Characterisation of the functional consequences of PTEN gene mutations in colon cancer.

By

Jigna Bhatia Sharma

A thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Science

Medical and molecular Biosciences

University of Technology of Sydney, Australia

November 2009

i

STATEMENT OF ORIGINALITY

I certify that the work of this thesis has not been submitted for a degree nor has been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that thesis has been written by me. Any help I have received in my research work and preparation of the thesis has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

JIGNA BHATIA SHARMA.

THIS THESIS WORK IS DEDICATED TO MY GRANDMOTHER MRS BHAGIRATHI V BHATIA

Acknowledgement

I am very nervous that I have finished my thesis and writing acknowledgement. First and foremost, I would like to acknowledge my supervisor Dr Najah Nassif for her constant support. This is a very special moment for my precious PhD project. I would like to say thank you very much to my supervisor and mentor Dr Najah Nassif. I would also like to just say that all your help, guidance and support and kind words had really made it worth it. I am grateful to for her supervision and for her endless support, advise and help throughout this study. I also would like to express my appreciation to Dr Nassif who has taught me how to think, analyze and criticize in the way paving through being a scientist. I also would like to express my appreciation to Dr Brownyn O' Brian for all her help, inspiration and support throughout this study.

I would like to also acknowledge Dr Kerry McDonald (Kolling Institute of Medical Research, Sydney, Australia). The MCF-7 breast cancer cell line was kindly provided by Professor Samuel Breit and Wei (Centre for Immunology, Sydney, Australia). The HCT 116 colon cancer cell line was kindly donated by Professor Robert Sutherland and Gillian Lehrbach (Garvan Institute of Medical Research, Sydney, Australia).

I would also like to thanks Glenn Lobo for his help and support. I would like to thank my friends Amanda Hudson, Catherine James, Darren Jones, Dr Simon Gunnings, Dr Matt Padula and Dr Cameroon Jennings for their technical help and support in this project.

I would like to acknowledge Dr Eric Olson and Tim Mohning from genesifter technical team for their technical help and support in using genesifter software for microarray analysis.

I would specially like to thank Dr Tamara Sztynda and Dr Sara Lal for constantly boosting my morale. I would also like to thank my friends Serena and Anil for all their support, encouragement and help.

I would like to thank University of Technology of Sydney for International Research Scholarship support for the period of my PhD candidature. I would like to thank associate dean Prof Greg Skillbeck and Graduate school dean Prof Mark Tennant for their help and support. I would like to thank Dr Anna Martorana and Dr Steve Bush for their help and support. I would like to thank Dr Fraser Torpy for his help with statistical analysis and moral support.

My deepest appreciation goes to Siddharth my beloved husband, without his love and support this journey would not have been possible. He always encouraged me to stay positive and keep smiling. I am so blessed to have such a wonderful and caring companion.

I would like to thank my infant daughter Nishka for all the love and smiles showered on me to accomplish this task.

My deepest appreciation goes to my father, who is fighting liver cancer, dada papa, Sujjal Bhai and Neetu Tai, who taught me that I can accomplish anything with strong will and patience.

To Vaishali and Dolly, my adorable sisters, who taught me the importance of hard work and positive thinking. To my in-laws, for their constant love and support and inspiring me to hope and finish.

Last but not the least I would like to thank god that I have finished all this with Siddhivinayak and Shirdi Sai baba's blessings.

Table of Contents	
Declaration of Authenticity	ii
Acknowledgement	iii
Table of Contents	V
List of Figures	х
List of Tables	xii
Abbreviations	xiii
Conference presentation	xviii
Abstract	xix
Chapter 1	
1.1 Cancer: an introduction	1
1.2 Colorectal cancer	3
1.2.1 Epidemiology of colorectal cancer	5
1.2.2 Genetics of colorectal cancer	5
1.2.2.1 Hereditary Colorectal cancer	6
1.2.1.1.1 Hereditary Colorectal cancer without polyposis:	6
Hereditary nonpolyposis colorectal cancer (HNPCC)	
1.2.1.1.2 Hereditary colorectal cancer with polyposis	9
1.3.2.1.2A Familial adenomatous polyposis (FAP)	9
1.3.2.1.2B Juvenile polyposis syndrome (JPS)	9
1.3.2.1.2C Peutz-Jegher's syndrome (PJS)	10
1.3.2.1.2D Turcot syndrome	10
1.3.2.1.3 Lhermitte-Duclos disease (LDD)	11
1.3.2.1.4 Genotype-phenotype correlations	11
1.4 Sporadic Colorectal Cancer	11
1.4.1 Molecular mechanisms in colon carcinogenesis	11
1.4.2 Genetics of sporadic colorectal cancer	12
1.4.2.1 Microsatellite instability (MSI) and	12
the 'mutator' phenotype	
1.4.2.2 Chromosomal instability (CIN)	13
1.4.2.3 Alteration in CpG methylation: the CpG island methylator phenotype	13
1.5 The tumour suppressor gene PTEN	14
1.5.1 PTEN: An introduction	14
1.5.2 PTEN domain structure and function	15
1.5.3 Regulation of PTEN	17
1.5.3.1 Transcriptional regulation of PTEN	17
1.5.3.2 Regulation of PTEN function by post-translational modification	19
1.5.3.3 Regulation of PTEN by phosphorylation	19
1.5.3.4 Regulation of PTEN by ubiquitination	20
1.5.3.5 Regulation of PTEN by acetylation	21
1.5.3.6 Regulation of PTEN by oxidation	21
1.5.3.7 Regulation of PTEN subcellular localization	21
1.5.3.8 Mouse models to evaluate PTEN Function in vivo	22
1.5.4 Lipid phosphatase mediated functions of PTEN and	
phoshoinositide 3-kinase (PI3K) signalling	23
1.5.4.1 The PI3K signalling pathway	23
1.5.4.2 Lipid phosphatase mediated functions of PTEN	

v

Regulation of cell cycle progression and apoptosis	25
1.5.5 Protein phosphatase mediated functions of PTEN:	
regulation of cell adhesion, migration and invasion	25
1.6 Mechanism of PTEN tumour suppression	26
1.7 Germline PTEN mutation and disease	27
1.7.1 Cowden Syndrome (CS)	27
1.7.2 Bannayan-Riley-Ruvalcaba Syndrome (BRRS)	27
1.7.3 Proteus and Proteus like syndrome (PS)	28
1.8 PTEN somatic mutation	28
1.8.1 Glioblastoma multiforme (GBM)	28
1.8.2 Endometrial cancer (EC)	29
1.8.3 Ovarian cancer	29
1.8.4 Prostate Carcinoma	29
1.8.5 Melanoma	30
1.9 Background and aims of the project	32
1.9.1 Background: Involvement of PTEN in colon cancer	32
1.9.2 Previous work	32
1.9.3 Project objectives	35
1.9.4 Significance	35
Chapter 2: Materials and Methods	
2.1 General Materials and Reagents	36
2.1.1 Enzymes	36
2.1.2 Cloning vectors	36
2.1.3 Cell lines	39
2.1.4 Bacterial host strains and competent cells	39
2.1.5 Antibodies	39
2.1.6 Synthetic oligonucleotides	39
2.1.6.1 Oligonucleotides for the amplification of the PTEN cDNA	
by reverse transcriptase polymerase chain reaction (RT-PCR)	40
2.1.6.2 Oligonucleotides for the sequencing of cloned inserts	40
2.1.6.3 Oligonucleotides used to generate PTEN point mutations	
by in vitro site directed mutagenesis	40
2.1.6.4 Oligonucleotides for the preparation of the truncating PTEN mutants	40
2.1.7 Molecular weight markers for electrophoresis	43
2.1.7.1 DNA size standards	43
2.1.7.2 RNA size standards	43
2.1.7.3 Protein size standards	43
2.2 General methods	44
2.2.1 Sterility and containment of biological materials	44
2.2.2 Preparation of plasmid DNA	44
2.2.2.1 Small scale preparation (mini- prep) of plasmid DNA	44
2.2.2.2 Large scale preparation (midi-prep and maxi -prep) of plasmid DNA	44
2.2.3 Estimation of nucleic acid and protein concentration	44
2.2.4 Agarose gel electrophoresis	45
2.2.5 Restriction endonuclease digestion of DNA	45
2.2.6 DNA sequence analysis	46
2.2.7 Polymerase Chain Reaction Protocols	46
	vi
	VI

2.3 Procedures for the purification of DNA	46
2.3.1 Purification of PCR products	46
2.3.2 Purification of PCR products and restriction fragments from agarose gels	47
2.5 Methods for the preparation and analysis of RNA	47
2.5.1 Prevention of contamination by exogenous ribonucleases	47
2.5.2 Isolation of total RNA from cell lines	47
2.5.3 Isolation of total RNA from tissue	48
2.5.4 Synthesis of cDNA and RT-PCR (Two step RT PCR)	48
2.6 Cloning Techniques	48
2.6.1 Bacteriological media	48
2.6.2 Cloning of PCR and RT PCR products	49
2.6.3 Detection and analysis of positive clones	49
2.6.4 In vitro site directed mutagenesis	49
2.6.5 Construction of destination (expression) clones by recombination	
mediated cloning (Gateway Technology)	50
2.7 Microarray analysis	51
2.8 Tissue Culture Methods	51
2.8.1 Tissue culture materials and media	51
2.8.2 Growth and maintenance of cell lines	51
2.8.3 Preparation of frozen cell stocks	52
2.9 Transfection and cellular analysis	52
2.9.1 Transient transfection (in flasks and 6 well plates)	52
2.9.2 Transient transfection (in 96 well plates)	53
2.9.3 Transfection controls	53
2.10 Fluorescence detection of expressed Lumio- tagged PTEN	53
2.10.1 In-cell detection of exogenously expressed PTEN	53
2.11 Analysis of cell cycle phase distribution by flow cytometry	54
2.12 Analysis of cell proliferation using the XTT assay	56
2.13 Protein analysis methods	56
2.13.1 Materials	56
2.13.2 Protein extraction and immunoblotting	56
2.13.2.1 Protein extraction for western analysis	56
2.13.2.2 Protein extraction for fluorescent in–gel detection of exogenously	50
expressed PTEN	57
2.13.3 Polyacrylamide gel electrophoresis of proteins	57
2.13.4 Visualisation of electrophoresis by Commassie Blue staining	57
2.13.5 Fluorescent In- gel detection of exogenously expressed PTEN	58
2.13.6 Electro transfer of proteins to membranes	58
2.13.7 Western analysis	58
2.13.7.1 Visualisation of PTEN protein expression after western analysis	59
2.13.9 Membrane stripping and rehybridisation	59
2.13.10 Gel scanning and analysis	59
2.14 Software /Bioinformatics	60
2.15 Statistics	60
Chapter 3 Construction of mutant	00
3.1 Construction of PTEN mutant	62
3.2 The Gateway cloning technology	64
5.2 The Galeway clothing technology	04
	vii

3.2.1 Preparation of the WT PTEN entry clone	66
3.2.2 Preparation of the PTEN point mutations as Gateway entry clones	70
3.2.3 Preparation of the PTEN truncating mutants	71
3.2.4 Construction of the WT and mutant PTEN Destination (Expression) Clones	77
3.3 Verification of exogenous WT and mutant PTEN expression	80
3.3.1 Introduction	80
3.3.2 Preliminary verification of PTEN expression by fluorescence microscopy	80
3.3.3 Reduction of background fluorescence	81
3.3.4 In- cell detection of exogenously expressed Lumio tagged PTEN	83
3.3.5 Expression of PTEN is uniform between constructs	84
3.3.6 In-gel detection of exogenously expressed, lumio- tagged PTEN protein3.3.7 Verification of wild type and Mutant PTEN protein expression from	90
expression constructs	91
Chapter 4 AKT phosphorylation	
4.1 Determination of the effect of PTEN mutation on suppression of pAkt levels	93
4.1.1. Introduction	93
4.1.2 The Phospho-Akt suppression Assay	95
4.2 Optimisation of Akt phosphorylation status of WT and mutant PTEN expressing	
U87MG cells	96
4.2.1 To determine phosphorylation status of Akt by western blot analysis in U87MG cells	98
4.3 Determination of the effect of PTEN mutation on suppression of	
pAkt levels in HCT116 cells	102
4.3.1 The Phospho-Akt suppression Assay	102
4.3.2 Akt phsophorylation status of HCT116 cells expressing WT and mutants PTEN	103
4.4 Western analysis of HCT116 cells expressing WT and mutant PTEN to	
determine Akt phosphorylation status	105
4.5 Comparison of WT PTEN and mutant PTEN in U87MG and HCT116 cells	109
4.6 Discussion	111
Chapter 5 Cell cycle Analysis	
5.1 Determination of the effect of PTEN mutation on cell cycle phase distribution	116
5.1.1 Cell cycle analysis of U87MG, HCT116 and MCF-7 cell lines	116
transfected with PTEN	116
5.2 Pilot experiment on cell cycle phase distribution	118
5.2.1 Detecting cell cycle arrest in U87MG, HCT116 and MCF-7 cells	118
5.3 Effect of PTEN on cell cycle phase distribution of U87MG cells	124
5.3.1 U87MG cells S phase inhibition	126
5.4 Effect of PTEN on cell cycle phase distribution of HCT116 cells	129
5.5 S phase Inhibition in HCT116 cells	132
5.6 Comparison of Cell cycle inhibitory effects of WT and mutant5.7 Discussion	
Chapter 6 cell proliferation	135
6.1 Determination of the effect of PTEN mutation on cell proliferation	143
6.1.1 Introduction	143
6.2 Pilot experiments	145

6.2.1 Determination of optimal cell density for cell proliferation analysis	145
6.3 Preliminary optimisation for cell proliferation with time course	147
6.4 Determination of the effect of PTEN on the rate of cell proliferation in U87MG	
cells	150
6.5 Determination of the effect of PTEN on the rate of cell proliferation in HCT116	150
cells 6.6 Comparison of U87MG and HCT116 proliferation rate with WT and mutant	156
PTEN	162
6.7 Discussion	162
Chapter 7 Final Discussion	101
	168
7.1 Final Discussion	168
Chapter 8 Future Direction	
	181
8.2 Future direction as indicated by Preliminary microarray analysis	181
8.2.1 Introduction	181
8.2.2 Gene expression procedure	182
8.2.3 Microarray analysis	185
8.2.4 Ontology analysis	185
8.2.5Microarray gene expression analysis	187
Conclusions	190
Appendices	192
Appendix-I	192
List of reagent and suppliers	192
List of cloning vector	194
List of kits used	195
Appendix-II	196
Appendix-III	203

List of Figures

Figure 1.1 The cellular functions of oncogenes and tumour suppressor genes.	2
Figure 1.2 Mechanisms of loss of tumour-suppressor gene function in cancer	4
Figure 1.3 Human PTEN protein domain structure	16
Figure 1.4 The phosphatidylinositol 3-kinase (PI3K) signalling pathway	24
Figure 1. 5 Novel PTEN mutations detected in primary sporadic colorectal tumours	34
Figure 2.1 Diagrammatic representation of the PCR8/GW/TOPO-TA	
entry vector and its sequence elements	37

Figure 2.2 Map of the pcDNA 6.2/C-Lumio TM- DEST destination	
(expression) vector and its associated sequence elements	38
Figure 3.1 Simplified diagrammatic representation of the Gateway cloning system	65
Figure 3.2 Amplification of the WT PTEN coding sequence and gel purification of	
the amplified PCR product	67
Fig 3.3 Determination of insert size and orientation of wild type PTEN	
entry clones by restriction analysis.	68
Figure 3.4 Generalised strategy for the generation of the colon cancer	
associated PTEN mutations	69
Figure 3.5 Primer design for the preparation of the PTEN truncating	
mutants K125X and 319X	72
Figure 3.6 Preparation of the PTEN truncating mutants	73
Figure 3.7 Sequences of the WT and mutant PTEN entry clones	74
Figure 3.8 Verification of the orientation of the produced WT PTEN destination	
clone	79
Figure 3.9 In-cell detection of exogenously expressed PTEN in U87MG cells	82
Figure 3.10 In-cell detection of exogenously expressed PTEN in U87MG cells	85
Figure 3.11 Determination of transfection efficiency by flow cytometry	87
Figure 3.12 In-gel detection of exogenously expressed PTEN in U87MG cells	92
Figure 4.1 Initial optimisation experiments for Akt phosphorylation status (Ser-	
473) by Western analysis in U87MG cells expressing WT or control mutant PTEN	97
Figure 4.2 Akt phosphorylation status (Ser-473) by western analysis in U87MG	
cells expressing WT or mutant PTEN	100
Figure 4.3 Optimisation of Akt phosphorylation status (Ser-473) by western	
analysis in HCT116 cells expressing WT or control mutant PTEN	
	104
Figure 4.4 Akt phosphorylation (Ser-473) status by western analysis in	
HCT116 cells expressing WT or mutant PTEN	106
Figure 4.5 Diagrammatic representation of the PTEN mutants and	110
their protein location and effect	102
Figure 5.1 Post transfection cell cycle analysis by flow cytometry	119
Figure 5.2 Cell cycle analysis using ModFit software	120
Figure 5.3 Optimisation of flow cytometry gating and compensation parameters	121
Figure 5.4 S-phase distribution of (A) U87MG (B) MCF-7	
(C) HCT116 cells 24 and 48 hrs post transfection	123
Figure 5.5 Cell cycle phase distribution with WT and mutant PTEN in U87MG	105
cells	125
Figure 5.6 Cell cycle inhibitory effects of the WT PTEN and	100
each of the different PTEN mutants in U87MG cells	128
Figure 5.7 Cell cycle phase distribution of WT and mutant	
PTEN expressing HCT116 cells	131
Figure 5.8 Cell cycle inhibitory effects of the WT PTEN and each of the different	
PTEN mutants in HCT116 cells	134
Figure 5.9 Diagrammatic representation of the PTEN mutants and their protein	120
location	136
Figure 6.1 Growth characteristics of U87MG cells at different seeding densities Figure 6.2 Determination of time course for analysis of cell proliferation in	146
U87MG cells	149

Figure 6.3. Analysis of the effect of mutant PTEN on cell proliferation rate in	
U87MG cells	154
Figure 6.4 The effect of WT and mutant PTEN on rate of proliferation	155
Figure 6.5 Analysis of the effect of mutant PTEN on cell proliferation rate in	
HCT116 cells	160
Figure 6.6 The effect of WT and mutant PTEN on rate of proliferation	161
Figure 6.7 Diagrammatic representation of the PTEN mutants and their	
protein location and effect	163
Figure 7.1 Distribution of colon cancer-specific mutations found in PTEN and their	
level of functionality in U87MG cells	177
Figure 7.2 Distribution of colon cancer-specific mutations found in PTEN and	
their level of functionality in HCT116	179
Figure 8.1 Isolation of RNA for gene expression analysis	183
Figure 8.2 GC-RMA boxplot analysed by genesifter for experimental comparison	184
Figure 8.3 Scatter plot analysis for upregulated and down regulated genes	186
Figure 8.4 Diagrammatic representation of the pie charts with positive	
and negative regulation to biological process	188

List of tables Table 1.1 Genes involved in hereditary colon cancer Table 1.2 PTEN involvement and mode(s) of inactivation in various sporadic tumour types 31 Table 2.1 Sequences and characteristics of the synthetic oligonucleotides used in this work 42 Table 3.1 Sequence and characteristics of the novel mutations identified in sporadic colorectal cancer 63 Table 7.1 Cellular effect(s) of exogenously expressed wild type and mutant PTEN in U87MG 169 Appendix-I Table A2.2 List the reagents used in the experiments 192 Table A2.3 Lists the cloning vector used in this thesis 194 Table A2.4 Commercially available kits used in this study 195 Appendix-II Table A5.1 S phase distribution of U87MG, MCF-7 and HCT116 cells transfected with PTEN 196 Table A5.2 S phase inhibition of U87MG cells expressing WT and mutant PTEN 197 Table A5.3 S phase inhibition of HCT116 cells expressing WT and mutant PTEN 198 TableA5.4: General linear model ANOVA amongst arcsine square root transformed % S phase data for 14 mutant strains and a WTPTEN control strain in U87MG cells 199 Table A5.5: Dunnett's test results comparing arcsine square root transformed % S phase data for WTPTEN and 14 mutant strains. * indicates a significant difference at alpha = 0.05. 200 Table A 5.6: General linear model ANOVA amongst arcsine square root transformed % S phase data for 14 mutant strains and a WTPTEN control strain in HCT116 cells 201 Table A5.7Dunnett's test: results comparing arcsine square root transformed % S phase data for WTPTEN and 14 mutant strains.* indicates a significant difference at alpha = 0.05. 202 Appendix-III Table A6.1 Effect of WT and mutant PTEN expression on cell proliferation in U87MG cells 203 Table A 6.2 Effect of cell proliferation in HCT116 cells transfected with PTEN sequences 204 Table A6.3 Rate of cell proliferation of U87MG cells expressing WT and mutant PTEN 205 Table A6.4 Rate of cell proliferation of HCT116cells expressing WT and mutant 206 PTEN Table A6.5 This data represents comparison of cell proliferation rate of WT and 207 each of the mutant PTEN and control mutant in U87MG cell line

8

TableA 6.6 This data represents comparison of cell proliferation rate of WT and	209
each of the mutant PTEN and control mutant in HCT116 cell line	

each of the mutant PTEN and control mutant in HCT116 cell line

xiii

209

LIST OF ABBREVIATIONS

Amp	Ampicilin
APC	Adenomatous polyposis coli
AS	Antisense
AIP	Apoptosis inhibitory factor
AKT	AKT/protein kinase B
ASK	Apoptosis signal regulated kinase
ATP	Adenosine triphosphate
β (B) actin	Beta actin
BAD	Bcl-2 associated death promotor
b.p	Base pairs
BSA Ca2+ Caspase CBF1	Bovine Serum Albumin Calcium ion Cystein aspartate specific proteases CBF1 also known as recombination signal binding protein for immunoglobulin kappa J region (RBBJ)
CENP-C	Centromere protein C
eGMP	Cyclic guanosine monophosphate
CK	Creatine kinase
CK2	Casein kinase II
CMV	Cytomegalovirus
CO2	Carbon dioxide
cDNA	Complimentary DNA
CRC	Colorectal Cancer
CDK	Cyclin dependent kinase
DEPC	Diethyl pyrocarbonate
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl sulfoxide
dNTPs	deoxynucleotide triphophates
Dest	Destination
DNA	Deoxyribonucleic acid

DTT	Dithiothreitol
ECL	Electrochemiluminescence
EDTA	Ethylenediamminetetraacetic acid
ELISA	Enzyme linked immunosorbant assay
eNOS	Endothelial nitric oxide synthase
Entr	Entry
EtBr	Ethidium bromide
FasL	Fas ligand
FBS	Foetal bovine serum
FCS	Foetal calf serum
FLASH	4', 5'-bis (1, 3, 2-dithioarsolan-2-yl) fluorescein
G	Grams
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GSK3b	Glycogen synthase kinase 3b
GW	Gateway
HEPES	N-2-hydroxyethlpiperazine-N'-ethanesulphonic acid
HIF1a	Hypoxia inducible factor 1a
HNPCC	Hereditary non-polyposis colorectal cancer
HRP	Horse radish peroxidase
HSP	Heat shock protein
IGF1	Insulin like growth factor
IPTG	Isopropyl-B-D thiogalactopyranoside
kb	Kilobase
kda	KiloDalton
LB	Luria-Bertani broth
LOH	Loss of Heterozygosity
MAGI3	Membrane-associated guanylate kinase with inverted orientation
МАРК	Mitogen activated protein kinase
Mdm2	Murine double minute 2
MMR	Mismatch repair
mRNA	Messenger RNA
MSI	Microsatellite instability
MSI+	Microsatellite unstable (tumour)
mTOR	Murine target of rapamycin
	0 I I I I I I I I I I I I I I I I I I I

MSI- NADPH NEDD4-1	Microsatellite stable (tumour) Nicotinamide adenine dinucleotide phosphate Neural precurser cell expressed developmental down Regulated 4-1
ΝFκB	Nuclear factor kappa light chain enhancer of activated B cells
p42/p44 (MAPK)	Protein 42/ protein 44 mitogen activated kinase
p7086K PARP	70 kDa ribosomal protein S6 kinase Poly (ADP-ribose) polymerase
PCAF PDGF	p300/CBP associated factor Platelet derived growth factor
PDK1 PDZ	phosphoinositide dependent protein kinase1 Post synaptic density protein, Drosophila disc large tumour suppressor and Zonula occludens-1 protein
PI PINK1 PIP2	Propidium iodide PTEN induced kinase 1 Phosphatidylinositol 2 phosphate Phosphatidylinositol 3 phosphate
РІР3 РІЗК РКС	Phosphatidylinositol 3 kinase Protein kinase C
PPAR PTEN	Peroxisome proliferators-activated receptors Phosphatase and tensin homolog deleted on chromosome 10
PTP PAGE	Protein tyrosine phosphatases Polyacrylamide gel electrophoresis
PBS PCR	Phosphate buffered saline
RCF	Polymerase chain reaction Relative centrifugal force
RNA	Ribonucleic acid
ROCK	Rho associated kinase 1
RNA	Ribonucleic acid
RT	Room temperature
RT-PCR SDS PAGE	Reverse Transcriptase Polymerase Chain Reaction
SHIP	Sodium disulphide poly acrylamide gel electrophoresis SRC homology 2 containing inositol 5 phosphatase

SHP1	The Src homology domain 2 (SH2) containing tyrosine phosphtase 1
SHP2	The Src homology domain 2 (SH2) containing tyrosine phosphtase 2
Spect	Spectinomycin
Та	Annealing temperature
Taq polymerase	Thermus aquaricus DNA polymerase enzyme
ТЕ	Tris/EDTA buffer (10mM Tris, pH8; 1mM EDTA
TBS	Tris buffered saline
TEMED	Tetramethylethlenediamine
Tm	Melting temperature
Vect	Vector
WT	Wild type
WB	Western Blotting

Conference Presentation:

- Jigna Bhatia, Bronwyn O' Brien, Glenn Lobo, Najah Nassif. Cancer-Associated *PTEN* Mutations Alter PTEN function in colon and other cell line. 24th Annual Combined RNSH/UTS/USYD held on the 18th – 19th November 2008. (Selected in young investigators category) Oral presentation.
- Jigna Bhatia, Bronwyn O' Brien, Glenn Lobo, Najah Nassif. Functional consequences of Cancer-Associated *Pten* Mutations. 24th Annual Combined RNSH/UTS/USYD Research Conference held on the 13th-14th November 2007. (Selected in young investigators category) Oral presentation.
- J. Bhatia, B.A. O' Brien, G.P. Lobo, N.T. Nassif. Alteration of *Pten* Function by Cancer-Associated *Pten* Mutations. 20th National Lorne cancer conference 14th -16th February 2008. Poster presentation
- 4. <u>J. Bhatia</u>, B.A. O' Brien, G.P. Lobo, N.T. Nassif. Alteration of *Pten* Function by Cancer-Associated *Pten* Mutations. "PTEN Pathways & Targets" March 5 9, 2008. Poster presentation.
- Jigna Bhatia, Bronwyn O' Brien, Glenn Lobo, Najah Nassif. Alteration of *Pten* Function by Cancer-Associated *Pten* Mutations. ASMR Medical Research Week -State/Territory Scientific Meetings at ASMR conference June 2 - 8, 2008.Oral presentation.
- 6. <u>Jigna Bhatia</u>, Bronwyn O' Brien, Glenn Lobo, Najah Nassif (2009). Cancer associated PTEN mutations alter PTEN function In colon and non-colon cancer cell lines (manuscript in preparation).
- 7. <u>Jigna Bhatia</u>, Bronwyn O' Brien, Glenn Lobo, Najah Nassif (2009). Global gene expression changes associated with the expression of wild type and mutant PTEN in U87MG cells (manuscript in preparation).

Abstract

Colon cancer constitutes the second most common cause of cancer death in many Western countries. The PTEN tumour suppressor gene, located on chromosome 10q23.3, is now recognised as the most highly mutated tumour suppressor gene. PTEN, a lipid and protein phosphatase, regulates the phosphatidylinositol 3-kinase (PI3K)/ Akt signalling pathway and modulates cell cycle progression and cell survival. Previous work at University of Technology of Sydney laboratory has shown that a significant proportion of sporadic colorectal tumours harbour PTEN mutations that alter gene function and may therefore contribute to the pathways of colorectal carcinogenesis. A total of 10 novel somatic mutations have been described. In order to determine the functional consequences of these colon cancer-associated PTEN mutations, the wild type (WT) PTEN gene was cloned into a mammalian expression vector system and each of the mutants were generated from this. The WT, and each of the mutant K62R, Y65C, K125E, K125X, E150Q, D153N, D153Y, V217A 319X and N323K PTEN constructs were then transiently transfected into an U87MG glioblastoma PTEN null cell line and HCT116 colon cancer PTEN expressing cell lines that were then assayed for cell cycle phase distribution, Akt phosphorylation levels and cell proliferation. The analyses of endogenous suppression of Phospho Akt assay indicates 50% of PTEN mutants (Y65C, K125E, K125X, D153N, and 319 X) shows deficiency in the U87MG cell line and 70% of the mutants in the HCT116 cell line (Y65C, K125E, K125X, D153N, D153Y V217A and 319X) had deficiency in suppressing endogenous phosphorylated Akt. The results obtained show 50% (Y65C, K125X, K125E, D153N and 319X) of the PTEN mutants had functional deficiency in cell cycle inhibitory capacity in the S phase in the U87MG cells; in contrast 80% (Y65C, K125X, K125E, E150Q, D153N, D153Y, V217A and 319X) of the PTEN mutants had functional deficiency in cell cycle inhibitory capacity in the S phase in the HCT116 cells. The results obtained show 60% of the PTEN mutants (K62R, Y65C, K125E, K125X, D153N and 319X) had alteration in cell proliferation rate in U87MG cells. In contrast in the HCT116 cell lines, 80% of the PTEN mutants (Y65C, K125E, K125X, E150Q, D153N, D153Y, V217A and 319X) had alteration in cell proliferation rates. These three functional assays of the mutations tested show an alteration of PTEN function. This was observed as a marked reduction in the ability of these PTEN mutants to bring about a level of cycle arrest, reduction of Akt phosphorylation levels and cell proliferation, compared to that observed with the WT PTEN gene product. These studies reveal that PTEN gene somatic mutations do alter PTEN function and are therefore

likely to contribute to the process of colorectal carcinogenesis and may mediate a PTENassociated carcinogenic pathway in these tumours.