The Affine Nature of Aggregate Wealth Dynamics

Eckhard Platen
University of Technology Sydney

Joint work with Renata Rendek
Publications:

◊ Platen, E. and Rendek, R. (2012b) **The Affine Nature of Aggregate Wealth Dynamics**.
Research Outline

◊ conjecture normalized aggregate wealth dynamics
⇒ time transformed square root process

◊ Naive Diversification Theorem ⇒ equity index = proxy numéraire portfolio

◊ empirical stylized facts ⇒ falsify models
◊ ⇒ proposed realistic one factor, two component index model
◊ benchmark approach ⇒ realistic model outside classical theory
◊ exact, almost exact simulation ⇒ verify empirical facts, effects of estimation techniques etc.
Empirical Study of World Stock Indices

Index construction

Pl. & Rendek (2008):

![Graph showing stock indices from 28/08/76 to 14/01/04 with labels for WSI104s, EWI104s, DWI104s, and MCI104s.]
Results for log-returns of the EWI104s
Pl. & Rendek (2008)

<table>
<thead>
<tr>
<th></th>
<th>SGH</th>
<th>Student-(t)</th>
<th>NIG</th>
<th>Hyperbolic</th>
<th>VG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>0.98</td>
<td>0.72</td>
<td>0.97</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>(\bar{\alpha})</td>
<td>0.00</td>
<td>0.97</td>
<td>0.97</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>-2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu)</td>
<td></td>
<td>4.33</td>
<td></td>
<td></td>
<td>1.49</td>
</tr>
<tr>
<td>(\ln(\mathcal{L}^*))</td>
<td>-285796.39</td>
<td>-285796.39</td>
<td>-286448.94</td>
<td>-287152.08</td>
<td>-287499.83</td>
</tr>
<tr>
<td>(L_n)</td>
<td>0.00000004</td>
<td>1305.10</td>
<td>2711.38</td>
<td>3406.88</td>
<td></td>
</tr>
</tbody>
</table>

\(L_n = 0.0000004 < \chi^2_{0.001,1} \approx 0.000002\)
Approximating the Numéraire Portfolio by Naive Diversification
Pl. & Rendek (2012a)

EWI114: Equi-weighted index, 2000 constituents, 40 bp. transaction cost

![Graph showing logarithmic growth of indices](image)

Sharpe Ratio: 1.29 (EWI), 0.54 (MCI)
Naive Diversification Theorem

In a well-securitized financial market the sequence of benchmarked equi-weighted indices, with fractions given by

$$\pi^j_{\delta_{EWI\ell,t}} = \begin{cases} \frac{1}{\ell} & \text{for } j \in \{1, 2, \ldots, \ell\} \\ 0 & \text{otherwise,} \end{cases}$$

is a sequence of benchmarked approximate numéraire portfolios.
Statistics for the EWI114 with various transaction cost and reallocation terms

<table>
<thead>
<tr>
<th>Transaction cost</th>
<th>0</th>
<th>5</th>
<th>40</th>
<th>80</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reallocation terms</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final value</td>
<td>139338.64</td>
<td>130111.93</td>
<td>80543.07</td>
<td>46555.04</td>
<td>8988.23</td>
</tr>
<tr>
<td>Annualised average return</td>
<td>0.1979</td>
<td>0.1961</td>
<td>0.1834</td>
<td>0.1689</td>
<td>0.1254</td>
</tr>
<tr>
<td>Annualised volatility</td>
<td>0.1135</td>
<td>0.1135</td>
<td>0.1135</td>
<td>0.1135</td>
<td>0.1134</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>1.4205</td>
<td>1.4046</td>
<td>1.2930</td>
<td>1.1654</td>
<td>0.7822</td>
</tr>
</tbody>
</table>

Reallocation terms	2				
Final value	124542.04	119369.00	88697.63	63166.73	22808.64
Annualised average return	0.1949	0.1938	0.1859	0.1770	0.1500
Annualised volatility	0.1134	0.1134	0.1134	0.1134	0.1135
Sharpe ratio	1.3955	1.3856	1.3163	1.2369	0.9987

Reallocation terms	4				
Final value	111899.82	108230.16	85698.25	65628.82	29467.48
Annualised average return	0.1921	0.1912	0.1850	0.1780	0.1568
Annualised volatility	0.1135	0.1135	0.1134	0.1134	0.1134
Sharpe ratio	1.3699	1.3622	1.3080	1.2459	1.0591
The Affine Nature of Aggregate Wealth Dynamics

Object: normalized units of wealth

Total wealth: \(Y_{\tau_i}^\Delta, \tau_i = i\Delta \)

Wealth unit value: \(\sqrt{\Delta} \)

Economic activity: until \(\tau_{i+1} \) "projects" consume \(\eta \Delta \) fraction of wealth; \(\beta \sqrt{\Delta} \) new units generated (branching process) on average

Mean for increment of aggregate wealth: \(\left(\beta - \eta Y_{\tau_i}^\Delta \right) \Delta \)
Assumption 1: Outcomes of "projects" are independent.

Assumption 2: each "project" generates in the period $[\tau_i, \tau_{i+1})$ wealth with variance $\nu^2 \Delta^3_2$
Number of wealth units: \(\frac{Y^\Delta_{\tau_i}}{\sqrt{\Delta}} \)

Then: the variance of the increment of the aggregate wealth is \(\nu^2 Y^\Delta_{\tau_i} \Delta \)

for \(\Delta \to 0 \)

\[
Y^\Delta_{\tau_{i+1}} - Y^\Delta_{\tau_i} = \left(\beta - \eta Y^\Delta_{\tau_i} \right) \Delta + \nu \sqrt{Y^\Delta_{\tau_i}} \Delta W_{\tau_i}
\]

\[E(\Delta W_{\tau_i}) = 0, \quad E((\Delta W_{\tau_i})^2) = \Delta\]

conjectures drift and diffusion terms
Week convergence to the square root process: Kleoden & Pl. (1999), Alfonsi (2005), Diop (2003) parameter reduction arises: $\beta = \eta = \nu = 1$

$$dY_{\tau t} = (1 - Y_{\tau t}) d\tau_t + \sqrt{Y_{\tau t}} dW_{\tau t}$$

Quadratic Variation:

$$[Y_{\tau \cdot}]_t = \int_0^t Y_{\tau s} d\tau_s = \int_0^t Y_{\tau s} M_s ds$$

Market Activity:

$$M_t = \frac{d\tau_t}{dt}$$

Integrated Normalized Index:

$$M \int_0^t Y_{\tau s} ds \approx [Y_{\tau \cdot}]_t$$
Quadratic variation and integrated normalized S&P500 monthly data, calendar time

\[M \approx 0.0178 \]
average long term fit
Market Activity: $M_t = \frac{d\tau_t}{dt}$ from model
Quadratic variation and integrated normalized S&P500 monthly data, τ-time
Stylized Empirical Facts

- falsify potential models, Popper (1959)
- TOTMKWD in 26 currency denominations

about 1000 years of daily data
(i) uncorrelated log-returns

Fig. 2: Average autocorrelation function for log-returns
(ii) correlated absolute log-returns

Fig. 3: Average autocorrelation function for absolute log-returns
(iii) Student-\(t \) distributed log-returns

Fig. 4: Logarithm of empirical density of normalized log-returns with Student-\(t \) density
(iv) volatility clustering

Fig. 5: Estimated volatility
(v) long term exponential growth

Fig. 6: Logarithm of index with trend line
(vi) leverage effect

Fig. 7: Logarithms of normalized index and its volatility
(vii) extreme volatility at major downturns

Fig. 7: Logarithms of normalized index and its volatility
⇒ Discounted Index Model

\[S_t = A_{\tau_t} (Y_{\tau_t})^q, \]

\[A_{\tau_t} = A \exp\{a\tau_t\} \]
Normalized index: \((Y_{\tau t})^q = \frac{S_t}{A_{\tau t}}\)

\[
dY_{\tau} = \left(\frac{\delta}{4} - \frac{1}{2} \left(\frac{\Gamma \left(\frac{\delta}{2} + q\right)}{\Gamma \left(\frac{\delta}{2}\right)} \right)^{\frac{1}{q}} Y_{\tau}\right) d\tau + \sqrt{Y_{\tau}} \, dW(\tau)
\]

Long term mean: \(\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (Y)^q_s \, ds = 1 \quad \text{P-a.s}\)
Market activity time: \(d\tau_t = M_t dt \)

Inverse of market activity:

\[
d\left(\frac{1}{M_t} \right) = \left(\frac{\nu}{4} \gamma - \epsilon \frac{1}{M_t} \right) dt + \sqrt{\frac{\gamma}{M_t}} dW_t,
\]

where

\[
dW(\tau_t) = \sqrt{\frac{d\tau_t}{dt}} dW_t = \sqrt{M_t} dW_t
\]

\(*\) only one \(W_t \)

\(*\) two component model
Discounted index SDE:

$$dS_t = S_t (\mu_t dt + \sigma_t dW_t)$$

Expected rate of return:

$$\mu_t = \left(\frac{a}{M_t} - \frac{q}{2} \left(\frac{\Gamma \left(\frac{\delta}{2} + q \right)}{\Gamma \left(\frac{\delta}{2} \right)} \right)^{\frac{1}{q}} + \left(\frac{\delta}{4} q + \frac{1}{2} q(q - 1) \right) \frac{1}{M_t Y_{\tau_t}} \right) M_t$$

Volatility:

$$\sigma_t = q \sqrt{\frac{M_t}{Y_{\tau_t}}}$$

Pl. & Rendek (2012c)
Benchmark Approach

\(\tilde{B}_t \) – benchmark savings account

\[
d\tilde{B}_t = \tilde{B}_t \left((-\mu_t + \sigma^2_t) dt - \sigma_t dW_t \right)
\]

\[\sigma^2_t \leq \mu_t \Rightarrow \tilde{B}_t \text{ is an } (\mathcal{A}, P)\text{-supermartingale}
\Rightarrow \text{ no strong arbitrage; Pl. (2011)}\]
Assumptions:

A1. \(\delta = 2(q + 1) \)

A2. \(\frac{q}{2} \left(\frac{\Gamma(2q + 1)}{(q + 1)} \right)^{\frac{1}{q}} \leq a \)
Pricing: Real world conditional expectation of the benchmarked payoff \Rightarrow benchmarked derivative price

Real world pricing formula:

$$V_t = S_t E\left(\frac{H_T}{S_T}|A_t\right)$$
Fitting the model to TOTMKWD

Step 1: Normalization of Index

\[A_{\tau_t} \approx A \exp\left\{ \frac{4a\epsilon}{\gamma(\nu-2)} t \right\} \Rightarrow A = 65.21, \quad \frac{4a\epsilon}{\gamma(\nu-2)} \approx 0.048 \]
Step 2: Power q: $\delta \approx 4 \Rightarrow q = \frac{\delta}{2} - 1 \approx 1$
Affine nature $\Rightarrow q = 1$

Step 3: Observing Market Activity:

$$\frac{d[\sqrt{Y}]_{\tau_t}}{d\tau_t} = \frac{1}{4} \frac{d\tau_t}{dt} = \frac{M_t}{4}$$

$$\tilde{Q}_{t_i} \approx \frac{[\sqrt{Y}]_{\tau_{t_i+1}} - [\sqrt{Y}]_{\tau_{t_i}}}{t_{i+1} - t_i}$$

$$\tilde{Q}_{t_{i+1}} = \alpha \sqrt{t_{i+1} - t_i} \tilde{Q}_{t_i} + (1 - \alpha \sqrt{t_{i+1} - t_i}) \tilde{Q}_{t_i}, \quad \alpha = 0.92$$
Market activity: $M_t \approx 4\tilde{Q}_t$

$M_0 = 0.0175$
Step 4: Parameters γ:

$\gamma = 265.12$
Step 5: Parameters ν and ϵ:

Step 6: Long Term Average Net Growth Rate a:

$\nu \approx 4, \epsilon \approx 2.18 \Rightarrow a = 2.55 \Rightarrow$ no strong arbitrage
Calculated Volatility

\[\sigma_t \approx \sqrt{\frac{4 \tilde{Q}_t}{Y_{\tau t}}} \], average volatility: 11.9\%
$A = 52.09, \epsilon = 2.15, \gamma = 172.3, a = 1.5$

Model applies to proxies of numéraire portfolio
Simulation Study

Step 1: Market activity:

\[
\frac{1}{M_{t_{i+1}}} = \frac{\gamma (1 - e^{-\epsilon(t_{i+1} - t_i)})}{4\epsilon} \left(\chi^2_{3,i} + \left(\sqrt{\frac{4\epsilon e^{-\epsilon(t_{i+1} - t_i)}}{\gamma (1 - e^{-\epsilon(t_{i+1} - t_i)})}} \frac{1}{M_{t_i}} + Z_i \right)^2 \right)
\]
Step 2: \(\tau \)-time:

\[
\tau_{t_{i+1}} - \tau_{t_i} = \int_{t_i}^{t_{i+1}} M_s ds \approx M_{t_i}(t_{i+1} - t_i)
\]
Step 3: Normalized index:

\[Y_{\tau t_{i+1}} = \frac{1 - e^{-(\tau t_{i+1} - \tau t_i)}}{4} \left(\chi_{3,i}^2 + \left(\frac{4e^{-(\tau t_{i+1} - \tau t_i)}}{1 - e^{-(\tau t_{i+1} - \tau t_i)}} Y_{\tau t_i} + Z_i \right)^2 \right) \]
Model recovers stylized empirical facts:

Model is difficult to falsify: Popper (1934)

1. Uncorrelated returns
2. Correlated absolute returns
3. Student-\(t \) distributed returns

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Student-(t)</th>
<th>NIG</th>
<th>Hyperbolic</th>
<th>VG</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.008934</td>
<td>37.474149</td>
<td>102.719638</td>
<td>131.240780</td>
<td>4.012850</td>
</tr>
<tr>
<td>2</td>
<td>11.485226</td>
<td>11.175028</td>
<td>96.457136</td>
<td>132.916256</td>
<td>3.450916</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
<td>100.928524</td>
<td>244.190151</td>
<td>294.719960</td>
<td>2.734148</td>
</tr>
<tr>
<td>4</td>
<td>9.002421</td>
<td>35.759464</td>
<td>347.060676</td>
<td>331.014904</td>
<td>2.579009</td>
</tr>
<tr>
<td>5</td>
<td>8.767003</td>
<td>11.551178</td>
<td>121.190482</td>
<td>144.084964</td>
<td>3.170449</td>
</tr>
<tr>
<td>6</td>
<td>0.401429</td>
<td>60.570898</td>
<td>205.788160</td>
<td>252.591737</td>
<td>3.432435</td>
</tr>
<tr>
<td>7</td>
<td>12.239056</td>
<td>4.354888</td>
<td>46.411554</td>
<td>78.273485</td>
<td>3.957696</td>
</tr>
<tr>
<td>8</td>
<td>1.693411</td>
<td>23.910523</td>
<td>94.408789</td>
<td>130.623174</td>
<td>3.849691</td>
</tr>
<tr>
<td>9</td>
<td>1.232454</td>
<td>47.830407</td>
<td>202.073144</td>
<td>237.168411</td>
<td>3.236322</td>
</tr>
<tr>
<td>10</td>
<td>0.000000</td>
<td>43.037206</td>
<td>128.807757</td>
<td>162.582353</td>
<td>3.774957</td>
</tr>
<tr>
<td>11</td>
<td>0.433645</td>
<td>47.782681</td>
<td>172.736397</td>
<td>208.847632</td>
<td>3.431803</td>
</tr>
<tr>
<td>12</td>
<td>0.000000</td>
<td>56.019354</td>
<td>146.077121</td>
<td>185.624888</td>
<td>3.899403</td>
</tr>
<tr>
<td>13</td>
<td>7.137154</td>
<td>48.219756</td>
<td>579.922931</td>
<td>477.383441</td>
<td>2.293363</td>
</tr>
<tr>
<td>14</td>
<td>5.873948</td>
<td>16.515390</td>
<td>107.770531</td>
<td>135.508299</td>
<td>3.388307</td>
</tr>
<tr>
<td>15</td>
<td>0.000000</td>
<td>54.718046</td>
<td>184.112794</td>
<td>217.304105</td>
<td>3.402049</td>
</tr>
<tr>
<td>16</td>
<td>6.982560</td>
<td>3.991610</td>
<td>29.192198</td>
<td>47.105125</td>
<td>4.268740</td>
</tr>
<tr>
<td>17</td>
<td>2.966916</td>
<td>22.914863</td>
<td>108.513143</td>
<td>138.044416</td>
<td>3.553629</td>
</tr>
<tr>
<td>18</td>
<td>0.000000</td>
<td>52.066364</td>
<td>129.790856</td>
<td>160.373085</td>
<td>3.959605</td>
</tr>
<tr>
<td>19</td>
<td>0.006909</td>
<td>39.568695</td>
<td>111.398645</td>
<td>143.914350</td>
<td>3.982892</td>
</tr>
<tr>
<td>20</td>
<td>0.000001</td>
<td>56.845664</td>
<td>169.915512</td>
<td>211.260626</td>
<td>3.651091</td>
</tr>
<tr>
<td>21</td>
<td>1.1674578</td>
<td>17.681088</td>
<td>61.710576</td>
<td>90.679738</td>
<td>4.265834</td>
</tr>
<tr>
<td>22</td>
<td>14.010840</td>
<td>3.279722</td>
<td>47.433693</td>
<td>73.789313</td>
<td>3.770825</td>
</tr>
<tr>
<td>23</td>
<td>11.198940</td>
<td>12.074044</td>
<td>114.888817</td>
<td>143.800553</td>
<td>3.257146</td>
</tr>
<tr>
<td>24</td>
<td>0.455557</td>
<td>27.676102</td>
<td>86.841704</td>
<td>114.452947</td>
<td>4.006528</td>
</tr>
</tbody>
</table>
4. Volatility clustering
5. Long term exponential growth

\[4.16 + 0.05t \]
6. Leverage effect
7. Extreme volatility at major market downturns
Conclusions:

- equity index model: 3 initial parameters, 3 structural parameters and 1 Wiener process (nondiversifiable uncertainty)

- model recovers 7 stylized empirical facts

- long dated derivative pricing under benchmark approach

- leads outside classical theory