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Abstract

This paper considers the different methods for determining sample
sizes for Wald, likelihood ratio, and score tests for logistic regression. We
review some recent methods, report the results of a simulation study com-
paring each of the methods for each of the three types of test, and provide
Mathematica code for calculating sample size. We consider a variety of
covariate distributions, and find that a calculation method based on a first
order expansion of the likelihood ratio test statistic performs consistently
well in achieving a target level of power for each of the three types of test.
Keywords: Power, Score Test, Likelihood Ratio Test, Wald Test, Mathe-
matica.

1 Introduction

Sample size determination is an important step in the planning of an experiment
or observational study, with serious consequences if not done carefully. If the
chosen sample size is not large enough then the probability that an effect of
practical significance is found to be statistically significant is not large enough
for the study to be useful. If the sample size is too large then the study becomes
more expensive than necessary.

The choice of sample size depends on a number of things. The first is the
model that is to be used to analyse the data and the type of test that is used to
determine significance. In addition, researchers need to set a level of significance,
the desired level of power, and the effect size that they wish to be able to detect.

In this paper, we consider sample size determination for logistic regression
when the Wald, likelihood ratio, and score tests are used to determine signifi-
cance. There are several approaches to determining sample size based on each
of these tests. While each of these methods have been tested to see whether the
target power is achieved when the test the method was developed for is used,
the effectiveness of these methods when using one of the other tests has not.
The novel contribution of this paper is to, where possible, test all of the sample
size determination methods using all three tests, to see whether there is much
difference between the power obtained form each of the tests and whether some



of these methods consistently outperform others. We also present an implemen-
tation of the methods discussed in this paper in the computer algebra system
Mathematica 8.

In the next section we review the Wald, likelihood ratio and score tests for
logistic regression. In Section 3, we provide a more detailed review of some of
the sample size determination methods. We consider a formulation of each of
the tests that permit the testing of multiple parameters at once, as Shieh, 2005
considered for the Wald test. The benefit of this approach is that we can test the
significance of factors that may be explained by multiple parameters, whether
that be in the form of a multinomial factor or in the form of a polynomial
response surface. In Section 4, we discuss the results of a simulation study
comparing the performance of the methods discussed in Section 3, for each of
the tests.

2 Logistic Regression

In this section, we review the Wald, likelihood ratio, and score tests for logistic
regression. We use the concepts and notation described in this section later to
describe the different approaches to determining sample size.

The logistic regression model is a member of the class of generalised linear
models (Nelder and Wedderburn, 1972). In generalised linear models, the ex-
pected value of the response variable y is related to a linear combination of p
predictor variables £ = (x1,...,,) and ¢ nuisance variables z = (z1,..., 2;)
through an inverse link function ¥ (%, A). This linear combination is denoted by
n; = YT x; +AT2;, where 9 is a 1 x p vector containing the regression coefficients
of the predictor variables and A is a 1 X ¢ vector containing the regression coeffi-
cients of the nuisance variables. For logistic regression the inverse link function
is o' (1, A) = exp(n;)/ (1 + exp(n;)).

Each of the Wald, likelihood ratio, and score tests are based on properties
of the likelihood function of the model being fitted. For logistic regression, the
log likelihood function is given by

n
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(Agresti, 2003).
Using this expression, we define the score vector and the Fisher information
matrix. For logistic regression, the j™ entry in the score vector is given by
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A similar expression exists when we differentiate £(, A) by an entry in XA. The
(4,k)™ entry of the Fisher information matrix for the logistic regression model



is given by
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Similar expressions exist when we differentiate £(,A) by two entries in A,
or by one entry in % and one entry in A. When nuisance variables exist, it is
useful to partition the score vector into the derivatives of entries in % and the
derivatives of entries in A. So

son-[ 3463 ]

where Sy (%, A) contains the derivatives of £(,A) with respect to entries in
9 and Sy(¥,A) contains the derivatives of £(3,A) with respect to entries in
A. Similarly, we partition the entries in the Fisher information matrix into
entries where £(3,A) has been differentiated with respect to two entries in 4,
entries where £(3,A) has been differentiated with respect to two entries of A,
and entries where £(, X) has been differentiated with respect to one entry in 9
and one entry in A. So the Fisher information matrix and the its inverse, the
covariance matrix, can be expressed as
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respectively.

Following Cox and Hinkley, 1979, we define the Wald, likelihood ratio, and
score test statistics for testing the hypothesis Hy : 9 = 1o against the hypothesis
Hl . ’l/) 7é ’lp() as
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respectively, where the entries of XE are the maximum likelihood estimates of A
under the null hypothesis ¥ = 1. We note that Ag is not a consistent estimator
for A, rather it converges to some value A§. Under the null hypothesis, each
of these test statistics have a central chi-squared distribution with p degrees
of freedom. Under the alternative hypothesis, the test statistics have a non—
central chi-squared distribution with p degrees of freedom and non—centrality
parameter equal to the expected value of the test statistic under the alternative
hypothesis. Then the power of the test can be expressed as

1-B8=PH2(7) > Xpa): (4)



where Xf)('y) is a non—central chi-square distribution with p degrees of freedom
and non—centrality parameter v, and Xfm is the upper « percentile of of a
central chi square distribution with p degrees of freedom. The value for v is
Wwald, WLR, or Wscore when we use the Wald, likelihood ratio, or score tests,
respectively.

3 Methods for Calculating Sample Size

In this section, we discuss some methods for determining sample size for logistic
regression. Later we compare these methods in a simulation study to determine
how well the sample sizes obtained from each method achieve the target power
when the Wald, likelihood ratio, and score tests are used.

3.1 Wald Test

Several authors have considered sample size determination for the Wald test
for logistic regression. Whittemore, 1981 considers sample size determination
for logistic regression on a single parameter when the probability of response
is small and the Wald test is used to test hypotheses. This method involves
approximating the variance of the parameter estimates, and then correcting
the sample size to account for this approximation. Shoenfeld and Borenstein,
2005 shows that the approach described by Whittemore works well for response
probabilities as large as 0.27. Wilson and Gordon, 1986 extend Whittemore’s
approach to incorporate nuisance variables into the calculations.

Hsieh et. al., 1998 consider an approach based on treating the response
probability as continuous and comparing two samples using a 2-sample t test,
where the two samples are obtained from two different predictor values, 0 and 1
for a Bernoulli distributed predictor, and p and g+ o for a normally distributed
predictor. This approach is modified in Novikov et. al., 2010 to incorporate
the sample size formula presented in Schouten, 1999. Hsieh et. al., 1998 also
extends the work of Whittemore to allow for nuisance variables using the vari-
ance inflation factor (VIF) to adjust the variance function, and then using this
adjusted variance to obtain sample sizes.

Shieh, 2005 presents two approaches, a so—called direct approach and an
approach that calculates an adjusted significance level that corrects for the
different Fisher information matrices under the null and alternative hypotheses.

In both cases, we begin by calculating the Fisher information matrix evaluated
at ¥ and Aj,

[\ = E exp(lz; + ATz;) xT 77\ (xT 77T r .
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In the direct method, we calculate the target non—centrality parameter +,
such that X;%J_B()\) = Xg,a’ where 1 — 3 is the desired level of power. The

sample size is then N = A/, where § = T (Eww(zj),'y))_lz/).



In the adjusted method, we begin by calculating the adjusted level of signif-
icance,

o = P(ZT (zw(«p,,\))flz > Xfm), (5)

where Z is a vector of uncorrelated standard normal random variables. In this
paper, the author presents a simplification of Equation 5 using a three param-
eter F distribution. Once we have obtained the adjusted level of significance,
we calculate the target non—centrality parameter ~*, such that x;l_ B(’y*) =
X;,a*- The sample size is then N = ~*/é for the adjusted method, where

0 = 't[)T(E,/,,p('t/),)\))fl't/). Shoenfeld and Borenstein, 2005 presents a theorem
that reduces the numerical complexity of sample size determination for the
Wald test to a single integral.

Demidenko, 2007 presents explicit derivations for the Fisher information ma-
trix of the logistic regression model with a single Bernoulli distributed predictor,
and the logistic regression model with one Bernoulli distributed predictor vari-
able and one Bernoulli distributed nuisance variable. The author then uses
these matrices to obtain explicit formulae for sample sizes. For logistic regres-
sion with one Bernoulli distributed predictor and no nuisance variables, the
author obtains

2, Pa(1+A)?B+(1—p,)(1+AB)’
px(l - pa)AB("/) - ¢0)2 7
where A = exp(fp), where fy is the intercept term, B = exp(¢), and p, is the

proportion of observations with X = 1. A sample size calculator for the
methods introduced by this author can be found at

n > (Zi—ajpe+Z1-p)

http://www.dartmouth.edu/~eugened/power-samplesize.php.

Novikov et. al., 2010 present a sample size determination method for logistic
regression with a single normally distributed predictor variable. The authors
extend a method initially presented in Hsieh et. al., 1998 that approximates
the sample size for logistic regression with that of a two—sample t—test. This
extension is made by using Schouten’s sample size formula (Schouten, 1999) to
allow for unequal sample sizes in the ¥ = 0 and Y = 1 groups. The authors
implement this method in the SAS software system.

Lyles et. al., 2006 use expanded data sets to determine power for a given
sample size. In this approach, we choose a value for N, and construct a data
set with IV entries. The values of the predictor and nuisance variables in each
of these entries are chosen such that the joint probability distribution of the
variables is reflected in the data set. This data set is then copied so we obtain
one copy of the data set with Y = 0 and one copy with Y = 1. Each entry in the
data set is weighted by P(Y = y|Z = 2;, X = z;). We then use the weights to
fit a model, calculate either Wyya1q or Wrgr, and use this as the non—centrality
parameter in Equation 4 to calculate the power of the test. The sample size is



then adjusted until the desired power is achieved. The authors argue that the
benefit of this approach is that we are able to model more complex relationships
between the predictor and nuisance variables, so long as we are able to list the
distinct combinations of these variables and can calculate joint probabilities.

3.2 Likelihood Ratio Test

Self et. al., 1992 considers sample size determination for testing multiple pa-
rameters using the likelihood ratio test. Their approach incorporates nuisance
variables, but both the predictors and nuisance variables must either be discrete
or be discretised; see Shieh, 2000a for instance. Shieh, 2000b presents a gener-
alisation of the likelihood ratio test approach considered in Self et. al., 1992.
Both papers consider the first order expansion of the Wald test statistic

Wi = 2(£@, X) — 6, 2)) = 2(0o, Xo) — (abo, N3)) +2(£(6, A) — (3o, 33))-

Both papers argue that the first term has an expected value of p 4+ ¢ and that,
if (%0, A§) is equal to the true parameter values, the first order expansion of the
second term is equal to ¢g. Self et. al., 1992 shows that the third term is equal
to
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where there are k < oo covariate configurations. Shieh, 2000b generalises this
expression to allow for an infinite number of covariate configurations, as is re-
quired if one or more of the variables are continuous. He obtains
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To calculate the sample size using either method we calculate the target non—
centrality parameter v by solving X§,1_5(7) = X;,%,a’ and then find N = v/A.

3.3 Score Test

Self and Mauritsen, 1988 considers sample size determination for testing multiple
parameters using the score test. The authors approximate Sy (9o, Ao) using a
first order Taylor series expansion,

Sy (o, Ag) & Sy (%o, Ag) — Iw(%,)\3)(IM(?L'O,)\E))ASA(’/)O)\S% (6)



as discussed in Cox and Hinkley, 1979. The authors then state that Wicore
follows a non-central chi-square distribution with p degrees of freedom and non-
centrality parameter 617\1,2;,16 ~, where £y and X are the mean vector and
covariance matrix of Equation 6, respectively. For GLMs with discrete predic-
tors and nuisance variables, the authors use

£y — NZ exp(Tx; +ATz;) exp(¥lz; + (A5)Tz;) o 7
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where Z = Z; — Iw\(gbo,AS)(IM(QIJO,/\S))_IXZ', and m; is the proportion of
the sample with the i** combination of variable levels. We then calculate the
non—centrality parameter vy = §JT\,E]_V1§ ~, and find the required sample size by
solving X2, _5(yn) = X5 o for N.

We also consider an approach to the score test where we use expectation to
construct &5 and X, rather than weighted sums over covariate distribution.
This is reminiscent of the generalisation of the method of Self et. al., 1992 by
Shieh, 2000b to allow for continuous predictor variables. So

En =N xExz (Sw(1/)(),)\8) - Lp/\(ll)o,/\8)(I,\,\(ll)o,/\8))71&\(1//’0,/\3))
YN =N x Varx z (Sw(wo,)\é) - [wx('(/’o,)\é)(IAA(¢07A3))715A(¢07A3))

Then to calculate the sample size we find N such that Equation 4 is satisfied,
where the non—centrality parameter is 7y = f%ZR,l{ ~- We find the required
sample size by solving x2 | _5(yn) = X, for N.

4 Simulation Study

In this section we present the results of a simulation study that investigates how
well sample sizes obtained using each of the methods described in the previous
section achieve the target level of power.

In these simulations, five different combinations of predictor and nuisance
variables will be considered. These are described in Table 1. We code the
variables using effects coding, since this is an example of a set of contrasts, which
provide a flexible method of conducting different comparisons between levels of
a factor. To determine the intercepts under the null and alternate hypotheses,
we solve Ex 7z (V' (%o, X)) = k, and Ex z (b/(¥,X)) = k, respectively. In each
scenario, we estimate the sample size required to estimate a given set of effects
at the 5% significance level with 90% power, and with 95% power.

To perform the simulations, we use the methods in Section 3 to obtain
the sample size estimates. For each sample size obtained, we construct 10000
simulated data sets in R by sampling N observations from the joint distributions
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of X and Z, and then sample a response given the values of X and Z. Once the
model is fitted to the simulated data, we calculate either the Wald, likelihood
ratio or score test statistic. For each simulation we report the proportion of
the 10000 tests that have a test statistic that exceeds the critical value. This
procedure is repeated for each of the three types of test.

Across each of the scenarios, we can compare the simulated power for each
of the calculated sample size estimates for the Wald, likelihood ratio, and score
tests. We notice that the simulated power values are typically very similar,
rarely deviating more than 2% between the three tests, despite the use of sep-
arate simulations to obtain each of the different power estimates for the three
tests. The only exceptions to this observation are the cases where the simulated
level of power was much lower than the target level of power.

In general, the likelihood ratio test approach of Shieh, 2000b gave sample
sizes that best achieve the target level of power. The adjusted method of Shieh,
2005 performs well for the first three scenarios, but less well in the final two
scenarios, where the direct method of the same paper performs better. Both
methods based on the score test perform quite poorly in general, giving the
most overpowered and the most underpowered tests in the study. The methods
of Demidenko, 2007 and Lyles et. al., 2006 gave underpowered tests in scenario
1 and overpowered tests in scenario 2.

5 Conclusions

We conclude with a summary of our findings, some recommendations, and a dis-
cussion of the implementation of these algorithms in the Mathematica software
package.

First, we find that the methods that most accurately and consistently achieve
the desired level of power are those presented in Shieh, 2000b based on the
likelihood ratio test, which is a generalisation of the method presented in Self
et. al., 1992, as well as the method presented in Novikov et. al., 2010 based
on the Wald test. This is the case regardless of whether the Wald, likelihood
ratio or score test is used to perform the test. So while it seems sensible to
determine sample size based on the test that will ultimately be used to test the
hypotheses on parameters, as suggested by Demidenko, 2008, there appears to
be little difference in the performance of a certain sample size determination
method for the three tests in the simulations considered in this paper.

We note that the formulae of Demidenko, 2008 assume that dummy coding
has been used to code the Bernoulli variable in Scenario 1. The author also
assumes that P(Y = 1|Hy) = P(Y = 1|X = 0, H;). If we repeat the simulations
under these assumptions with ¢ = In(2), we find that the simulated powers do
not differ substantially from those in Table 2.

On the website http://sites.google.com/site/stephenabush/, we pro-
vide the Mathematica notebooks for the direct and adjusted methods of Shieh,
2005, the likelihood ratio test method of Shieh, 2000b, and the score test meth-
ods of Section 3.
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