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LOCAL RISK-MINIMIZATION UNDER THE BENCHMARK

APPROACH

FRANCESCA BIAGINI, ALESSANDRA CRETAROLA, AND ECKHARD PLATEN

Abstract. We study the pricing and hedging of derivatives in in-
complete financial markets by considering the local risk-minimization
method in the context of the benchmark approach, which will be called
benchmarked local risk-minimization. We show that the proposed bench-
marked local risk-minimization allows to handle under extremely weak
assumptions a much richer modeling world than the classical methodo-
logy.

1. Introduction

The valuation and hedging of derivatives in incomplete financial markets is
a frequently studied problem in mathematical finance. The goal of this pa-
per is to discuss the concept of local risk-minimization under the benchmark
approach (see e.g. [8], [9], [15], [20] and [21]), a general modeling framework
that only requires the existence of a benchmark, the numéraire portfolio.
According to this approach, even under the absence of an equivalent local
martingale measure (in short ELMM), contingent claims can be consisten-
tly evaluated by means of the so-called real world pricing formula, which
generalizes standard valuation formulas, where the discounting factor is the
numéraire portfolio and the pricing measure is the physical probability mea-
sure P. Local risk-minimization under the benchmark approach has been
also studied in [7] in the case of jump-diffusion markets. In our paper the
approach is more general, since we do not assume any specific market model
for the primitive assets whose price processes may have jumps. We analyze
the relationship between the classical local risk-minimization and the bench-
mark approach and revisit this quadratic hedging method in this modeling
framework. This is rather different from [7], where the definition of cost
process and optimal strategy are revisited in a Brownian setting and the
square-integrability condition is dropped. In [7] the cost is then interpreted
in a different sense in terms of cost condition. However, we should stress that
the concept of risk (see Definition 3.3) associated to an admissible strategy
is well-defined only if the cost process is assumed to be square-integrable.
Another difference between the two papers is also that we are considering a
general setting with no specification of the asset dynamics, while in [7] the
Brownian setting of the underlying model plays a crucial role.
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First of all, we study the local risk-minimization method in the case when
the benchmarked asset prices are P-local martingales, which will correspond
to benchmarked risk-minimization. This includes continuous market models
(see Section 3.1) and a wide class of jump-diffusion models (see for exam-
ple [21], Chapter 14, pages 513-549). This property implies several advan-
tages since in market models, where the discounted asset prices are given by
P-local martingales, the local risk-minimization method coincides with risk-
minimization, as introduced originally in [11]. In the local risk-minimization
approach, the optimal strategy is often calculated by switching to a particular

martingale measure P̂ (the minimal martingale measure) and computing the
Galtchouck-Kunita-Watanabe (in short GKW) decomposition of a bench-

marked contingent claim Ĥ under P̂. However, this method has two main
disadvantages:

(i) the minimal measure P̂ may not exist, as it is often the case in the
presence of jumps affecting the asset price dynamics;

(ii) if P̂ exists, the GKW decomposition of Ĥ under P̂ must satisfy some
particular integrability conditions under the real world probability
measure P to give the Föllmer-Schweizer decomposition of Ĥ.

On the contrary, the risk-minimization approach that we discuss in this paper
for the case of benchmarked market models, does not face the same technical
difficulties as the local risk-minimization one. It formalizes in a straightfor-
ward mathematical way the economic intuition of risk and delivers always an
optimal strategy for a given benchmarked contingent claim Ĥ ∈ L2(FT ,P)

1,

obtained by computing the GKW decomposition of Ĥ under P.
Furthermore, in this setting we establish a fundamental relationship be-

tween real world pricing and benchmarked risk-minimization. In market
models, where the asset prices are given by P-local martingales, by Theorem
3.6 we will obtain the result that the benchmarked portfolio’s value of the
risk-minimizing strategy for Ĥ ∈ L2(FT ,P) coincides with the real world

pricing formula for Ĥ. The benchmarked contingent claim Ĥ can be written
as

Ĥ = Ĥ0 +

∫ T

0
ξĤu dŜu + LĤ

T P− a.s., (1.1)

where LĤ is a square-integrable P-martingale with LĤ
0 = 0 strongly ortho-

gonal2 to Ŝ. Decomposition (1.1) allows us to decompose every square-
integrable benchmarked contingent claim as the sum of its hedgeable part
Ĥh and its unhedgeable part Ĥu such that we can write

Ĥ = Ĥh + Ĥu,

where

Ĥh := Ĥ0 +

∫ T

0
ξĤu · dŜu

1The space L2(FT ,P) denotes the set of all FT -measurable random variables H such
that E

[

H2
]

=
∫

H2dP < ∞.
2Two P-local martingales M and N are called strongly orthogonal if their product MN

is a P-local martingale.
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and
Ĥu := LĤ

T .

Here the notation
∫
ξĤ · dŜ characterizes the integral of the vector process

ξĤ with respect to the vector process Ŝ (see e.g. [19]). Note that the bench-

marked hedgeable part Ĥh can be replicated perfectly, i.e.

ÛHh(t) = E

[
Ĥh
∣∣∣Ft

]
= Ĥ0 +

∫ t

0
ξĤu · dŜu ,

and ξĤ yields the fair strategy for the self-financing replication of the hedge-
able part of Ĥ. The remaining benchmarked unhedgeable part can be di-

versified and will be covered through the cost process C := LĤ − Ĥ0. The
connection between risk-minimization and real world pricing is then an im-
portant insight, which gives a clear reasoning for the pricing and hedging of
contingent claims via real world pricing also in incomplete markets.

A natural question concerns indeed the invariance of the risk-minimizing
strategy under a change of numéraire. By [3] this property always holds in
the case of continuous assets prices. Here we show that this result is also
true more generally: it is sufficient that the orthogonal martingale structure
is generated by continuous P-(local) martingales.

Then we also study the case when the benchmarked processes are P-
supermar-
tingales. In particular we consider a market model, where incompleteness is
due to incomplete information. In this setting we show that a benchmarked
locally risk-minimizing strategy can be determined by computing the pre-
dictable projection of the strategy in the completed market without any
specification of the asset price dynamics (see Theorem 3.15). The proof we
provide holds when the discounted asset prices are special semimartingales
in S2(P)3, hence in particular for all benchmarked underlying assets in S2(P)
by the Doob’s decomposition. This extends the results of [10], where they
assume continuity of the underlying prices processes.

Finally, we provide some examples to illustrate how to compute the GKW
decomposition in the minimal market model with random scaling, where
there exists no ELMM, but the primitive assets are still P-local martingales
if benchmarked.

The local risk-minimization method under the benchmark approach has
acquired new importance for pricing and hedging in hybrid markets and
insurance markets (see [1] and [4]). Since hybrid markets are intrinsically
incomplete, perfect replication of contingent claims is not always possible
and one has to apply one of the several methods for pricing and hedging
in incomplete markets. Local risk-minimization appears to be one of the

3Given the Doob-Meyer decomposition

Xt = X0 +Mt + Vt, t ∈ [0, T ],

of a P-semimartingale X into a P-local martingale M = {Mt, t ∈ [0, T ]} and an F-
predictable process V = {Vt, t ∈ [0, T ]} of finite variation, we say that X ∈ S2(P) if the
following integrability condition is satisfied

E
[

X
2
0 + [X]T + |V |2T

]

< ∞.

Here |V | = {|V |t, t ∈ [0, T ]} denotes the total variation of the process V .
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most suitable methods when the market is affected by orthogonal sources of
randomness, such as the ones represented by mortality risk and catastrophic
risks. The results of this paper provide a new simplified framework for ap-
plying benchmarked local risk-minimization.

2. Financial Market

To describe a financial market in continuous time, we introduce a probabi-
lity space (Ω,F ,P), a time horizon T ∈ (0,∞) and a filtration F := (Ft)0≤t≤T

that is assumed to satisfy Ft ⊆ F for all t ∈ [0, T ], as well as the usual hy-
potheses of completeness and right-continuity and saturation by all P-null
sets of F .
In our market model we can find d adapted, nonnegative primary security

account processes represented by (càdlàg) P-semimartingales Sj = {Sj
t , t ∈

[0, T ]}, j ∈ {1, 2, . . . , d}, d ∈ {1, 2, . . .}. Additionally, the 0-th security ac-
count S0

t denotes the value of the adapted strictly positive savings account
at time t ∈ [0, T ]. The j-th primary security account holds units of the
j-th primary security plus its accumulated dividends or interest payments,
j ∈ {1, 2, . . . , d}. In this setting, market participants can trade in order to
reallocate their wealth.

Definition 2.1. A strategy is a (d + 1)-dimensional process δ = {δt =
(δ0t , δ

1
t , . . . , δ

d
t )

⊤, t ∈ [0, T ]}, where for each j ∈ {0, 1, . . . , d}, the process

δj = {δjt , t ∈ [0, T ]} is F-predictable and integrable with respect to Sj =

{Sj
t , t ∈ [0, T ]}.

Here δjt , j ∈ {0, 1, . . . , d}, denotes the number of units of the j-th security
account that are held at time t ≥ 0 in the corresponding portfolio Sδ =
{Sδ

t , t ∈ [0, T ]}. Following [3], we define the value Sδ of this portfolio as
given by a càdlàg optional process such that

Sδ
t− := δt · St =

d∑

j=0

δ
j
tS

j
t , t ∈ [0, T ],

where S = {St = (S0
t , S

1
t , . . . , S

d
t )

⊤, t ∈ [0, T ]}. A strategy δ and the

corresponding portfolio Ŝδ are said to be self-financing if

Sδ
t = Sδ

0 +

∫ t

0
δu · dSu, t ∈ [0, T ], (2.1)

where δ = {δt = (δ0t , δ
1
t , . . . , δ

d
t )

⊤, t ∈ [0, T ]}. Note that the stochastic
integral of the vector process δ with respect to S is well-defined because
of our assumptions on δ. Furthermore, a⊤ denotes the transpose of a. In
general, we do not request strategies to be self-financing. Denote by V+

x , (Vx),
the set of all strictly positive, (nonnegative), finite, self-financing portfolios,
with initial capital x > 0, (x ≥ 0).

Definition 2.2. A portfolio Sδ∗ ∈ V+
1 is called a numéraire portfolio, if any

nonnegative portfolio Sδ ∈ V+
1 , when denominated in units of Sδ∗, forms a

P-supermartingale, that is,

Sδ
t

Sδ∗
t

≥ E

[
Sδ
s

Sδ∗
s

∣∣∣∣Ft

]
, (2.2)
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for all 0 ≤ t ≤ s ≤ T .

To establish the modeling framework, we make the following (extremely
weak) key assumption, which is satisfied for almost all models of practical
interest, see e.g. [21] and [15].

Assumption 2.3. There exists a numéraire portfolio Sδ∗ ∈ V+
1 .

From now on, let us choose the numéraire portfolio as benchmark. We call
any security, when expressed in units of the numéraire portfolio, a bench-
marked security and refer to this procedure as benchmarking. The bench-
marked value of a portfolio Sδ is of particular interest and is given by the
ratio

Ŝδ
t =

Sδ
t

Sδ∗
t

for all t ∈ [0, T ]. If a benchmarked price process is a P-martingale, then
we call it fair. In this case we would have equality in relationship (2.2) of
Definition 2.2.
The benchmark approach developed in [15], [17] and [21] uses the numéraire
portfolio for derivative pricing without using equivalent martingale measures.
In portfolio optimization the numéraire portfolio, which is also the growth
optimal portfolio, is in many other ways the best performing self-financing
portfolio, see [16] and [18].
As shown in [21], jump-diffusion and Itô process driven market models
have a numéraire portfolio under very general assumptions, where bench-
marked nonnegative portfolios turn out to be P-local martingales and, thus,
P-supermartingales. In [15] the question on the existence of a numéraire
portfolio in a general semimartingale market is studied.
In order to guarantee the economic viability of our framework, we check
whether obvious arbitrage opportunities are excluded. A strong form of ar-
bitrage would arise when a market participant could generate strictly positive
wealth from zero initial capital via his or her nonnegative portfolio of total
wealth.

Definition 2.4. A benchmarked nonnegative self-financing portfolio Ŝδ is
a strong arbitrage if it starts with zero initial capital, that is Ŝδ

0 = 0, and
generates some strictly positive wealth with strictly positive probability at a
later time t ∈ (0, T ], that is P(Ŝδ

t > 0) > 0.

Thanks to the supermartingale property (2.2), the existence of the numéraire
portfolio guarantees that strong arbitrage is automatically excluded in the
given general setting, see [21]. However, some weaker forms of arbitrage
may still exist. These would require to allow for negative portfolios of total
wealth of those market participants who fully focus on exploiting such weaker
forms of arbitrage, which is not possible in reality due to bankruptcy laws.
This emphasizes the fact that an economically motivated notion of arbitrage
should rely on nonnegative portfolios.
Within this paper, we consider a discounted European style contingent claim.
Such a benchmarked claim Ĥ (expressed in units of the benchmark) is given

by the FT -measurable, nonnegative random payoff Ĥ that is delivered at
time T . We will here always assume that a benchmarked contingent claim
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Ĥ belongs to L2(FT ,P).

Given a benchmarked contingent claim Ĥ, there are at least two tasks that
a potential seller of Ĥ may want to accomplish: the pricing by assigning a
value to Ĥ at times t < T ; and the hedging by covering as much as possible
against potential losses arising from the uncertainty of Ĥ. If the market is
complete, then there exists a self-financing strategy δ whose terminal value
Ŝδ
T equals Ĥ with probability one, see [21]. More precisely, the real world

pricing formula

Ŝ
δH
t = E

[
Ĥ
∣∣∣Ft

]
(2.3)

provides the description for the benchmarked fair portfolio at time t ∈ [0, T ],
which is the least expensive P-supermartingale that replicates the bench-
marked payoff Ĥ if it admits a replicating self-financing strategy δH with

ŜδH

T = Ĥ. Here ŜδH forms by definition a P-martingale. The bench-

mark approach allows other self-financing hedge portfolios to exist for Ĥ,
see [21]. However, these nonnegative portfolios are not P-martingales and,

as P-supermartingales, more expensive than the P-martingale ŜδH given in
(2.3), see [21].
Completeness is a rather delicate property that does not cover a large class
of realistic market models. Here we choose the (local) risk-minimization ap-
proach (see e.g. [10], [11] and [24]) to price non-hedgeable contingent claims.
In this paper, we first investigate the case of benchmarked securities that
represent P-local martingales and study risk-minimization as originally in-
troduced in [11]. We will see that this covers many cases in the context of
the benchmark approach including all continuous financial market models,
a wide range of jump-diffusion driven market models and cases like the mi-
nimal market model that do not have an equivalent risk neutral probability
measure. Then we will study the general case when benchmarked securities
are P-supermartingales that are not necessarily P-local martingales. As in-
dicated earlier, we will refer to local risk-minimization under the benchmark
approach as benchmarked local risk-minimization.

3. Local Risk-Minimization with Benchmarked Assets

Our aim is to investigate a concept of local risk-minimization similar to
the one in [13] and [24], which used the savings account as reference unit.
Here we use the numéraire portfolio as discounting factor and benchmark.
The main feature of a local risk-minimization concept is the fact that one
insists on the replication requirement Ŝδ

T = Ĥ. If Ĥ is not hedgeable, then
this forces one to work with strategies that are not self-financing and the
aim becomes to minimize the resulting intrinsic risk or cost under a suitable
criterion. As we will see, rather natural and tractable are quadratic hedging
criteria, where we refer to [24] and [13] for extensive surveys.
Important is the fact that there are realistic situations that we will cover,
which would be excluded because a minimal martingale measure may not
exist for the respective models. For example, in the case of local risk-
minimization of financial derivatives based on insurance products, the mi-
nimal martingale measure may often not exist because of the presence of
jumps in the underlying.
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We recall that under Assumption 2.3, the benchmarked value of any non-
negative, self-financing portfolio forms a P-supermartingale, see (2.2). In
particular, the vector of the d + 1 benchmarked primary security accounts
Ŝ = (Ŝ0, Ŝ1, . . . , Ŝd)⊤ forms with each of its components a nonnegative P-
supermartingale. By Theorem VII.12 of [6], we know that the vector process

Ŝ has a unique decomposition of the form

Ŝt = Ŝ0 +Mt + Vt, t ∈ [0, T ], (3.1)

where M is a vector P-local martingale and V is a right-continuous F-
predictable finite variation vector process with M0 = V0 = 0, with 0 de-
noting the (d + 1)-dimensional null vector. This expresses the fact that
every right-continuous P-supermartingale is a special P-semimartingale.

3.1. Benchmarked Local Martingales. We now discuss the case when
benchmarked securities are P-local martingales. Let us assume that the vec-

tor of the d + 1 discounted primary security accounts
S

S0
=: X = {Xt =

(1,X1
t , . . . ,X

d
t )

⊤, t ∈ [0, T ]} is a continuous P-semimartingale with canon-
ical decomposition X = X0 + MX + AX . The processes MX = {MX

t :
t ∈ [0, T ]} and AX = {AX

t : t ∈ [0, T ]} are both R
d+1-valued, continuous

and null at 0. Moreover, MX is a vector P-local martingale and AX is an
adapted, finite variation vector process. The bracket process 〈MX〉 of MX is
the adapted, continuous (d+1)× (d+1)-matrix-valued process with compo-

nents 〈MX〉i,jt = 〈(MX)i, (MX)j〉t denoting covariation for i, j = 0, 1, . . . , d
and t ∈ [0, T ].
Since Assumption 2.3 is in force, Theorem 3.4 of [14] ensures that the struc-

ture condition4 is satisfied and the discounted numéraire portfolio S̄δ∗
t =

S
δ∗
t

S0
t

at any time t is given by

S̄δ∗
t =

1

Ẑt

, t ∈ [0, T ],

where the process Ẑ corresponds to the stochastic exponential

Ẑt = E
(
−λ̂ ·MX

)
t
= exp

(
−λ̂ ·MX

t −
1

2
K̂t

)
, t ∈ [0, T ],

which is then well-defined and a strictly positive P-local martingale. Via
Itô’s product rule, it is easy to check that the vector process Ŝ of bench-
marked primary security accounts is a P-local martingale, and thus, a P-

supermartingale. Indeed, since Xt = X0 +MX
t +

∫ t

0 λ̂sd〈M
X〉s, we have

dŜt = d(XtẐt) = ẐtdXt +XtdẐt + d〈X, Ẑ〉t

= Ẑt(1−Xtλ̂t)dM
X
t , t ∈ [0, T ].

4We say that X satisfies the structure condition if AX is absolutely continuous with

respect to 〈MX〉, in the sense that there exists an F-predictable process λ̂ = {λ̂t, t ∈ [0, T ]}

such that AX =
∫

d〈MX〉λ̂, i.e. (AX
t )i =

∑d

j=0

∫ t

0
λ̂j
ud〈M

X〉iju , for i ∈ {0, . . . , d} and

t ∈ [0, T ], and the mean-variance tradeoff process K̂t =
∫ t

0
λ̂⊤

u d〈M
X〉uλ̂u is finite P-a.s.

for each t ∈ [0, T ].
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This implies that whenever we consider continuous primary security account
processes, they are P-local martingales when expressed in units of the numé-
raire portfolio.
In the general case when St can have jumps, it is not possible to provide
an analogous explicit description of the numéraire portfolio Sδ∗

t or, more
precisely, its generating strategy δ∗. An implicit description can be found
in [15], Theorem 3.15, or more generally in [12], Theorem 3.2 and Corollary
3.2. In both cases, δ∗ can be obtained by pointwise maximization of a func-
tion that is given explicitly in terms of semimartingale characteristics. If S
is discontinuous, such a pointwise maximizer is only defined implicitly and
neither of the above descriptions provides explicit expressions for δ∗.
However, a wide class of jump-diffusion market models is driven by primary
security account processes that turn out to be, when expressed in units of the
numéraire portfolio, P-local martingales, see e.g. [21], Chapter 14. For ex-
ample, this is the case in jump-diffusion markets, that is, when security price
processes exhibit intensity based jumps due to event risk, see [21], Chapter
14, page 513. These results allow us to consider below risk-minimization in
the case when the benchmarked assets are given by P-local martingales.

3.1.1. Risk-Minimization with Benchmarked Assets. Since at this stage we
refer to the case where benchmarked securities represent P-local martin-
gales (i.e. we assume V ≡ 0 for all t ∈ [0, T ] in (3.1)), we study risk-
minimization as originally introduced in [11] under the benchmark approach,
that is, benchmarked risk-minimization. In particular, since we are consid-
ering a (general) discounting factor (different from the usual money market
account), we follow the approach of [3] for local risk-minimization under a
given numéraire.

Definition 3.1. An L2-admissible strategy is any R
d+1-valued F-predictable

vector process δ = {δt = (δ0t , δ
1
t , . . . , δ

d
t )

⊤, t ∈ [0, T ]} such that

(i) the associated portfolio Ŝδ is a square-integrable stochastic process

whose left-limit is equal to Ŝδ
t− = δt · Ŝt,

(ii) the stochastic integral
∫
δ · dŜ is such that

E

[∫ T

0
δ⊤u d[Ŝ]uδu

]
<∞. (3.2)

Here [Ŝ] = ([Ŝi, Ŝj ])i,j=1,...,d denotes the matrix-valued optional co-

variance process of Ŝ.

Recall that the market may be not complete. We also admit strategies that
are not self-financing and may generate benchmarked profits or losses over
time.

Definition 3.2. For any L2-admissible strategy δ, the benchmarked cost
process Ĉδ is defined by

Ĉδ
t := Ŝδ

t −

∫ t

0
δu · dŜu, t ∈ [0, T ]. (3.3)

Here Ĉδ
t describes the total costs incurred by δ over the interval [0, t].
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Definition 3.3. For an L2-admissible strategy δ, the corresponding risk at
time t is defined by

R̂δ
t := E

[(
Ĉδ
T − Ĉδ

t

)2∣∣∣∣Ft

]
, t ∈ [0, T ],

where the benchmarked cost process Ĉδ, given in (3.3), is assumed to be
square-integrable.

If Ĉδ is constant, then it equals zero and the strategy is self-financing. Our
goal is to find an L2-admissible strategy δ, which minimizes the associated
risk measured by the fluctuations of its benchmarked cost process in a suit-
able sense.

Definition 3.4. Given a benchmarked contingent claim Ĥ ∈ L2(FT ,P), an
L2-admissible strategy δ is said to be benchmarked risk-minimizing if the
following conditions hold:

(i) Ŝδ
T = Ĥ, P-a.s.;

(ii) for any L2-admissible strategy δ̃ such that Ŝ δ̃
T = Ŝδ

T P-a.s., we have

R̂δ
t ≤ R̂δ̃

t P− a.s. for every t ∈ [0, T ].

Lemma 3.5. The benchmarked cost process Ĉδ defined in (3.3) associated to
a benchmarked risk-minimizing strategy δ is a P-martingale for all t ∈ [0, T ].

For the proof of Lemma 3.5, we refer to Section A in the Appendix. Hence
benchmarked risk-minimizing strategies are “self-financing on average”. We
will see, to find a benchmarked risk-minimizing strategy corresponds to find-
ing a suitable decomposition of the benchmarked claim adapted to this set-
ting. Let M2

0(P) be the space of all square-integrable P-martingales starting
at null at the initial time.

Theorem 3.6. Every benchmarked contingent claim Ĥ ∈ L2(FT ,P) admits

a unique benchmarked risk-minimizing strategy δ with portfolio value Ŝδ and
benchmarked cost process Ĉδ, given by

δ = δĤ ,

Ŝδ
t = Ĥt = E

[
Ĥ
∣∣∣Ft

]
, t ∈ [0, T ],

Ĉδ = Ĥ0 + LĤ ,

where δĤ and LĤ are provided by the Galtchouk-Kunita-Watanabe decompo-
sition of Ĥ, i.e.

Ĥ = Ĥ0 +

∫ T

0
δĤu · dŜu + LĤ

T , P− a.s. (3.4)

with Ĥ0 ∈ R, where δĤ is an F-predictable vector process satisfying the in-

tegrability condition (3.2) and LĤ ∈ M2
0(P) is strongly orthogonal to each

component of Ŝ.

Proof. The proof follows from Theorem 2.4 of [24] and Lemma 3.5. �
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Thus, the problem of minimizing risk is reduced to finding the representation
(3.4). A natural question is whether the benchmarked risk-minimizing stra-
tegy is invariant under a change of numéraire. We address this issue to
Section 3.3.1.

3.2. Relationship to Real World Pricing.

Definition 3.7. We say that a nonnegative benchmarked contingent claim
Ĥ ∈ L2(FT ,P) is hedgeable if there exists an L2-admissible self-financing

strategy ξĤ = {ξĤt = (ξĤ,1
t , . . . , ξ

Ĥ,d
t )⊤, t ∈ [0, T ]} such that

Ĥ = Ĥ0 +

∫ T

0
ξĤu · dŜu.

Decomposition (3.4) and Definition 3.7 allow us to decompose every non-
negative, square-integrable benchmarked contingent claim as the sum of its
hedgeable part Ĥh and its unhedgeable part Ĥu such that we can write

Ĥ = Ĥh + Ĥu, (3.5)

where

Ĥh := Ĥ0 +

∫ T

0
ξĤu · dŜu

and

Ĥu := LĤ
T .

Recall that LĤ = {LĤ
t , t ∈ [0, T ]} is a P-martingale in M2

0(P), strongly

orthogonal to each component of Ŝ. There is a close relationship between
benchmarked risk-minimization and real world pricing, as we will see now.
Let us apply the real world pricing formula (2.3) to the benchmarked con-

tingent claim Ĥ in order to get its benchmarked fair price ÛH(t) at time
t. Recall, by its martingale property that the benchmarked fair price is the
best forecast of its future benchmarked prices. Due to the supermartingale
property (2.2), it follows that we characterize, when using the real world pri-
cing formula (2.3) for obtaining the fair price of the hedgeable part, the least

expensive replicating portfolio for Ĥh by taking the conditional expectation

E

[
Ĥh
∣∣∣Ft

]
under the real world probability measure P. Then by (3.5) we

have

ÛH(t) = E

[
Ĥ
∣∣∣Ft

]
= E

[
Ĥh
∣∣∣Ft

]
+ E

[
Ĥu
∣∣∣Ft

]
= ÛHh(t) + ÛHu(t),

for every t ∈ [0, T ]. Note that the benchmarked hedgeable part Ĥh can be
replicated perfectly, i.e.

ÛHh(t) = E

[
Ĥh
∣∣∣Ft

]
= Ĥ0 +

∫ t

0
ξĤu · dŜu.

In particular, for t = 0 one has for the benchmarked hedgeable part

ÛHh(0) = E

[
Ĥh
∣∣∣F0

]
= Ĥ0.

On the other hand, we have for the benchmarked unhedgeable part

ÛHu(t) = E

[
Ĥu
∣∣∣Ft

]
= LĤ

t
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with

ÛHu(0) = 0.

Consequently, for the nonnegative benchmarked payoff Ĥ, its benchmarked
fair price ÛH(0) at time t = 0, is given by

ÛH(0) = ÛHh(0) + ÛHu(0) = E

[
Ĥh
∣∣∣F0

]
+ E

[
Ĥu
∣∣∣F0

]
= Ĥ0.

The real world pricing formula (2.3) appears in the form of a conditional
expectation and, thus, as a projection in a least squares sense. More precisely,
the benchmarked fair price ÛH(0) can be interpreted as the least squares

projection of Ĥ into the space of F0-measurable benchmarked values. Note

that the benchmarked fair price ÛHu(0) of the unhedgeable part Ĥu = LĤ
T

is zero at time t = 0. Recall that the benchmarked hedgeable part is priced
at time t = 0 such that the minimal possible price, the fair price, results.

Viewed from time t = 0 the benchmarked cost Ĉδ
T = Ĥ0 + L̂Ĥ

T , see Theorem

3.6, has then minimal variance Var
(
LĤ
T

)
. This means that the application of

the real world pricing formula to a benchmarked payoff at time t = 0 leaves its
benchmarked unhedgeable part totally untouched. This is reasonable because
any extra trading could only create unnecessary uncertainty and potential
additional benchmarked costs. Of course, once the benchmarked fair price is
used to establish a hedge portfolio, a benchmarked cost emerges according to
Theorem 3.6 if there was an unhedgeable part in the benchmarked contingent
claim. The following practically important insight is worth mentioning:

Remark 3.8. From a large financial institution’s point of view, the bench-
marked profits & losses due to the optimal costs in its derivative book have
minimal variance when evaluated under real world pricing and viewed at time
t = 0. If they are large in number and independent, then the Law of Large
Numbers reduces asymptotically the variance of the benchmarked pooled profit
& loss to zero and, thus, its value to zero.
Obviously, requesting from clients higher prices than fair prices would make
the bank less competitive. On the other hand, charging lower prices than fair
prices would make it unsustainable in the long run because it would suffer on
average a loss. In this sense fair pricing of unhedgeable claims is most na-
tural and yields economically correct prices. Accordingly, benchmarked risk-
minimization is a very natural risk management strategy for pricing and
hedging. Moreover, it is mathematically convenient and for many models
rather tractable when using the GKW-decomposition.

With the above notation, we obtain by Theorem 3.6 and (3.4) for the bench-

marked payoff Ĥ ∈ L2(FT ,P) the following decomposition:

Ĥ = ÛHh(0) +

∫ T

0
ξĤu · dŜu + ÛHu(T ).

Since ÛHu(T ) = Ĥu = LĤ
T , it follows

Ĥ = ÛHh(0) +

∫ T

0
ξĤu · dŜu + LĤ

T .
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This allows us to summarize the relationship between benchmarked risk-
minimiza-
tion and real world pricing. In our setting Ĥ ∈ L2(FT ,P) admits a bench-

marked risk-minimizing strategy and the decomposition for Ĥ, provided by
the real world pricing formula, coincides with the decomposition (3.4), where

ξĤ yields the fair strategy for the self-financing replication of the hedgeable
part of Ĥ. The remaining benchmarked unhedgeable part, given by the

benchmarked cost process LĤ , can be diversified. Note that diversification
takes place under the real world probability measure and not under some
putative risk neutral measure. This is an important insight, which gives
a clear reasoning for the pricing and hedging of contingent claims via real
world pricing in incomplete markets.

3.3. Local Risk-Minimization with Benchmarked Assets. We now
consider the general situation, where the vector of the d+1 benchmarked pri-
mary security accounts Ŝ = (Ŝ0, Ŝ1, . . . , Ŝd)⊤ forms with each of its compo-
nents a locally square-integrable nonnegative P-supermartingale with V 6= 0
in decomposition (3.1), and hence a special P-semimartingale. In view of
Proposition 3.1 in [24], Definition 3.3 does not hold in this non-martingale
case due to a compatibility problem. Indeed as observed in [24], at any time

t we minimize R̂δ
t over all admissible continuations from t on and obtain a

continuation which is optimal when viewed in t only. But for s < t, the
s-optimal continuation from s onward highlights what to do on the whole
interval (s, T ] ⊃ (t, T ] and this may be different from what the t-optimal
continuation from t on prescribes. However, it is possible to characterize
benchmarked pseudo-locally risk-minimizing strategies5 through the follow-
ing well-known result, see [24].

Proposition 3.9. A benchmarked contingent claim Ĥ ∈ L2(FT ,P) admits

a benchmarked pseudo-locally risk-minimizing strategy δ with Ŝδ
T = Ĥ P-a.s.

if and only if Ĥ can be written as

Ĥ = Ĥ0 +

∫ T

0
ξĤu · dŜu + LĤ

T , P− a.s. (3.6)

with Ĥ0 ∈ L2(F0,P), ξ
Ĥ is an F-predictable vector process satisfying the

following integrability condition

E

[∫ T

0
(ξĤs )⊤d[M ]sξ

Ĥ
s +

(∫ T

0
|(ξĤs )⊤||dVs|

)2
]
<∞,

where for ω ∈ Ω, dVs(ω) denotes the (signed) Lebesgue-Stieltjes measure
corresponding to the finite variation function s 7→ Vs(ω) and |dVs|(ω) the

5The original definition of a locally risk-minimizing strategy is given in [24] and for-
malizes the intuitive idea that changing an optimal strategy over a small time interval
increases the risk, at least asymptotically. Since it is a rather technical definition, it has
been introduced the concept of a pseudo-locally risk-minimizing strategy that is both eas-
ier to find and to characterize, as Proposition 3.9 will show in the following. Moreover, in
the one-dimensional case and if Ŝ is sufficiently well-behaved, pseudo-optimal and locally
risk-minimizing strategies are the same.
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associated total variation measure, and LĤ ∈ M2
0(P) is strongly orthogonal

to M . The strategy δ is then given by

δt = ξĤt , t ∈ [0, T ],

its benchmarked value process is

Ŝδ
t = Ŝδ

0 +

∫ t

0
δs · dŜs + Ĉδ

t , t ∈ [0, T ],

and the benchmarked cost process equals

Ĉδ
t = Ĥ0 + L̂Ĥ

t , t ∈ [0, T ].

Decompositions (3.4) and (3.6) for Ĥ ∈ L2(FT ,P) are also known in the

literature as the Föllmer-Schweizer decompositions for Ĥ.

3.3.1. Invariance under a Change of Numéraire. A natural question to clar-
ify is when risk-minimizing strategies are invariant under a change of nu-
méraire. Indeed, if the primary security accounts Sj, j ∈ {0, 1, . . . , d}, are
continuous, then Theorem 3.1 of [3] ensures that the strategy is invariant

under a change of numéraire. In this case the process ξĤ appearing in de-
composition (3.6) also provides the classical locally risk-minimizing strategy

(if it exists) for the discounted contingent claim H̄ :=
H

S0
T

. However, if the

primary security accounts Sj are only right-continuous, it is still possible to
extend some results of [3] as follows:
Consider two discounting factors S0 and Sδ∗ . Given an L2-admissible stra-
tegy δ, we now assume that the two stochastic integrals

∫ ·
0 δs · dS̄s :=

∫ ·
0 δs · d

(
Ss

S0
s

)
and

∫ ·
0 δs · dŜs exist. Denote by C̄δ and Ĉδ the cost processes

associated to the strategy δ denominated in units of S0 and Sδ∗ , respectively.

Lemma 3.10. If C̄δ and Ĉδ are the cost processes of the strategy δ, then

dĈδ
t = Ŝ0

t−dC̄
δ
t + d[C̄δ, Ŝ0]t. (3.7)

Proof. This result extends Lemma 3.1 in [3]. For the reader’s convenience
we provide here briefly the proof of (3.7). It is formally analogous to the one
of Lemma 3.1 in [3]. By Itô’s formula, we have

dŜδ
t

= d

(
Sδ
t

Sδ∗
t

)
= d

(
Sδ
t

S0
t

·
S0
t

Sδ∗
t

)
=
Sδ
t−

S0
t−

d

(
S0
t

Sδ∗
t

)
+
S0
t−

Sδ∗
t−

d

(
Sδ
t

S0
t

)
+ d

[
Sδ

S0
,
S0

Sδ∗

]

t

= δt−
St−

S0
t−

d

(
S0
t

Sδ∗
t

)
+
S0
t−

Sδ∗
t−

d

(
Sδ
t

S0
t

)
+ d

[
Sδ

S0
,
S0

Sδ∗

]

t

.

Since

d

(
Sδ
t

S0
t

)
= δt−d

(
St

S0
t

)
+ dC̄δ

t ,

then

d

[
Sδ

S0
,
S0

Sδ∗

]

t

= δt−d

[
S

S0
,
S0

Sδ∗

]

t

+ d

[
C̄δ,

S0

Sδ∗

]

t

.
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Finally

dŜδ
t = δt−

{
St−

S0
t−

d

(
S0
t

Sδ∗
t

)
+
S0
t−

Sδ∗
t−

d

(
St

S0
t

)
+ d

[
S

S0
,
S0

Sδ∗

]

t

}

+
S0
t−

Sδ∗
t−

dC̄δ
t + d

[
C̄δ,

S0

Sδ∗

]

t

= δt−d

(
St

Sδ∗
t

)
+
S0
t−

Sδ∗
t−

dC̄δ
t + d

[
C̄δ,

S0

Sδ∗

]

t

= δt−dŜ
δ
t + Ŝ0

t−dC̄
δ
t + d

[
C̄δ, Ŝ0

]
t
.

�

By Lemma 3.10, the cost process of a risk-minimizing strategy (with respect
to a given discounting factor) is given by a P-martingale. This property
provides a fundamental characterization of (local) risk-minimizing strategies
(with respect to a given discounting factor). Here we show that they are
invariant under a change of numéraire.

Proposition 3.11. Under the same hypotheses of the previous lemma, if the
process C̄δ is a continuous P-local martingale strongly orthogonal to the mar-
tingale part of S̄, then Ĉδ is also a (continuous) P-local martingale strongly

orthogonal to the martingale part of Ŝ.

Proof. This result generalizes Proposition 3.1 of [3]. The proof essentially
follows from Itô’s formula and Lemma 3.10. From integration by parts for-
mula, we have that

d

(
St

Sδ∗
t

)
= d

(
St

S0
t

·
S0
t

Sδ∗
t

)
=
St−

S0
t−

d

(
S0
t

Sδ∗
t

)
+
S0
t−

Sδ∗
t−

d

(
St

S0
t

)
+ d

[
S

S0
,
S0

Sδ∗

]

t

where by Itô’s formula

d

(
S0
t

Sδ∗
t

)
= d



(
Sδ∗
t

S0
t

)−1

 = −

(
S0
t−

Sδ∗
t−

)2

d

(
Sδ∗
t

S0
t

)
+

(
S0
t−

Sδ∗
t−

)3

d

[
Sδ∗

S0
,
Sδ∗

S0

]

t

+∆

(
Sδ∗
t

S0
t

)−1

+

(
S0
t−

Sδ∗
t−

)2

∆

(
Sδ∗
t

S0
t

)
−

(
S0
t−

Sδ∗
t−

)3 [
∆

(
Sδ∗
t

S0
t

)]2

︸ ︷︷ ︸
:=dΣt

.
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From Lemma 3.10, we have

d

[
Ĉδ,

S

Sδ∗

]

t

=
S0
t−

Sδ∗
t−

d

[
C̄δ,

S

Sδ∗

]

t

+ d

[[
C̄δ,

S0

Sδ∗

]
,
S

Sδ∗

]

t︸ ︷︷ ︸
0

=
St−

Sδ∗
t−

d

[
C̄δ,

S0

Sδ∗

]

t

+

(
S0
t−

Sδ∗
t−

)2

d

[
C̄δ,

S

S0

]

t︸ ︷︷ ︸
0

+
S0
t−

Sδ∗
t−

d

[
C̄δ,

[
S

S0
,
S0

Sδ∗

]]

t︸ ︷︷ ︸
0

+ d

[[
C̄δ,

S0

Sδ∗

]
,
S

Sδ∗

]

t︸ ︷︷ ︸
0

=
St−

Sδ∗
t−

d

[
C̄δ,

S0

Sδ∗

]

t

, (3.8)

where we have used the fact that C̄δ is a continuous P-local martingale
strongly orthogonal to the martingale part of S̄. Furthermore,

d

[
C̄δ,

S0

Sδ∗

]

t

= −

(
S0
t−

Sδ∗
t−

)2

d

[
C̄δ,

Sδ∗

S0

]

t

+

(
S0
t−

Sδ∗
t−

)3

d

[
C̄δ,

[
Sδ∗

S0
,
Sδ∗

S0

]]

t

+ d
[
C̄δ,Σ

]
t

= −

(
S0
t−

Sδ∗
t−

)2

d

[
C̄δ,

Sδ∗

S0

]

t

.

(3.9)

If now C̄δ is a P-local martingale strongly orthogonal to S̄, then

d

[
C̄δ,

Sδ∗

S0

]

t

= 0, t ∈ [0, T ].

By (3.8) and (3.9), we have that also d
[
Ĉδ, S

Sδ∗

]
t
= 0, hence Ĉδ is strongly

orthogonal to the martingale part of S. This concludes the proof. �

Now it is possible to state the main result that guarantees that invariance
under change of numéraire is kept in the case of right-continuous asset price
processes if we assume that the cost process C̄δ is continuous.

Theorem 3.12. Let δ be an L2-admissible strategy with respect to the nu-
méraires S0 and Sδ∗ and assume that C̄δ is continuous. If δ is locally
risk-minimizing under the numéraire S0, then δ is locally risk-minimizing
also with respect to the numéraire Sδ∗ , i.e. it is benchmarked locally risk-
minimizing.

Proof. The proof is an immediate consequence of Proposition 3.11: if δ is a
locally risk-minimizing strategy under S0, the cost Ĉδ is a P-local martingale
strongly orthogonal to the martingale part of Ŝ. But since the strategy is
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L2-admissible with respect to Sδ∗ , the cost process Ĉδ is actually a square
integrable P-martingale. �

3.4. Benchmarked local risk-minimization under incomplete infor-

mation. Here we show an example of benchmarked local risk-minimization
that works under general assumptions on Ŝ. Similarly to [10], we consider
a situation where the financial market would be complete if we had more
information. The available information is described by the filtration F. We
suppose that the benchmarked claim Ĥ is attainable with respect to some
larger filtration. Only at the terminal time T , but not at times t < T , all
the information relevant for a perfect hedging of a claim will be available to
us. So let F̃ := (F̃t)0≤t≤T be a right-continuous filtration such that

Ft ⊆ F̃t ⊆ F , t ∈ [0, T ].

We now show how the results of [10] hold without assuming that the underly-
ing asset price processes are continuous, if we consider a general benchmarked
market. Note furthermore that we are not going to assume that the bench-
marked assets are P-local martingales.
Consider now the benchmarked asset price process Ŝ. Then Ŝ is a P-
supermartinga-
le and admits the Doob-Meyer’s decomposition

Ŝt =Mt −At, t ∈ [0, T ],

where A is an F-predictable increasing finite variation process and M is a
P-local martingale.

Assumption 3.13. Suppose now that the vector process Ŝ belongs to S2(P),
that is, the space of P-semimartingales satisfying the integrability condition

E

[
Ŝ2
0 + [M ]T + |A|2T

]
<∞,

where |A| = {|A|t : t ∈ [0, T ]} is the total variation of A. In addition, the

decomposition (3.1) of Ŝ with respect to F is still valid with respect to F̃. In

other words we assume that M is a P-martingale with respect to F̃, although
it is adapted to the smaller filtration F.

Suppose now that Ĥ ∈ L2(FT ,P) is attainable with respect to the larger

filtration F̃, i.e.

Ĥ = H̃0 +

∫ T

0
ξ̃Ĥs dŜs, (3.10)

where H̃0 is F̃0-measurable and the process ξ̃Ĥ = {ξ̃Ĥt = (ξ̃Ĥ,0
t , ξ̃

Ĥ,1
t , . . . , ξ̃

Ĥ,d
t )⊤,

t ∈ [0, T ]} is predictable with respect to F̃. We now need to specify suitable
integrability conditions.

Assumption 3.14. We suppose that the (F̃,P)-semimartingale

H̃0 +

∫ t

0
ξ̃Ĥs dŜs, t ∈ [0, T ],
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associated to Ĥ belongs to the space S2(P), i.e.

E

[
H̃2

0 +

∫ T

0
(ξ̃Ĥs )⊤d[M ]sξ̃

Ĥ
s +

(∫ T

0
|(ξ̃Ĥs )⊤||dAs|

)2
]
<∞. (3.11)

Theorem 3.15. Suppose that Ĥ satisfies (3.10) and (3.11). Then Ĥ admits
the representation

Ĥ = H̃0 +

∫ T

0
ξĤs dŜs + LĤ

T , (3.12)

with Ĥ0 = E[H̃0|F0], where

ξĤ := p(ξ̃Ĥ)

is the F-predictable projection of the F̃-predictable vector process ξ̃Ĥ , and

where LĤ = {LĤ
t = (LĤ,0

t , L
Ĥ,1
t , . . . , L

Ĥ,d
t )⊤, t ∈ [0, T ]} is the square-

integrable (F,P)-martingale, orthogonal to M , associated to

LĤ
T := H̃0 − Ĥ0 +

∫ T

0
(ξ̃Ĥs − ξĤs )dŜs ∈ L2(FT ,P).

Proof. Step 1. First we need to check that all components in (3.12) are
square-integrable. Denote by pX the (dual) F-predictable projection of a
process X. By (3.11) and by the properties of the F-predictable projection
(see [6], VI.57),

∞ > E

[(∫ T

0
ξ̃Ĥs dMs

)2
]
= E

[∫ T

0
(ξ̃Ĥs )2d[M ]s

]
= E

[∫ T

0

p
(
(ξ̃Ĥs )2

)
d〈M〉s

]
,

where the last equality holds since 〈M〉 is the F-predictable dual projection
(see e.g. [6], VI.73) of [M ]. By Jensen’s inequality we have

(
p(ξ̃Ĥτ )

)2
= (ξĤτ )2 =

(
E[ξ̃Ĥτ |Fτ−]

)2
≤ E[(ξ̃Ĥτ )2|Fτ−] =

p
(
(ξ̃Ĥτ )2

)
,

for every predictable F-stopping time τ , on the set {τ < ∞}. Hence if we
consider τ = s, again by the properties of the F-predictable dual projection,
it follows that

E

[∫ T

0

p
(
(ξ̃Ĥs )2

)
d〈M〉s

]
≥ E

[∫ T

0

(
p(ξ̃Ĥs )

)2
d〈M〉s

]
= E

[∫ T

0
(ξĤs )2d〈M〉s

]

and finally ∫ T

0
ξĤs dMs ∈ L2(FT ,P).

In order to show that ∫ T

0
ξĤs dAs ∈ L2(FT ,P),

we prove that
∣∣∣∣E
[
ZT

∫ T

0
ξĤs dAs

]∣∣∣∣ ≤ c · ‖ZT ‖2, c ∈ R

for any bounded FT -measurable random variable ZT with L2-norm ‖ZT ‖2.
Let Z = {Zt, t ∈ [0, T ]} denote a right-continuous version with left-limits
of the (F,P)-martingale E[ZT |Ft], t ∈ [0, T ], and put Z∗ = sup0≤t≤T |Zt|.
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Since A is F-predictable, we can use some properties of the F-predictable
projection (see VI.45 and VI.57 in [6]), and obtain

∣∣∣∣E
[
ZT

∫ T

0
ξĤs dAs

]∣∣∣∣ =
∣∣∣∣E
[∫ T

0
Zs−ξ

Ĥ
s dAs

]∣∣∣∣

=

∣∣∣∣E
[∫ T

0
Zs−ξ̃

Ĥ
s dAs

]∣∣∣∣

≤

∣∣∣∣Z
∗
E

[∫ T

0
ξ̃Ĥs d|A|s

]∣∣∣∣

≤ ‖Z∗‖2

∥∥∥∥
∫ T

0
ξ̃Ĥs d|A|s

∥∥∥∥
2

≤ c · ‖Z∗‖2, c ∈ R,

where in the last inequality we have used (3.11) and Doob’s inequality for
the supremum of a square-integrable P-martingale.
Step 2. Clearly, H̃0 − Ĥ0 ∈ L2(Ω, F̃0,P) is orthogonal to all square-

integrable stochastic integrals of M with respect to the filtration F̃, hence
in particular with respect to the filtration F. Then, it only remains to show
that

E

[(∫ T

0
(ξ̃Ĥs − ξĤs )dŜs

)(∫ T

0
µsdMs

)]
= 0 (3.13)

for all bounded F-predictable processes µ = {µt, t ∈ [0, T ]}. This will imply

that the (F,P)-martingale LĤ is orthogonal to M . First we note that (3.13)
is equivalent to the following

E

[(∫ T

0
ξ̃Ĥs dŜs

)(∫ T

0
µsdMs

)]
= E

[(∫ T

0
ξĤs dŜs

)(∫ T

0
µsdMs

)]
.

(3.14)
Then we decompose the left-side of (3.14) into

E

[(∫ T

0
ξ̃Ĥs dMs

)(∫ T

0
µsdMs

)]
+ E

[(∫ T

0
ξ̃Ĥs dAs

)(∫ T

0
µsdMs

)]
.

We have

E

[(∫ T

0
ξ̃Ĥs dMs

)(∫ T

0
µsdMs

)]
= E

[∫ T

0
ξ̃Ĥs · µsd[M ]s

]
(3.15)

and

E

[(∫ T

0
ξ̃Ĥs dAs

)(∫ T

0
µsdMs

)]
= E

[∫ T

0
ξ̃Ĥs

(∫

[0,s)
µudMu

)
dAs

]
,

(3.16)
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by the property of the F-predictable projection (see VI.45 in [6]). Since 〈M〉
is the F-predictable dual projection of [M ], we can rewrite (3.15) as follows

E

[∫ T

0
ξ̃Ĥs · µsd[M ]s

]
= E

[∫ T

0

p(ξ̃Ĥs · µs)d〈M〉s

]

= E

[∫ T

0

p(ξ̃Ĥs ) · µsd〈M〉s

]
(3.17)

= E

[∫ T

0
ξĤs · µsd〈M〉s

]
,

where the second equality (3.17) follows from Remark 44(e) in [6]. Now,

from the properties of the F-predictable projection it is clear that ξ̃Ĥ can be

replaced by ξĤ in (3.16), and this yields (3.13). �

4. Applications

In the remaining part of the paper we discuss some examples that illus-
trate how classical (local) risk-minimization is generalized to benchmarked
(local) risk-minimization in a market when there is no equivalent risk-neutral
probability measure. Finally, we will demonstrate that the presence of jumps
does not create a major problem, which is not easily resolved under classical
(local) risk-minimization.

4.1. Benchmarked Risk-Minimization in the Minimal Market Model

with Random Scaling. The notion of a minimal market model (in short
MMM) is due to E. Platen and has been introduced in a series of papers with
various co-authors; see Chapter 13 of [21] for a recent textbook account. The
version of the MMM described here, which generalizes the stylized version
derived in Section 13.2 of [21], is governed by a particular choice of the di-
scounted numéraire portfolio drift. The MMM generates stochastic volatili-
ties that involve transformations of squared Bessel processes.
We begin by describing a continuous financial market model almost simi-
larly as in Chapter 10 of [21]. More precisely, in this framework uncertainty
is modeled by d independent standard Wiener processes W k = {W k

t , t ∈
[0, T ]}, k ∈ {1, 2, . . . , d} on (Ω,F ,P,F), where F := (Ft)0≤t≤T , with Ft =

FW 1

t ∨ FW 2

t ∨ . . . ∨ FW d

t for each t ∈ [0, T ]. We assume that the value at
time t of the savings account S0 is given by

S0
t = exp

{∫ t

0
rsds

}
<∞

for t ∈ [0, T ], where r = {rt, t ∈ [0, T ]} denotes the F-adapted short term
interest rate. For simplicity, we suppose rt = r ≥ 0, for every t ∈ [0, T ].
Furthermore, we assume that the dynamics of the primary security account

processes Sj = {Sj
t , t ∈ [0, T ]}, j ∈ 1, 2, . . . , d, are given by the SDE

dSj
t = S

j
t

(
a
j
tdt+

d∑

k=1

b
j,k
t dW k

t

)
(4.1)

for t ∈ [0, T ] with S
j
0 > 0. The j-th appreciation rate aj = {ajt , t ∈

[0, T ]} and the (j, k)-th volatility bj,k = {bj,kt , t ∈ [0, T ]} are F-predictable
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processes for j, k ∈ {1, 2, . . . , d} satisfying suitable integrability conditions.

Furthermore the volatility matrix bt = [bj,kt ]dj,k=1 is for Lebesgue almost-

every t ∈ [0, T ] assumed to be invertible. This assumption avoids redundant
primary security accounts and also ensures the existence of the numéraire
portfolio. By introducing the appreciation rate vector at = (a1t , a

2
t , . . . , a

d
t )

⊤

and the unit vector 1 = (1, 1, . . . , 1)⊤, we obtain the market price of risk
vector

θt = (θ1t , θ
2
t , . . . , θ

d
t ) = b

−1
t [at − rt1] (4.2)

for t ∈ [0, T ]. The notion (4.2) allows us to rewrite the SDE (4.1) in the
form

dSj
t = S

j
t

{
rtdt+

d∑

k=1

(θkt − σ
j,k
t )[θkt dt+ dW k

t ]

}
(4.3)

with (j, k)-th volatility

σ
j,k
t = θkt − b

j,k
t

for t ∈ [0, T ] and j, k ∈ {1, 2, . . . , d}. According to [21], Chapter 10, it is
easy to check that the numéraire portfolio satisfies the SDE

dSδ∗
t = Sδ∗

t

[
rtdt+

d∑

k=1

θkt

(
θkt dt+ dW k

t

)]
(4.4)

for t ∈ [0, T ], where we set Sδ∗
0 = 1. By (4.4), it follows that the risk premium

of the numéraire portfolio equals the square of its volatility. Denote by S̄δ∗

the discounted numéraire portfolio, i.e.

S̄δ∗
t =

Sδ∗
t

S0
t

, t ∈ [0, T ].

It is easy to check that S̄δ∗ satisfies the SDE

dS̄δ∗
t = d(Ŝ0

t )
−1 = (Ŝ0

t )
−1|θt|(|θt|dt+ dWt) = S̄δ∗

t |θt|(|θt|dt+ dWt), (4.5)

where

dWt =
1

|θt|

d∑

k=1

θkt dW
k
t

is the stochastic differential of a standard Wiener process W and |θ| denotes
the total market price of risk. For the efficient modeling of the numéraire
portfolio it is important to find an appropriate parametrization. Let us
parametrize the discounted numéraire portfolio dynamics, that is the SDE
(4.5), by its trend. More precisely, we consider the discounted numéraire
portfolio drift

αt = S̄δ∗
t |θt|

2 (4.6)

for t ∈ [0, T ]. Using this parametrization obtained from (4.6), we can rewrite
the SDE (4.5) of the discounted numéraire portfolio as follows:

dS̄δ∗
t = αtdt+

√
S̄δ∗
t αtdWt, t ∈ [0, T ]. (4.7)
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According to Section 13.4 of [21], we now assume that the discounted numé-
raire portfolio drift is given by

αt =

(
δ

2
− 1

)2

γtZ
δ−4
2

t , t ∈ [0, T ], (4.8)

where Z is a a squared Bessel process with a general dimension δ > 2 sati-
sfying the SDE

dZt =
δ

4
γtdt+

√
γtZtdWt (4.9)

for t ∈ [0, T ] with Z0 > 0. Note that with this choice of α, we have that

Zt =
(
S̄δ∗
t

) 2
δ−2

, (4.10)

for t ∈ [0, T ] and δ ∈ (2,∞). We should stress that for the standard choice
δ = 4 and γt = 1 for every t ∈ [0, T ], we recover the stylized MMM, see
Sect.13.2 of [21]. Note also that for the standard case with δ = 4 the di-
scounted numéraire portfolio drift does not depend on Zt. According to [21],
we assume here that the scaling process γ is a nonnegative, F-adapted sto-
chastic process that satisfies a SDE of the form

dγt = a(t, γt)dt+ b(t, γt)
(
ρdWt +

√
1− ρ2dW̃t

)
, t ∈ [0, T ], (4.11)

with a random initial value γ0 > 0. Here W̃ is a Wiener process that models
some uncertainty in trading activity and is assumed to be independent of W .
The scaling correlation ρ is, for simplicity, assumed to be constant. Under
this formulation the dynamics of the diffusion process γ can be chosen to
match empirical evidence, see Section 13.4 of [21] for some examples. Note
that an equivalent risk neutral probability measure does not exist for the
above model. The benchmarked savings account Ŝ0 and, thus, the candidate
Radon-Nikodym derivative process Λ = {Λt, t ∈ [0, T ]} with

Λt =

(
S̄δ∗
t

S̄δ∗
0

)−1

=

(
Zt

Z0

)1− δ
2

are by (8.7.24) of [21] strict F-local martingales when we assume no correla-

tion, that is ρ = 0. Note also that Ŝ0 is not square-integrable, see formula
(8.7.14) in [21].
We now consider an application of risk-minimization in the MMM with ran-
dom scaling. For the sake of simplicity, we refer to a generalized MMM
where we can find two primary security account processes S1 and S2, whose
dynamics are described at each time t ∈ [0, T ] by the SDE (4.1), for j = 1, 2.
We recall that the primary security account processes Sj, j = 1, 2, are driven
by the two independent standard Wiener processes W 1 and W 2, i.e. their
behavior is described by the following SDE:

dSj
t = S

j
t

(
a
j
tdt+ b

j,1
t dW 1

t + b
j,2
t dW 2

t

)
, t ∈ [0, T ], (4.12)

with S
j
0 > 0. By applying Itô’s formula, it is easy to compute the following

SDE:

dŜj
t = −Ŝj

t |θt|dWt + Ŝ
j
t

(
b
j,1
t dW 1

t + b
j,2
t dW 2

t

)
, t ∈ [0, T ], j ∈ {1, 2}.
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Then, Ŝj is an F-(local) martingale for both j = 1, 2. We assume that

E

[
〈Ŝj〉T

]
< ∞, for j ∈ {1, 2}. Then by Corollary 4 on page 74 of Chap-

ter II of [22], we obtain that E

[
(Ŝj

T )
2
]
= E

[
[Ŝj ]T

]
< ∞ and that Ŝj is a

square-integrable F-martingale for both j = 1, 2.
If we now restrict our attention to the market given by the numéraire portfo-
lio Sδ∗ and the savings account S0, the primary security account processes S1

and S2 cannot be perfectly replicated by investing in a portfolio containing

only these two tradeable assets. Consider Ĥ = Ŝ
j
T =

S
j
T

S0
T
Z

δ
2−1

T

∈ L2(FT ,P)

and let ϕ = (ξ, η) = {(ξt, ηt), t ∈ [0, T ]} be an L2-admissible strategy such
that

S
j
T = ξTS

δ∗
T + ηT e

rT = ξTS
0
TZ

δ
2
−1

T + ηT e
rT , j ∈ {1, 2}.

Then

Ĥ = Ŝ
j
T = ξT + ηT e

rT 1

S0
TZ

δ
2
−1

T

= ξT + ηT Ŝ
0
T , j ∈ {1, 2}.

At time t < T , we have that

Ŝ
j
t = ξt + ηtP̂T (t, Zt, γt),

where

P̂T (t, Zt, γt) := E

[
1

Sδ∗
T

∣∣∣∣∣F
W
t

]
= E


 1

S0
TZ

δ
2
−1

T

∣∣∣∣∣∣
FW
t


 (4.13)

is the benchmarked fair price at time t of a zero coupon bond with maturity
T and F

W = (FW
t )0≤t≤T denotes the natural filtration of W . We replicate Sj

by using Sδ∗ and the money market account, or equivalently, we replicate the
benchmarked primary security account Ŝj by investing in the benchmarked
zero coupon bond and in 1. In general, we do not have an explicit joint
density of (ZT , γT ), which we would need to calculate the conditional ex-
pectation in (4.13). However, it is possible to characterize the benchmarked

fair zero coupon bond pricing function P̂T (·, ·, ·) as the solution of a Kol-
mogorov backward equation and provide its description by using numerical
methods for solving partial differential equations (PDEs), see Section 15.7

in [21]. Since P̂T (·, ·, ·) is of the form (4.13), then it will admit a Brownian
martingale representation, i.e.

P̂T (t, Zt, γt) = c+

∫ t

0
ψsdWs, t ∈ [0, T ]

for a sufficiently integrable F
W -predictable process ψ = {ψt, t ∈ [0, T ]} and

c > 0. Without loss of generality, we can here assume that

∀t ∈ [0, T ], ψt 6= 0 P− a.s.. (4.14)
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Note that P̂T (·, ·, ·) is also an F-martingale, i.e. for t ∈ [0, T ]

P̂T (t, Zt, γt) = E


 1

S0
TZ

δ
2
−1

T

∣∣∣∣∣∣
FW
t


 = E


 1

S0
TZ

δ
2
−1

T

∣∣∣∣∣∣
FW 1

t ∨ FW 2

t




= c+

∫ t

0
ψs
θ1sdW

1
s + θ2sdW

2
s

|θs|
,

or equivalently

dP̂T (t, Zt, γt) = ψtdWt =
ψtθ

1
t

|θt|
dW 1

t +
ψtθ

2
t

|θt|
dW 2

t . (4.15)

Our aim is then to perform benchmarked risk-minimization of the bench-
marked security Ŝj with respect to P̂T (·, ·, ·). Note that

Wt =

∫ t

0

θ1s
|θs|

dW 1
s +

∫ t

0

θ2s
|θs|

dW 2
s , t ∈ [0, T ],

is an F-(local) martingale. Since P̂T (·, ·, ·) is continuous and Ŝ
j
T is square-

integrable, the Föllmer-Schweizer decomposition of Ŝj
T with respect to P̂T (·, ·, ·)

is given by the GKW decomposition:

Ŝ
j
T = Ŝ

j
0 +

∫ T

0
ηsdP̂T (s, Zs, γs) +MT , P− a.s., j ∈ {1, 2}, (4.16)

where M is a square-integrable F-martingale strongly orthogonal to P̂T (·, ·, ·)
by Theorem 3.6 and η is an L2-admissible strategy. Since it is easy to check
that

W⊥
t :=

∫ t

0

θ2s
|θs|

dW 1
s −

∫ t

0

θ1s
|θs|

dW 2
s , t ∈ [0, T ],

is strongly orthogonal to W , we may assume that M is of the form

Mt =

∫ t

0
νsdW

⊥
s , t ∈ [0, T ],

for a suitable process ν. In particular by (4.16) we also obtain that

Ŝ
j
t = E

[
Ŝ
j
T

∣∣∣Ft

]
= Ŝ

j
0+

∫ t

0
ηsdP̂T (s, Zs, γs)+

∫ t

0
νsdW

⊥
s , P−a.s., t ∈ [0, T ],

(4.17)

since Ŝj is a square-integrable F-martingale for both j = 1, 2. We now
identify (η, ν) and the associated cost process. By decomposition (4.17) and
representation (4.15), for each t ∈ [0, T ], we get

d
[
Ŝj , P̂T (·, ·, ·)

]
t
= ηtd[P̂T (·, ·, ·)]t = ηtψ

2
t dt.

On the other hand, taking (4.1) into account, for every t ∈ [0, T ], we have

d
[
Ŝj , P̂T (·, ·, ·)

]
t
= Ŝ

j
tψt

(
θ1t b

j,1
t

|θt|
+
θ2t b

j,2
t

|θt|
− |θt|

)
dt.

Then, by comparing the two relationships we define

ηt =
Ŝ
j
t

ψt

(
θ1t b

j,1
t

|θt|
+
θ2t b

j,2
t

|θt|
− |θt|

)
(4.18)
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for every t ∈ [0, T ] since (4.14) holds. Note that the component η is well-

defined by (4.17). Analogously, if we compute the bracket process of Ŝj and
W⊥, for every t ∈ [0, T ] we get:

d
[
Ŝj ,W⊥

]
t
= νtd[W

⊥]t = νtdt,

and

d
[
Ŝj ,W⊥

]
t
=

Ŝ
j
t

|θt|

(
θ2t b

j,1
t − θ1t b

j,2
t

)
dt,

from which we deduce that

νt =
Ŝ
j
t

|θt|

(
θ2t b

j,1
t − θ1t b

j,2
t

)
, t ∈ [0, T ].

Hence, the Föllmer-Schweizer decomposition for Ĥ is given by

Ĥ = Ŝ
j
0 +

∫ T

0
ηsdP̂T (s, Zs, γs) +

∫ T

0
νsdW

⊥
s , P− a.s.,

where η defined in (4.18) is the benchmarked risk-minimizing strategy and

Ĉt = Ŝ
j
0 +

∫ t

0

Ŝ
j
s

|θs|

(
θ2sb

j,1
s − θ1sb

j,2
s

)
dW⊥

s , t ∈ [0, T ],

is the optimal benchmarked cost process.

4.2. Benchmarked Risk-Minimization in the Stylized Minimal Mar-

ket Model. The benchmarked risk-minimizing strategy η given in (4.18)
strictly depends on the process ψ, see (4.15), that cannot be computed ex-
plicitly in the general minimal market model described above. However, if
we perform the benchmarked risk-minimization for the benchmarked secu-
rity Ŝj with respect to P̂ (·, ·, ·) under the stylized version of the MMM, i.e.
where the discounted numéraire portfolio drift is an exponentially growing
function of time, it is possible to provide an explicit representation for the
optimal strategy. If we take α to be a deterministic exponential function of
time of the form

αt = α0 exp{βt}, t ∈ [0, T ],

where α0 > 0 is a scaling parameter and β > 0 denotes the long term net
growth rate of the market, then the stylized MMM corresponds indeed to
choose in (4.10) δ = 4 and γt = 1, for every t ∈ [0, T ], as observed previously.

Suppose that E

[
(Ŝj

T )
2
]
< ∞, for j ∈ {1, 2}. Under the stylized version of

the MMM where no dependence exists between the processes Z and γ, the
problem can be completely solved since the benchmarked price P̂ (t, T ) at
time t of a fair zero coupon bond with maturity T is given by the explicit
formula

P̂ (t, T ) =
(
1− exp

{
−(Ŝ0

t )
−1f(t)

})
Ŝ0
t , (4.19)

where f(t) = 2β
α0(exp {βT}−exp {βt}) . By applying Itô’s formula to (4.19), we

obtain

dP̂ (t, T ) = −P̂ (t, T )


Ŝ0

t − f(t)
e
− f(t)

Ŝ0
t

1− e
−

f(t)

Ŝ0
t



√

(Ŝ0
t )

−1αtdWt, t ∈ [0, T ].



LOCAL RISK-MINIMIZATION UNDER THE BENCHMARK APPROACH 25

Proceeding as in the previous example and setting

ψt = −P̂ (t, T )


Ŝ0

t − f(t)
e
−

f(t)

Ŝ0
t

1− e
−

f(t)

Ŝ0
t



√

(Ŝ0
t )

−1αt,

for each t ∈ [0, T ], we obtain that the benchmarked risk-minimizing strategy
is explicitly given by

ηt =
Ŝ
j
t

αtP̂ (t, T )

(
|θt|

2 − θ1t b
j,1
t − θ2t b

j,2
t

)

Ŝ0

t − f(t)
e
−

f(t)

Ŝ0
t

1− e
− f(t)

Ŝ0
t




−1

, t ∈ [0, T ].

4.3. Benchmarked Risk-Minimization for a Defaultable Put on an

Index under the Stylized Minimal Market Model. The numéraire
portfolio Sδ∗ can be realistically interpreted as a diversified equity index,
see [21]. Index linked variable annuities or puts on the numéraire portfolio
are products that are of particular interest to pension plans. The recent
financial crisis made rather clear that the event of a potential default of the
issuing bank has to be taken into account. Set as before F

W = (FW
t )0≤t≤T .

We now study the problem of pricing and hedging a defaultable put on the
numéraire portfolio with strike K ∈ R+ and maturity T ∈ (0,∞) in the

stylized MMM. Since the benchmarked payoff Ĥ of a put option is of the
form F (Ŝ0

T ), for a bounded function F , then Ĥ ∈ L2(FW
T ,P) even if Ŝ0

t is
not square-integrable for any t ∈ [0, T ]. The fair default free benchmarked
price p̂T,K(t) at time t is given by [21] in the form

p̂T,K(t)

= E

[
(K − Sδ∗

T )+

Sδ∗
T

∣∣∣∣∣F
W
t

]
= E

[(
KŜ0

T − 1
)+∣∣∣∣F

W
t

]

= E

[(
KP̂ (T, T )− 1

)+∣∣∣∣F
W
t

]

= −Z2(d1; 4, l2)−KP̂ (t, T )

(
Z2(d1; 0, l2)− exp

{
−
l2

2

})
,

where Z2(x; ν, l) denotes the non-central chi-square distribution function
with ν degrees of freedom, non-centrality parameter l and which is taken
at the level x. Here we have

d1 =
4ηK

αt (exp {η(T − t)} − 1)

and

l2 =
2η

αt (exp {η(T − t)} − 1) P̂ (t, T )
.

Now, we extend the stylized MMM to include default risk. Beyond the
traded uncertainty given by the standard F

W -Wiener process W , there is
also an additional source of randomness due to the presence of a possible
default that, according to intensity based modeling, shall be modeled via
a compensated jump process. More precisely, we assume that the random
time of default τ is represented by a stopping time in the given filtration
F. Let D be the default process, defined as Dt = 1{τ≤t}, for t ∈ [0, T ]. We
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assume that τ admits an F
W -intensity, that is, there exists an F

W -adapted,
nonnegative, (integrable) process λ such that the process

Qt = Dt −

∫ τ∧t

0
λsds = Dt −

∫ t

0
λ̃sds, t ∈ [0, T ]

is a P-martingale. Notice that for the sake of brevity we have written λ̃t =
λt1{τ≥t}. In particular, we obtain that the existence of the intensity implies

that τ is a totally inaccessible FW -stopping time, see [6], so that P(τ = τ̃) = 0
for any F

W -predictable stopping time τ̃ . Furthermore, we suppose that the
default time τ and the underlying Wiener processW , are independent. When
λ is constant, τ is the moment of the first jump of a Poisson process.
Then, the benchmarked payoff of the defaultable put can be represented as
follows:

Ĥ =
(
KŜ0

T − 1
)+

·
(
1 + (δ̄ − 1)DT

)
,

where δ̄ is supposed to be the random recovery rate. In particular, we assume
that δ̄ is a random variable in L2(FW

T ,P) depending only on T and τ , i.e.

δ̄ = h(τ ∧ T ), (4.20)

for some Borel function h : (R,B(R)) → (R,B(R)), 0 ≤ h ≤ 1. Here we focus
on the case when an agent recovers a random part of the promised claim at
maturity. Moreover, we obtain that Ĥ ∈ L2(FW

T ,P). Thus, we can apply

the results of Section 3 to compute the decomposition (3.4) for Ĥ, i.e. the

GKW decomposition of Ĥ with respect to the P-local martingale P̂ (·, T ).
By applying the real world pricing formula, we obtain the relationship

ÛH(t) = E

[(
KŜ0

T − 1
)+∣∣∣∣F

W
t

]
·E [1 + (h(τ ∧ T )− 1)DT | F

W
t

]
= p̂T,K(t)·Ψt,

for all t ∈ [0, T ]. Now it only remains to compute Ψt. First we note that for
each t ∈ [0, T ], we have

Ψt = 1 + E [h(τ ∧ T )DT | F
W
t

]
− E [DT | F

W
t

]

= 1 + E [h(τ ∧ T )DT | F
W
t

]
− (1− (1− F τ

T )) Q̃t

= E [h(τ ∧ T )DT | F
W
t

]
+ (1− F τ

T )Q̃t,

with

Q̃t =
1−Dt

1− F τ
t

, t ∈ [0, T ],

where F τ stands for the cumulative distribution function of τ . We assume
that F τ

t < 1, for every t ∈ [0, T ], so that Q̃ is well-defined. We note that the
second equality in the above derivation follows from Corollary 4.1.2 of [5].
By using the same arguments as in [2], we obtain for every t ∈ [0, T ] the
equation

Ψt = E [g(τ)] +

∫

]0,t]

(
g̃(s)−

1− F τ
T

1− F τ
s

)
dQs, (4.21)

where the function g̃ : R+ → R is given by the formula

g̃(t) = g(t)− e
∫ t

0
λsdsE

[
1{τ>t}g(τ)

]
,
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with

g(x) = h(x ∧ T )1{x<T}.

Here h is the function introduced in (4.20). Moreover, we have used the
relationship

dQ̃t = −
1

1− F τ
t

dQt, t ∈ [0, T ],

that follows from Lemma 5.1 of [5]. Consequently, by applying Itô’s formula,
we get

dÛH(t) = p̂T,K(t)dΨt +Ψt−dp̂T,K(t), t ∈ [0, T ],

and, thus

Ĥ = p̂T,K(0)E [g(τ)] +

∫ T

0
ξĤ,0
s dP̂ (s, T ) + LĤ

T ,

where the benchmarked risk-minimizing strategy is of the form

ξ
Ĥ,0
t = Ψt−

∂p̂T,K(t)

∂P̂ (t, T )
, t ∈ [0, T ],

with ξĤ,j
t = 0, for j ∈ {1, 2, . . . , d}. Here the benchmarked cost appears as

Ĉδ
t = p̂T,K(0)E [g(τ)] +

∫

]0,t]
p̂T,K(s−)

(
g̃(s−)−

1− F τ
T

1− F τ
s−

)
dQs,

for every t ∈ [0, T ], see (4.21). Due to the boundness of the hedge ra-

tio
∂p̂T,K(t)

∂P̂ (t,T )
, δ̄ and the process Ψ, the benchmarked hedgeable part of the

contingent claim forms a square-integrable P-martingale and the resulting
strategy is L2-admissible.
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Appendix A. Technical Proofs

Here we extend the result of Lemma 2.3 of [24] to the case of a general
discounting factor. Our proof is similar to the one of Lemma 2.3 of [24],
however it contains some differences due to the fact that all the strategy’s
components contribute to the cost.

Proof of Lemma 3.5. Suppose δ is a benchmarked risk-minimizing strategy.
Fix t0 ∈ [0, T ] and define a strategy δ̃ by setting for each t ∈ [0, T ]

δ̃t := δt1[0,t0)(t) + ηt1[t0,T ](t),

where η is an F-predictable process determined in a way such that the re-
sulting strategy δ̃ is L2-admissible and

Ŝ δ̃
t = δ̃t · Ŝt := Ŝδ

t 1[0,t0)(t) + E

[
Ŝδ
T −

∫ T

t

δs · dŜs

∣∣∣∣Ft

]
1[t0,T ](t).
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Here we assume to work with an RCLL version. Then δ̃ is an L2-admissible
strategy with Ŝδ

T = Ŝ δ̃
T and

Ĉ δ̃
t0
= E[Ĉδ

T |Ft0 ]. (A.1)

Since Ĉδ
T = Ĉ δ̃

T +
∫ T

t0
(ηu − δu) · dŜu, we have

Ĉδ
T − Ĉδ

t0
= Ĉ δ̃

T − Ĉ δ̃
t0
+ E[Ĉδ

T |Ft0 ]− Ĉδ
t0
+

∫ T

t0

(ηu − δu) · dŜu.

Taking the squares of both sides of the equation, we have

(
Ĉδ
T − Ĉδ

t0

)2
=
(
Ĉ δ̃
T − Ĉ δ̃

t0

)2
+
(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)2
+

(∫ T

t0

(ηu − δu) · dŜu

)2

+ 2
(
Ĉ δ̃
T − Ĉ δ̃

t0

)(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)
+ 2

(
Ĉ δ̃
T − Ĉ δ̃

t0

)∫ T

t0

(ηu − δu) · dŜu

+ 2

∫ T

t0

(ηu − δu) · dŜu

(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)
.

Then conditioning with respect to Ft0 , by (A.1) we obtain

R̂δ
t0
= R̂δ̃

t0
+
(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)2
+ E

[(∫ T

t0

(ηu − δu) · dŜu

)2 ∣∣∣Ft0

]

+ 2E
[(
Ĉ δ̃
T − Ĉ δ̃

t0

)(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

) ∣∣∣Ft0

]

+ 2E

[(
Ĉ δ̃
T − Ĉ δ̃

t0

) ∫ T

t0

(ηu − δu) · dŜu

∣∣∣Ft0

]

= R̂δ̃
t0
+
(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)2
+ E

[(∫ T

t0

(ηu − δu) · dŜu

)2 ∣∣∣Ft0

]

+ 2
(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)
· E
[
Ĉ δ̃
T +

∫ T

t0

(ηu − δu) · dŜu

︸ ︷︷ ︸
=Ĉδ

T

−Ĉ δ̃
t0

∣∣∣Ft0

]

+ 2E

[(
Ĉ δ̃
T − Ĉ δ̃

t0

) ∫ T

t0

(ηu − δu) · dŜu

∣∣∣Ft0

]

= R̂δ̃
t0
+
(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)2
+ E

[(∫ T

t0

(ηu − δu) · dŜu

)2 ∣∣∣Ft0

]

+ 2E

[(
Ĉ δ̃
T − Ĉ δ̃

t0

)∫ T

t0

(ηu − δu) · dŜu

∣∣∣Ft0

]
.

Because δ is benchmarked risk-minimizing, it has minimal risk. If δ̃ is also
risk-minimizing, we must have

R̂δ
t0
= R̂δ̃

t0
, t ∈ [0, T ]

and

E

[(
Ĉ δ̃
T − Ĉ δ̃

t0

)∫ T

t0

(ηu − δu) · dŜu

∣∣∣Ft0

]
= 0,
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since the residual optimal cost Ĉ δ̃
T − Ĉ δ̃

t0
must be orthogonal to all integrals

of the form
∫ T

t0
ξudŜu, with ξ L2-admissible, by definition (i.e. by Definitions

3.3 and 3.4). Consequently, we obtain

(
E[Ĉδ

T |Ft0 ]− Ĉδ
t0

)2
+ E

[(∫ T

t0

(ηu − δu) · dŜu

)2 ∣∣∣Ft0

]
= 0

and we can easily conclude that

Ĉδ
t0
= E[Ĉδ

T |Ft0 ] P− a.s..

Since t0 is arbitrary, the assertion follows.

�

Appendix B. Some Useful Definitions

We recall briefly the definition of F-predictable projection of a measurable
process endowed with some suitable integrability properties and the defini-
tion of F-predictable dual projection of a raw integrable increasing process.

Theorem B.1 (predictable projection). Let X be a measurable process ei-
ther positive or bounded. There exists an F-predictable process Y such that

E
[
Xτ1{τ<∞}

∣∣Fτ−

]
= Yτ1{τ<∞} P− a.s.

for every predictable F-stopping time τ .

Proof. See [6] or [23] for the proof. �

Definition B.2. Let A be a raw integrable increasing process. The F-
predictable dual projection of A is the F-predictable increasing process B

defined by

E

[∫

[0,∞[
XsdBs

]
= E

[∫

[0,∞[

pXsdAs

]
.

For a further discussion on this issue, see e.g. [6].
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