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Abstract

Long dated fixed income securities play an important role in asset-liability management, in life insurance
and in annuity businesses. This paper applies the benchmark approach, where the growth optimal portfolio
(GOP) is employed as numéraire together with the real world probability measure for pricing and hedging
of long dated bonds. It employs a time dependent constant elasticity of variance model for the discounted
GOP and takes stochastic interest rate risk into account. This results in a hybrid framework that models
the stochastic dynamics of the GOP and the short rate simultaneously. We estimate and compare a variety
of continuous-time models for short-term interest rates using non-parametric kernel-based estimation. The
hybrid models remain highly tractable and fit reasonably well the observed dynamics of proxies of the GOP
and interest rates. Our results involve closed-form expressions for bond prices and hedge ratios. Across all
models under consideration we find that the hybrid model with the 3/2 dynamics for the interest rate provides
the best fit to the data with respect to lowest prices and least expensive hedges.

Key words: Long dated bond pricing, stochastic interest rate, growth optimal portfolio, nonparametric
kernel



1 Introduction

Asset-liability management is a major component of insurance businesses. For life insurance companies,
pension funds and annuity providers, the management of long term asset-liability depends crucially
on the availability of long dated fixed income securities to cover future obligations that can span over
10-30 years. Among a variety of interest rate related securities and derivatives, long dated government
bonds hold a special place in the portfolios of traditional annuity firms. Under the risk-neutral pricing
framework, bond securities are priced by modelling the underlying interest rate dynamics, such as
short rate models, under the risk-neutral measure. In this paper we propose to apply a more general
framework, namely the benchmark approach (see Platen and Heath (2010)), to price and hedge long
dated zero coupon bonds. Under the benchmark approach, the numéraire is the growth optimal port-
folio (GOP), which can be approximated by a well-diversified equity index, and the pricing measure is
the real-world probability measure. One of the consequences is that under realistic long term modelling
the price dynamics of a long dated zero coupon bond depends not only on interest rate risk, but also
on the market price of equity risk.

Short rate models have been studied intensely in the literature. Starting from the seminal work of
Merton (1973) in continuous time finance, they have become fundamental and important price de-
terminants when evaluating interest rate contingent claims and hedging interest rate risk. Modelling
stochastic interest rates has also become increasingly important in solving important actuarial prob-
lems. For example, Peng et al. (2012) price guaranteed minimum withdrawal benefits in variable
annuities under stochastic interest rates. In Nowak and Romaniuk (2013), stochastic interest rates
are taken into account when pricing and simulating catastrophe bonds. Many continuous time models
have been put forward to reflect the behaviour of interest rates. These include models introduced in
Brennan and Schwartz (1977, 1979, 1980); Vasicek (1977); Dothan (1978); Cox et al. (1985); Longstaff
(1989); Black et al. (1990); Hull and White (1992) and Longstaff and Schwartz (1992). For more re-
cent accounts in this area and overviews on existing models one can refer to Stanton (1997); Rebonato
(1998) and Brigo and Mercurio (2001). Despite the existence of a large number of short-term interest
rate models, the model choice for applications in pricing specific fixed income securities is typically
made on a case by case basis. Often different products motivate different models. By choosing a model
one aims for realistic behaviour, ease of implementation, and also analytical tractability. Each prod-
uct typically requires a model which combines the above features, and in some way outperforms the
competing models. A more advanced model should have the property that it works well for a wide
range of products and also over long time periods. Note that International Financial Reporting Stan-
dards (IFRS) and International Accounting Standards (IAS) 1 recognise the importance of valuation
and hedging of long dated derivatives, e.g. pensions, investments, zero coupon bonds and other fixed
income securities, which appear in the market exposure of many firms. Long dated derivatives are not
well covered by the currently favoured risk neutral pricing and hedging methodology, as argued in
Platen and Heath (2010).

This paper aims to search for suitable models that deal well with pricing and hedging of long dated
zero coupon bonds under stochastic interest rates, by employing the benchmark approach. We place
ourselves in a hybrid framework, to model simultaneously both the dynamics of the short rate and the
growth optimal portfolio (GOP), used as numéraire portfolio or benchmark for pricing purposes and
also for hedging. For modelling interest rate risk we consider different short rate models. These include
the Vasicek model, see Vasicek (1977); the CIR model, see Cox et al. (1985); the 3/2 model, introduced
in Ahn and Gao (1999); the Dothan model, see Dothan (1978) and the Craddock-Lennox short rate
model, see Craddock and Lennox (2007). For the GOP modelling we build upon the time dependent

1 www.ifrs.org
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constant elasticity of variance (TCEV) model introduced in Baldeaux et al. (2014), which models
the GOP and is extended in our analysis by taking into account stochastic interest rate risk. The
TCEV model represents a model class which nests several known model specifications. Among other
models it includes the constant elasticity of variance (CEV) model, see Cox (1996), and the minimal
market model (MMM), see Platen and Heath (2010). When using real world pricing, derivative price
processes, when denominated in units of the GOP, become martingales under the real world probability
measure. Thus, contingent claim prices can be calculated via conditional expectations using the real
world probability measure. Under classical assumptions the resulting prices coincide with classical risk
neutral prices, however, real world pricing makes also perfect sense for models beyond the classical
paradigm, see Du and Platen (2014). Ceci et al. (2014) suggest another application of the benchmark
approach to develop locally risk-minimizing hedging strategies in a semimartingale financial market
model under partial information. For more details on the GOP and the numéraire portfolio we refer
to Kelly (1956), see also Latané (1959), Breiman (1960), Thorp (1961), Markowitz (1976), and Long
(1990). Further studies on valuation portfolios in asset-liability management in the actuarial context
can be found e.g. in Buchwalder et al. (2007) and Lim and Wong (2010).

In the current paper we consider the problem of pricing long dated contingent claims using real
world pricing under stochastic interest rates and a realistic model for the numéraire portfolio, the
GOP, for which a risk neutral probability measure does not exist. The latter provides a more realistic
model for the long term dynamics of the financial market than is obtainable under the classical risk
neutral paradigm. We use a non-parametric kernel-based technique to estimate the diffusion coefficient
function, and potentially, the drift coefficient, of the short rate model, and refer to Florens-Zmirou
(1993), Stanton (1997), Jiang and Knight (1997), Soulier (1998) and Jacod (2000) for details on the
estimation technique. We aim to find a model that is tractable, fits well the historical data, i.e., cannot
be easily falsified or rejected as other models based on the data fit. We show that the 3/2 model tends to
capture better the dynamics of the short-term interest rates than the competing models. We also apply
the non-parametric technique to estimate the diffusion coefficient function of the discounted GOP,
without assuming any particular scalar diffusion dynamics. It turns out that the diffusion coefficient
function of the TCEV model fits surprisingly well the non-parametrically estimated diffusion coefficient
function. 2

To identify the best performing model for the purposes of long dated bond pricing we evaluate and
compare historical market bond prices with theoretical prices derived by the benchmark approach.
It turns out that the proposed hybrid model is highly tractable. It allows us to derive closed-form
solutions for bond prices and hedge ratios. Furthermore, the hybrid model with the 3/2 dynamics for
the short rate leads to the smallest prices when compared to other alternative models. Finally, this
model performs successfully when empirically hedging long dated zero coupon bonds by employing
short-maturity zero coupon bonds, the savings account and the GOP for the hedge.

This paper is organised as follows. Section 2 develops a hybrid modelling framework for stochastic
short-term interest rates together with the GOP. Section 3 discusses the non-parametric kernel-based
technique, used to estimate the drift and the diffusion coefficient functions in the short rate and the
GOP dynamics. Estimation results are presented in Section 4. Section 5 summarises the real world
pricing approach and shows how to calculate prices of zero coupon bonds under the hybrid framework
with different short rate specifications. Pricing results and performance are evaluated in Section 6 by
comparing model prices to market prices. Finally, Section 7 discusses hedging results obtained for the
best performing model, and Section 8 concludes the paper.

2 This holds for the GOP denominated in different currencies, whereas this study focuses on USD denomi-
nation of the GOP.

2



2 Modelling Framework

This section describes a hybrid framework for modelling the dynamics of stochastic short rates and the
GOP simultaneously. For the dynamics of short rates we consider a general econometric framework.
It nests several well-known model specifications, including the Vasicek model (see Vasicek (1977)), the
CIR model (see Cox et al. (1985)), 3/2 model, introduced in Ahn and Gao (1999) and the Craddock-
Lennox short rate model, see Craddock and Lennox (2007). For the GOP we use the time dependent
constant elasticity of variance (TCEV) model introduced in Baldeaux et al. (2014), which assumes
that the drift of the discounted GOP is an exponentially growing function of time.

2.1 Short Rate Models

We employ here a standard econometric framework to compare the performance of a variety of well-
known interest rate models in capturing the stochastic behaviour of the short-term interest rate. To
specify the most general model for the short rate dynamics studied in this paper, we consider the
following SDE:

drt = g(rt)dt+ σrαt dWt, (2.1)

where σ > 0, α ∈ [0,∞) and W = {Wt, t ≥ 0} is a standard Wiener process on a filtered probability
space (Ω,A,A, P ) with filtration A = (A)t≥0 satisfying the usual conditions, see Karatzas and Shreve
(1991). These Markovian dynamics imply that the conditional mean and variance of changes in the
short rate depend only on the level rt. This allows us to concentrate on reasonably tractable short
rate models. Depending on the specification of the drift g(rt) and the diffusion coefficient function
σrαt , we can select a particular model. We concentrate on five models considered in the literature, with
specifications listed in Table 1.

Table 1
Alternative model specifications for the short-term interest rate dynamics.

Model SDE α g(rt) Param. Constr.
1. Vasicek drt = (a− brt)dt+ σdWt 0 (a− brt) a, b, σ > 0
2. CIR drt = κ(θ − rt)dt+ σ

√
rtdWt 1/2 κ(θ − rt) κ, θ, σ > 0

3. 3/2 drt = (prt + qr2
t )dt+ σr

3/2
t dWt 3/2 (prt + qr2

t ) q < σ2

2 , σ > 0
4. Dothan drt = λrtdt+ σrtdWt 1 λrt σ > 0, λ ∈ R

5. C&L drt = 2rt
√
ξ cot

(
rt√
ξ

)
dt+

√
2ξrtdWt 1/2 2rt

√
ξ cot

(
rt√
ξ

)
r0 > 0

Model 1 is the Vasicek (1977) interest rate model introduced in Vasicek (1977). It uses the Ornstein-
Uhlenbeck process to provide an equilibrium model for short rates. It yields a stationary Gaussian
process, which assumes that the short rate rt is linearly mean reverting. For t going to infinity, the
expected short rate tends to the long term average rate a/b. In the literature it is argued that the
drawback of the Vasicek model is that the short rate rt can become negative. However, the analytical
tractability, which is implied by its Gaussian transition density, is hardly achieved when assuming
other dynamics for the process r. The Vasicek model and its generalisations have been used intensely
to value bond options, futures, futures options and other types of contingent claims; see e.g. Jamshidian
(1990) and Gibson and Schwartz (1990).

Model 2 is the CIR model, which uses the square root process for the short rate dynamics. It ap-
pears in Cox et al. (1985) as a single-factor general equilibrium short rate model. Here, we follow the
presentation in Brigo and Mercurio (2001). This model has been a benchmark model for short-rate
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dynamics because of its analytical tractability and the fact that, contrary to the Vasicek model, the
short rate is always nonnegative. It has been applied in constructing tractable valuation models for
interest-rate-sensitive contingent claims, including discount bond options, futures and futures options
and swaps, see e.g. Cox et al. (1985), Ramaswamy and Sundaresan (1986), and Longstaff (1990).

Model 3 is the 3/2 model introduced in Ahn and Gao (1999), see also Platen (1999), for modelling
the short rate dynamics. Here, we follow the representation in Carr and Sun (2007), who employed
this type of model to describe the instantaneous variance in equity models. It differs from the other
popular short rate models in the power α = 3

2
> 1 of the diffusion coefficient. Such a high power

in the diffusion coefficient function has been supported by an earlier empirical result in Chan et al.
(1992), who show via parametric methods that models with power α ≥ 1 capture the dynamics of the
short-term interest rate better than those which assume α < 1.

Model 4 is the Dothan model, introduced in Dothan (1978), where we follow the presentation in Pintoux
and Privault (2011). Here, the short-term interest rate process follows a geometric Brownian motion
and, therefore, uses α = 1. This model leads to the interest rate being conditionally log-normally
distributed, which implies that the short rate cannot become negative and, therefore, overcomes a
main criticism of the Vasicek model. However, the process is only mean reverting for λ < 0 with
mean-reversion level equal to zero. The resulting dynamics do not seem to be realistic for long time
periods, since the variance of the log-short rate is growing proportionally to time. Nevertheless, the
Dothan model appears to be analytically tractable. In fact, it seems to be the only log-normal short
rate model in the literature with analytical formulas for pure discount bonds, see Brigo and Mercurio
(2001) and Pintoux and Privault (2011).

Model 5, which in the following will be referred to as the C&L model, is the Craddock-Lennox short
rate model. It was introduced in Craddock and Lennox (2007), who constructed short rate models
using Lie symmetry group methods and showed that bond prices can be derived in closed form for
this model. To our knowledge, the C&L model has not been empirically tested so far against different
alternative model specifications.

2.2 Modelling the GOP

First, let us recall the general stochastic differential equation (SDE) for the dynamics of the GOP in
a continuous financial market. We denote by S̄∗t the value of the discounted GOP at time t. Following
Platen and Heath (2010), the discounted GOP S̄∗t satisfies in a continuous financial market the SDE

dS̄∗t = S̄∗t θt
(
θtdt+ dW̄t

)
(2.2)

for t ≥ 0. Here, S̄∗0 > 0 is the initial value and θt denotes the volatility of the GOP or market price of
risk, where W̄ = {W̄t, t ≥ 0} denotes a standard Wiener process.

Following Baldeaux et al. (2014), we introduce the so-called time dependent constant elasticity of
variance (TCEV) model, which assumes that the GOP volatility, or market price of risk, is of the form

θt = g

(
S̄∗t
αt

)
. (2.3)

Here g(·) is a given function, and αt is a deterministic function of time that is defined below. Using
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this notation, we can write the following SDE for the discounted GOP:

dS̄∗t = S̄∗t g

(
S̄∗t
αt

)2

dt+ S̄∗t g

(
S̄∗t
αt

)
dW̄t. (2.4)

For our model we assume that αt is a function of time growing exponentially like the average of the
discounted GOP, that is,

αt = α0 exp {ηt} (2.5)

with η > 0. We remark, assuming that

g

(
S̄∗t
αt

)
= c

(
S̄∗t
αt

)a−1

, (2.6)

where a ∈ (−∞, 1) and c > 0, leads to the TCEV model and by (2.4) to the SDE

dS̄∗t = c2α2−2a
t

(
S̄∗t
)2a−1

dt+ cα1−a
t

(
S̄∗t
)a
dW̄t , (2.7)

for t ∈ [0,∞) and S̄∗0 > 0. For the purpose of our analysis we also introduce the normalized GOP

process Y =
{
Yt =

S̄∗t
αt
, t ≥ 0

}
, which follows the SDE

dYt =
(
c2Y 2a−1

t − ηYt
)
dt+ cY a

t dW̄t (2.8)

for t ≥ 0 and Y0 = y > 0, and exponent a ∈ (−∞, 1). Note that Y = {Yt, t ≥ 0} is time homogenous.
Using the SDE (2.8) and the Îto formula, one can easily verify that S̄∗t can be represented as the
product

S̄∗t = αtYt. (2.9)

Note that for a = 1
2

and c = 1 the TCEV model recovers the minimal market model in Platen and
Heath (2010).

3 Nonparametric Estimation of Drift and Diffusion Coefficient Functions

Non-parametric kernel-based estimation of diffusion coefficient functions has been introduced in Florens-
Zmirou (1993) and is discussed in several studies; see e.g. Soulier (1998) and Jacod (2000). Following
the methodology of Stanton (1997) and Jiang and Knight (1997), we apply the nonparametric kernel-
based technique to the estimation of the diffusion coefficients in the dynamics of the short rate, as well
as the equity index, as discussed in Ignatieva and Platen (2012) and Baldeaux et al. (2014).

Given n sample points (xt1 , ..., xtn), the kernel estimation density f̂(x, hn) is defined as

f̂(x, hn) =
1

nhn

n∑
i=1

K
(
x− xti
hn

)
, (3.1)

where K(·) is a kernel function and hn is a bandwidth parameter controlling the degree of smooth-
ness of the estimator. In this paper, we employ a Gaussian kernel function, i.e. we set K(z) =

(2π)−
1
2 exp

{
−1

2
z2
}

. It has been shown in the literature, that the specific choice of the kernel K(·)
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does not affect much the performance of the resulting estimator. In fact, as argued in Epanechnikov
(1969), any reasonable kernel gives almost optimal results. For the bandwidth hn, one typically chooses
the bandwidth which minimizes the asymptotic mean integrated squared error (MISE), see Wand and
Jones (1995) and Botev et al. (2010). For the purpose of our analysis we use a Gaussian kernel with

cross-validated bandwidth selected using Silverman (1986)’s rule of thumb, that is, hn = hcσ̂n
− 1

5 ,
where σ̂ is the dispersion of observations, n is the number of sample points and hc = 1.06.

We can calculate the estimator of the drift and the squared diffusion coefficient functions, as suggested
by Stanton (1997), in the following way:

µ1(xti−1
) =

1

ti − ti−1

E((xti − xti−1
)|xti−1

= x) +O(ti − ti−1)

σ2
1(xti−1

) =
1

ti − ti−1

E((xti − xti−1
)2|xti−1

= x) +O(ti − ti−1), (3.2)

using the approximations

E((xti − xti−1
)|xti−1

= x) ≈
∑n
i=1(xti − xti−1

)K
(
x−xti−1

h

)
∑n
i=1K

(
x−xti−1

h

) (3.3)

and

E((xti − xti−1
)2|xti−1

= x) ≈
∑n
i=1(xti − xti−1

)2K
(
x−xti−1

h

)
∑n
i=1K

(
x−xti−1

h

) , (3.4)

respectively, where ti − ti−1 denotes the time step size between successive observations. In addition
to the above first order approximations, Stanton (1997) developed higher order approximations based
on Taylor expansions. However, he showed that using approximations of higher order does not affect
the order of convergence but may improve the approximations for a chosen time step ti − ti−1. For
the purpose of our analysis we do not require higher order approximations to fit a parametric form to
the estimated functions for the drift and diffusion coefficients and, thus, the first order approximation
(3.2) will be sufficient.

4 Estimation Results

This section discusses the data used in our empirical analysis and reports estimation results for the
hybrid model. We start with the estimation of the short rate models followed by the estimation of the
GOP. Both methodologies will apply the nonparametric estimation procedure described in Section 3.

4.1 Short Rate Data

In our empirical analysis we will use daily (3-month) T-Bill rates obtained from Datastream Thomson
Financial. The observation period covers the time period from January 1973 to July 2010. Figure 1
shows the interest rate level (top left panel) and interest rate changes (top right panel), defined as
rt+∆−rt with ∆ corresponding to one day. One observes that during the time period from 1978 to 1985,
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Fig. 1. Interest rate level (top left panel) and interest rate changes (top right panel); nonparametric density
estimate (bottom panel).

short rates are particularly volatile. During this time the inflation drove US yields to their all-time
high in 1981. While the volatility decreases gradually towards the end of the observation period, it is
interesting to note that the short rates are trending downwards as well.

Table 2
Summary statistics for the short rate levels and short rate changes for the US.

Mean Std.Dev. Skewness Kurtosis First Autocorr.
rt 0.0569 0.0313 0.6811 3.9260 0.9992
rt+∆ − rt -0.0000 0.0011 0.1797 27.0850 0.1285

Table 2 provides summary statistics for the short rate levels and short rate changes. It shows that the
kurtosis of daily 3-month T-bill rate increments exceeds 27, while the skewness is positive indicating a
high level of non-normality. Furthermore, as an illustration of the nonparametric kernel methodology,
and to give some idea of the distribution of interest rates, the probability density estimate for the daily
changes is shown in the bottom panel of Figure 1. One observes a long right tail in the distribution
of short rate increments, which together with moment statistics indicates that the distribution is
leptokurtic.

4.2 Estimating Short Rate Models

To estimate the parameters of the drift and diffusion coefficient functions of the short rate models we
apply the same methodology as for the discounted equity indices. Thereby, we estimate not only the
diffusion but also the drift coefficient function since drift parameters are required for the pricing of
derivative products, as will be discussed below.
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Fig. 2. Nonparametric estimates of the drift coefficient function (left panels) and the diffusion coefficient
function (right panels) for the models: Vasicek, CIR, 3/2, Dothan, Craddock-Lennox (from top to bottom).
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In the first step we estimate the parameters of the diffusion coefficient function σrαt in the short rate
dynamics (2.1) in order to decide on the parametric model which fits the data best. The estimated
coefficient for the constant σ and the diffusion coefficient power α are σ = 0.6131 and α = 1.3694,
respectively. Thus, by just looking at the estimated power, it turns out that among all models under
consideration the diffusion coefficient of the short rate can be captured most appropriately using the
3/2 model, as the power of its diffusion coefficient is closest to the estimated unrestricted diffusion
coefficient power.

Table 3
Nonparametric estimates for the diffusion constant and drift parameters in the interest rate dynamics.

Diffusion Param. Drift Parameters
σ α a b κ θ λ p q ξ = σ2/2

Vasicek 0.0245 0 0.0102 0.2130 - - - - - -
CIR 0.0938 1/2 - - 0.2130 0.0479 - - - -
3/2 0.7960 3/2 - - - - - 0.3431 -3.5736 -
Dothan 0.2870 1 - - - - -0.0012 - - -
C&L 0.0938 1/2 - - - - - - - 0.0045

Now we assume a certain model specification. That is, we fix the diffusion coefficient power α to 0,
1/2, 1, 3/2 and 1/2 for the Vasicek, CIR, 3/2, Dothan, and C&L model, respectively, and estimate
only the diffusion constant and the drift (restricted estimation). The results of the fitted parameter
estimates obtained using non-linear least squares are summarised in Table 3. The estimated drift and
diffusion coefficient functions for the Vasicek, CIR, 3/2, Dothan, and Craddock-Lennox models (from
top to bottom) are plotted in the left, respectively, the right panel of Figure 2 using a solid line. 3 The
fitted diffusion coefficient functions for the respective model obtained, using the parameter estimates
displayed in Table 3, are shown in these figures by using dashed-dotted lines.

The figure also shows a pointwise 95% confidence band (dotted line), calculated using 1000 iterations
of the block bootstrap algorithm, see Künsch (1989). In order to preserve serial dependence in the
data we apply the moving block bootstrap method which uses blocks of observations rather than single
observations in the bootstrap algorithm. The algorithm resamples the observed time series using ap-
proximately independent (non-overlapping) moving blocks of length l. For n observations, we consider
k blocks of length l (n = lk), constructed in the following way: Block one comprises observations from
1 to l, block two comprises observations from l+ 1 to 2l, etc. The last block k comprises observations
from n− l + 1 to n. The estimation algorithms draws k blocks with replacement from a set of blocks.
Aligning these blocks in the order they were picked provides us with the bootstrap observations, which
can then be used to compute standard errors and confidence bands.

Comparing visually the results for the parameter estimates with the diffusion coefficient function plots,
we observe that the fitted diffusion coefficient function line for the 3/2 model falls almost entirely into
the estimated 95% confidence band and thereby, seems to outperform its competitors. It indicates that
the 3/2 model is likely to be a good candidate for describing the short rate dynamics when aiming for
a simple scalar diffusion short rate model. This makes the short rate model proposed in Ahn and Gao
(1999), as well as Platen (1999), reasonably realistic.

3 From the figure we observe that the estimated diffusion coefficient is greater than zero for rt = 0, which
suggests that no constraint (that the diffusion coefficient is zero for rt = 0) is required for the estimation
of the diffusion coefficient function. However, in order to prevent interest rates from becoming negative, we
impose this constraint, as suggested in Stanton (1997) for the estimation of the drift coefficient function.
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Fig. 4. Nonparametric density estimate (left panel) and diffusion coefficient estimate (right panel) for the
normalised discounted EWI114 denominated in USD.

4.3 Estimating the GOP

As equity index and approximation of the GOP, we consider the well diversified equi-weighted index,
the EWI114, which is available on a daily basis for the time period from January 1973 to July 2010.
In its construction in Platen and Rendek (2012) the EWI114 uses industry sub-sector indices as
constituents provided by Datastream Thomson Financial. Here we discuss estimation results for the
GOP.
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Fig. 5. Covariation between the logarithms of the EWI114 and the US short rate.

The discounted EWI114, denominated in USD, is plotted in the upper left panel of Figure 3. 4 In order
to obtain an exponentially increasing drift function αt, which is given by (2.5), we have to estimate the
scaling parameter α0 and the net growth rate η. For this purpose we apply a least squares estimation
to fit the logarithm ln(αt) to the logarithm ln(S̄∗t ), as shown in the upper right panel of Figure 3. The
resulting parameter values are α0 = 51.3455 and η = 0.1239. Given the function αt, the normalised
discounted GOP can be computed as Yt = S̄∗t /αt. We plot this normalised process in the lower panel of
Figure 3. Yt can now be used to estimate the diffusion coefficient function in a non-parametric way, as
described in Section 3. The kernel density is estimated using a Gaussian kernel with a ’rule-of-thumb’
bandwidth and is plotted in the left panel of Figure 4. The resulting estimated approximation of the
diffusion coefficient functions is plotted in the right panel of Figure 4. Fitting the estimated diffusion
coefficient function to the functional form assumed for the diffusion coefficient function (cY a

· ) of the
process Y , we obtain for the parameter estimates of c and a the values 0.1010 and 0.2868, respectively.
The fitted diffusion coefficient function is represented by the dashed-dotted line in the right panel of
Figure 4. Again, the dotted lines represent a pointwise 95% confidence band, calculated using 1000
iterations of the block bootstrap algorithm.

Finally, comparing the results for the parameter estimates with the diffusion coefficient function plot,
we observe that the fitted diffusion line (dashed-dotted line), obtained by using parameter estimates
of c = 0.1010 and a = 0.2868, falls into the estimated 95% confidence band for the TCEV diffusion
process, indicating that the TCEV model is likely to be a good candidate model for describing the
normalised EWI114 dynamics.

5 Zero Coupon Bond Pricing

We use Bt to denote the value of the savings account at time t, assuming

dBt = rtBtdt , t ≥ 0

and B0 = 1. The adapted short rate process is denoted by r = {rt , t ≥ 0}. In Figure 5 we plot the
covariation between the logarithm of the discounted EWI114 and the US short rate. Notice that the

4 Note, in the following we apply the estimation procedure described above to the EWI114 denominated in
USD. When considering denominations of the EWI114 in other currencies, as suggested in e.g. Ignatieva and
Platen (2012), the results appear to be qualitatively similar.
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absolute values taken by the covariation process are extremely small without exhibiting any clear
trend. It does not seem that the noise processes driving the short rate and the discounted equity index
are significantly correlated. Therefore, for simplicity, we assume that the driving noise source of the
EWI114 and that of the short rate are independent, which leads to the following assumption:

Assumption 5.1 We assume that the Wiener processes W and W̄ are independent.

This makes the market price for short rate risk zero. Of course, the case when the market price of
short rate risk is not zero can be theoretically and numerically handled as well.

5.1 Real World Pricing

To perform pricing under the above discussed model, we are not covered by the classical risk neutral
paradigm since an equivalent risk neutral probability measure does not exist for our specification of
the TCEV model. More precisely, the Radon-Nikodym derivative of the putative risk neutral measure

Λt =
S̄∗0
S̄∗t

can be shown to be a strict local martingale, and is, thus, not a martingale, see Platen and

Heath (2010). Therefore, we briefly recall the basics of the benchmark approach; see Platen and Heath
(2010), which allows pricing and hedging also in cases when the risk neutral approach fails. Here,
S∗t = BtS̄

∗
t denotes the GOP, approximated by the EWI114, at time t, when denominated in units of

the domestic currency (here USD).

Definition 5.1 A price process U = {Ut , t ≥ 0} with E( |Ut|
S∗t

) < ∞ for t ≥ 0, is called fair, if the

corresponding benchmarked price process Û =
{
Ût = Ut

S∗t
, t ≥ 0

}
forms an (A, P )-martingale.

Definition 5.2 We define a contingent claim HT that matures at a stopping time T as an AT −
measurable, non-negative payoff with E(HT

S∗T
|At) <∞ for all t ∈ [0, T ].

Following the benchmark approach, see Platen and Heath (2010), the minimal price process UHT ={
UHT
t , t ∈ [0, T ]

}
that possibly replicates a hedgeable contingent claim HT , is given by the conditional

expectation

UHT
t = E

(
S∗t
S∗T
HT |At

)
for t ∈ [0, T ], which represents the real world pricing formula. The process

ÛHT =

{
ÛHT
t =

UHT
t

S∗t
, t ∈ [0, T ]

}

is an (A, P )-martingale and, thus, by Definition 5.1 UHT constitutes a fair price process. In the case of
not fully replicable claims Du and Platen (2014) obtain also the real world pricing formula employing
the concept of benchmarked risk minimization, where benchmarked profit and losses are orthogonal
to benchmarked traded wealth.

For calculating prices of derivatives, recall that for the TCEV model we have the SDE (2.7) for the
discounted GOP and

S̄∗t = Z
1

2−2a

ϕ(t) ,
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where Z = {Zϕ , ϕ ≥ 0} is a squared Bessel process of dimension ν = 3−2a
1−a and the function ϕ(t) =

(1−a)α2−2a
0 c2

2η
(exp {2(1− a)ηt} − 1). Furthermore, by setting ∆ϕ(t) = ϕ(T )− ϕ(t), we define

λ(t, S̄∗t ) =
(S̄∗t )

2(1−a)

∆ϕ(t)
and x(t) =

(
K

BT

)2(1−a) 1

∆ϕ(t)
,

and note that in distribution we have

Zϕ(t)

ϕ(t)
d
= χ2

ν(
x

ϕ(t)
) ,

where χ2
ν(µ) denotes a non-central chi-square distributed random variable with ν degrees of freedom

and non-centrality parameter µ.

We now present generic formulas for prices of zero coupon bonds under the short rate models discussed
in this paper.

5.2 Zero Coupon Bond Prices

By Assumption 5.1, the price of a fair zero coupon bond is given by

P (t, T ) = E

(
S∗t
S∗T
|At

)
= E

(
S̄∗t
S̄∗T

Bt

BT

|At
)

= M(t, S̄∗t , T )G(t, rt, T ) , (5.1)

where

M(t, S̄∗t , T ) = E

(
S̄∗t
S̄∗T
|At

)
= Ψ(λ(t, S̄∗t ),

1

1− a
, 0) , (5.2)

see Miller and Platen (2005), and

G(t, rt, T ) = E
(
Bt

BT

|At
)
. (5.3)

Recall that Ψ(·, ν, µ) denotes the cumulative distribution function of a non-central chi-square dis-
tributed random variable with ν degrees of freedom and non-centrality parameter µ. In the following,
G(t, rt, T ) will be referred to as the short rate contribution (SRC), whereas M(t, S̄∗t , T ) defines the
market price of risk contribution (MPRC).

5.3 Tractable Short Rate Models

In this section we obtain zero coupon bond pricing formulas for the Vasicek, CIR, 3/2, Dothan and
Craddock-Lennox short rate models.
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5.3.1 Vasicek Model

In the Vasicek model, the short rate is given by the SDE

drt = (a− brt)dt+ σdWt ,

where a, b and σ are assumed to be positive. The following set of formulas is derived in Musiela and
Rutkowski (2005). These employ the Laplace transform of

∫ T
t rsds, which gives the formula for the

zero coupon bond.

Lemma 5.1 Conditional on At, the integral
∫ T
t rsds is a Gaussian random variable with mean

µ(t, T ) =
a

b
(T − t) + (rt −

a

b
)

(
1− exp{−b(T − t)}

b

)
,

and variance

σ2(t, T ) =− σ
2

2b3
(1− exp{−b(T − t)})2

+
σ2

b2

(
T − t− 1− exp{−b(T − t)}

b

)
,

i.e. we have

E

(
exp{−u

∫ T

t
rsds}|At

)
= exp{−uµ(t, T ) +

u2

2
σ2(t, T )} .

Setting u = 1, gives the respective formula for the SRC G(t, rt, T ).

5.3.2 CIR Model

The CIR model was introduced in Cox et al. (1985), and we use here a bond price derivation given in
Brigo and Mercurio (2001). Under the real world probability measure P one has the SDE

drt = κ(θ − rt)dt+ σ
√
rtdW

1
t , (5.4)

where r0 > 0 and κ, θ, σ are positive parameters.

The Laplace transform of
∫ T
t rsds, conditional on At, is given by the following formula, see Jeanblanc

et al. (2009), Corollary 6.3.4.2.

Lemma 5.2 The Laplace transform of
∫ T
t rsds satisfies the formula

E

{
exp

{
−u

∫ T

t
rsds

}
|At

}

= exp
{
κ2θτ/σ2

}(
cosh

(
γτ

2

)
+
κ

γ
sinh

(
γτ

2

))−2κθ/σ2
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× exp

(
−2urt

κ+ γ coth(γτ
2

)

)
,

where τ = T − t and γ2 = κ2 + 2uσ2.

To obtain the corresponding SRC G(t, rt, T ), we simply set u = 1.

5.3.3 3/2 Model

The 3/2 model was introduced in Ahn and Gao (1999) and Platen (1999). We set

drt = (prt + qr2
t )dt+ σr

3/2
t dWt ,

where q < σ2

2
and σ > 0 to avoid explosions in rt: Setting Rt = 1

rt
, we obtain the SDE

dRt =
(
σ2 − q − pRt

)
dt− σ

√
RtdWt ,

which shows that the 3/2 model is the inverse of a square-root process. We now use Theorem 3 in Carr
and Sun (2007) to obtain the Laplace transform of the integrated short rate process.

Lemma 5.3 The Laplace transform of
∫ T
t rsds has the form

E

{
exp{−u

∫ T

t
rsds}|At

}
=

Γ(γ − α)

Γ(γ)

(
2

σ2ry(t, p)

)α
M(α, γ,

−2

σ2ry(t, p)
) ,

where

y(t, p) =
∫ T

t
e(t′−t)pdt′ ,

M(α, γ, z) is the confluent hypergeometric function, see Abramowitz and Stegun (1972), with

α = −(
1

2
− q

σ2
) +

√
(
1

2
− q

σ2
)2 +

2u

σ2

and
γ = 2(α + 1− q

σ2
) .

Setting above u = 1 yields the SRC G(t, rt, T ).

5.3.4 Dothan Model

The Dothan model was introduced in Dothan (1978), and we follow in this paper the presentation in
Pintoux and Privault (2011). The short rate is modelled under the real world probability measure P
as a geometric Brownian motion via the SDE

drt = λrtdt+ σrtdWt ,

where σ > 0 and λ ∈ R. Zero coupon bond prices were derived in Pintoux and Privault (2011). We
follow their probabilistic approach and compute the Laplace transform of the random variable

∫ T
t rsds.
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Corollary 5.1 The Laplace transform can be given for all p ∈ R, where u > 0, by the formula

E

(
exp

{
−u

∫ T

t
rsds

}
|At

)
=

8
√
rtu

σ2
√
π3τ

exp(−σ2p2τ/8 + 2π2/(σ2τ))

×
∫ ∞

0

∫ ∞
0

e−2ξ2/(σ2τ) sinh(ξ) sin(4πξ/(σ2τ))√
(z + ξ)(z + ξ−1)

K1(
√

8rtu
√

(z + ξ)(z + ξ−1)/σ)dξ
dz

zp

where τ = T − t.

Proof. The proof can be given in the same way as Corollary 2.2 in Pintoux and Privault (2011). 2

The following result, which involves only a single integration, only holds for p < 1:

Corollary 5.2 The Laplace transform is given for all p < 1, where u > 0, by the expression

E

(
exp

{
−u

∫ T

t
rsds

}
|At

)

= 2e−σ
2p2τ/8

∫ ∞
0

(v2 + 8urt/σ
2)p/2θ(v,

σ2τ

4
)Kp(

√
v2 + 8urt/σ2)

dv

vp+1
.

Proof. The proof can be given in the same way as the one for Corollary 2.3 in Pintoux and Privault
(2011). 2

Also here we obtain the respective SRC by setting u = 1.

5.3.5 Craddock-Lennox Model

In Craddock and Lennox (2007), the following short rate model was analysed using Lie symmetry
groups methods. The respective short rate satisfies the SDE

drt = 2rt
√
ξ cot

(
rt√
ξ

)
dt+

√
2ξrtdW

1
t ,

where r0 ≥ 0. The following function, the fundamental solution to the PDE for the transition density
can be used in bond pricing:

pµ(t, x, y) = exp

{
−(x+ y)

ξt

}( √
x

√
yξt

I1

(
2
√
xy

ξt

)
+ δ(y)

) sin
(
y
√

µ
ξ

)
sin

(
x
√

µ
ξ

) .
Here, I1(·) denotes the modified Bessel function of the third kind of order 1 and δ(·) the Dirac delta
measure. For the required Laplace transform Craddock and Lennox (2007) provide the following result:

Lemma 5.4 The Laplace transform of
∫ T
t rsds satisfies for u > 0 the formula
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E

{
exp

(
−u

∫ T

t
rsds

)
|At

}
= exp

{
− rt(T − t)u

1 + ξ(T − t)2u

} sin
( √

urt√
ξ+ξ3/2(T−t)2u

)
sin

(
rt
√
u√
ξ

) .

By setting u = 1,we obtain the formula for the SRC.

6 Pricing Results

This section demonstrates how zero coupon bonds can be priced using the different models under
consideration. Thereby, we evaluate model performance by comparing model prices and yields for
bonds of different maturities to those observed in the market. In line with the concept of benchmarked
risk minimization of Du and Platen (2014), we will identify the best performing model as the model
that leads to the lowest prices compared to the market and shows benchmarked hedge errors that
are orthogonal to benchmarked primary security accounts. The latter means that the benchmarked
profit and loss and their products with benchmarked savings accounts are local martingales and do
not exhibit systematic trends.

We illustrate the pricing of zero coupon bonds of different maturities corresponding to the tenors of 6
month, 1 year, 2 years, 5 years, 10 years, 20 years and 30 years. Thereby, prices are computed using
the different model specifications, as described in Section 5.3. As an illustration, we compare model
prices to market prices on four different dates that all fall into our estimation period. Market prices
are provided on a monthly basis by Bloomberg for the time period from May 1991 until July 2010.

To obtain a visual impression on how model prices evolve, compared to market prices, we first consider
bond prices and yields 5 on several dates, followed by presenting the summary statistics for the entire
sample. To visualise pricing performance, we consider bond prices and bond yields computed for five
randomly selected dates in our sample period in the left, respectively, the right panel of Figure 6. 6

Market prices and yields are presented using the most solid line. Visually, one observes that all models
fit reasonably well the market data. However, the 3/2 model tends to outperform for many periods
the competing models by leading to the smallest price and highest yields. The Dothan model seems
to perform worst for most of the sample periods.

In addition, Figure 7 shows in the top left panel the market price of risk contribution (MPRC) M(t, S̄∗t ),
which enters the pricing formula (5.1) as a function of time to maturity and power a in the dynamics
of the GOP. The top right panel of Figure 7 shows M(t, S̄∗t ) as a function of time to maturity for
the estimated diffusion coefficient power a = 0.2868, which we obtained in Section 4 when estimating
parameters for the GOP dynamics. The bottom left panel shows the MPRC M(t, S̄∗t ) as a function
of the diffusion power a for a fixed time to maturity of T = 15 years. We observe that for the
estimated parameter set the MPRC remains nearly constant for maturities T up to 12 years (top right
panel). Beyond this period, the market price of risk contribution starts to decrease markedly in value.
Therefore, the MPRC does not impact the zero coupon bond price until medium maturities of the
yield curve. This property of the fair zero coupon bond price results from the fact that the discounted
GOP is a strict local martingale; see Platen and Heath (2010) and Platen and Bruti-Liberati (2010).

5 The yield to maturity R(t, T ) is defined as R(t, T ) = − logP (t,T )
T−t , where P (t, T ) denotes the price at time t

of a zero coupon bond maturing at time T .
6 Figures covering other months from the sample period are available upon request from the authors.
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Fig. 6. Zero coupon bond prices (left panel) and yields (right panel) for bonds of different maturities and five
different dates. Prices are computed under different model specifications (Vasicek, CIR, 3/2, Dothan, C&L).
Market prices are presented using solid lines.
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Fig. 7. Upper left panel: market price of risk contribution to the zero coupon bond price as a function of
time to maturity T and power a in the GOP dynamics. Upper right panel: market price of risk contribution
to the zero coupon bond price for estimated a = 0.2868 and different times to maturity. Bottom left panel:
market price of risk contribution to the zero coupon bond price for constant time to maturity T = 15 years
and different powers a. Bottom right panel: bond price and short rate contribution versus time to maturity.

For the fixed maturity of T = 15 years the MPRC reaches a value of about one for a greater than
0.4, which again indicates that the MPRC does not impact the zero coupon bond price as soon as a
exceeds a particular threshold.

By using the estimated parameters and observed short rate and index value one can for all observation
times (daily) calculate the respective model bond prices. To compare the overall performance of the
competing models, we compute the relative pricing error δτ for all models under consideration. It is
defined as the difference between the model price and the market price, normalised by the market
price, that is,

δτ =
P (t, T )i − P (t, T )m

P (t, T )m
. (6.1)

Here P (t, T )i defines the model price i, i ∈ {Vasicek,CIR,3/2,Dothan,C&L}. P (t, T )m is the market
price and τ is the time to maturity, which we set equal to 6 month, 1 year, 5 years, 10 years, 20
years, 30 years for zero coupon bonds. Note that we are not comparing the absolute value δτ since
we are interested in the direction of the deviation and, thereby, aim to identify the model with the
least expensive bonds compared to other models and the market. Since we use daily data we have a
reasonably large data set.

To compare the performance of the models with respect to the direction of the deviation from the
market price, we consider the summary statistics (mean, median, standard deviation, 5% and 95%
quantiles) for the pricing error δτ defined in equation (6.1). The results are summarised in Table 4,

19



and Figure 9 shows the corresponding box-plots. Here, the negative (respectively positive) sign of
the pricing error indicates that the model undercuts (respectively overshoots) the market price. For
short maturities of 6 month, 1 year and 5 years one observes that the average pricing errors are close
to zero for all considered models. However, the 3/2 and the C&L models lead to negative pricing
errors indicating that these models undercut market prices as well as produce lower prices than the
other competing models. When increasing the time to maturity to 10 years one observes that the
3/2 model outperforms the C&L model based on both, mean and median statistic, and again, both
models lead to prices lower than the market price and lower than those of the other competing models.
For the longest time to maturity of 30 years all models, except the Dothan model, exhibit negative
pricing errors indicating that the market is likely to be overpriced. One notes in Table 4 that the
standard deviations of the pricing errors are for the tenors up to 5 years for all models rather similar.
Remarkably, for the extreme maturities the 3/2 model has a significantly smaller standard deviation.
The 3/2 model leads to the lowest bond price (followed by the C&L model), and thus, outperforms all
competing models for long and extreme maturities.

7 Hedging the Zero Coupon Bond

In this section, we discuss the hedging of the zero coupon bonds. We firstly present martingale repre-
sentations of the benchmarked zero coupon bond price. Using such representation, we discuss a hedging
strategy involving a short maturity zero coupon bond, the savings account and the GOP. Finally, since
we have identified the 3/2 model as the best performing model in the sense that it leads to the lowest
bond prices, we present hedging results obtained by using the respective hybrid model with the 3/2
dynamics for the interest rates and the TCEV dynamics for the discounted index.

7.1 Hedge Ratios for the 3/2 Model

In this section we demonstrate how a zero coupon bond can be hedged by means of dynamic trading
in the short maturity bond, the savings account and the GOP. We restrict ourselves to the hybrid
model with 3/2 dynamics for interest rates. To derive hedge ratios, we use the following notation:

V (rt, t, T ) :=E

(
exp

{
−
∫ T

t
rsds

}
|At

)

=
Γ(γ − α)

Γ(γ)

(
2

σ2ry(t, p)

)α
M(α, γ,− 2

σ2ry(t, p)
) ,

see Lemma 5.3,

u(t, B̂t, T ) = E

(
1

S̄∗T
|At

)
= E

(
B̂T |At

)
= (S̄∗t )

−1Ψ(λ(t, S̄∗t ),
1

1− a
, 0) , (7.1)

see (5.2), where B̂t = Bt

S∗t
. We remark that explicit formulae for V and u were derived in Ahn and

Gao (1999) and Baldeaux et al. (2014), respectively. The following lemma produces a martingale
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representation for the benchmarked zero coupon bond

P̂ (t, T ) =
P (t, T )

S∗t
= E

(
1

BT S̄∗T
|At

)
= E

(
B̂T |At

)
E
(

1

BT

|At
)

=
u(t, B̂t, T )

Bt

V (rt, t, T ) .

Corollary 7.1 Let r = {rt , t ≥ 0} be given by

drt = (prt + qr2
t )dt+ σr

3/2
t dWt ,

and

dS̄∗t = c2α2−2a
t

(
S̄∗t
)2a−1

dt+ cα1−a
t

(
S̄∗t
)a
dW̄t ,

then

d
(
P̂ (t, T )

)
=

1

Bt

(
∂V (rt, t, T )

∂rt
σr

3/2
t u(t, B̂t, T )dWt + V (rt, t, T )

∂u(t, B̂t, T )

∂B̂t
(−cα1−a

t

(
S̄∗t
)a−1

B̂tdW̄t)

)
.

Proof. It follows that V (rt, t, T ) 1
Bt

and u(t, B̂t, T ) are martingales under P . Furthermore, W and W̄

are independent, so that V (rt,t,T )
Bt

and u(t, B̂t, T ) are independent. Hence we have by the Îto formula

d
(
P̂ (t, T )

)
=u(t, B̂t, T )d

(
V (rt, t, T )

Bt

)
+
V (rt, t, T )

Bt

du(t, B̂t, T ) .

Again by the Itô-formula and the fact that V (rt,t,T )
Bt

is a martingale it follows that

d

(
V (rt, t, T )

Bt

)
=

1

Bt

∂V (rt, t, T )

∂rt
σr

3/2
t dWt .

We now again use the Itô-formula and the fact that u(t, B̂t, T ) is a martingale

d
(
u(t, B̂t, T )

)
=
∂u(t, B̂t, T )

∂B̂t

dB̂t .

But

dB̂t = d(
1

S̄∗t
) = −cα1−a

t

(
S̄∗t
)a−1

B̂tdW̄t ,

which completes the proof. 2

We now discuss the hedging of a given zero coupon bond

P (t, T ) := S∗tE

(
1

S∗T
|At

)
.

From Corollary 7.1, we have

d
(
P̂ (t, T )

)
= a(t, T )dWt + b(t, T )dW̄t ,
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where a(·, ·) and b(·, ·) are given in Corollary 7.1. We propose to hedge P (t, T ) with longer maturity
using a zero coupon bond with shorter maturity

P (t, TH) := S∗tE

(
1

S∗TH
|At

)
,

where TH << T . From Corollary 7.1, it follows that

d
(
P̂ (t, TH)

)
= a(t, TH)dWt + b(t, TH)dW̄t .

We invest δHt units at time t in P (t, TH), where

δHt a(t, TH) = a(t, T ) ,

i.e. we use P (t, TH) to eliminate the effect of W . Furthermore, we invest δBt at time t in the savings
account, where

δBt (−θtB̂t) + δHt b(t, TH) = b(t, T ) ,
so that δB eliminates the effect of W̄ . Finally, we use the GOP to make the portfolio self-financing, i.e.

dP (t, T ) = δHt dP (t, TH) + δBt dBt + δSt dS
∗
t .

The quantities δHt and δBt can be shown to satisfy the following equations

δHt =
a(t, T )

a(t, TH)
=
∂V (rt, t, T )

∂rt

(
∂V (rt, t, TH)

∂rt

)−1
u(t, B̂t, T )

u(t, B̂t, TH)

and

δBt = − a(t, T )

a(t, TH)

V (rt, t, TH)

Bt

∂u(t, B̂t, T )

∂B̂t

+
V (rt, t, T )

Bt

∂u(t, B̂t, T )

∂B̂t

.

For computing δHt and δBt , we find it useful to note that from equation (7.1) we get

∂u(t, B̂t, T )

∂B̂t

= Ψ(λ(t, S̄∗t ),
1

1− a
, 0)− (B̂t)

2a−2 2(1− a)

∆ϕ(t)
s(λ(t, S̄∗t ),

1

1− a
, 0) ,

where s(·, ν, 0) is a probability density function of a χ2
ν(λ) non-central chi-squared distributed random

variable with ν degrees of freedom and non-centrality parameter λ, see Baldeaux et al. (2014). We also
have

∂V (rt, t, T )

∂rt

=
Γ(γ − α)

Γ(γ)

α

rt

(
2

σ2rty(t, p)

)α
(

2

σ2γrty(t, p)
M(α + 1, γ + 1,− 2

σ2rty(t, p)
)−M(α, γ,− 2

σ2rty(t, p)
)

)
.

where the fact that dM
dz

(a, b, z) = a
b
M(a+ 1, b+ 1, z) is used (Abramowitz and Stegun (1972)).
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Fig. 8. Benchmarked hedge portfolio (upper left panel), estimated fraction of wealth invested for the GOP
(upper right panel), the benchmarked profit and loss (lower left panel) in the hybrid model with stochastic
interest rates as well as the TCEV model with constant interest rates and the product of the benchmarked
profit and loss with the benchmarked savings account (lower right panel).

7.2 Hedging Results

In Section 6 we have identified the 3/2 model as the model which leads, in particular in the long term,
to the lowest prices compared to the market. In this section we will rely on this model when hedging
long dated zero coupon bonds by means of short-maturity zero coupon bonds, the savings account and
the GOP. Since hedge results for other competing models appear to be very similar but lead to a more
expensive hedge than the hybrid model using the 3/2 short rate dynamics, we omit their discussion.

The zero coupon bond to be hedged has long maturity corresponding to about 18 years initially. The
data, covering the time span from 01 January 1990 to 31 December 2008 are available on a daily basis
from Bloomberg. The short maturity (one year) bonds are used as hedge instruments. Their prices
are obtained from the corresponding swap rates 7 using the Nelson-Siegel procedure, as described in
Filipovic (2009). For these purposes, we employ 36 one-year bonds using each bond to cover 6 months:
The first one-year bond corresponds to the time frame from 01 January 1990 to 31 December 1990,
but we only use it for the initial six months period, i.e. from January 1990 to 30 June 1990. The second
one-year bond corresponds to the time frame from 01 July 1990 to 30 June 1991, but we only use it for
the initial six months, i.e. from 01 July 1990 to 31 December 1990, etc. 8 As motivated above, since

7 Swap rates are available on a daily basis from Bloomberg.
8 This is done because for time to maturity less than six months, bond prices are close to unity, and do not
exhibit enough variability to be useful for hedging.
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results presented in Section 7.1 assume that the hedging portfolio is rebalanced continuously, it seems
to be relevant to employ daily data, rather than monthly data for hedging purposes. 9

In the following, we show for the hybrid model with 3/2 short rate dynamics and TCEV discounted
GOP dynamics the resulting hedge performance. We compare the results with those for a model with
constant interest rate and TCEV dynamics for the discounted GOP. Figure 8 shows the benchmarked
hedge portfolio (left upper panel), the estimated fraction of wealth invested in the GOP (right upper
panel) and the benchmarked profit and loss (P&L) (lower panel) for the long maturity bond starting on
01 January 1990 and maturing in December 2007, under daily reallocation in the short-maturity bond,
the savings account and the GOP. From the graph of the benchmarked hedge portfolio we observe that
the model with constant interest rates produces a more expensive hedge than the hybrid model with
stochastic interest rate. In fact, for the hybrid model with stochastic interest rates, the price turns
out to be more than 50% lower than for the model with constant interest rates. Close to maturity,
the portfolio with constant interest rates performs only slightly better. Furthermore, we observe that
the underlying assumption regarding the benchmarked nonnegative portfolio to be a martingale, see
Definition 5.1, seems to be better satisfied for the hybrid model, than for the model with constant
interest rates. Note that all benchmarked nonnegative portfolios are supermartingales. The fraction
of wealth π∗t invested in the EWI114, adjusted on a daily basis is shown in the right upper panel of
Figure 8. The hybrid model suggests to invest a larger fraction of wealth in the GOP, compared to the
model with constant interest rates. In this manner it exploits more the equity premium present in the
index. Finally, when defining the benchmarked P&L as the benchmarked gains from trade plus the
initial benchmarked price minus the benchmarked price, the 3/2 model with stochastic interest rates
as well as the model with constant rates result in benchmarked P&Ls that are both of comparable
size and rather small. These are visualised in the lower left panel of Figure 8. The maximum absolute
benchmarked P&L amounts to less than 0.00005 for both model specifications. The lower right panel
of Figure 8 displays the product of the benchmarked P&L with the benchmarked savings account for
both models. In both cases one does not observe any systematic trend. This suggests that there is no
evidence that the benchmarked P&L and its product with the benchmarked savings account could not
be a local martingale, as requested by benchmarked risk minimization, see Du and Platen (2014).

8 Conclusion

This paper applies the benchmark approach (Platen and Heath (2010)) to pricing and hedging of
long dated bonds, which are of crucial importance in the management of long term asset-liabilities
in life insurance and annuity businesses. A hybrid approach to the modelling dynamics of the joint
discounted growth optimal portfolio (GOP) and the short rate is introduced. It employs the real world
pricing methodology of the benchmark approach under which the GOP is used as numéraire portfolio
or benchmark and the real world probability measure as pricing measure. We compare a variety of
tractable short rate models including the Vasicek, CIR, 3/2, Dothan and C&L models. For modelling
the discounted GOP we apply an extension of a time dependent constant elasticity of variance (TCEV)
model. Using non-parametric kernel-based estimation we fit the dynamics of the discounted GOP and
the short rate. It turns out that the power of the diffusion coefficient function for the short rate
dynamics appears to be close to 3/2, which makes the 3/2 model more realistic than other models.

When applying the benchmark approach to pricing long dated zero coupon bonds of different maturities

9 Hedging performance has also been tested using diversified indices on a monthly basis, however, the daily
hedging produces clearly better results.
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using different model specifications, we found that the market tends to be overpriced. That is, the
model prices are generally lower than the respective market prices. Furthermore, we identify the 3/2
short rate model as the best performing model in the sense that it is leading to the lowest bond
prices compared to the market, as well as, the competing models. Finally, we demonstrate that the
zero coupon bond payoff can be successfully hedged within the benchmark framework by using three
instruments: a short-maturity zero coupon bond, the savings account and the GOP. In particular, the
least expensive hedge was achieved by using the 3/2 short rate model. It indicates that this hybrid
model provides the most cost-efficient hedge. This model is highly tractable: It can be easily fitted and
explicit formulas for bond prices and hedge ratios are available. Further research on the modelling,
pricing and hedging under the benchmark approach will provide effective solutions to challenging risk
management problems of long dated claims as they occur, for instance, for pension guarantees and
variable annuities.

Table 4
Pricing error δτ = P (t,T )i−P (t,T )m

P (t,T )m computed for different model specifications (Vasicek, CIR, 3/2, Dothan and

C&L) and different maturities (6 month, 1 year, 5 years, 10 years, 20 years and 30 years). The results for
the best performing model (the least expensive compared to the market) based on mean and median for each
maturity are indicated in bold letters.

Model Vasicek CIR 3/2 Dothan C&L
6-month maturity

mean 0.00036 0.00036 -0.00029 0.00067 -0.00029
std.dev 0.00094 0.00094 0.00103 0.00074 0.00077
median 0.00036 0.00035 -0.00023 0.00054 -0.00039
5%-Q -0.00095 -0.00096 -0.00187 -0.00027 -0.00132
95%-Q 0.00232 0.00231 0.00139 0.00236 0.00146

1-year maturity
mean 0.00204 0.00200 -0.00015 0.00316 -0.00060
std.dev 0.00351 0.00352 0.00316 0.00300 0.00302
median 0.00220 0.00218 -0.00015 0.00293 -0.00075
5%-Q -0.00305 -0.00312 -0.00514 -0.00123 -0.00480
95%-Q 0.00882 0.00881 0.00539 0.00858 0.00455

5-years maturity
mean 0.04908 0.04622 -0.00797 0.07082 -0.01113
std.dev 0.04236 0.04251 0.05671 0.05088 0.04009
median 0.03926 0.03628 -0.01523 0.06923 -0.01238
5%-Q -0.00822 -0.01004 -0.09241 -0.01066 -0.07497
95%-Q 0.13057 0.12900 0.08754 0.15315 0.05793

10-years maturity
mean 0.16789 0.15438 -0.04696 0.25182 -0.02787
std.dev 0.10811 0.10768 0.13730 0.15127 0.08886
median 0.14526 0.13113 -0.07378 0.22012 -0.03565
5%-Q 0.03104 0.01781 -0.22311 0.02458 -0.16163
95%-Q 0.37994 0.36598 0.25032 0.48341 0.13947

20-years maturity
mean 0.23024 0.1863 -0.34269 0.56986 -0.18914
std.dev 0.25683 0.2502 0.14513 0.36089 0.16616
median 0.16296 0.1194 -0.36058 0.50857 -0.22827
5%-Q -0.07341 -0.1075 -0.54098 0.04172 -0.39284
95%-Q 0.77952 0.7224 -0.10517 1.15016 0.16426

30-years maturity
mean -0.38529 -0.42268 -0.79296 0.00336 -0.64277
std.dev 0.21099 0.19978 0.06356 0.31659 0.12500
median -0.45070 -0.48261 -0.80518 -0.04761 -0.67854
5%-Q -0.61573 -0.63849 -0.87569 -0.43931 -0.77820
95%-Q 0.06737 0.00777 -0.66829 0.59847 -0.36915
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Fig. 9. Box-plots for the in-sample pricing errors δτ = P (t,T )i−P (t,T )m

P (t,T )m for zero coupon bonds computed for

different model specifications (Vasicek, CIR, 3/2, Dothan and C&L) and different maturities (6 month, 1 year,
5 years, 10 years, 20 years and 30 years).
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