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Abstract

Prosthetic devices aim to provide an artificial alternative to missing limbs. The controller
for such devices is usually driven by the biosignals generated by the human body. partic-
ularly Electromyogram (EMG) or Electroencephalogram (EEG) signals. Such a controller
utilizes a pattern recognition approach to classify the EMG signal recorded from the human
muscles or the EEG signal from the brain. The aim of this thesis is to improve the EMG
and EEG pattern classification accuracy. Due to the fact that the success of pattern recog-
nition based biosignal driven systems highly depends on the quality of extracted features,
a number of novel, robust, hybrid and innovative methods are proposed to achieve better
performance. These methods are developed to effectively tackle many of the limitations of
existing systems, in particular feature representation and dimensionality reduction. A set
of knowledge extraction methods that can accurately and rapidly identify the most impor-
tant attributes for classifying the arm movements are formulated. This is accomplished

through the following:

1. Developing a new feature extraction technique that can identify the most impor-
tant features from the high-dimensional time-frequency representation of the multi-
channel EMG and EEG signals. For this task, an information content estimation
method using fuzzy entropies and fuzzy mutual information is proposed to identify

the optimal wavelet packet transform decomposition for classification.

2. Developing a powerful variable (feature or channel) selection paradigm to improve the
performance of multi-channel EMG and EEG driven systems. This will eventually
lead to the development of a combined channel and feature selection technique as one
possible scheme for dimensionality reduction. Two novel feature selection methods
are developed under this scheme utilizing the ant colony and differential evolution
optimization techniques. The differential evolution optimization technique is further
modified in a novel attempt in employing a float optimizer for the combinatorial task

of feature selection, proving powerful performance by both methods.

3. Developing two feature projection techniques that extract a small subset of highly
informative discriminant features, thus acting as an alternative scheme for dimension-
ality reduction. The two methods represent novel variations to fuzzy discriminant
analysis based projection techniques. In addition, an extension to the non-linear dis-
criminant analysis is proposed based on a mixture of differential evolution and fuzzy

discriminant analysis.



The testing and verification process of the proposed methods on different EMG and EEG

datasets provides very encouraging results.
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