INVESTIGATION OF PITCHSTONE FINES AS A NOVEL SUPPLEMENTARY CEMENTITIOUS MATERIAL FOR PORTLAND CEMENT BASED CONSTRUCTION PRODUCTS

by

Kirk Vessalas

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

2009

Centre for Built Infrastructure Research School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney

125 12

Certificate of Authorship / Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis.

Production Note: Signature removed prior to publication.

Kirk Vessalas

Acknowledgments

The author would like to express his gratitude to Prof. Abhi S. Ray, my principal supervisor, for his guidance, advice and support throughout my candidature of this thesis. I would also like to thank Dr. Paul S. Thomas, my co-supervisor, for his suggestions, support and many helpful discussions. The author would further like to thank Dr. Rasiah Sri Ravindrarajah, my alternate supervisor, for his assistance and advice.

In allowing this research to progress, I would like to thank the UTS Challenge Grants Scheme, Centre for Built Infrastructure Research, Perlco Pty Limited (in particular Mr. Paul Joyce and Mr. John Haggman for their enthusiastic support) and Cement Australia Pty Limited (Mr. Des Chalmers) for providing financial support.

For their practical support and suggestions, I would like to thank Dr. Hamish Connan and Dr. Barry Liu for their assistance.

I wish to acknowledge and thank the support and technical assistance of the Faculty of Engineering and Information Technology Civil Laboratories staff especially Mr. Rami Haddad and Mr. Warwick Howse. Similarly, for the Faculty of Science staff, I would like to thank Dr. Norman Booth, Mr. Jean-Pierre Guerbois and Mr. Mark Berkahn for their technical support.

A special thank you is reserved for Ms. Marika Müller. Her support and constant encouragement has made this study a memorable experience. Above all, I must thank my family and friends who have helped and supported me throughout this study.

Abstract

Environmental implications associated with the manufacture and consumption of Portland cement (PC) presents a major challenge to the construction industry. For every tonne of PC manufactured, an equivalent amount of carbon dioxide is generated as greenhouse gas emissions. The use of supplementary cementitious materials (SCMs), also known as pozzolans, for the partial replacement of PC aids the reduction in consumption of PC. SCMs, as environmentally friendly 'green solutions', also provide performance-driven engineering properties of long-term strength development and enhanced durability.

Siliceous and aluminous industrial by-products, such as fly ash (FA), silica fume (SF) and ground granulated blast furnace slag (GGBFS) are used as SCMs to partially substitute PC in order to reduce the consumption of PC in cement-based construction materials. In this study, pitchstone fines (PF) which are the by-product of the production of expanded perlite from a naturally occurring pitchstone deposit in the state of Queensland in Australia are investigated. PF are produced in the crushing stage of the operation where particulates of less than 0.5 mm, which constitute as much as 30% of the pitchstone rock, are discarded causing a potential waste problem.

PF being an amorphous aluminosilicate material was investigated as a potential SCM. Initial investigations on an as received grade of PF, passing 150 μ m mesh, produced favourable results for small substitutions of PC (10%); however, a significant water demand was noted in the production of mortars, otherwise the poor workability reduced homogeneous compaction in the moulds and resulted in inconsistent samples with low compressive strength. Two factors, reduced particle size and improved flow, were identified as critical for the improvement of mortar properties. In order to demonstrate this, a fine grade PF with an average particle size 10 μ m was prepared. The water demand for the finer grade PF was significant and superplasticiser was added to improve flow. After accelerated ageing at elevated temperature the strength of mortars containing increasing PF additions up to 40% demonstrated increased strength.

In order to investigate the further potential of PF, PF mortars were compared to FA mortars (FA being an industry accepted SCM). The PF was graded to a similar particle size distribution to the FA, and was found to produce similar strength. Based on the ASTM standard criteria for classification as a pozzolan, strength activity index (SAI), a relative measure requiring the strength to be within 75% of the control 100% PC mortar, both PF and FA were found to fulfil the criteria at 20% additions at 7 and 28 days ageing. Mortars with 40% additions approached the SAI criteria only at significantly longer periods of ageing (91 days). A further 10 µm grade PF was prepared by bead milling to investigate the standard water curing of PF mortars and compared to a similarly graded FA. Both mortar types produced with 20% and 40% addition levels significantly surpassed the strength of the control PC mortars.

The susceptibility of PF and FA mortars to sulphate attack was investigated by immersing mortar cubes in deionised water and 1 M sodium sulphate. The degree of sulphate attack was monitored by mass gain and compressive strength measurement after 182 days of immersion. The 100% PC control mortar showed significant susceptibility with a large increase in mass gain and a reduction in strength. Both the PF and FA substituted mortars were found to be significantly more resistant to the sulphate solution with lower mass gains and significant improvements in strength relative to the control mortar in deionised water. In the PF and FA mortar samples, ettringite was identified by XRD analysis suggesting that its formation mitigated the effects of sulphate attack.

The investigation of PF as a pozzolan particularly in comparison to FA demonstrated that PF in mortar and concrete exhibited the positive attributes of strength and durability required. This experimental investigation proved that PF may be used as a SCM for the partial replacement of PC. From an engineering perspective, PF, which are hitherto unknown as a SCM for PC-based construction materials, are a viable option for adoption in the manufacture of PC-based construction materials, eventuating in value added benefits of strength improvement and increased resistance to chemical attack. Since the PF studied are currently a by-product of mining, the use of this naturally occurring SCM also helps mitigate the environmental impact at the mine site.

Table of Contents

Т	able o	f Contentsi				
L	List of Abbreviationsv					
L	ist of	Figuresvii				
L	ist of '	Tablesxii				
1	In	roduction1				
	1.1	Preface1				
	1.2	Portland Cement (PC)				
	1.3	Concrete4				
	1.4	PC Hydration5				
	1.5	Hydration Reactions and C-S-H Formation9				
	1.6	Supplementary Cementitious Materials (SCMs)9				
	1.7	Natural Pozzolans				
	1.8	Fly Ash (FA)16				
	1.9	Pitchstone18				
	1.10	Research Objectives				
	1.11	Significance21				
	1.12	Structure of the Thesis				
2	Po	zzolanic Activity of Pitchstone and Related SCMs24				
	2.1	Preface				
	2.2	Perlite Aggregate Investigations25				
	2.2	2.1 Expanded Perlite Aggregate (EPA)				
	2.2	.2 Fine Expanded Perlite Aggregate (FEPA)				
	2.2					

	2.3 Pe	ozzolanic Activity
	2.3.1	Pozzolan Classification
	2.3.2	Concrete Use
	2.3.3	Strength Activity Index
	2.3.4	ASTM C 618-08a Specification Compliance
	2.4 Sı	ulphate Attack
	2.4.1	Gypsum Formation
	2.4.2	Sodium Sulphate (Na ₂ SO ₄) Exposure42
	2.4.3	Ettringite Formation
	2.4.4	Factors Affecting Rate of Sulphate Attack
	2.4.5	Mechanical Properties
	2.4.6	Resistance
3	Experi	imental Procedures
	31 P	rafaca A0
	5.1 1	<i>Yejace</i>
	3.2 R	aw Materials
	3.2.1	Shrinkage Limited Portland Cement
	3.2.2	Pitchstone Fines
	3.2.3	Fly Ash
	3.2.4	HI-POZZ™ Fly Ash
	3.2.5	Densified Silica Fume
	3.2.6	Single Washed Sand
	3.2.7	Pitchstone Fine Aggregate
	3.2.8	Nepean River Sand
	3.2.9	Kurnell Sand
	3.2.10	Coarse Aggregate
	3.2.11	Water
	3.2.12	Glenium 51 (G 51) Superplasticiser
	3.3 Sa	ample Preparation Methods
	3.3.1	Mortar Mix Proportions
	3.3.2	Mortar Mixing Procedures
	3.3.3	Mortar 50-mm Cubes and Shrinkage Bars
	3.3.4	Concrete Mix Proportions and Preparation

	3.3.5	Concrete 100-mm Diameter Test Cylinders	
	3.4 N	Iethods of Characterisation	
	3.4.1	Scanning Electron Microscopy (SEM)	67
	3.4.2	X-Ray Diffraction (XRD)	67
	3.4.3	Thermal Analysis	68
	3.4.4	Flow and Slump	73
	3.4.5	Wet Density (Mass per Unit Volume)	74
	3.4.6	Compressive Strength	75
	3.4.7	Length Change and Drying Shrinkage	77
	3.5 E	valuation Methods	
	3.5.1	Pitchstone Fines Assessment	79
	3.5.2	Fly Ash Comparison	
	3.5.3	Sulphate Exposure	
1	Pitchs	tone Fines Assessment	90
7	1 nens	tone rines Assessment	
	4.1 P	reface	
	4.2 S	trength Evaluation	
	4.2.1	PC Replacement in Mortar by PF1	91
	4.2.2	PC Replacement in Mortar by PF1 Using G 51	96
	4.2.3	PC Replacement in Mortar by PF2 Using G 51	113
	4.2.4	Fine Aggregate Replacement in Mortar by PFA Using G 51	116
5	Fly As	sh Comparison	120
	51 P	Preface	
	5.1 I		101
	5.2 5	pc p l L C S1	121
	5.2.1	PC Replacement in Mortar by PF3 and FA Using G 51	
	5.2.2	PC Replacement in Mortar by PF3-SF and FA-SF Using G ST	
	5.2.3	PC Replacement in Mortar by PF4 and FA Using G 51	
	5.2.4	PC Replacement in Mortar by PF5 and HPFA Using G 51	141
	5.2.5	PC Replacement in Concrete by PF3 and FA	148
	5.3 L	Drying Shrinkage	155
	531	PC Replacement in Mortar by PF3 and FA Using G 51	

5.3.2 PC Replacement in Mortar by PF3-SF	and FA-SF Using G 51158			
6 Sulphate Exposure				
6.1 Preface				
6.2 PC replacement in mortar by PF4, PF5	and FA using G 51161			
6.2.1 pH Measurements				
6.2.2 Mass Change				
6.2.3 Strength Evaluation				
6.2.4 X-Ray Diffraction (XRD)				
6.2.5 Thermal Analysis				
6.2.6 Strength Comparison				
7 Summary and Conclusions				
Bibliography				
Appendix A Experimental Results	i			
A1 DTA-TG-DTG Thermograms	<i>i</i>			
Appendix B List of Publications	XX			

List of Abbreviations

10CA	10 mm Coarse Aggregate
20CA	20 mm Coarse Aggregate
AAC	Autoclaved Aerated Concrete
AS	Australian Standards
ASTM	American Society for Testing and Materials
C _c	Calcite
CS	Coarse Sand
C-A-S-H	Calcium Aluminate Silicate Hydrate
C_2S	Dicalcium Silicate
C_3A	Tricalcium Aluminate
C_3S	Tricalcium Silicate
C_4AF	Tetracalcium Aluminoferrite
СН	Calcium Hydroxide (Portlandite)
C-S-H	Calcium Silicate Hydrate
DTA	Differential Thermal Analysis
DTG	Differential Thermogravimetry
DTGA	Differential Thermogravimetric Analysis
DW	Deionised Water
Е	Ettringite
EPA	Expanded Perlite Aggregate
EPP	Expanded Perlite Powder
FA	Fly Ash
FEPA	Fine Expanded Perlite Aggregate
FESEM	Field Emission Scanning Electron Microscope
FS	Fine Sand
GGBFS	Ground Granulated Blast-Furnace Slag
HPFA	HI-POZZ Fly Ash
KFS	Kurnell Fine Sand
ICCD	International Centre for Diffraction Data
ITZ	Interfacial Transition Zone

JCPDS	Joint Committee on Powder Diffraction Standards
L	Larnite
L _{dx}	Dehydroxylation Mass Loss
L _{dc}	Decarbonation Mass Loss
LOI	Loss on Ignition
LWAC	Light-Weight Aggregate Concrete
NPP	Natural Perlite Powder
Р	Portlandite
P1	İzmir Perlite Powder
P2	Erzincan Perlite Powder
PA	Pumice Aggregate
PC	Portland Cement
PF	Pitchstone Fines
PFA	Pitchstone Fine Aggregate
PP	Perlite Powder
PSA	Particle Size Analyses
Q	Quartz
RH	Relative Humidity
SCC	Self Compacting Concrete
SE	Secondary Electrons
SEM	Scanning Electron Microscopy
SF	Silica Fume
SS	Sodium Sulphate
SSD	Saturated Surface Dry
TG	Thermogravimetry
TGA	Thermogravimetric Analysis
W	Water
w/b	Water/Binder
w/c	Water/Cement
w/cm	Water/Cementitious Material
WR	Water Requirement
wt. %	Weight Percent
XRD	X-ray Diffraction
XRF	X-ray Fluorescence

List of Figures

Figure 1.1 Compressive strength development in pastes of pure PC compounds (ACI- Committee-E-701 2001)
Figure 1.2 Rates of strength development in concretes made with the different PC types listed in Table 1.2
Figure 1.3 Worldwide carbon dioxide (CO ₂) emissions from PC production in the year 1994 (Worrell <i>et al.</i> 2001)10
Figure 1.4 Greenhouse gas emissions from PC production in the year 2000 (Gt = giga tonnes) (Rehan <i>et al.</i> 2005)
Figure 1.5 Location of Nychum pitchstone deposits in far north Queensland, Australia
Figure 1.6 Photographs showing (a) unprocessed pitchstone and (b) processed perlite from pitchstone
Figure 3.1 SEM micrograph of PC (x 800)
Figure 3.2 Particle size distributions of sieved and milled PF samples
Figure 3.3 SEM micrograph of PF1 (x 800)53
Figure 3.4 SEM micrograph of PF2 (x 800)53
Figure 3.5 SEM micrograph of PF3 (x 800)54
Figure 3.6 SEM micrograph of PF4 (x 800)54
Figure 3.7 SEM micrograph of PF5 (x 800)55
Figure 3.8 SEM micrograph of FA (x 800)55
Figure 3.9 SEM micrograph of HPFA (x 800)
Figure 3.10 SEM micrograph of SF (x 800)57

Figure	3.11	Typical	DTA-TG-DTG	thermogram	curves	showing	thermal
dee	compos	sition patte	ern of aged mortar				70
Figure de	3.12 compos	Typical sition patte	DTA-TG-DTG ern of detritus coll	thermogram ected from age	curves d mortar	showing	thermal
Figure 4 typ	4.1 Stre be after	ength activ accelerate	ity index (SAI) ve d water ageing	ersus ageing tir	ne (d = 24)	4 h) for eac	h mortar 96
Figure 4 typ	4.2 Con be after	mpressive standard o	strength (f_{cm}) ver curing regime in w	sus ageing tim vater	e (d = 24	h) for eac	h mortar 99
Figure 4 eao	4.3 Stre ch mort	ength relat ar type aff	ive to 1 day stren er standard curing	gth (%) versus g regime in wat	time inte er	ervals (d =	24 h) for 100
Figure 4 typ	4.4 Stre be after	ength activ standard o	ity index (SAI) ve curing regime in w	ersus ageing tir vater	me (d = 24	4 h) for eac	ch mortar 101
Figure 4	4.5 SEN	A microgr	aph of control mo	rtar after 28 da	ys ageing	; (x 2.01 K)	103
Figure 4	4.6 SEN	A microgr	aph of control mo	rtar after 28 da	ys ageing	; (x 10 K)	103
Figure 4	4.7 SEN	A microgr	aph of control mo	rtar after 28 da	ys ageing	; (x 20 K)	104
Figure 4	4.8 SEN	A microgr	aph of 20% PF1 n	nortar after 28 o	days agei	ng (x 2.01 l	K)105
Figure 4	4.9 SEN	A microgr	aph of 20% PF1 n	nortar after 28 o	days ageir	ng (x 10 K)	105
Figure 4	4.10 SE	M microg	raph of 20% PF1	mortar after 28	days age	eing (x 20 k	K)106
Figure 4	4.11 SE	M microg	raph of 40% PF1	mortar after 28	days age	eing (x 2.01	K)107
Figure 4	4.12 SE	M microg	raph of 40% PF1	mortar after 28	days age	eing (x 10 K	X)108
Figure 4	4.13 SE	M microg	raph of 40% PF1	mortar after 28	days age	eing (x 20 K	C)108
Figure 4 age	4.14 XI eing (E	RD patter = ettringit	ns of control mor e, P = portlandite	tar after 1, 7 a , Q = quartz, C	and 28 da $_{\rm c} = {\rm calcite}$	ays (d= 24 e, L = larnit	h) water te)110

Figure 4.15 XRD patterns	of 10% PF1	mortar after	1, 7 and	28 days (d	= 24 h)	water
ageing (E = ettringite	P = portland	dite, Q = quar	$tz, C_c = c$	calcite, L =	larnite)	110

Figure 4.16 XRD patterns of 20% PF1 mortar after 1, 7 and 28 days (d = 24 h) water ageing (E = ettringite, P = portlandite, Q = quartz, C_c = calcite, L = larnite)111
Figure 4.17 XRD patterns of 40% PF1 mortar after 1, 7 and 28 days (d = 24 h) water ageing (E = ettringite, P = portlandite, Q = quartz, C_c = calcite, L = larnite)111
Figure 4.18 XRD patterns of all mortars after 1 day (d = 24 h) water ageing (E = ettringite, P = portlandite, Q = quartz, C_c = calcite, L = larnite)112
Figure 4.19 XRD patterns of all mortars after 7 days (d = 24 h) water ageing (E = ettringite, P = portlandite, Q = quartz, C_c = calcite, L = larnite)
Figure 4.20 XRD patterns of all mortars after 28 days (d = 24 h) water ageing (E = ettringite, P = portlandite, Q = quartz, C_c = calcite, L = larnite)
Figure 4.21 Strength activity index (SAI) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.1 Compressive strength (f_{cm}) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.2 Strength relative to 3 day strength (%) versus time intervals (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.3 Strength activity index (SAI) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.4 Compressive strength (f_{cm}) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.5 Strength relative to 3 day strength (%) versus time intervals (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.6 Strength activity index (SAI) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water

Figure 5.7 Compressive strength (f_{cm}) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.8 Strength relative to 7 day strength (%) versus time intervals (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.9 Strength activity index (SAI) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.10 Compressive strength (f_{cm}) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.11 Strength relative to 7 day strength (%) versus time intervals (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.12 Strength activity index (SAI) versus ageing time (d = 24 h) for each mortar type after standard curing regime in water
Figure 5.13 Compressive strength (f_{cm}) versus ageing time (d = 24 h) for each concrete type after standard curing regime in water
Figure 5.14 Strength relative to 7 day strength (%) versus time intervals (d = 24 h) for each concrete type after standard curing regime in water
Figure 5.15 Strength activity index (SAI) versus ageing time (d = 24 h) for each concrete type after standard curing regime in water
Figure 5.16 Drying shrinkage increase (S_i) versus air storage age (d = 24 h) for length change of PF3 and FA mortars relative to control mortar
Figure 5.17 Drying shrinkage increase (S_i) versus air storage age (d = 24 h) for length change of PF3-SF and FA-SF mortars relative to control mortar159
Figure 6.1 pH of deionised water for each mortar type versus ageing period ($d = 24$ h)
Figure 6.2 pH of 1 M sodium sulphate for each mortar type versus ageing period (d = 24 h)

Figure 6.3 Mass change (Δm) relative to 0 day mass versus ageing period (d = 24 h) of each mortar type in deionised water
Figure 6.4 Mass change (Δm) versus ageing period (d = 24 h) of each mortar type in 1 M sodium sulphate
Figure 6.5 Strength activity index (SAI) of each mortar type after 182 days (d= 24 h) in deionised water
Figure 6.6 Strength activity index (SAI) of each mortar type after 182 days (d= 24 h) in 1 M sodium sulphate
Figure 6.7 XRD patterns of control, 20% and 40% PF4 mortars after 182 days (d= 24 h) in 1 M Na ₂ SO ₄ (E = ettringite, C_c = calcite)
Figure 6.8 XRD patterns of control, 20% and 40% PF5 mortars after 182 days (d= 24 h) in 1 M Na ₂ SO ₄ (E = ettringite, C_c = calcite)
Figure 6.9 XRD patterns of control, 20% and 40% FA mortars after 182 days (d= 24 h) in 1 M Na ₂ SO ₄ (E = ettringite, C_c = calcite)
Figure 6.10 XRD patterns of control and 20% PF4, PF5 and FA mortars after 182 days (d= 24 h) in 1 M Na ₂ SO ₄ (E = ettringite, C_c = calcite)179
Figure 6.11 XRD patterns of control and 40% PF4, PF5 and FA mortars after 182 days (d= 24 h) in 1 M Na ₂ SO ₄ (E = ettringite, C_c = calcite)179
Figure 6.12 Compressive strength for PF4, PF5 and FA additions in mortars after 182 days (d= 24 h) in control (DW) and sulphate (SS) solution

List of Tables

Table 1.1 Main chemical compounds formed in the PC kiln (ACI-Committee-E-701 2001)
Table 1.2 Type and typical compound composition of PC (ACI-Committee-E-701 2001)
Table 1.3 Characteristics of hydration of PC compounds (ACI-Committee-E-701 2001)
Table 3.1 Chemical composition of starting materials with oxides and loss on ignition (LOI) are in mass percent 50
Table 3.2 Fraction of particle size less than the value listed in μm
Table 3.3 Particle size distribution (sieving method) of Raymond Terrace single washed sand 58
Table 3.4 Particle size distribution (sieving method) of pitchstone fine aggregate59
Table 3.5 Particle size distribution (sieving method) of Nepean double washed river sand 60
Table 3.6 Particle size distribution (sieving method) of Kurnell single washed sand .60
Table 3.7 Particle size distribution (sieving method) of 10 mm coarse aggregate61
Table 3.8 Particle size distribution (sieving method) of 20 mm coarse aggregate61
Table 3.9 Mortar mix designs incorporating PF1 additions 80
Table 3.10 Mortar mix designs incorporating PF1 addition levels with G 5180
Table 3.11 Mortar mix designs using PF2 additions with G 51
Table 3.12 Mortar mix designs using PFA additions with G 51 82
Table 3.13 Mortar mix designs using PF3 and FA additions with G 51

Table 3.14 Mortar mix designs using PF3-SF and FA-SF additions with G 5185
Table 3.15 Mortar mix designs using PF4 and FA additions with G 5185
Table 3.16 Mortar mix designs using PF5 and HPFA additions with G 5186
Table 3.17 Concrete mix designs using PF3 and FA additions 87
Table 3.18 Mortar mix designs using PF4, PF5 and FA additions with G 51
Table 4.1 Fresh mortar properties of flow and wet density (ρ_{wet})
Table 4.2 Hardened mortar properties of compressive strength (f_{cm}) and strength activity index (SAI) after accelerated water ageing
Table 4.3 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 4.4 Hardened mortar properties of compressive strength (f_{cm}) and strength activity index (SAI) for 1, 7 and 28 days (d = 24 h) water ageing
Table 4.5 Hardened mortar properties of compressive strength relative to 1 day strength (f_{cm}/f_{cm1d}) for increasing time intervals (d = 24 h) of water ageing
Table 4.6 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 4.7 Hardened mortar properties of compressive strength (f_{cm}) and strength activity index (SAI) for accelerated water ageing
Table 4.8 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 4.9 : Hardened mortar properties of compressive strength (f_{cm}) and strength activity index (SAI) for 14 and 28 days (d = 24 h) water ageing
Table 4.10 Hardened mortar properties of compressive strength (f_{cm}) and strength activity index (SAI) after accelerated water ageing

Table 5.1 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 5.2 Hardened mortar properties of compressive strength (f_{cm}) for 3, 7, 14, 28, 56 and 91 days (d = 24 h) water ageing
Table 5.3 Hardened mortar properties of compressive strength relative to 3 day strength (f_{cm}/f_{cm3d}) for increasing time intervals (d = 24 h) of water ageing 124
Table 5.4 Hardened mortar properties of strength activity index (SAI) for 3, 7, 14, 28,56 and 91 days (d = 24 h) water ageing
Table 5.5 TG data of Ldx, measured CH (CHM) mass, expected CH (CHE) mass and percent mass change (Δ CH) of CHM to CHE of mortar sampled at core (c) after 28 and 91 days (d = 24 h) water ageing
Table 5.6 TG data of L_{dx} , measured CH (CH _M) mass, expected CH (CH _E) mass and percent mass change (Δ CH) of CH _M to CH _E of mortar sampled at surface (s) after 28 and 91 days (d = 24 h) water ageing
Table 5.7 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 5.8 Hardened mortar properties of compressive strength (f_{cm}) for 3, 7, 14, 28, 56 and 91 days (d = 24 h) water ageing
Table 5.9 Hardened mortar properties of compressive strength relative to 3 day strength (f_{cm}/f_{cm3d}) for increasing time intervals (d = 24 h) of water ageing 133
Table 5.10 Hardened mortar properties of strength activity index (SAI) for 3, 7, 14,28, 56 and 91 days (d = 24 h) water ageing
Table 5.11 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 5.12 Hardened mortar properties of compressive strength (f_{cm}) for 7, 28, 56 and 91 days (d = 24 h) water ageing

Table 5.13 Hardened mortar properties of compressive strength relative to 7 day strength (f_{cm}/f_{cm7d}) for increasing time intervals (d = 24 h) of water ageing 138
Table 5.14 Hardened mortar properties of strength activity index (SAI) for 7, 28, 56and 91 days (d = 24 h) water ageing
Table 5.15 Fresh mortar properties of flow, wet density (ρ_{wet}) and G 51 volume over total mass (v/w) of mortar
Table 5.16 Hardened mortar properties of compressive strength (f_{cm}) for 7, 28, 56 and 91 days (d = 24 h) water ageing
Table 5.17 Hardened mortar properties of compressive strength relative to 7 day strength (f_{cm}/f_{cm7d}) for increasing time intervals (d = 24 h) of water ageing 145
Table 5.18 Hardened mortar properties of strength activity index (SAI) for 7, 28, 56 and 91 days (d = 24 h) water ageing
Table 5.19 Fresh concrete properties of slump and wet density (ρ_{wet})
Table 5.19 Fresh concrete properties of slump and wet density (ρ_{wet})
Table 5.19 Fresh concrete properties of slump and wet density (ρ_{wet})
Table 5.19 Fresh concrete properties of slump and wet density (ρ_{wet})
 Table 5.19 Fresh concrete properties of slump and wet density (<i>ρ_{wet}</i>)
Table 5.19 Fresh concrete properties of slump and wet density (ρ_{wet})

Table 5.25 Drying shrinkage increase (S_i) of PF3 and FA mortars relative to control mortar after 7, 14 and 28 days (d = 24 h) air storage......157

Table 5.26 Hardened mortar properties of length change (ΔL) after 7, 14 and 28 days (d = 24 h) air storage relative to 0 day length and a gauge length of 200 mm158
Table 5.27 Drying shrinkage increase (S_i) of PF3-SF and FA-SF mortars relative to control mortar after 7, 14 and 28 days (d = 24 h) air storage
Table 6.1 pH of deionised water for each mortar type after 0, 1, 28, 56, 84, 112, 140 and 182 days ($d = 24$ h)
Table 6.2 pH in 1 M sodium sulphate for each mortar type after 0, 1, 28, 56, 84, 112, 140 and 182 days (d = 24 h)
Table 6.3 Mass change (Δm) of each mortar type relative to 0 day mass after 28, 56, 84, 112, 140 and 182 days (d = 24 h) in deionised water
Table 6.4 Mass change (Δm) of each mortar type relative to 0 day mass after 28, 56, 84, 112, 140 and 182 days (d = 24 h) in 1 M sodium sulphate
Table 6.5 Compressive strength (f_{cm}) and strength activity index (SAI) of each mortar type after 182 days (d = 24 h) in deionised water
Table 6.6 Compressive strength (f_{cm}) and strength activity index (SAI) of each mortar type after 182 days (d = 24 h) in 1 M sodium sulphate
Table 6.7 Strength in 1 M sodium sulphate (f_{cm-SS}) relative to strength in deionised water (f_{cm-DW}) of each mortar type after 182 days (d = 24 h) ageing
Table 6.8 TG mass loss data representing sulphur trioxide (SO ₃) and sulphate (SO ₄ ²⁻) in mortar after 182 days (d = 24 h) in 1 M Na ₂ SO ₄ 180