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Abstract

This paper gives optimal designs obtained by developing a fractional factorial design
for the estimation of main effects in stated choice experiments under the assumption of
equal selection probabilities. This construction approach follows that of Burgess and
Street (2005), who develop complete factorial designs to construct optimal designs for
choice experiments, but we obtain choice experiments with fewer choice sets. We con-
struct the fractional factorial designs using the Rao-Hamming method, which assumes all
attributes have the same number of levels, which must be a prime or a prime power. We
also find optimal designs for stated choice experiments that are generated from asymmet-
ric fractional factorial designs constructed using expansive replacement under the same
assumption. We use the multinomial logit model to analyse the results, and we make
the assumption of equal selection probabilities when calculating optimality properties.
The methods that we use to implement these constructions are given in the last section.
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1 Introduction

Stated choice experiments, or discrete choice experiments (DCEs) are becoming an in-
creasingly popular method for eliciting preferences across many different disciplines. For
example, Lancsar et al. (2007) use DCEs to determine the most important outcomes for
preventative asthma treatments, Jaeger et al. (2008) use DCEs to investigate consumer
preferences for fruit purchases, and Carson et al. (2009) use DCEs to gauge public sup-
port for climate change policy in Australia. A comprehensive introduction to the area
can be found in Louviere et al. (2000), and in Train (2003).

In a DCE, we present a series of choice sets, in turn, to each respondent. Each choice
set consists of a number of alternatives from which respondents are asked to choose the



option that they think is best. We assume that each respondent is shown the same set
of choice sets, and that all choice sets contain the same number of alternatives.

In this paper, we assume that the multinomial logit model (MNL model) is used to
estimate the effect of each attribute on the probability that an alternative is selected.
The appeal of this model is that the likelihood function has a closed form, which means
that it is not necessary to use simulation methods to obtain parameter estimates. While
the limitations of this model, such as independence from irrelevant alternatives, are
widely discussed in the literature (Louviere et al. (2000), Train (2003)), the designs that
are efficient for the estimation of the MNL model have been shown to perform well
for other models (Burgess et al. (2011)). In choice sets of size 2, and after a suitable
reparameterisation, the MNL model coincides with the Bradley—Terry model (Bradley
and Terry (1952)).

One important step in conducting a DCE is determining which sets of alternatives
are selected to form choice sets, and which set of choice sets is used for the DCE. That
is, how do we design the DCE? This question is important because a poor design will
require more choice sets than an efficient design to achieve the same level of precision in
the parameter estimates.

There are many criteria that can be used to compare designs. Several of these
are based on the asymptotic properties of the Fisher information matrix (or simply
the information matrix) for the model that is to be fitted. In this paper we use the
D—optimality criterion, which finds the design that maximises the determinant of the
information matrix.

Unlike the case for linear models, the information matrix for nonlinear models, such
as the MNL model, is a function of the parameters that are to be estimated, which
are unknown when we choose a design. To overcome this problem, we assume that
all alternatives are equally attractive to the respondent, and use this assumption to find
locally optimal designs. That is, we assume that each alternative has an equal probability
of selection. This reduces the problem to the corresponding problem in a linear model.
An alternative approach is to specify a prior distribution and find a Bayesian optimal
design; see Kessels et al. (2009) for a discussion of this approach.

Burgess and Street (2003) prove a theorem that provides D—optimal designs for the
estimation of main effects, where all attributes have two levels, and the design has been
developed from a complete factorial design. In Street and Burgess (2004), the authors
reduce the number of choice sets required to obtain a D-optimal design by proving
a theorem that gives D—optimal designs for the estimation of main effects, where all
attributes have two levels, and the design has been developed from a fractional factorial
design. Burgess and Street (2005) prove a theorem that provides D—optimal designs for
the estimation of main effects, where attributes may take any number of levels, and the
design has been developed from a complete factorial design. While Chapter 7 of Street
and Burgess (2007) provides constructions that develop fractional factorial designs to
obtain a choice design with attributes that are not restricted to two levels, they do not
prove that such designs can give D—optimal designs under certain conditions.

The purpose of this paper, and indeed the novel contribution of this paper, is to
present and prove theorems that give D—optimal designs that are developed from frac-
tional factorial designs when attributes have more than two levels. In Section 3, we
present a theorem that gives D—optimal designs for the estimation of main effects where



all attributes have the same number of levels and the number of levels is a prime or a
prime power, and the choice design is developed from a fractional factorial design. In
Section 4, we present a theorem that gives D—optimal designs for the estimation of main
effects where the attributes may take different numbers of levels, but all powers of the
same prime, and the choice design is developed from a fractional factorial design. In
Section 5 we provide some advice about how to choose appropriate sets of generators
to develop the fractional factorial design such that the conditions of the theorems in
Burgess and Street (2005), as well as Theorems 3.1 and 4.1 of this paper are satisfied.

The supplementary material for this paper provides full derivations of the informa-
tion matrices, as well as proofs of Theorems 3.1 and 4.1. This supplementary material
is available at http://sites.google.com/site/stephenabush/.

2 Preliminary Results and Notation

In this section, we review some concepts that will be useful when constructing optimal
designs for the MNL model. We introduce relevant notation, review some properties of
the MNL model and results of Burgess and Street (2005), which we extend in this paper,
using the Rao—Hamming construction method and the expansive replacement method.

We begin with some notation. We say that a choice experiment consists of N choice
sets, each containing m alternatives (also known as profiles, options, or items), from
which the respondent is asked to choose the most preferred. We describe each alternative
by a set of k attributes. We assume that the ¢*" attribute has £, levels, represented by
0,1,...,¢, — 1. Thus we describe each alternative as a k-tuple of attribute levels. We
also assume that no choice set contains a repeated alternative.

Once we obtain responses from each of the s respondents, we use the MNL model
to model respondent preferences. In the MNL model we assign a value m; to each
alternative T;, where i = 1,..., L and L = H];:l ¢4, which represents the attractiveness
of the alternative to the respondent. The larger the value of 7;, the more attractive
the alternative T; is to the respondent. Then, for a choice set C' = {T;,,T;,,..., T3, },
the probability that an alternative T; € C is selected from the choice set is P(T;|C) =
7/ (30, 7, ), with the normalising constraint HiL:1 m; = 1. In this case, Burgess and
Street (2003) derive the Fisher information matrix for the estimation of v/sNvy, where
¥ = (7,---,72)T and we assume that 7; = In(m;) is a linear combination of attribute
effects for alternative T;. We introduce these linear combinations in the form of contrast
matrices later. The authors also let A be the proportion of how often the choice set C'
appears in the experiment. The authors show that the i*" diagonal entry of the L x L
information matrix A(m) is given by
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Table 2.1: The structure of a design constructed from F' using generators

Option 1 Option 2 ... Option m
F F+g1,2 F—’—ng
F F+g2’2 F+g2,m
F F+gg’2 F+g<7m
where w = (7, ...,71)7, and the summation is over all of the distinct choice sets. Under

the assumption of equal selection probabilities, that is P(T;, |C) = 1/m for 1 < a < m,
the i*" diagonal entry becomes Zcmec(m — 1)A¢/m?, and the (i,j)th entry, where
i # j, becomes — ZC‘Ti,Tjec Ac/m?. This assumption is equivalent to assuming that
v, =0for 1 <i<L.

In DCEs, we are not particularly interested in estimating the m; values for each
alternative, rather we are interested in estimating the main effects of the attributes, or
interaction effects between attributes. In this paper, we focus on main effects only. With
this in mind, we need to reparameterise the Fisher information matrix so that we are
estimating the contrasts of the ~; that correspond to the attribute main effects. So,
following El-Helbawy and Bradley (1978), we define a matrix B, with dimensions p x L
and orthonormal rows, that contains the coefficients of the p = Zs:l(fq — 1) contrasts
that correspond to the main effects that are to be estimated for each of the k attributes.
Then C(n) = BA(m)B7 is the Fisher information matrix for the estimation of v/sN By.
A D-optimal design will then be a design that maximises det(C(mr)). D-optimal designs
are not necessarily unique.

There are several results in the literature that give optimal, or near—optimal, designs
for DCEs in various circumstances. The designs we consider in this paper are constructed
from a starting design, to which we add generators. The starting design, F, is either
a complete factorial design or a fractional factorial design, whose entries become the
first alternatives in each choice set. Here, we use the term starting design in the same
way as Chapter 8 of Street and Burgess (2007), which should not be confused with the
starting designs that are used in search algorithms. We then add m — 1 generators, in
turn, component-wise modulo ¢4, to each row of the starting design. These form the
remaining alternatives in each choice set. Since position effects are not of interest in this
paper, the order of the alternatives within each choice set is fixed, but arbitrary; so the
alternatives in F' may, in fact, be placed in any of the positions of the choice set as long
as they are all in the same position (so all of the alternatives in F' may appear in the
second position of the choice set, for instance). In general, a choice set is generated using
¢ sets of m generators Go = (9,1 = 0,90.2,---:9a,m), for & = 1,2,...,(, and where
9ai = (Gaits9a,i2s -5 Gasik), for i =1,2,...,m. To ensure that there are no repeated
alternatives within a choice set, we make the restriction go2 # 0,...,ga.m # 0. The
structure of the resulting design is shown in Table 2.1. The following example illustrates
this construction.

Example 2.1. Suppose that we have an experiment with m =3, ( =1, and ¢, = {5 =



Table 2.2: Choice Design with k =4, m =3 and {; = 3

Option 1 Option 2 Option 3
0 0 0 O 1 2 1 2 2 1 2 1
0 1 1 1 1 0 2 0 2 2 0 2
0 2 2 2 1 1 0 1 2 0 1 0
1 0 1 2 2 2 2 1 0 1 0 O
1 1 2 0 2 0 0 2 0 2 1 1
1 2 0 1 2 1 1 0 0 0 2 2
2 0 2 1 0 2 0 O 1 1 1 2
2 1 0 2 0 0 1 1 1 2 2 0
2 2 1 0 0o 1 2 2 1 0 0 1

l3 = ¢, = 3. To construct a design for this experiment, we add two generators to a
fractional factorial design F', which is given in the first block of columns in Table 2.2.
Let the first of these generators be g1 2 = (1212). Then by adding g1 2 to each row of F’
component—wise modulo 3, we obtain the options given in the second set of columns in
Table 2.2. Similarly, we add g1,3 = (2121) component—wise modulo 3 to each row of F
to obtain the final option of each choice set. Then each row describes a choice set of size
3. O

We can characterise a set of generators by looking at the differences between at-
tribute levels for pairs of options. To do this, we construct a multiset of differences
between ordered pairs of generators for particular attributes. A multiset is defined not
only by the elements contained in the set, but also by the frequency with which each
element appears in the set. So if we consider the first attribute in Example 2.1, the
multiset of differences between each ordered pair is {g1,1.1 — 9121 = 2,01,1,1 — 91,31 =
Lgignr —9111 = Lgien — 9131 = 2,131 — 9111 = 2,91,31 — 91,21 = 1}, since
91,1 = (0000). So this multiset contains no Os, three 1s and three 2s. In Theorem 2.1,
we place conditions on these multisets that give optimal designs.

In this paper, we build on the following theorem, proven in Burgess and Street
(2005), that gives optimal designs for the estimation of main effects when the starting
design is a complete factorial design and ¢ = 1.

Theorem 2.1. (Burgess and Street (2005)) Let F be the complete factorial for k at-
tributes where the ¢** attribute has lq levels. Suppose that we choose a set of m gen-
erators G = {g1 = 0,92,...,9m} such that g; # g, for i # j. Suppose that g; =
(9i1:9i,2,---,9ik) for i =1,...m and suppose that the multiset of differences for at-
tribute q, Wi£;(gj.q — 9i,q), contains each non—zero difference modulo £, equally often.
Then the choice sets given by the rows of F + g1, F 4+ g2,..., F + gy, for one or more
sets of generators G, are optimal for the estimation of main effects only, provided that
there are as few zero differences as possible in each choice set. O

To obtain optimal designs using this theorem we require two things. The first is
a complete factorial design, and the second is a set of m generators that satisfy the
conditions stated in Theorem 2.1. If m = /¢, the number of levels for each attribute,



we can select entries for the set of generators such that each of the non-zero values,
1,...,¢ — 1, appears in the ¢'* position of exactly one of the m — 1 generators. The
generators in Example 2.1 satisfy this condition. If m # ¢, this problem becomes more
difficult, and more than one set of generators may be necessary to satisfy this condition.
This difficulty is discussed in Section 5 of Street and Burgess (2008). If we are using
more than one set of generators then we require the multiset sum of the multisets of
differences for each set of generators to contain each non—zero difference equally often.
We discuss the existence of appropriate sets of generators further in Section 5.

In Theorem 2.1, the class of competing designs is restricted so that “any experiment
contains all choice sets with a particular difference vector equally often”. In this context,
we define the difference vector for a choice set constructed from the a'® set of generators
to contain m(m — 1)/2 entries, corresponding to the m(m — 1)/2 pairs of positions in
the choice set, where each entry is a k-tuple of Os and 1s. For the ¢'" position in the
k—tuple corresponding to the pair of alternatives in positions ¢ and j of the choice set,
the corresponding entry in the difference vector equals 0 if g, ;. — ga,i,q = 0, and equals
1 otherwise.

Example 2.2. Consider the design in Table 2.2. In this experiment, g1 2 —g1,1 = (1212),
913 —g1,1 = (2121), and g1 3 — g1,2 = (1212). So the difference vector for each choice
set in this design is {(1111),(1111),(1111)}, since each entry in the three differences is
non—zero. If we have g1 3 = (2222) instead, then g1 2 —g1,1 = (1212), g1 3—g1,1 = (2222),
and g1,3 — g1,2 = (1010). The difference vector will then be {(1111),(1111), (1010)}. O

In this paper, the class of competing designs are all designs that can be constructed
by adding one or more sets of generators to an orthogonal array constructed using Con-
structions 2.1 and 2.2, where generators satisfy the condition that the multiset of differ-
ences for each attribute ¢ over all sets in the collection &ngl Wi (9a,jiq — Yaisg) CONtaAINS
each non-zero difference in the Galois field of order ¢,, GF[{,], equally often. In the
condition of the multiset of differences, we only count the differences for each attribute
within each set of generators.

One problem with the optimal designs arising from Theorem 2.1 is that the number
of choice sets becomes large quite quickly as the number of attributes increases, or as the
number of levels that each attribute may take increases (Grofmann et al. (2007), Street
and Burgess (2007) Chapter 8). Since researchers need to balance design optimality with
respondent burden, small, optimal or near—optimal designs are useful in practice.

GraBhoff et al. (2004) provides several constructions for the case where m = 2, and
proves that the resulting designs are optimal. In particular, the authors use Hadamard
matrices and orthogonal arrays to create a design structure into which pairs of levels are
embedded. For symmetric experiments, that is when ¢ = ... = £, = ¢, the authors also
use Bhaskar-Rao designs to find optimal designs with ¢(£ — 1)/2 choice sets. Graflhoff
and Schwabe (2008) prove results that give optimal designs when &k = 1 or 2, m = 2,
without making the assumption of equal selection probabilities.

Street et al. (2005) also investigate different methods of obtaining small near—
optimal designs for choice experiments with two or more alternatives in each choice
set. The authors find that by using a fractional factorial starting design they consis-
tently obtain efficient designs that allow for the independent estimation of main effects,
or main effects plus two—factor interactions when all attributes may take two levels. The
authors present upper bounds for the determinant of the information matrix, but do



not present any general results about which designs may be optimal when a fractional
factorial starting design is used.

In this paper, we use fractional factorial designs that are specified by orthogonal
arrays to obtain the starting design F. Street and Burgess (2007) define an orthogonal
array OA[N; Ly, 0, ..., l;t] of strength ¢ to be an N X k array with the elements in
column ¢ chosen from a set of ¢; symbols such that any N x ¢ subarray has each t—
tuple appearing as a row an equal number of times. The orthogonal array is said to be
symmetric if {1 = €y = ... = l, and is said to be asymmetric otherwise. We denote a
symmetric orthogonal array with N runs, k columns, and of strength ¢ with a common
number of levels £ by OA[N, k, ¢, t]. Since we are considering fractional factorial designs
specified by orthogonal arrays, as discussed in Section 11.4 of Hedayat et al. (1999), we
will refer to the starting designs as orthogonal arrays.

Rao (1947, 1949) provides a method for constructing an OA[¢", (¢" —1)/({—1),4,2]
where the number of levels for each attribute is a prime or a prime power (Hedayat et
al. (1999), p. 49). This construction method uses the properties of Galois fields of order
¢, GF[{], which exist when £ is a prime or a prime power. Appendix A of Hedayat et al.
(1999) provides a good introduction to Galois fields. Since primes are special cases of
prime powers we will only refer to prime powers. This construction is known as the Rao—
Hamming construction, since the same construction is also used to obtain the Hamming
codes introduced in Hamming (1950).

Construction 2.1. (from Hedayat et al. (1999), p. 50) Form an £" X n array with
all possible n—tuples from GF[l], where £ is a prime power. Let C1,...,C, denote the
columns of this array. The columns of the OA[L™, ({™ — 1)/(£ — 1),£,2] then consist of
all columns of the form

anC'l =+ aq7202 4+ ...+ aq,nC’n = [Ch CQ, ey C’n]aq, (21)
where ag = (ag1,...,aq,)" is an n—tuple from GF[(], not all the a,; are zero, and the
first non—zero aq; is 1. O

A comprehensive catalogue of orthogonal arrays is provided on Neil Sloane’s website
http://www2.research.att.com/~njas/oadir/index.html.

In this paper, we use orthogonal arrays to reduce the number of choice sets arising
from the construction in Theorem 2.1. In this approach, an orthogonal array is used as
the starting design F', rather than the complete factorial design. Such an approach was
considered in Section 8.1 of Street and Burgess (2007), however the authors considered
near—optimal designs rather than optimal designs, as we do here. Initially we will consider
symmetric designs, that is £ = ... = £}, = £, where £ is a prime power. In Section 4, we
look at some asymmetric designs where the orthogonal array has been obtained through
the expansive replacement of columns of a Rao-Hamming design. Ezpansive replacement
(Hedayat et al. (1999), Chapter 9) involves replacing the elements in a column of an
OA[N, ky,¢1,2] with the rows of a second OA, OA[ly, ko, {2, 2].

Construction 2.2. Suppose that {1 = s?', that {5 = s92, where s is a prime and g2 < q1,
and that there exist two fractional factorial designs Fy and Fy, where Fy is an E’fl design
with N runs and Fs is an KSQ design with €1 runs. Then in expansive replacement, we
replace the r' attribute of the first design by ko attributes, each with 5 levels, by making



Table 2.3: Choice Design with k =7, m =2 and {; = 2

Option 1 Option 2
0000000 1111111
0011110 1100001
0101011 1010100
0110101 1001010
1000111 0111000
1011001 0100110
1101100 0010011
1110010 0001101

a 1-1 correspondence between the £y levels of the r'" attribute in the first design and the
£y runs in the second design. We may choose any one of the ¢1 level attributes to be
replaced. [

The constructions presented in this paper allow us to generate designs where k <
(k=% —1)/(f — 1) and N = ¢ x £¢¥=% where ( is the number of sets of generators that
are used to construct the design. The value for the integer z is chosen to minimise N
for a given value of k, while ensuring that the strength of the OA is at least 2 (i.e. the
resolution of the design is at least 3). The construction in Burgess and Street (2005)
allows us to construct designs where N = ¢ x ¢¥. For Example 2.1, given the same set
of generators, we would need N = 1 x 3* = 81 choice sets if we were to use the method
in Burgess and Street (2005), rather than the nine choice sets shown in Table 2.2.

We conclude this section with two examples of designs for choice experiments that
have been developed from orthogonal arrays.

Example 2.3. Consider the design in Example 2.1. The orthogonal array in the first
block of columns of Table 2.2 has been constructed using the Rao-Hamming construction,
where the first two columns form the 32 complete factorial design, C3 = C; + Cs, and
Cy = 2 x (7 + Oy, and the addition and multiplication operations are conducted in
GFI3]. O

Example 2.4. Consider a design with k =7, {;, =2for 1 < ¢ <7, m=2,and {( = 1.
To construct the orthogonal array, we begin with the 23 complete factorial design, which
gives the first three columns of this array. We then add columns of the complete factorial
using the following relationships Cy = Cy 4+ C3, Cs = C; + C3, Cs = C1 + C3 + C3, and
C7 = C1 + Cq, where the addition is conducted in GF[2]. This gives the first block of
columns in Table 2.3. If we add the generator g1 2 = (1111111), we obtain the design in
Table 2.3. O

3 Optimal Symmetric Designs

In this section, we construct the information matrix for the estimation of the main effects
of the attributes. We then use this to prove a theorem that gives optimal designs for the
estimation of main effects for the designs introduced in Section 2.



In Section 1 of the supplementary material we show that the component of the Fisher
information matrix corresponding to the pairs of items in the i*" and ;% positions of
the choice sets generated from the o' set of generators, under the assumption of equal
selection probabilities, is given by

1
Cayij(mo) = WBlkDiag [Be(2Ir — Qg sy—gesa — Qousa—gaia) B, (3.1)
where there are ( sets of generators used to construct the design, and @Q; is an £ x £
permutation matrix where the (z,y) entry equals 1 if y +¢ = 2 and 0 otherwise. This
matrix consists of k blocks, corresponding to ¢ = 1,. .., k. Using this notation, the Fisher
information matrix for the entire experiment, under the assumption of equal selection
probabilities, is

¢
Cmy) = Y. > Caujlmo), (3.2)

a=1i<j

since the information matrix for an entire choice set is the sum of the information matrices
for each pair of items (Street and Burgess (2007), Section 3.3), and information matrices
for separate choice sets are additive.

The expressions in Equations 3.1 and 3.2 can be used to show that a design for
a choice experiment is optimal. By observing that the multiset of differences for each
attribute ¢ is the set of g, j,q — ga,i,q values where repeated values are allowed, the next
theorem establishes the conditions under which the design will be optimal.

Theorem 3.1. Let F' be an orthogonal array obtained from Construction 2.1 with k
attributes, each of which have £ levels. Also let Go = {ga1 = 0,90.2,---+9a.m}, for
a = 1,...,¢, be a collection of sets of generators such that go; # ga,; for all i #
j. Suppose that the i generator in the o' set of generators is the k—tuple gn; =
(ai1s Gai2s -« > Gaisk), fori=1,2,...,m. Also suppose that the generators are chosen
such that the multiset of differences for each attribute q over all sets in the collection
W, Wi; (Ja,j,q — Ga,i,g) contains each non—zero difference in GF (] equally often. Then
the choice sets given by the rows of F + ga,1, F + 902, s F +gam, fora=1,...,(,
are optimal for the estimation of main effects under the assumption of equal selection
probabilities, provided that there are as few zero differences as possible.

A full proof of this theorem is given in Section 2 of the supplementary material.
The class of competing designs for this theorem are all designs that can be constructed
by adding one or more sets of generators to an orthogonal array constructed using Con-
struction 2.1 where generators satisfy the condition that the multiset of differences for
each attribute ¢ over all sets in the collection Lﬂgzl Wizj (9a,jq — Ya,i,q) contains each
non—zero difference in GF'[{] equally often. In the condition of the multiset of differences,
we only count the differences for each attribute within each set of generators. In Section
5 we discuss how to determine the minimum number of zero differences for given values
of m, k, and /£.

If the assumptions that define the class of competing designs hold, then the deter-



minant of the information matrix for the estimation of main effects is given by

k -1
det(C(mp)) = U (nﬁgj’f(iql)) , (3.3)

where there are 25, non-zero differences in the multiset of differences for attribute q.
We are particularly interested in non—zero differences between alternatives because it is
only when an attribute changes level between alternatives that we obtain information
about main effects. Equation 3.3 is equivalent to det(C(mp)) in the proof of Theorem
2 of Burgess and Street (2005) when ¢, = ¢, for 1 < ¢ < k, and ( is fixed to equal 1.
Theorem 1 of Burgess and Street (2005) gives an theoretical maximum for the number
of non—zero differences for a set of generators for given values of m and ;.

Theorem 3.2. (Burgess and Street (2005)) The theoretical mazimum for the number of
non—zero differences for a set of generators for a particular attribute q is

(m? —1)/4, Ly =2, m odd,
g _ m? /4, l, =2, m even,
) (m? = (L +2zy +y))/2, 2<ly<m,
m(m —1)/2, Ly >m,

where positive integers x and y satisfy the equation m = Loz +y for 0 <y < {,.

This theorem assumes that ( = 1. However, since we are only considering the
differences within a set of generators, and not differences between generators that belong
to different sets of generators, the theoretical maximum for ¢ sets of generators will be
¢ times the theoretical maximum for a single set of generators.

Example 3.1. For the design in Table 2.2, we have G; = (0000, 1212, 2121). For the first
attribute, the ordered pairs of generator entries (0, 1), (1,2), and (2,0) have difference
1, and the ordered pairs of generator entries (1,0), (2,1), and (0,2) have difference 2,
where the differences are calculated in GF[3]. For each attribute, there are three pairs
of positions with difference 1 and three pairs of positions with difference 2, so S, = 3 for
1 < g < 4. By Theorem 3.2, the theoretical maximum number of non—zero differences
form =31is S; = 3, for 1 < ¢ < 4. Since this design achieves this theoretical maximum,
the design in Table 2.2 is optimal by Theorem 3.1 for m = 3. O

We now consider asymmetric designs whose levels are different powers of the same
prime.

4 Optimal Asymmetric Designs via Expansive Replacement

In this section, we present a theorem that gives optimal designs when the starting design
has been constructed using any number of expansive replacements, as defined in Con-
struction 2.2. As above, we assume that all OAs are constructed using the Rao-Hamming
method.

In general, we begin by replacing one of the ¢; level attributes in an OA[N, k, {1, 2]
with an OA[ly, ka, l2,2]. We continue by replacing a different ¢; level attribute with a

10



Table 4.1: The orthogonal arrays used in Example 4.1

0 00 0O 0 0 0 0000 O0O0O0
01111 0 1 1 0111011
0 2 2 2 2 1 01 02 2 2 1 01
0 3 3 3 3 1 10 0 3 3 3 110
1 01 2 3 101 2 110
11 0 3 2 b 110 3 1 01
1 2 3 01 12 3 0011
13 2 10 13 21 000
2 0 2 31 20 2 3 011
21 3 20 213 2 000
2 2 01 3 22 01110
2 3 1 0 2 23 1 0101
30 3 1 2 303 1101
31 2 0 3 3120110
3213 0 3213 000
33 0 21 3302011
a c

OA[ly, k3, £5,2], and so on until the design has the the desired number of attributes with
each number of levels. Suppose that after v applications of the expansive replacement
algorithm we have ki ¢1-level attributes, ko fo—level attributes, and so on up to k, £,—
level attributes, where k1 = k— 2z —v, and {1, £, ..., £, are all powers of the same prime,
and are not necessarily distinct. We label the ¢, level attributes with rq,... 7, .

Example 4.1. In this example, we consider the construction of a DCE design by devel-
oping a design constructed using expansive replacement. We begin with two orthogonal
arrays of strength two, OA[16,5,4,2], and OA[4,3,2,2], as shown in Table 4.1(a) and
Table 4.1(b) respectively. As each entry of the first orthogonal array takes one of four
values, and the second orthogonal array has four runs, we may replace the entries in
the final column of the OA[16,5,4,2] with the rows of OA[4,3,2,2], where the entry
in the final column of the former orthogonal array determines which row of the latter
orthogonal array replaces it. In this case, {1 =4, {5 =2, k1 = 4, ko = 3, and v = 1. This
gives the design in Table 4.1(c). We can then develop this new orthogonal array using
the set of generators G = (0000000, 1111111, 2222000, 3333111) to give a choice design.
Note that the entries in these generators have been chosen using Table 5.1. O

In Section 3 of the supplementary material, we show that if we use generators
to develop the type of design described above, then the information matrix for the
estimation of main effects is

1 .
Ca»id' (WO):WBIkDIag PZT(2IET - an,i,rq —Ja,hrg an,j,rq _ga,i,rq)Bg; s (41)
1

forr=1,...,vand ¢ =r,...,rL,, where ¢; is the number of levels each attribute in the
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original OA[N, k, ¢1,2] may take. The first k; blocks are of dimension (¢; —1) x (¢; — 1),
the next ks blocks are of dimension (€3 — 1) X (f2 — 1) and so on.

The following theorem gives optimal designs for the estimation of main effects
when the starting design has been constructed using expansive replacement from a Rao—
Hamming design.

Theorem 4.1. Let F' be an OA[N; é’fl , 612“‘, <o, 08 2] that has been constructed by apply-
ing Construction 2.2 to OA[N,k,£1,2] using the orthogonal arrays OA[ly, ks, 02,2], ...,
OA[ly, ky, Ly, 2], where each orthogonal array has been constructed using Construction 2.1
and {1, 0s, ..., L, are powers of the same prime. Also let Go = {01 =0,90.,2,---19a.m}»
for oo = 1,...,(, be a collection of sets of generators such that ga; # ga,; for all
i # j. Suppose that the i generator in the o' set of generators is the k—tuple go.; =
(o1 Gai2s---s9aik), for it =1,2,...,m. Also suppose that the generators are chosen
such that the multiset of differences for each attribute q over all sets in the collection
Lﬂgzl&h‘;ﬁj (Ga,j.qg—Ga,iq) contains each non—zero difference in GF[(,] equally often. Then
the choice sets given by the rows of F 4+ go1, F + a2, - F + gam, fora=1,...,(,
are optimal for the estimation of main effects under the assumption of equal selection
probabilities, provided that there are as few zero differences as possible.

A full proof of this theorem is given in Section 4 of the supplementary material.
By taking the determinant of the Fisher information matrix for the estimation of main

effects we obtain
- 20,5, e
det(C _ .
¢ HH(W(@ —1)5’6)

r=1qg=1

If we set ¢ = 1, then this is equivalent to the expression for det(C(m)) in the proof of
Theorem 2 of Burgess and Street (2005). Again, we can use Theorem 3.2 to find the
theoretical maximum values for S, for given values of m, ky,...,ky, 01, ..., 4,.

Example 4.2. For the design described in Example 4.1, we have go = (1111111), g3 =
(2222000), and g4 = (3333111). So, for 1 < ¢ < 4, S, = 6 and there are no zero
differences. For 5 < ¢ < 7, S; = 4 and there are four zero differences. Using Theorem
3.2, we have S7 = S5 = 55 = S; =6 and S = S§ = S7 = 4, confirming that this design
has as few zero differences as possible for m = 4, so this designs is optimal for m = 4
by Theorem 4.1. It is worth noting that when ¢ < m it is not possible to find a set of
generators with no zero differences. O

5 Practical Considerations for Constructing Designs

The designs constructed using the results presented in this paper require both a starting
design and a collection of sets of generators. Appropriate starting designs can be found
on Neil Sloane’s web site, which was given in Section 2. The selection of appropriate
sets of generators is more complex, and is discussed in this section.

For Theorems 2.1, 3.1, and 4.1, the goal is to find a collection of sets of generators
G1, G, ..., G¢ such that, for each attribute, each non—zero difference appears equally
often in the multiset S_, Wi~ (Ja,j,q — Yairg), and the number of zero differences in
the multiset is minimised. We only consider the differences between generator entries
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Table 5.1: Sets of generators that satisfy the conditions in Theorem 3.1

¢ 2 3 4 ¢ 2 3 4
2 (0,1) (0,1,0) (0,1,0,1) 8 (0,1) (0,1,3) (0,1,3,4)
3 (0,1) (0,1,2) (0,1,2,1) (0,2) (0,2,3) (0,1,4,7)
4 (0,1) (0,1,3) (0,1,2,3) (0,3) (0,1,4) (0,1,4,5)
(0,2) (0,4) (0,3,4) (0,2,4,6)
(0,3) (0,5) (0,1,2)
(0,6) (0,2,5)
(0,7) (0,2,4)

within a particular set of generators G, and not between sets of generators. Street and
Burgess (2008) discuss the difficulties in choosing a collection of sets of generators that
satisfy the conditions of Theorem 2.1, and conjecture that there may be better ways of
using the theorem. These same issues exist for Theorems 3.1 and 4.1.

In Table 5.1, we give generator entries for £, = 2, 3,4, and 8, and m = 2,3, and 4.
Each set of generator m—tuples achieve the theoretical minimum values for Sg, as given
in Theorem 3.2, while satisfying the conditions of Theorems 2.1, 3.1, and 4.1, that the
multiset of differences across all sets of generators, S,_, Wij (Ja,j,q — Gayi,g)s contains
each non—zero difference equally often. We demonstrate the use of this table in the
following example.

Example 5.1. Consider an experiment with m = 2, ¢; = {5 = {3 = 4 and ¢4, = 3.
For the four level attributes, Table 5.1 gives three generator pairs, (0,1), (0,2), and
(0,3). For the three level attribute, Table 5.1 gives one generator pair, (0,1). The
lowest common multiple of the number of generator pairs for the four level attributes
and the number of generator pairs for the three level attributes is three, so if we let { = 3
we can obtain a collection of sets of generators where, for each attribute, the multiset
of differences across all sets of generators will contain each non—zero difference equally
often. We use the (0, 1) pair in each set of generators for the three level attribute. So
G1 = {(0000), (1111)}, G = {(0000), (2221)}, and G3 = {(0000), (3331)}.

We may decide to reorder the generator entries for a particular attribute within a
set of generators, perhaps to avoid dominated alternatives, that is, where one alternative
has ‘more desirable’ levels than another alternative for every attribute. If we reorder
the generator entries for the first attribute in G; and Gj, but not Ga, we have G; =
{(1000), (0111)}, G5 = {(0000), (2221)}, and G5 = {(3000), (0331)}, which still satisfy
the conditions of Theorems 2.1, 3.1, and 4.1.

We may also change the assignment of the generator pairs to G, G2, and G3 for a
particular attribute. For instance we could assign (0,2) to G1, (0,1) to G, and (0, 3)
to G for the first attribute to obtain Gy = {(0000), (2111), G2 = {(0000), (1221)}, and
Gs = {(0000), (3331)}, which still satisfies the conditions for Theorems 2.1, 3.1, and
4.1. O

In the previous example, we described two approaches to reordering generator en-
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tries. The purpose of the reordering is not to improve the efficiencies of the design, as
the designs are equally efficient. The idea is to be able to move between optimal designs
so that other criteria may be satisfied as well. One common criterion is the avoidance of
dominated alternatives.

Street and Burgess (2007) provide a tool for checking the efficiency of designs using
the method described in this paper. This tool can be found at http://maths.science.
uts.edu.au/maths/wiki/SPExpts. To use the software, values for m, k, and ¢, for
q =1,2,...,k must be given, and users need to specify F and G, for « = 1,2,...,C.
The tool will then return the D—efficiency of the design, as well as the B, A(mg), C(mo),
and (C(mp))~! matrices. This software assumes that g, 1 =0 for a =1,2,...,(.

6 Conclusion

We conclude by providing a comparison of the number of choice sets required for various
construction methods of optimal designs. In particular, we compare the construction
method discussed in this paper to the constructions presented in Burgess and Street
(2005) and Graflhoff et al. (2004), which both focus on main effects designs. This com-
parison is shown for symmetric designs with m = 2 in Table 6.1. In addition to these,
GraBhoff et al. (2004) gives a construction for ¢ = 3 which requires either 3k or 9%k /4
choice sets based on Latin and Graeco—Latin squares (p369), and for k& = 2 which requires
£(¢ — 1)/2 choice sets based on Bhaskar-Rao designs (p370). The authors mention that
the construction based on Latin and Graeco—Latin squares can be extended for ¢ > 3.
For m = 2, the methods given in GraBhoff et al. (2004) give the fewest choice sets, but
do not give designs for m > 2. The methods presented in Burgess and Street (2005) and
in this paper allow for the construction of comparatively small designs when m > 2. For
instance, when ¢ = 4, we can reduce the number of choice sets required by two thirds by
letting m = 3 or m = 4.

Unlike Burgess and Street (2005), the designs that are considered in this paper are
quite restrictive in the number of levels each attribute may take. The design optimality
results only apply to symmetric experiments with a prime power number of levels, and
some cases where the attributes may take different numbers of levels, all of which are
powers of the same prime. It is possible to construct fractional factorial designs that have
attributes with a number of levels that is not a prime power, or that are asymmetric but
constructed using methods other than those covered here. Some of these constructions
are given in Chapters 9 and 10 of Hedayat et al. (1999). Future research needs to be
undertaken to adapt the methods used here to extend the design optimality results to
designs that are developed from orthogonal arrays constructed using other methods.
Future research also needs to be conducted to provide a general result that gives the
optimal set of generators required in Theorems 2.1, 3.1, and 4.1.

Acknowledgements

The author would like to thank Professor Deborah Street for providing support and
sound advice through the research and review phases of this paper. The author would
also like to thank the referees for their constructive comments on this article, which have
substantially improved the clarity of the presentation of this article.

14



Table 6.1: Required number of choice sets for m = 2

Proposed Burgess and Graf3hoff et al. (2004)

Construction Street (2005) p366 p368
2 4 4 2 4
3 9 9 6 9
4 48 48 12 36
2 4 8 4 4
3 9 27 12 9
4 48 192 24 36
2 8 16 4 8
3 9 81 12 9
4 48 768 24 36
2 8 32 8 8
3 27 243 24 27
4 48 3072 48 36
2 8 64 8 8
3 27 729 24 27
4 192 12288 48 216
2 8 128 8 8
3 27 2187 24 27
4 192 49152 48 216
2 16 256 8 16
3 27 6561 24 27
4 192 196608 48 216
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