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Abstract

In wireless environments, signals bounce off many obstacles such as mountains,
buildings, trees, etc. as they propagate between transmitters and receivers. The resultant
signal at the receive antenna is, therefore, often the sum of the attenuated transmitted
signal and one or more delayed versions of the transmitted signal. The received signal
also suffers from intersymbol interference which degrades the quality of signal to a

certain extent.

However, MIMO-OFDM systems are designed to take advantage of the multi-path
properties in wireless communications and are capable of improving transmission rate,
range and reliability simultaneously. MIMO-OFDM attracts a good deal of research and
commercial interest because of the perceived benefits, and has been adopted in many
wireless standards such as IEEE 802.11n, IEEE 802.16e. Such systems are also
potential candidates for fourth-generation (4G) systems. However, practical problems
still exist in implementing MIMO-OFDM, for example, in the estimation of channel
state information (CSI). This thesis studies the issues of MIMO, OFDM and the relevant
techniques of MIMO-OFDM, and focuses on proposing a practical, low complexity and

accurate channel estimation method for such systems.

In a MIMO-OFDM system, CSI is required at the receiver to perform space-time
decoding or diversity combining. In many practical wireless applications, the
propagation environment is both complex and time-variant, leading to CSI estimation
errors and overall system performance degradation. A variety of channel estimation
approaches have been proposed in the literature to address this problem. One of the
most important parameters of CSI is the number of significant or dominant propagation
paths, also referred to as the number of channel taps. However, in most existing
estimation schemes for MIMO-OFDM, there is an assumption that the number of
channel taps is known at the receiver. In reality, in order to perform space-time
decoding, the receiver needs to estimate the number of channel taps from the received
signal with this estimation process sometimes aided by the insertion of pilot tones into

the transmitted signal.



In this thesis, a pilot-assisted, conditional model-order estimation (CME) based channel
estimation algorithm is presented. The approach can be utilised to detect both the
number of channel resolvable paths and channel gains for MIMO-OFDM systems. The
performance of the proposed algorithm is compared with the commonly used minimum
description length (MDL) algorithm by mean of simulation in the context of a 2x2
MIMO-OFDM system. Results indicate that the new algorithm is superior to the MDL
algorithm in channel order estimation over an unknown, noisy, multipah fading channel
with limited pilot assistance. Furthermore, the proposed scheme is tested in both fixed
and mobile broadband MIMO-OFDM systems based on WiMAX techniques in Matlab
simulation, and its capacity is verified again for those near practical broadband MIMO-

OFDM systems in the absence of prior knowledge of model parameters.

Finally, with the purpose to “make the thing work in practice”, a 2x2 MIMO baseband
platform is built in order to demonstrate the proposed scheme. The platform consists of
two DSP based, real-time development boards called SignalWAVe, produced by
Lyrtech. Given the existing hardware components, the whole platform is built based on
a fixed MIMO-OFDM system according to WiMAX standard, and the results

demonstrate that the proposed algorithm is a valid approach in practice.
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