance and its

partitioning may also have an important impact on climate

variability in China (Sun and Wu, 2001). Similarly, changes

in surface energy fluxes have been shown to alter the inten-

sity of the East Asian monsoon (Zhou and Huang, 2008; Qiu,

2013; Hsu and Liu, 2003). In short, understanding variation

in energy fluxes is important for the study of climate change

in China (Brauman et al., 2007). Nevertheless, the spatial and

temporal variability of China’s land-surface energy balance,

and the magnitude of each, are still unknown.

While it is of critical importance to understand the parti-

tioning of water and energy distribution across China’s ter-

restrial surface, accurate monitoring of its spatial and tempo-

ral variation is notoriously difficult (Ma et al., 2011). Several
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field experiments are being carried out to monitor turbulent

fluxes over selected land cover in China by using ground-

based eddy covariance devices (Wang et al., 2010; Yu et al.,

2006; Y. Ma et al., 2008; Li et al., 2009). However, these

measurements are only representative of small areas around

the locations where the measurements are being made. For

this reason, the establishment of an eddy-covariance flux net-

work cannot provide a complete land-surface heat flux pic-

ture for the entire Chinese landmass.

A number of methods can be used to derive land-surface

energy fluxes. Jung et al. (2009), for example, generated

global spatial flux fields by using a network upscaling

method. However, their flux network included only a lim-

ited number of flux stations in China. The Global Soil Wet-

ness Project 2 (GSWP-2) (Dirmeyer et al., 2006) produced

a global land-surface product on a 1× 1◦ grid for the period

1986 to 1995. The Global Land Data Assimilation System

(GLDAS) (Rodell et al., 2004) can provide a global cover-

age in the form of 3-hourly, 0.25◦ data. Furthermore, prod-

ucts from the European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim) (Dee

et al., 2011), the National Centers for Environmental Predic-

tion (NCEP) (Kalnay et al., 1996), Modern-Era Retrospec-

tive Analysis for Research and Applications (MERRA) (Rie-

necker et al., 2011) and other reanalysis data can also provide

temporally continuous – but coarse – spatial resolution data

sets of land-surface fluxes. Jiménez et al. (2011) made an

inter-comparison of different land-surface heat flux products.

When these products were applied on continental scales, the

different approaches resulted in large differences (Vinukollu

et al., 2011a; Jiménez et al., 2011; Mueller et al., 2011).

The problems met by using currently available flux data

in climate studies of China have been reported by Zhou and

Huang (2010). Zhu et al. (2012) have also reported that sum-

mer sensible heat fluxes derived from eight data sets (includ-

ing NCEP, ERA, and GLDAS) of China’s Tibetan Plateau

region differ from each other in their spatial distribution. In

addition, all the flux data sets mentioned above are based

on model simulations, which have deficiencies in studying

changes in water-cycle and land–air interactions in China

(Y. Chen et al., 2013; Su et al., 2013; Wang and Zeng, 2012;

L. Ma et al., 2008).

A spatially and temporally explicit estimate of surface en-

ergy fluxes is of considerable interest for hydrological as-

sessments and meteorological and climatological investiga-

tions (Norman et al., 2003). Satellite-sensed data of surface

variables can be used to produce maps of heat and water

fluxes on different scales (Wang and Liang, 2008; X. Li et

al., 2012; Liu et al., 2010; Vinukollu et al., 2011b). Re-

mote sensing approaches to estimating surface heat and wa-

ter fluxes have been largely used on regional scales (Fan et

al., 2007; Ma et al., 2011; Jia et al., 2012; X. Zhang et al.,

2009; Z. Li et al., 2012; Shu et al., 2011), but there is no

analysis of satellite-derived data currently underway to pro-

duce a complete, physically consistent, decadal land-surface

heat flux data set (Jiménez et al., 2009) for the Chinese land-

mass. The use of remotely sensed data offers the potential

for acquiring observations of variables such as albedo, land-

surface temperature, and normalized difference vegetation

index (NDVI) on a continental scale for China. Is it possi-

ble to use all available satellite-observed land-surface vari-

ables directly to calculate high-resolution land-surface fluxes

for the Chinese landmass, due to the reanalysis data hav-

ing a coarse spatial resolution and containing large uncer-

tainty? Since surface fluxes cannot be detected directly by

satellite-borne sensors, an alternative for estimating conti-

nental water and energy fluxes can be derived by applying

the aerodynamic theory of turbulent flux transfer (Ma et al.,

2011) or by establishing statistical relationships between re-

lated satellite observations and land-surface fluxes (Jiménez

et al., 2009; Wang et al., 2007). Most remotely sensed la-

tent heat flux or evapotranspiration products have null val-

ues in urban, water, snow, barren and desert areas (Mu et al.,

2007; Wang et al., 2007; Jiménez et al., 2009). This is due

to the lack of a uniform representation of turbulent exchange

processes over different types of land cover in their method.

Meanwhile, the aerodynamic turbulent transfer method can

describe the flux exchange through changes in surface rough-

ness length over different land covers. Statistical methods

establish relationships between satellite-sensed observations

(e.g., NDVI, LST, albedo) and land-surface fluxes through

various fitting techniques (Wang et al., 2007). The simple

relationships established cannot give a reasonable approx-

imation for extreme conditions such as bare soil or other

types of non-canopy land cover (e.g., lakes, deserts), because

land covers behave significantly differently in land-surface

energy flux partitioning. Fortunately, turbulent flux transfer

parameterization can overcome the shortcomings of statisti-

cal methods and produce spatially continuous distributions

of land-surface energy fluxes with prepared meteorological

forcing data. For this reason, we chose a more physically

based method – turbulent flux parameterization – to produce

the data set.

The challenge in using turbulent flux parameterization

lies in the transition from regional to continental and global

scales, because meteorological data of high resolution (i.e.,

1–10 km) are not easily obtained for a large region. Recently,

Chinese scientists produced high-resolution meteorological

forcing data that can be used in our study. Another issue is

the complexity met by the method when combining different

spatial and temporal sampling input variables. This is dis-

cussed in detail in Sect. 3.1. The last difficulty that has sur-

rounded the application of turbulent flux parameterization on

continental scales is the acquisition of roughness length. To

address this difficulty, we have developed a remote-sensing-

based mixing technique to estimate canopy heights on a con-

tinental scale, and use the resulting canopy height data set to

derive, for the very first time, the dynamic variation of sur-

face roughness length for the Chinese landmass.
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Complex topography (shown by Fig. 1) and climatic con-

ditions in China make it very difficult to obtain a clear

picture of the distribution of energy and water fluxes with

a high spatial resolution over a relatively long period for

such a large area. In our study, we estimate land-surface

heat fluxes with energy balance and aerodynamic parame-

terization formulas in a revised model of the surface energy

balance system (SEBS) (Chen et al., 2013b; Chen et al.,

2013a; Su, 2002; Timmermans, 2011); previous tests show

that the revised model delivers better performance and im-

provements in cases where the type of land cover in China

is bare soil, short canopy or snow (Chen et al., 2013a, b).

Sensible heat flux in SEBS was derived from the differ-

ence between surface temperature and air temperature by us-

ing Monin–Obukhov similarity theory and bulk atmospheric

boundary layer similarity (Brutsaert, 1999), which parame-

terizes ground surface momentum and heat-transfer coeffi-

cient maps to take into account surface roughness, canopy

height, vegetation cover, and meteorological stability (Su et

al., 2001; Su, 2002; Chen et al., 2013b). The latent heat flux

can then be estimated from an energy balance model, assum-

ing that surface net radiation and ground flux are known (Ma

et al., 2002; Allen et al., 2011; Vinukollu et al., 2011b). We

used high-resolution reanalysis meteorological data, which

merge model outputs, remote sensing observations, and in

situ measurements. In addition, we also assessed the accu-

racy of the surface energy balance terms (net radiation, sen-

sible heat, latent heat, and ground heat fluxes) and their cli-

matic trends in the preceding decade (2001–2010).

After defining the equations of the SEBS model (Sect. 2),

we describe (in Sect. 3) the input data and ground-truth mea-

surements used in the study. Furthermore, we assess the ca-

pacity of the remote-sensing-based product to reproduce the

range and variability of measured fluxes, by comparing them

with in situ flux tower measurements, followed by trend anal-

ysis of the spatial patterns of the fluxes (Sect. 4). Concluding

remarks are found in Sect. 5.

2 Model description and development

The surface energy balance system model known as SEBS

(Su, 2002) uses aerodynamic resistance to create a spatially

coherent estimate of land-surface heat fluxes. Some model

inputs can be obtained from remote sensing data, while oth-

ers can be obtained from meteorological forcing data (e.g.,

GLDAS, ERA and NCEP reanalysis data). The model’s

equations and the required forcing variables are described in

the remainder of this section.

The surface energy balance equation can be expressed as

Rn=G0+H +LE, (1)

where Rn is the net radiation flux;G0 is the ground heat flux,

which is parameterized by its relationship with Rn (Su et al.,

2001); H is the sensible heat flux; and LE is the latent heat

flux.

LE is computed by using the evaporative fraction after de-

riving the other three variables in Eq. (1) and taking into con-

sideration energy and water limits (Su, 2002). As these fluxes

were produced with a monthly average temporal resolution,

energy storage in vegetation is not considered.

Net radiation flux is

Rn= (1−α)× SWD+ LWD−LWU, (2)

where α is broadband albedo, SWD is downward surface

short-wave radiation, and LWD and LWU are downward and

upward surface long-wave radiation, respectively.

Here, satellite-observed albedo is used. LWU is derived

from land-surface temperature (LST) using the Stefan–

Boltzmann law. Land-surface emissivity is derived as de-

scribed in Chen et al. (2013a). LWD and SWD values are

obtained from meteorological forcing data.

Sensible heat flux (H ) is computed according to the

Monin–Obukhov similarity theory (MOST):

H = k u∗ρCp(θ0− θa)[ ln

(
z− d

z0 h

)
−9h

(
z− d

L

)
+9h

(z0 h

L

)
]
−1, (3)

where k is the von Karman constant; u∗ is friction velocity;

ρ is air density; Cp is specific heat for moist air; θ0 is the po-

tential temperature at the ground surface; θa is the potential

air temperature at height z; d is the zero plane displacement

height; 9h is the stability correction function for sensible

heat transfer (Brutsaert, 1999); and L is the Obukhov length.

In our study, θa was obtained from meteorological forcing

data, and θ0 was derived from Moderate Resolution Imaging

Spectroradiometer (MODIS) LST data. For more detailed in-

formation about u∗ and the calculation of L, see Su (2002)

and Chen et al. (2013b).

The roughness height for heat transfer (z0 h) in Eq. (3) is

calculated as follows:

z0 h =
z0 m

exp(kB−1)
. (4)

Using the fractional canopy coverage kB−1 at each pixel can

be derived according to the following modification of the

equation described by Su et al. (2001):

kB−1
= f 2

c ×kB
−1
c +f

2
s ×kB

−1
s +2×fc×fs×kB

−1
m , (5)

where fc is fractional canopy coverage and fs is the fraction

of bare soil in one pixel; kB−1
c is the kB−1 of the canopy;

kB−1
s is the kB−1 of bare soil; and kB−1

m is kB−1 for mixed

bare soil and canopy. As kB−1 is the most important parame-

ter in a MOST-based calculation of sensible heat flux, kB−1

has been updated by Chen et al. (2013b). The momentum

roughness length used to calculate kB−1
s was given a value
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Figure 1. A DEM map (digital elevation map) of the Chinese landmass. The symbols indicate major physical phenomena: Tibetan Plateau

(TP), northwestern China (NWC), inner Mongolian Plateau (MP), Loess Plateau (LP), North China Plain (NP), northeastern China Plain

(NEP); Pearl River delta (PRD), Sichuan (SCB), Yinchuan (YCB), inner Mongolian (IMB), Lhasa (LB), Tarim (TRB), and Junggar (JB)

basins; the Himalaya (HM), Ganges (GM), Kunlun (KL), Karakorum (KRM), Tianshan (TM), Nyainqentanglha (NQM) and Qilian (QLM)

mountain ranges. The plateau and plain letter symbols are in black type. The basin letter symbols are in yellow type. The flux station letter

symbols are in red type. White lines show several of the major rivers in China. The unit of the color bar is m.

of 0.004 (Chen et al., 2013b), and the heat roughness length

of bare soil was calculated according to Yang et al. (2002).

The new kB−1 gives a better performance than the previous

version of kB−1 (Chen et al., 2013a, b). Detailed evaluations

of the new parameterization of kB−1 can be found in Chen

et al. (2013b).

The roughness height for momentum transfer zom in

Eq. (4) is derived from canopy height (HC), leaf area index

(LAI) and the canopy momentum transfer model (Massman,

1997):

zom = HC× (1− d/HC)× exp(−k× β), (6)

β = C1−C2× exp(−C3×Cd×LAI), (7)

where C1 = 0.32, C2 = 0.26, and C3 = 15.1 are model con-

stants related to the bulk surface drag coefficient (Mass-

man, 1997). The three constants have been tested for several

canopies (Chen et al., 2013b; Cammalleri et al., 2010) and

evaluated as one of the best solutions for canopy turbulent-

flux parameterization (Cammalleri et al., 2010). Cd is the

drag coefficient, which typically equals 0.2 (Goudriaan,

1977); d is displacement height, which is derived from HC

and the wind speed extinction coefficient (Su, 2002; Su et al.,

2001).

As Chen et al. (2013b) have pointed out, HC is vital

for turbulent heat simulations, which makes accurate es-

timation of HC for the Chinese landmass important for

this study. A remote-sensing-based canopy height method

(Chen et al., 2013b) was developed further to estimate

canopy height distribution for the whole of China in this

study. Simard et al. (2011) produced a global forest canopy-

height map using data from the Geoscience Laser Altimeter

System (GLAS) aboard ICESat (Ice, Cloud, and land Eleva-

tion Satellite). However, short-canopy (e.g., savanna, crop,

grass, and shrub) height information cannot be acquired by

laser techniques. Since short-canopy height usually varies by

season throughout the year – crops are planted in spring and

harvested in autumn – we calculated short-canopy height us-

ing an enhancement of the NDVI-based equation from Chen

et al. (2013b):

HC(LCT)= HCmin(LCT)+

HCmax(LCT)−HCmin(LCT)

(NDVImax(LCT)−NDVImin(LCT))

× (NDVI(LCT)−NDVImin(LCT)) , (8)

where HCmax(LCT) and HCmin(LCT) are the maximum and

minimum short-canopy heights for a specific land cover type

(LCT); HCmin(LCT) is set to 0.002 m (Chen et al., 2013b);

and HCmax is set to 5, 2.5, 0.5, 0.5, and 0.5 m for savan-

nas (including woody savannas), cropland, grassland, shrub-

land, and barren and sparsely vegetated pixels, respectively.

MCD12C1 land cover type 1 in the year of 2002 is used

to classify the pixels into savannas, cropland, grassland,

and shrubland, barren and sparsely vegetated. NDVImin and

NDVImax are minimum and maximum NDVI values dur-

ing our 10-year study period. Each short-canopy pixel was

Atmos. Chem. Phys., 14, 13097–13117, 2014 www.atmos-chem-phys.net/14/13097/2014/
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given an NDVImin and NDVImax value to calculate the short-

canopy height.

The NDVI-based short-canopy height method above was

used to fill cropland, grassland, shrubland, and barren pixels.

The forest canopy heights (greater than 10 m) were assumed

to be constant, i.e., with no seasonal change. By merging

the forest canopy heights greater than 10 m and the variable

short-canopy data, we constructed dynamic monthly maps

of canopy heights for the Chinese landmass for the period

of 2001–2010. These maps were then used to calculate heat

fluxes. Figure 3 gives an example of derived canopy height

at 11 Chinese flux stations.

3 Data and validation

Our modeling approach makes use of a variety of satellite-

based sensor data and meteorological forcing data to estimate

monthly energy and water fluxes across China. The forcing

data can come from satellite-based or reanalysis data sets.

Due to the influence of weather, satellite-sensed visible and

thermal band data (e.g., NDVI, albedo, LST) often have spa-

tial and temporal gaps in daily data. Various temporal and

spatial gap-filling algorithms have been developed to pro-

duce continuous monthly data for satellite-sensed variables

(Chen et al., 2004; Moody et al., 2005). In order to avoid

both spatial and temporal gaps in the final product, we se-

lected some specific satellite-sensed data sets for this study

(see Table 1). Detailed information about each input variable

is described in the following subsections.

The longest period covered by the forcing data set is ap-

proximately 31 years; the shortest is about 10 years. The

spatial resolution of the data set varies from 0.01 to 0.25◦,

and its sample frequency from 3 h to 1 month. The meteo-

rological forcing data developed by the Institute of Tibetan

Plateau Research, Chinese Academy of Sciences (hereafter

referred to as ITPCAS forcing data) (He, 2010), were con-

structed to study meteorological variation in China. ITPCAS

forcing data cover the entire landmass of China, and have the

highest temporal resolution among the input data sets used.

Other variables such as LST and albedo, for example, have

coarser temporal resolutions (monthly) and global coverage.

When combining data of different spatial and temporal res-

olutions, both spatial and temporal scaling issues need to be

addressed.

Estimates of land-surface energy flux can be subject to

large errors, due to bias in the meteorological forcing input

data. The spatial distribution of meteorological variables is

closely related to topography (Li et al., 2013). When interpo-

lating meteorological input variables to finer scales, these ef-

fects have to be accounted for (Sheffield et al., 2006), which

goes beyond the scope of our study. Therefore, we chose

to resample the satellite product of a high spatial resolution

to a lower spatial resolution that matches the resolution of

the meteorological input data. Also, the meteorological data

were averaged to monthly values that have the same temporal

resolution as the remotely sensed input variables. ITPCAS

forcing data provide us data of the highest spatial resolution

among the meteorological forcing data currently available

(e.g., ERA-Interim, NCEP, GLDAS, MERRA). Taking into

account all these items, our aim was to produce a monthly

product of 0.1× 0.1◦ resolution land-surface heat fluxes that

contains neither spatial nor temporal gaps and that can be

used to study seasonal and inter-annual variability in the hy-

drological and energy cycles of China.

3.1 Input data sets and their validations

3.1.1 Meteorological forcing data

In studies previous to ours, reanalysis data have been applied

in many different ways, for example to construct land-surface

forcing data (Sheffield et al., 2006), to detect climate trends

(Taniguchi and Koike, 2008), and to investigate water and

energy cycles on regional and continental scales (Roads and

Betts, 2000). Reanalysis data have also been applied by the

remote sensing community to derive estimates of global ter-

restrial evapotranspiration and gross primary production (Mu

et al., 2007; Yuan et al., 2010). Few studies, however, have

used reanalysis data together with remotely sensed ground

data to derive global land-energy fluxes (sensible heat flux,

latent heat flux, net radiation, etc.).

Researchers have developed several kinds of reanalysis

data. Comparisons and evaluations of these reanalysis prod-

ucts with in situ observations have been performed for indi-

vidual sites, specific regions, and the entire globe (Wang and

Zeng, 2012; Decker et al., 2011). It is well known that in-

accuracies existing in reanalysis forcing data may have sub-

stantial impacts on the simulation of land-surface energy par-

titioning. It is difficult to choose which reanalysis data are

better for use as forcing data. Additionally, the spatial reso-

lution of all of the above reanalysis/forcing data sets is not

as high as that of remote sensing data. The ITPCAS forcing

data set was produced by merging a variety of data sources.

This data set benefits in particular from the merging of in-

formation from 740 weather stations operated by the China

Meteorological Administration that have not been used in

other forcing data. The data set has already been used to

run land-surface models, and has been shown to be more ac-

curate than other forcing data sets (Chen et al., 2011; Liu

and Xie, 2013). ITPCAS meteorological forcing data include

variables such as instantaneous near-surface air temperature

(Ta), near-surface air pressure (P ), near-surface air-specific

humidity (Q), near-surface wind speed (Ws) at a tempo-

ral resolution of 3 h, and 3-hourly mean downward surface

short-wave (SWD) and downward surface long-wave (LWD)

radiation. The time period covered is from 1979 to 2010; the

spatial resolution has a grid size of 0.1× 0.1◦.

www.atmos-chem-phys.net/14/13097/2014/ Atmos. Chem. Phys., 14, 13097–13117, 2014
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Table 2. Flux tower sites supplying measurement data for product validation.

Lat (deg) / Land Eddy Radiometer Measurement Site Reference

lon (deg) cover covariance period elevation (m)

WJ 30.4200◦ N/103.5000◦ E Crop CSAT3,Licor7500 (10 HZ) CNR-1 Mar 2008–Aug 2009 539 Zhang et al. (2012)

MQ 33.8872◦ N/102.1406◦ E Alpine meadow CSAT3, Licor7500 (10 HZ) CNR-1 Apr 2009–May 2010 3439 Wang et al. (2013)

AL 33.3905◦ N/79.7035◦ E Bare soil CSAT3, Licor7500 (10 HZ) CNR-1 Jul 2010–Dec 2010 4700 Y. Ma et al. (2008)

BJ 31.3686◦ N/91.8986◦ E Alpine grass CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2008–Dec 2010 4520 Ma et al. (2011)

MY 40.6038◦ N/117.323◦ E Orchard CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2008–Dec 2010 350 S. M. Liu et al. (2013)

DX 39.6213◦ N/116.4270◦ E Crop CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2008–Dec 2010 100 S. M. Liu et al. (2013)

GT 36.5150◦ N/115.1274◦ E Crop CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2008–Dec 2010 30 S. M. Liu et al. (2013)

YC 36.9500◦ N/116.600◦ E Crop CSAT3, Licor7500 (10 HZ) CNR-1 Oct 2002–Oct 2004 13 Flerchinger et al. (2009)

DT 31.5169◦ N/121.9717◦ E Wetland CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2005–Dec 2007 5 Zhao et al. (2009)

SC 35.95◦ N/104.133◦ E Dry land CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2007–Dec 2008 1965 Huang et al. (2008)

WS 36.6488◦ N/116.0543◦ E Winter wheat/summer maize CSAT3, Licor7500 (10 HZ) CNR-1 Jan 2006–Dec 2008 30 Lei and Yang (2010a)

Figure 3. Monthly variation of canopy height at the 10 flux stations.

based measurements (Meir and Woodward, 2010). This sub-

section describes the validation of the SEBS model against

heat flux measurements from a diverse range of climates.

In order to analyze the source of flux calculation errors,

variables related to surface radiation fluxes were all validated

against flux station observations. Table 3 shows that H and

LE have RMSE values slightly less than 22 W m−2, which is

lower than the RMSE values of products of other statistical

methods (see Table 7 in Wang et al., 2007, and Table 5 in

Jiménez et al., 2009). Indeed, Kalma et al. (2008) assessed

30 published LE validation results obtained by using ground

flux measurements, and reported an average RMSE value of

about 50 W m−2 and relative errors of 15–30 %. The RMSE

of our LE data set is significantly lower than their averaged

RMSE value.

We also compared our validation results with those of

other, similar products produced by a previous version of

SEBS. Vinukollu et al. (2011b), for instance, produced global

land-surface fluxes with RMSE values of 40.5 W m−2 (sen-

sible flux) and 26.1 W m−2 (latent flux) (calculated from Ta-

ble 4 in Vinukollu et al., 2011b), which are larger than those

in our study. The difference could be due to the model im-

provement and more accurate meteorological forcing data

set used in our study. Table 3 lists the values of the statis-

tical parameters for the validation of a data product produced

by GLDAS (which has the highest spatial resolution com-

pared with other available terrestrial energy-flux data sets)

against the same measurements from the Chinese flux sta-

tions as used in our study. According to the mean values of

the statistical variables, the quality of our flux data set is com-

parable to the GLDAS model and data assimilation results.

These comparisons of accuracy demonstrate that our revised

model is efficient for producing a high-resolution data set of

land-surface energy fluxes for China.

Net radiation has relatively higher RMSE and MB val-

ues than H , LE and G0 in the data set, because its accu-

racy is dependent on the accuracy of the other variable es-

timates (albedo, LST, SWD, LWD, LWU, etc.). Any errors

in these variables can cause bias in net radiation. LWD, for

example, has a linear-fitting slope value of 0.9, with most

points located around the fitting line (Fig. 4) instead not

1 : 1 line. The correlation coefficient is as high as 0.98, thus

demonstrating that there is still room for improvement of the

LWD algorithms. LWD in ITPCAS was calculated with al-

gorithms developed from measurements from across the Ti-

betan Plateau. The LWD algorithms may not, therefore, be
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Table 3. Comparison of the accuracy of our flux data product and GLDAS against in situ measurements from 11 Chinese flux towers. MB is

the mean of the observation minus the model simulation.

Energy flux Radiation flux

H (Wm−2) LE (Wm−2) G0(Wm−2) Rn (Wm−2) Mean SWD (Wm−2) SWU (Wm−2) LWD (Wm−2) LWU (Wm−2) Mean

Our flux Slope 0.25 1.0 0.87 0.92 0.76 0.95 0.68 0.91 0.95 0.87

data product Intercept 0.4 −7.3 6.1 −20.2 −5.1 13.6 10.9 −0.66 16.6 9.9

RMSE 21.9 21.4 11.7 36.2 22.7 28.3 10.2 32.8 9.6 20.2

MB 16.0 6.9 −5.7 26.3 11.2 −5.7 −0.65 28.9 2.4 6.2

R 0.38 0.82 0.50 0.86 0.63 0.89 0.78 0.98 0.99 0.91

Sample 280 284 197 313 270 310 307 307 307 308

GLDAS Slope 0.77 0.87 0.58 1.0 0.81 0.99 0.75 0.87 1.0 0.90

Intercept 20.83 5.1 −1.34 8.0 8.2 34.9 13.1 27.7 −4.5 17.8

RMSE 26.6 20.6 6.7 17.9 17.9 45.6 15.9 19.2 11.1 23.0

MB −15.8 0.75 3.0 −10.4 −5.6 −32.87 −4.6 13.5 −3.2 −6.8

R 0.46 0.80 0.61 0.95 0.71 0.87 0.65 0.99 0.98 0.87

Sample 249 250 162 281 236 275 272 272 275 274

Table 4. Comparison of statistical values reported in similar studies.

Reference Research area Method Statistical

param-

eters

H

(Wm−2)

LE

(Wm−2)

Flux network Note

This study Chinese land-

mass

SEBS RMSE 21.9 21.4 Flux towers in

China

MB 16.0 6.9

R 0.38 0.82

Wang et

al. (2007)

Southern Great

Plains, USA

Regression

method

RMSE – 29.8 Flux towers in

Southern Great

Plains, USA

Calculated

from Table 9

MB – 12.17

R – 0.91

Jiménez et

al. (2009)

Global Statistical

method

RMSE – – AmeriFlux Calculated

from Tables 5

and 7

MB −5.23 7.9

R 0.68 0.76

Vinukollu et

al. (2011b)

Global SEBS RMSE 40.5 26.1 AmeriFlux Calculated

from Table 4

MB 27.98 −7.74

R 0.53 0.51

accurate for other parts of China (K. Yang, personal commu-

nication, 2013). This underlines the need for more accurate

LWD radiation fluxes in order to improve the accuracy of

turbulent fluxes and evapotranspiration.

In addition to the statistical evaluation of model results

against observations, seasonal and inter-annual changes in

the model results also need to be checked. Yucheng sta-

tion, which is an agricultural experimental station with win-

ter wheat and summer maize as dominant crops, was taken as

an example (Fig. 5). Crops at Yucheng station mature twice

per year, which is representative of warm temperate farm-

ing cropland, typical for the North China Plain. A 2-year

flux data set was used to compare against values extracted

from our model-derived product. The inter-annual and sea-

sonal LST and LWU data closely match the in situ obser-

vations. The SWD term also successfully captures seasonal

variations. LWD is systematically lower than observations.

The LE produced at Yucheng station not only captures sea-

sonal variation, but also responds at step stages, which occur

when the wheat is harvested or maize seeds have just been

sown (from June to August). The increased sensible heat and

decreased latent heat flux observed in July 2003 were caused

by the wheat harvest; however, this signal change is not cap-

tured by the model result. The simulated sensible and latent

heat produced by SEBS has a 1-month lag when compared

to reality. This phenomenon is caused by adopting a maxi-

mum monthly NDVI value, resulting in faulty representation

of canopy status changes in the month of June.
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Figure 4. Scatter point for downward short-wave (SWD), upward short-wave (SWU), downward long-wave (LWD), and upward long-wave

(LWU) radiation against in situ measurement.

Figure 5. Time-series comparison of SEBS input and output variables against measurements at Yucheng station. Black lines are SEBS

results; red lines are measured values.
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Figure 8. Maps of multiyear (2001–2010) means of retrieved fluxes: (a) sensible heat flux (H ), (b) latent heat flux (LE), (c) net radiation

(Rn), and (d) ground heat flux (G0). White lines show several major rivers in China.

Figure 9. Maps of seasonal average sensible heat flux for (a) March–May (MAM), (b) June–August (JJA), (c) September–November (SON),

and (d) December–February (DJF) from 2001 to 2010. Black lines show several major rivers in China.

check variations during the period 2001–2010. The resulting

slope indicates that downward surface short-wave radiation

increased during that decade over the majority of the Tibetan

Plateau (Fig. 12).

The ground solar measurements at China Meteorologi-

cal Administration (CMA) stations from 2003 to 2006, as

shown in Fig. 1b of Yang et al. (2012), confirm the increas-

ing trend of downward surface short-wave radiation found in

our study. The annual mean visibility measured at these sta-

tions also displays an increasing trend (Fig. 2a of Yang et

al., 2012), while ERA-40 reanalyzed precipitable water and

station-observed specific humidity show a decreasing trend

from 2000 to 2006 (Fig. 3a of Yang et al., 2012). These re-

sults indicate that the atmosphere over the plateau is becom-

ing drier, which would explain why SWD has increased dur-

ing the decade.

The upward short-wave radiation over the Himalaya

(HM), Ganges (GM), Karakorum (KRM), Qilian (QLM)

www.atmos-chem-phys.net/14/13097/2014/ Atmos. Chem. Phys., 14, 13097–13117, 2014
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Figure 10. Maps of seasonal average latent heat flux for (a) March–May (MAM), (b) June–August (JJA), (c) September–November (SON),

and (d) December–February (DJF) from 2001 to 2010. White lines show several major rivers in China.

Figure 11. Maps of seasonal average net radiation for (a) March–May (MAM), (b) June–August (JJA), (c) September–November (SON),

and (d) December–February (DJF) from 2001 to 2010. White lines show several major rivers in China.

and Nyainqentanglha (NQM) mountain ranges has also de-

creased over the last 10 years, which may be caused by

the glacial retreat that has occurred in these areas (Scher-

ler et al., 2011; Yao et al., 2004). The Lhasa Basin (LB) has

the steepest rising trend in LWU, perhaps because of the rela-

tively greater degree of anthropogenic (e.g., urbanization) ac-

tivity occurring in this area. The trend analysis did not reveal

any clear spatial pattern in downward long-wave radiation.

Net radiation over several high mountain ranges (including

the Himalaya, Ganges, Karakorum, Qilian and Nyainqentan-

glha mountain ranges) increased by approximately 5 W m−2

between 2001 and 2010 (Fig. 13). The strongest increase

in net radiation occurred in the central part of the Tibetan

Plateau. As Matthew (2010) has pointed out, soil moisture

in the central Tibetan Plateau showed an increasing trend

from 1987 to 2008. Wetter soil can cause the ground surface

to absorb more net radiation and thus increase latent heat

flux. Moreover, wetter soil can increase soil heating capac-
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Figure 12. Spatial trends of (a) SWD (downward short-wave), (b) LWD (downward long-wave), (c) SWU (upward short-wave), and (d)

LWU (upward long-wave) radiation for the Chinese landmass from 2001 to 2010.

ity (Guan et al., 2009) and so further increase ground heat

flux. The increases in net radiation and soil moisture may

also explain a rising trend in latent heat in the central Ti-

betan Plateau. Clearly, the plateau is experiencing acceler-

ated environmental changes (Zhong et al., 2011; Salama et

al., 2012). Indeed, land-surface radiation and energy trend

analyses also show that the Tibetan Plateau is experiencing a

relatively stronger change in land-surface radiation – verified

by Tang et al. (2011) – and energy exchange than other parts

of China.

5 Conclusions and discussion

In view of China’s highly fragmented landscape, high-

resolution land-surface heat flux maps are necessary for hy-

drological studies. As China includes arid, semi-arid, humid,

and semi-humid regions, quantifying its water and energy

budgets is a challenge. We have developed the surface energy

balance system (SEBS) further to produce a land-surface heat

flux data set on a continental scale of higher resolution than

data sets derived using other methods. Generally, the global

surface energy flux data sets, including reanalysis data, do

not have enough spatial and temporal resolution when look-

ing at the national-level fluxes. The surface flux data sets

from reanalysis data sets still contain large uncertainty, partly

due to the deficiency in their land-surface process model that

simulates land-surface temperature by solving soil thermal

transport equations (Chen et al., 1996), and usually result in

a large error in LST simulation (Chen et al., 2011; Wang et

al., 2014) if the model is not properly calibrated by measure-

ments (Hogue et al., 2005). Therefore, the hypothesis tested

in this paper is whether it is possible to neglect the complex

process in the soil by using satellite-observed land-surface

temperature directly to calculate the land-surface fluxes on a

continental scale. This study has demonstrated a benchmark

on how to use satellites to derive a land-surface flux data set

for a continental area on a personal laptop, which is abso-

lutely not feasible for the land-surface process modeler to do

in such a time- and resource-economic way. We have over-

come the shortcomings of previous remotely sensed evap-

otranspiration products that have null values in barren and

desert areas. Usually, the surface roughness length is given a

fixed value in numerical models. Here, we also found a solu-

tion on how to produce a dynamic surface roughness length

due to variations in the canopy height for a continental area.

This work will provide suggestions on canopy height to the

numerical modelers. In summary, using remote sensing data

and surface meteorological information, an independent data

product of monthly resolution has been developed for land-

surface heat flux analysis. We have validated our remote-

sensing-based approach with in situ observations from 11

flux stations in China. Taking into account the limitations of

the available spatial data and computing resources, we ap-

plied the model to the entire Chinese landmass using a 0.1◦

resolution meteorological data set, MODIS LST, vegetation

indices and other variables to generate a climatological data

set of land-surface energy balance for a 10-year period. The

modeling results for both pixel-point and spatial distribution

demonstrate that this approach meets our aims in terms of

(a) being robust across a variety of land cover and climate
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Figure 13. Spatial trends of (a) sensible heat flux (H ), (b) latent heat flux (LE), (c) net radiation (Rn), and (d) ground heat flux (G0) on the

Chinese landmass from 2001 to 2010.

types, and (b) performing well for the temporal and spatial

scales of interest. The spatial distribution maps generated for

each variable of surface energy balance give important back-

ground information on the terrestrial hydrology and energy

cycles. This product also demonstrates the impact of topogra-

phy and climatic conditions on land–air energy and moisture

exchanges in China.

The applicability of remote-sensing-based estimates of

land-surface fluxes is hampered by the limited temporal cov-

erage of satellite sensors (Ryu et al., 2012). Remote sens-

ing data are snapshots of the land-surface status at a par-

ticular point in space and time (Ryu et al., 2011). It is

challenging to compare remote-sensing-based monthly flux

data with ground measurements that are made on timescales

ranging from half-hourly through to monthly. The accuracy

of land-surface heat fluxes is largely dependent on the re-

motely sensed land-surface temperature. Here, we have made

an assumption that the averaged Aqua and Terra sensor-

sensed LST in each month can represent the monthly average

LST. The Terra satellite sensor passes twice a day (at about

10:30 a.m. and 22:30 p.m. local time); the Aqua satellite also

passes twice a day (at about 01:30 a.m. and 13:30 p.m. lo-

cal time); so, MODIS has maximally four samples each day.

The samples may not be enough for calculating the monthly

LST, also due to the cloud noise. Besides, the time length of

MODIS data sets is not longer than 15 years, which may limit

the application of our data set in climate analysis. Addition-

ally, the sensible heat flux over forest is underestimated by

the present turbulent flux parameterization method in SEBS,

which does not take the roughness sublayer over high canopy

(Bosveld, 1999) into consideration. The low bias in the wind

speed of the ITPCAS forcing data set (not shown here) could

also be one reason for the lower estimation of sensible heat

flux by our method.

The energy flux product we have developed has a spatial

resolution of approximately 10 km, while flux towers have a

footprint of tens to hundreds of meters. The tower footprint

may not be representative of the larger pixel of the product,

and this mismatch will result in errors if the mean of the satel-

lite pixel is different from that of the flux tower footprint.

Remote-sensing-based studies stress that direct comparison

is a challenge because scale mismatch (Norman et al., 2003)

and the heterogeneity of the land surface reduce the spatial

representativeness of ground-site measurements (Mi et al.,

2006). Another challenge is validating the grid-box-based

simulation results on the scale of the Chinese landmass, since

reliable observations of flux data are only available from a

few sites in the simulated region.

Potential effects of changes in land-surface heat fluxes

on the monsoon over East Asia (Lee et al., 2011) as

a result of China’s recent urbanization can be studied

further using our product. As an independent satellite-

based product, it can also be used as a data source

for evaluating land-surface models. We also produced an

evapotranspiration product for the China land area using

the data set in this paper. The land-surface fluxes and

evapotranspiration product can be downloaded from the

URL. The recent product will be shared when the input

data set is available: https://drive.google.com/folderview?id=

0B7yGrB1U9eDec2JFbnA5eldlVHc&usp=sharing.
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