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Abstract

Climate models predict rapidly warming oceans throughout the 21st century 

along with increased mortalities in reef-building coral-algal symbioses. Yet the 

ability of corals to adapt genetically in an evolutionary sense to a warmer climate 

is unknown. The adaptive potential of corals can be approximated by the extent 

to which variation in thermal tolerance is caused by genetic factors (i.e. by the 

broad-sense heritability, H). This thesis investigated H in a total of eleven 

thermal tolerance traits from two populations of the reef-building coral species 

Acropora millepora in the central Great Barrier Reef, Australia. The first 

population that was investigated associates with thermo-tolerant algal symbionts 

of the genus Symbiodinium (clade D), and came from Magnetic Island (MI), 

while the second population from Orpheus Island (01) associates with the 

intermediately tolerant Symbiodinium type C2. Traits investigated were 

characteristic of the coral host, the algal symbiont, and the holobiont (whole 

symbiosis).

The present thesis revealed extensive genetic variation in algal symbiont traits, 

which, together with short generation times, allows for rapid symbiont adaptation 

to climate warming. A significant adaptive potential was also found for coral 

colony growth rates, defined here as a holobiont trait. This is in stark contrast to 

the coral host, which did not display heritability for the majority of the traits 

investigated for either population. The coral host with its long generation time 

has therefore only a low potential to adapt to rapidly warming oceans.

Five of the six thermal tolerance traits yielded significant heritabilities in each of 

the two symbiont types. In clade D symbionts from MI, the adaptive potential 

was given for the maximum quantum yield of photosystem II, Fv/Fm, one of the 

most commonly studied stress parameters in coral biology which indicates the 

overall health condition of photosystems. The one trait that did not yield a 

significant heritability in D symbionts was non-photochemical quenching 

(ONPQ) of excess excitation energy. The trait ONPQ can be considered as a 

switch for xanthophyll cycling, a mechanism that protects photosystems through 

conversion of the pigment diadinoxanthin (DD) into diatoxanthin (DT).
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However, D symbionts diverted 50 % of the incoming light energy for the 

initiation of the xanthophyll cycle (i.e. via <1>NPQ), and the xanthophyll cycle 

mechanism itself showed significant heritability in either symbiont type. Both 

symbiont types also displayed significant heritability for another measure of 

photoprotection, the ability to regulate the pool size of photoprotective 

xanthophyll pigments (XP) relative to total light-harvesting pigments (LH). 

Although Fv/Fm did not yield a significant heritability in C2 symbionts from 01, 

both symbiont types again showed heritability for the effective quantum yield of 

photosystem II (OPSII), and for unregulated energy dissipation (<DNO).

For traits reflecting the function of the coral host, messenger RNA (mRNA) 

expression levels of four fundamental genes involved in the oxidative stress 

response were investigated. These genes code for cellular defences which 

regulate cellular iron homeostasis (i.e. Ferritin), repair denatured proteins (i.e. the 

heat shock protein Hsp70), detoxify harmful oxygen radicals (i.e. the 

mitochondrial enzyme manganese superoxide dismutase MnSOD), and might be 

involved in the dysfunction of coral cell-adhesion proteins during bleaching via a 

remodelling of surface receptors in the extra-cellular matrix (i.e. a zinc- 

metalloprotease, Zn2+-met). Each coral host population, however, showed 

heritability for expression of just one of those four genes (i.e. MnSOD in the MI 

population, and Zn2+-met in the 01 population), therefore displaying only a 

limited capacity for evolution of thermal tolerance.

Holobiont growth showed a significant heritability in both coral-algal 

populations, thus providing the basis for evolutionary adaptation. In the long 

term, however, this trait might be impaired by ocean acidification, which has a 

negative impact on coral calcification and, therefore, on holobiont growth rates.

In summary, algal symbionts have short generation times and considerable 

genetic variation in functional traits, thus allowing for rapid adaptation to higher 

temperatures. However, adaptive response estimates based on low heritabilities 

in coral host traits along with the coral’s mainly sexual reproduction and long 

generation time raise concerns about the timely adaptation of the holobiont in the 

face of rapid climate warming.
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ONO - unregulated non-photochemical quenching.

Appendix B 1 ANOVA table: Maximum dark-adapted fluorescence yield (Fv/Fm) and 

coral (holobiont) growth.

Appendix B 2 ANOVA table: Light-adapted fluorescence yields (OPSII, ONPQ, and 

ONO).

Appendix B 3 ANOVA table: Symbiont pigment ratios (DT/(DD+DT) and 

XP/(LH+XP)).

Appendix B 4 ANOVA table: Coral host gene expression.

Appendix B 5: Genotype by environment (G x E) interaction for Fv/Fm and OPSII.

Appendix B 6: Genotype by environment (G x E) interaction for ONPQ and ONO.

Appendix B 7: Genotype by environment (G x E) interaction for coral (holobiont) 

growth.



List of Tables xix

Appendix C 1 ANOVA table: Maximum dark-adapted fluorescence yield (Fv/Fm) and 

coral (holobiont) growth.

Appendix C 2 ANOVA table: Light-adapted fluorescence yields (OPSII, ONPQ, and 

ONO).

Appendix C 3 ANOVA table: Symbiont pigment ratios (DT/(DD+DT) and 

XP/(LH+XP)).

Appendix C 4 ANOVA table: Coral host gene expression.

Appendix C 5: Genotype by environment (G x E) interaction for Fv/Fm and OPSII.

Appendix C 6: Genotype by environment (G x E) interaction for ONPQ and ONO.

Appendix C 7: Genotype by environment (G x E) interaction for coral (holobiont) 

growth.


	Title Page

	Certificate of Authorship/Originality

	Acknowledgements

	Abstract

	Table of Contents

	List of Abbreviations

	List of Figures

	List of Tables




