

Faculty of Engineering and Information Technology School of Civil and Environmental Engineering Centre for Built Infrastructure Research

Investigation into the Ductile and Damping Behaviour of Concrete Incorporating Waste Tyre Rubber

By

Negin Sharifi

Thesis submitted for fulfilment of requirements for

the degree of Master of Engineering

March 2012

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Negin Sharifi

March 2012

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Samali, my principal supervisor and beyond that my father during my study in Australia and away from my family. This Master research would not have been completed without his guidance, assistance and sincere supports. I would also like to thank Dr Kirk Vessalas, my co-supervisor for being a mentor during this research. His guidance and advice played important role in carrying out this research.

I would like to convey my thanks to the staff at concrete, structural and material lab, Mr Peter Brown, Mr David Dicker, Mr David Hooper, Mr Mulugheta Hailu and special thanks to Mr Rami Haddad for his support and guidance. Working at lab and performing all the tests would never have been easy without their assistance.

Dr Li has been very helpful with the dynamic tests and their analysis by giving expert advice. I would like to acknowledge Dr Daksh Baweja and Dr Abhi Ray for their guidance especially during the first part of the project, investigation the properties of concrete.

There are a number of individuals that I would like to acknowledge their supports and help throughout this research, Mr Nima Khorsandnia, Mr Amin Noushini, Miss Nassim Ghosni and Miss Mehrnaz Natoori.

The great support from my family in Iran and my brothers Kamyar and Mazyar in Canada is highly appreciated as their assistance and encouragements made this experience memorable for me.

PUBLICATION

Conference Paper

Negin Sharifi, Prof. Bijan Samali, Dr Kirk Vessalas 2011, 'Investigation of Mechanical Properties of Elastomeric Modified Concrete Incorporating Waste Tyre Rubber', paper presented to the *Concrete 2011*, Perth.

ABSTRACT

Sustainable development has grown to be a major concern to the construction industry with the main effort and attention in recent times devoted to developing innovative solutions to preserve the environment and natural resources. One suggested approach in aiding the conservation of natural resources is to recycle waste material for innovative use in construction applications.

This thesis reports on the fundamental findings of an investigation into an elastomeric modified concrete (EMC), in particular its ductile and damping performance. This first-of-its-kind-in-Australia EMC incorporates Styrene Butadiene Rubber (SBR) waste tyre granules as a partial replacement of fine and coarse aggregates.

Another significant feature of this project is that until now 100% Portland cement plain concrete has been utilised to evaluate the mechanical performance of EMC reported in literature, however, in this study the use of a supplementary cementitious material, that of fly ash (FA), is suggested as a partial replacement of Portland cement to create a more environmentally friendly construction material. Moreover, in order to examine the improvement of adhesion properties between the SBR granules and the cementing matrix, a styrene butadiene (SB) copolymer emulsion has been introduced to the couple of mixes.

In the first experimental work stage two sets of EMC were prepared; one with small SBR granules (1 to 4 millimetres) in proportions of 5%, 10% and 15% of the total weight of aggregates; the other with larger SBR granules (12 to 15 millimetres) in proportions of 2%, 4%, 6% and 10% of the total weight of aggregates. In order to evaluate the damping and ductility properties of concrete, several tests were conducted following Australian Standards (AS) and American Society for Testing and Materials (ASTM), including compressive strength, static chord modulus of elasticity, modulus of rupture and dynamic modulus of elasticity.

Compared to the control concrete, EMCs demonstrated lower density (mass per unit volume) and higher air content with increasing additions of SBR granules to EMCs. Furthermore, the compressive strength was found to decrease with increasing additions of SBR granules to EMCs. In contrast, static chord modulus of elasticity (MOE) and

modulus of rupture (MOR) of EMCs were found to increase compared to the control concrete. Unlike the control concrete, EMCs did not exhibit a brittle-like failure.

In the second experimental work stage, five reinforced beams (two for four point bending and three for three point bending tests) were made based on Australian standards. There were two sets of tests conducted on beams: destructive and non-destructive. Four point bending and three point bending tests were used to investigate the static properties of beams. To evaluate dynamic properties, hammer test was carried out prior to initiation of loading and also after failure of beam in four point bending test. The stiffness and maximum load of the beams decreased with the addition of SBR granules, however, the damping ratio of the beams increased. The project also included simulation and modelling of static tests using analysis by computer programs.

This study encompassed a large experimental component and through specific testing, the best performing materials is selected to achieve the highest damping-to-ductility ratio.

Notation

NOTATION

 A_s = area of the steel reinforcement

- C = damping coefficient
- c_{cr} = critical damping coefficient
- d = the effective depth
- $\Delta = deflection$
- ε = strain in concrete
- E =modulus of elasticity
- *EI* = flexural Stiffness
- f = frequency
- f_s = the ultimate strength for the steel reinforcement
- f_c = the compressive strength of the concrete beam
- f_{cm} = average value of modulus of elasticity
- I = the moment of inertia
- k =stiffness of the system
- L_c = length of specimen, for calculation of concrete dynamic modulus of elasticity
- L = the span length
- M = mass of specimen for calculation of concrete dynamic modulus of elasticity
- M_u = the maximum bending moment
- m = mass of the system
- m'= number of cycles for calculation of the damping of the beam

n = fundamental transverse frequency

n' = fundamental longitudinal frequency

P = the applied load

T = correction factor, for calculation of concrete dynamic modulus of elasticity

t, b = dimensions of cross section of prism, for calculation of concrete dynamic modulus of elasticity

 u_n = displacement on the curve at nth cycle for calculation of the damping of the beam

 u_{n+m} = displacement on the curve at (n+m)th cycle for calculation of the damping of the beam

 ω = natural frequency of the undamped system

 ω_n = natural frequency of the beam

 ξ = damping Ratio

 $\rho A = \text{mass per unit length}$

LIST OF SYMBOLS

AC: Air Content

ACI: American Concrete Institute

AS: Australian Standards

ASTM: American Society for Testing and Materials

BSG: Bulk Specific Gravity

EMC: Elastomeric Modified Concrete

FA: Fly Ash

FRC: Fibre Reinforced concrete

HWR: High Range Water Reducing Admixture

LVDT: Linear variable differential transformer

MC: Moisture Content

MOE: Modulus of Elasticity

MOR: Modulus of Rupture

PC: Portland Cement

PP: Polypropylene

PVA: Polyvinyl-alcohol

SB: Styrene Butadiene

SBR: Styrene Butadiene Rubber

SCM: Supplementary Cementitious Material

SL: Shrinkage Limited

SSD: Saturated Surface Dry

List of contents

CERT	IFICATE OF AUTHORSHIP/ORIGINALITY	I
ACKN	OWLEDGEMENTS	II
PUBL	ICATION	III
ABSTI	RACT	IV
NOTA	TION	VI
LIST (DF CONTENTS	IX
LIST (OF TABLES	XIV
LIST (OF FIGURES	XVI
1.	INTRODUCTION	1
1.1	Preamble	1
1.2	Problem Definition	1
1.2.1 1.2.1.1 1.2.1.2 1.2.1.3	Sustainable Building and Construction Styrene Butadiene rubber (SBR) Manufactured Fine Sand Fly Ash	1 3 4 5
1.2.2	Damping Properties	7
1.2.3	Ductility Properties	8
1.3	Research Objectives	8
1.4	Research Significance	9
1.5	Thesis Layout	10
2.	LITERATURE REVIEW	11
2.1	Preface	11
2.2	Styrene Butadiene Rubber (SBR) Sourced from Waste Tyre	11

IX

2.2.1 2.2.1.1 2.2.1.2 2.2.1.3	Car Tyre Material Components Manufacturing of New Tyres	12 12 13 14
2.2.2 2.2.2.1 2.2.2.2 2.2.2.3	What is Waste Tyre? The Mechanical Properties of Waste Tyres Applications of Waste Tyres What is the Problem with Waste Tyres?	14 15 15 16
2.2.3 2.2.3.1 2.2.3.2 2.2.3.3 2.2.3.4	Using SBR, Sourced from Waste Tyres, in Civil Engineering Applications: Geotechnical Applications Asphalt Mixtures In Producing Mortars In Manufacturing Concretes	17 17 18 18 19
2.3	Styrene Butadiene (SB) Latex	23
2.4	Ductility	26
2.5	Damping	29
2.6	Concluding Remarks	32
3. PROPE	INVESTIGATION INTO THE FRESH, HARDENED AND DYNAMI CRTIES OF ELASTOMERIC MODIFIED CONCRETE (EMC)	C 34
3.1	Preface	34
3.2	Raw Materials	34
3.2.1	Shrinkage Limited (SL) Portland Cement	34
3.2.2	Fly Ash (FA)	35
3.2.3	Fine Aggregate and Coarse Aggregate	36
3.2.4		
	High Range Water Reducing Admixture (HWR)	38
3.2.5	High Range Water Reducing Admixture (HWR) Water	38 38
3.2.5 3.2.6	High Range Water Reducing Admixture (HWR) Water Styrene Butadiene (SB) Latex	38 38 38
3.2.53.2.63.2.7	High Range Water Reducing Admixture (HWR) Water Styrene Butadiene (SB) Latex Styrene Butadiene Rubber (SBR)	38 38 38 39
3.2.53.2.63.2.73.2.8	High Range Water Reducing Admixture (HWR) Water Styrene Butadiene (SB) Latex Styrene Butadiene Rubber (SBR) Steel Reinforcement	 38 38 38 39 40
 3.2.5 3.2.6 3.2.7 3.2.8 3.3 	High Range Water Reducing Admixture (HWR) Water Styrene Butadiene (SB) Latex Styrene Butadiene Rubber (SBR) Steel Reinforcement Specimen Preparation and Testing	 38 38 38 39 40 40
 3.2.5 3.2.6 3.2.7 3.2.8 3.3 3.3.1 	High Range Water Reducing Admixture (HWR) Water Styrene Butadiene (SB) Latex Styrene Butadiene Rubber (SBR) Steel Reinforcement Specimen Preparation and Testing Experimental Program and Concrete Mix Proportion	 38 38 38 39 40 40 40 40

3.3.2	Preparation of Materials	43
3.3.3	Preliminary Study Prior to Mixing	43
3.3.4	Measurement of Materials	44
3.3.5	Mixing Concrete	44
3.3.6	Compaction by Vibration	46
3.3.7	Sampling	47
3.3.8	Specimen Moulding	47
3.3.9	Finishing	48
3.3.10	Specimen Demoulding and Curing	48
3.4	Testing Program	49
3.4.1	Fresh State	49
3.4.1.1	High Range Water Reducing Admixture (HWR)	51
3.4.1.2	Wet Density	54
3.4.1.3	Air Content (AC)	56
3.4.2	Hardened Concrete Properties	58
3.4.2.1	Compressive Strength	58
3.4.2.2	Effect of SB Latex on the Compressive Strength	60
3.4.2.3	Effect of SBR Granules Size on Compressive Strength	60
3.4.2.4	Compressive Strength to Density Ratio	61
3.4.2.5	Modulus of Rupture	62
3.4.2.6	Effect of SB Latex on MOR	64
3.4.2.7	Effect of SBR Granule size on MOR	65
3.4.2.8	Relative Compressive Strength versus Relative MOR	65
3.4.2.9	Modulus of Elasticity (MOE)	67
3.4.2.10	MOE as a Function of Compressive Strength	69
3.4.3	Dynamic Properties	71
3.4.3.1	Calculation	73
3.4.3.2	Results: Fundamental Transverse and Longitudinal Resonant Frequencies	76
3.4.3.3	Dynamic Modulus of Elasticity	79
3.4.3.4	Damping Ratio	83
3.4.3.5	Comparison of Dynamic MOE with Chord (static) MOE	85
3.4.3.6	Dynamic modulus of elasticity versus compressive strength	85
3.4.4	Modes of Failure	86
3.5	Concluding Remarks	91
3.5.1	Fresh Properties	91
		XI

3.5.2	Hardened Properties	92
3.5.3	Dynamic Properties	93
3.5.4	Failure Mode	94
4. ELAST	INVESTIGATION INTO THE STRUCTURAL PROPERTIES OF T OMERIC MODIFIED CONCRETE	THE 95
4.1	Preface	95
4.2	Fabrication of the Beams	95
4.2.1	Design	95
4.2.2	Casting and Curing	98
4.3	Four-point bending Test Set up	100
4.3.1	Experimental Program	100
4.3.2	Test Channels	101
4.3.3	Four-point bending Test Set up	101
4.3.4	Parameters Calculated in Four-point Bending Test	104
4.3.5	Results	106
4.3.6	Discussion	115
4.4	Three-point Bending (cyclic test) Test	117
4.4.1	Experimental Program	117
4.4.2	Test Channels	117
4.4.3	Set up	118
4.4.4	Results	122
4.4.5	Discussion	130
4.5	Dynamic Test (hammer test)	131
4.5.1	Theory:	135
4.5.2 4.5.2.1 C 4.5.2.2 C 4.5.2.3 C	Results: Calculation of the Frequency (theoretically) Calculation of the Frequency (from graph) Comparison of the Results of Theory and Experiments	137 137 137 140 XII

4.5.2.4 C 4.5.2.5 C	Calculation of the Dynamic Modulus of Elasticity Comparison of the Dynamic EI and EI from Four-point Bending Test	141 142
4.5.2.6 C	Calculation of the Damping	142
4.6	Finite Element Modelling	145
4.7	Concluding Remarks	150
4.7.1	Four-point Bending Test:	150
4.7.2	Three-point Bending Test:	150
4.7.3	Dynamic (hammer) Test:	151
5.	CONCLUSIONS	152
5.1	Preface	152
5.2	Economic Feasibility of EMCs	152
5.3	Concluding Remarks	156
5.3.1	Investigation into the Fresh, Hardened and Dynamic Properties of EMC	156
5.3.2	Investigation into the Structural Properties of the Elastomeric Modified Concrete	157
5.4	Further work	158
5.5	Proposed Applications	159
5.6	Final Remarks	160
REFER	ENCES	161
LIST O	F STANDARDS	163
APPEN	DIX A: COMPARISON OF RESULTS WITH OTHER WORKS	166
APPEN	DIX B: THREE-POINT BENDING TEST COMPLETE CYCLES	179
APPEN	DIX C: FOUR-POINT BENDING TEST STRAIN GRAPHS	182
APPEN	DIX D: PHOTOS OF THE BEAMS	189

T * 4	C			1
List	0I	1 8	D	les

Table 2-1 - Waste Tyre Classification	14
Table 2-2 - Mechanical Properties of Tyre Wastes	15
Table 2-3 – Percentage Breakdown of Current Usage of Waste Tyres	16
Table 3-1- Significant Composition of SL Portland Cement	35
Table 3-2 - Physical and Chemical Properties of SL Portland Cement	35
Table 3-3 - Chemical Composition of Eraring Fly Ash by XRF method	36
Table 3-4 - Typical Properties of Eraring Fly Ash	36
Table 3-5 - Particle Size Distribution (sieving method) of Fine Aggregates	37
Table 3-6 - Particle Size Distribution (sieving method) of Coarse Aggregates	37
Table 3-7 - Properties of Aggregates	38
Table 3-8 - Experimental Program	41
Table 3-9 - Raw Material Proportions of Control Mixes	41
Table 3-10 - Raw Material Proportions of Mixes with SBR Granules	42
Table 3-11 - MC of Aggregates	43
Table 3-12 - Results of the Fresh Properties Tests	50
Table 3-13 - Hardened EMC Properties	58
Table 3-14 - Optimum SBR Granules Percentage for MOR	62
Table 3-15 - Compressive Strength and MOE results of a Similar Project	67
Table 3-16 - Fundamental Transverse (n) and Longitudinal (n') Resonant Frequenci	es76
Table 3-17 - Dynamic MOE	79
Table 3-18– Damping Ratio (%)	83
Table 3-19 - Comparison of Dynamic MOE with Chord (static) MOE	85
Table 4-1 - Beam Experimental Program	
Table 4-2 - Four-point Bending Experimental Program	100
Table 4-3 - Compressive Strength of Four-point Bending Observation Specimens	107
Table 4-4 – Load and Deflection at Different Points of Four – point Bending Test	109
Table 4-5 - Ductility Factor and E1 at Different Points of Four – point Bending Test.	109
Table 4-6 - Strain of Strain Gauge at Mid Span Reinforcement	113
Table 4-7 - Area under Load - Deflection Curve (KN.mm)	114
Table 4-8 - Inree-point Bending Test Experimental Program	117
Table 4-9 - Compressive Strength of Three-point Bending Observation Specimens	122
Table 4-10 - Area under the Hysteresis Loops	120
Table 4-11 - Total Area and Cumulative Area up to 50kN of Three-point Bending L Deflection Curve	120
Table 4.12 Dynamic Test Experimental Program	125
Table 4-12 - Dynamic Test Experimental Frogram	136
Table 4-15 - Boundary Conditions of Beams	136
Table 4-14 - Values of p_2 for Different violes	137
Table 4-15 - Frequency of the Beams (from graph)	140
Table 4-17 - Comparison of the First Frequency Results from Theory and Evnerime	nts 140
Table 4-18 - Dynamic Modulus of Flasticity of the Reams	141
Table 4-19 - Comparison of Dynamic FI and Static FI	142
Table 4-20 - Damning Ratio of Beams before and after Failure	143
Table 5-1 - Mass of the Different Components of the Case Study in Ardebil	153
These of a strate of the office one components of the Case budy in Ardeonanian	VIV
	AIV

Table 5-2 - Experimental Program of Economic Feasibility of EMCs	154
Table 5-3 - Cost of the Raw Materials Suggested by Industry	154
Table 5-4 - Final Price and the Amount of Saved Mineral Aggregates	155

Appendix:

Table 1 - Properties of PP Fibres	166
Table 2 - Damping Ratio of Mixes without SB Latex	173
Table 3 - Damping Ratio of Mixes with SB Latex	173
Table 4 - Dynamic Frequency of Mixes without SB Latex	174
Table 5 - Dynamic Frequency of Mixes with SB Latex	174
Table 6 - Dynamic MOE of Mixes without SB Latex	175
Table 7 - Dynamic MOE of Mixes with SB Latex	175
Table 8 -Area under the Three-point Bending Hysteresis Loop	177
Table 9 - Frequency of the Beams (theoretically) - Hz	178
Table 10 - First Frequency of the Beams (from graph) - Hz	178

List of Figures

Figure 1-1 - Photomicrograph made with a Scanning Electron Microscope (SEM) of Fly Ash	
particles at 2000 X magnification	7
Figure 2-1 - Breakdown of Ingredients of Passenger Car Modern Radial Tyres (AG 2008-9)	12
Figure 2-2 - The components of a Car Tyre (AG 2008-9)	13
Figure 2-3 - Classification of polymer-based admixtures, (Ohama 1998)	24
Figure 2-4 - Chemical structure of SB Latex, (Ohama 1998)	25
Figure 2-5 - Ductility Types (V2000)	27
Figure 3-1 - SBR granules 1-4 mm Figure 3-2 - SBR granules 12-15 mm	39
Figure 3-3 - Stress versus Strain of the Steel Reinforcing Bar	40
Figure 3-4 - Mixing Procedure for Concrete	45
Figure 3-5 - Adding HWR to the Mix	46
Figure 3-6 - External Vibration Table	46
Figure 3-7 - Specimen Cylinder and Prism Moulds	47
Figure 3-8 - Specimen Curing Tank	48
Figure 3-9 - Air Content Test	49
Figure 3-10 - Slump Test	49
Figure 3-11 - HWR Amount of Concrete Mixes	51
Figure 3-12 - HWR amount for Different SBR Granules Sizes	53
Figure 3-13 - HWR amount for Mixes with or without SB Latex	53
Figure 3-14 - Wet Density of Control Mixes and Mixes Incorporating SBR Granules	54
Figure 3-15-Effect of Different Sizes of SBR Granules on Wet Density	55
Figure 3-16 - AC of Control Mixes and Mixes Incorporating SBR Granules	56
Figure 3-17- Effect of SB Latex on AC in Mixes Incorporating SBR Granules	57
Figure 3-18 - Compressive Strength at Different Ages of Curing	59
Figure 3-19 - Effect of SB Latex on the Compressive Strength	60
Figure 3-20 - Effect of SBR Granules Size on Compressive Strength	61
Figure 3-21 - Compressive Strength - Density versus SBR Granules Percentage	61
Figure 3-22 - Modulus of Rupture of Concrete Mixes	63
Figure 3-23 - Effect of SB Latex on 14 Day MOR	64
Figure 3-24 - Effect of SB Latex on 28 Day MOR	64
Figure 3-25 - Effect of SBR Granule size on MOR	65
Figure 3-26 - Relative 28 Day Compressive and MOR strength	66
Figure 3-27 -MOE Value of Concrete Mixes	68
Figure 3-28 - Effect of SB Latex on the amount of MOE	69
Figure 3-29 - MOE as a Function of Compressive Strength - Empirical versus Experimental	
Prediction	70
Figure 3-30 - MOE as a Function of Compressive Strength - Empirical versus Experimental	
Prediction	70
Figure 3-31 - Schematic of Apparatus for Impact Resonance Test	71
Figure 3-32 - Positions Where Specimens were Struck in Different Modes	72
Figure 3-33 - Hammer Used for Dynamic Test	72
Figure 3-34 - Dynamic Test (transverse mode)	73
	XVI

Figure 3-35 - Analysis of Dynamic Test of Concrete Specimens in LabView	74
Figure 3-36 - Transverse Frequency	77
Figure 3-37 - Longitudinal Frequency	77
Figure 3-38 - Longitudinal Frequency versus Transverse Frequency	78
Figure 3-39 - Transverse Dynamic MOE	80
Figure 3-40 - Longitudinal Dynamic MOE	80
Figure 3-41 - Longitudinal versus Transverse Dynamic MOE	82
Figure 3-42– Damping Ratio (%)	84
Figure 3-43–Compressive Strength as a Function of Dynamic MOE	86
Figure 3-44 - Compression Failure of Specimen Incorporating SBR Granules	87
Figure 3-45 - Flexural Failure of Control Concrete under Flexural Test	87
Figure 3-46 - Flexural Failure of Specimens Incorporating SBR Granules under Flexural Te	st .88
Figure 3-47-Cement-rubber Interface Failure of Specimens Incorporating SBR	88
Figure 3-48 - Dispersion of SBR Granules in the Hardened Concrete	89
Figure 3-49 - Compressive Failure at Post Maximum Failure Load	90
Figure 4-1 - Typical steel reinforcement for the beams	96
Figure 4-2 - Beam Moulds	99
Figure 4-3 - Beam Reinforcement Cage	100
Figure 4-4 - Four-point Bending Test Set up (LVDT and Strain Gauges)	101
Figure 4-5 - Four-point Bending Test Set up (supports)	102
Figure 4-6 - Strain Gauges on the Surface of the Concrete	102
Figure 4-7 - Schematic of the Four-point Bending Test Set up	103
Figure 4-8 - Parameters Calculated in Four-point Bending Test	106
Figure 4-9 - (Load - Deflection) Curve of the Beams	108
Figure 4-10 - Four-point Bending Test Results	110
Figure 4-11 - Deflection at Different Points of Four-point Bending Test	110
Figure 4-12 - Ductility Factor of Beams	111
Figure 4-13 - EI at Different Points of Four-point Bending Test	111
Figure 4-14 - Calculation of Area under Load - Deflection Curves	114
Figure 4-15 - Definition of Modulus of Resilience	115
Figure 4-16 - The Three-point Bending Test Set up	119
Figure 4-17 - Hinge Clamping System	120
Figure 4-18 - Schematic of Three-point Bending Test	121
Figure 4-19 - R5SBR10 Cycle 1	.123
Figure 4-20 - R5SBR10 Cycle 2	.123
Figure 4-21 - R5SBR10 Cycle 3	.124
Figure 4-22 - R5SBR10 Cycle 4	.124
Figure 4-23 - R5SBR10 Cycle 5	.125
Figure 4-24 - R5SBR10 Cycle 6	.125
Figure 4-25 - R5SBR10 Cycle 7	.126
Figure 4-26 - R5SBR10 Cycle 8	.126
Figure 4-27 - R5SBR10 Cycle 9	.127
Figure 4-28 - R5SBR10 Cycle 10	.127
Figure 4-29 - Area up to 30kN under Three-point Bending Load-Deflection Curve	.129
Figure 4-30 - Total Area under Three-point Bending Load - Deflection Curve	.130

Figure 4-31 - Schematic of Dynamic Tests on Beams	132
Figure 4-32 - Dynamic Test Set up	133
Figure 4-33 - Hammer for Dynamic Test	134
Figure 4-34 - Accelerometer	134
Figure 4-35 - Sum of FRF for C1 (Before applying the load)	
Figure 4-36 - Sum of FRF for C1 (After failure)	139
Figure 4-37 - Acceleration Time History	144
Figure 4-38 FE Analysis of Beam C1	146
Figure 4-39 - FE Analysis of Beam C2F	147
Figure 4-40 - FE Analysis of Beam R3SBR10	
Figure 4-41 - FE Analysis of Beam R4SBR6	149

Appendix

Figure 1 - 18 mm Monofilament PP fibre	167
Figure 2 - 19 mm Fibrillated PP fibre	167
Figure 3 - HWR of Mixes without SB Latex	168
Figure 4 - HWR of Mixes with SB Latex	168
Figure 5 - Wet Density of Mixes without SB Latex	169
Figure 6 - Wet Density of Mixes with SB Latex	169
Figure 7 - AC of Mixes without SB Latex	170
Figure 8 - AC of Mixes with SB Latex	170
Figure 9 - 28 days Compressive Strength of Mixes without SB Latex	171
Figure 10 - 28 days Compressive Strength of Mixes with SB Latex	171
Figure 11 - MOR of Mixes without SB Latex	172
Figure 12 - MOR of Mixes with SB Latex	172
Figure 13 - Four Point Bending Load – Deflection Curve of the Beams	176
Figure 14 - Three-point Bending Test Load-deflection Curve R6SBR6	179
Figure 15 - Three-point Bending Load-Deflection Curve of R5SBR10	180
Figure 16 - Three-point Bending Load-Deflection Curve of R7SBR5L10	181
Figure 17 - R3SBR10 Strain Diagram @10kN	182
Figure 18 - R3SBR10 Strain Diagram @20kN	182
Figure 19 - R3SBR10 Strain Diagram @30kN	182
Figure 20 - R3SBR10 Strain Diagram @40kN	183
Figure 21 - R3SBR10 Strain Diagram @50kN	183
Figure 22 - R3SBR10 Strain Diagram @60kN	183
Figure 23 - R3SBR10 Strain Diagram @70kN	184
Figure 24 - R3SBR10 Strain Diagram @80kN	184
Figure 25 - R3SBR10 Strain Diagram @90kN	184
Figure 26 - R4SBR6 Strain Diagram @10kN	185
Figure 27 - R4SBR6 Strain Diagram @20kN	185
Figure 28 - R4SBR6 Strain Diagram @30kN	185
Figure 29 - R4SBR6 Strain Diagram @40kN	186
Figure 30 - R4SBR6 Strain Diagram @50kN	186
Figure 31 - R4SBR6 Strain Diagram @60Kn	186

Figure 32 - R4SBR6 Strain Diagram @70kN	
Figure 33 - R4SBR6 Strain Diagram @80kN	187
Figure 34 - R4SBR6 Strain Diagram @90kN	
Figure 35 - R4SBR6 Strain Diagram @100kN	
Figure 36 - Three-point Bending Test Failure (30% FA +10% SB Latex)	
Figure 37 – Crack Propagation of Three-point Bending Beam Failure (30% FA)	
Figure 38 - Three-point Bending Test Failure (30% FA)	
Figure 39 - Three-point Bending Test Failure	
Figure 40 - Three-point Bending Test Failure (30% FA+10% SBR(1-4mm))	191
Figure 41 - Crack Propagation of Three-point Bending Test Failure	
Figure 42 - Three-point Bending Test Failure (30% FA+6%SBR (12-15mm))	
Figure 43 - Crack Propagation of Three-point Bending Test Failure	
Figure 44 - Four-noint Bending Test (30% FA)	
rigure ++ - 1 our -point benuing 1 est (5070 1 ft)	