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Abstract

The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily

conserved proteins in humans. Members of this family are unusual, existing as both

monomeric soluble proteins and as integral membrane proteins where they function

as chloride selective ion channels, however no function has previously been

assigned to their soluble form. Structural studies have shown that in the soluble

form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they

have an active site with a conserved glutaredoxin monothiol motif, similar to the

omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like

glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4

demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a

substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine

residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce

sodium selenite and dehydroascorbate in a glutathione-dependent manner.

Previous electrophysiological studies have shown that the drugs IAA-94 and A9C

specifically block CLIC channel activity. These same compounds inhibit CLIC1

oxidoreductase activity. This work for the first time assigns a functional activity to

the soluble form of the CLIC proteins. Our results demonstrate that the soluble form

of the CLIC proteins has an enzymatic activity that is distinct from the channel
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activity of their integral membrane form. This CLIC enzymatic activity may be

important for protecting the intracellular environment against oxidation. It is also

likely that this enzymatic activity regulates the CLIC ion channel function.

Introduction

The Chloride Intracellular Channel (CLIC) proteins are highly conserved in

vertebrates, with the following six members found in humans: CLIC1 [1], CLIC2

[2], CLIC3 [3], CLIC4 [4, 5], CLIC5 [6] and CLIC6 [7]. The CLICs exist as both

globular soluble and as integral membrane proteins. These proteins are known to

spontaneously transit from their soluble state into an integral membrane form,

where they can act as anion selective channels [4, 8–10]. CLIC1 channel

conductance is regulated by a number of factors including cholesterol [11], redox

[12, 13] membrane phospholipid composition and pH [9, 10].

Determining the cellular function of the CLICs in vertebrates has proven

difficult due to the presence of six members, suspected of functional redundancy

in knock-out model systems [14]. To date, knock-out mouse models have been

established for CLIC1 [15, 16] CLIC4 [17, 18] and CLIC5 [19] with each

demonstrating distinct phenotypes. From such studies, it is postulated that

individual CLIC protein members are involved in regulation of processes

including cell growth, cell division and apoptosis [18–22] acidification of

intracellular organelles [23, 24], formation of stereocilia [19] and development of

the organ of Corti [25, 26].

Structural studies have shown that in their soluble form the CLIC proteins are

members of the glutathione S-transferase (GST) fold family of proteins [8, 27].

The GSTs can be divided into at least twelve classes of multifunctional enzymes

that exist largely as dimeric proteins in the cytosolic environment of cells [28].

They are well known for their ability to catalyse the conjugation of glutathione

(GSH) to exogenous toxins and xenobiotics, and therefore vital in the

detoxification processes within cells [29]. They are also involved in the synthesis

of prostaglandins [30], and facilitate the intracellular transport of hydrophobic

compounds [30]. GSTs are reported to have additional functions including the

binding of bilirubin and carcinogens, and their over-expression in tumour cells

was found to contribute to anticancer drug resistance [29, 31, 32].

The GST- omega class proteins, as distinct to other GSTs, exhibit glutathione-

dependent thiol transferase activity and have been shown to catalyse the

glutathione-dependent reduction of dehydroascorbate (DHA) [33, 34]. The

enzymatic activity of the GST-omega proteins resembles that of the glutaredoxins

[33], which are structurally related to the thioredoxins and are involved in the

reduction of intracellular disulfides by catalysing reactions that couple GSH,

NADPH and glutathione reductase (GR), contributing to the maintenance of a

healthy redox environment within cells [29, 35, 36]. Like the GSTs, members of
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the glutaredoxin family contain a GSH binding site within their conserved

thioredoxin domain known as the G-site [33]. The glutaredoxin G-site is either

monothiol, containing a single cysteine residue [Cys-Gly-Phe-Ser] or dithiol

[Cys-Pro-Tyr-Cys]. Protein members in the latter group generally act as thiol-

disulfide oxidoreductases (via a dithiol mechanism), while the monothiol

members act as detoxifying or stress response proteins, by forming mixed

disulfides between GSH and target proteins, or low-molecular weight thiols [37].

X-ray crystallography revealed that the soluble form of CLIC1 adopts a three

dimensional fold similar to the GST superfamily, and in particular the GST-

omega class [8, 27]. The CLIC1 structure consists of an all alpha-helical C-

terminal domain and an N-terminal thioredoxin domain comprised of four beta-

strands sandwiched between three alpha-helices that contains the glutaredoxin-

like monothiol motif [Cys-Pro-Phe-Ser]. The active cysteine residue, Cys24 in

CLIC1, was found to covalently bind GSH in a manner similar to the GST-omega

proteins that possess a monothiol G-site [Cys-Pro-Phe-Ala] [33]. Interestingly,

CLICs 2 and 3 [8] contain the dithiol motif [Cys-X-X-Cys], while CLICs 1, 4, 5

and 6 contain the monothiol active site motif [Cys-X-X-Ser] as shown in Fig. 1.

Due to the high level of structural homology between the CLIC proteins and

these well-known redox enzymes [33], it has been speculated that the soluble form

of the CLICs would also function as oxidoreductase enzymes [8, 14]. However

experimental evidence in support of this hypothesis has until now, not been

forthcoming. Our current study demonstrates for the first time, that members of

the CLIC protein family exhibit glutaredoxin-like enzymatic activity.

Furthermore, our findings provide evidence of a functional activity for the soluble

form of these proteins, which appears to be autonomous to their well-

characterised membrane ion channel activity, potentially classing them as

moonlighting proteins [38]. Finally, we observe that small molecules known to

inhibit the CLIC1 ion channel also inhibit its enzymatic activity. This suggests that

the enzymatic function of the CLIC proteins may regulate their ion channel

activity.

Materials and Methods

Materials

The following reagents were all purchased from Sigma Aldrich: Recombinant

thioredoxin-1 (Trx-1) and glutaredoxin-1 (Grx-1) Thioredoxin reductase (TrxR)

from rat liver and glutathione reductase (GR) from yeast, reduced glutathione

(GSH), sodium selenite (Na2SeO3), reduced nicotinamide adenine dinucleotide

phosphate (NADPH), dehydroascorbic acid (DHA), 2-hydroxyethyl disulphide

(HEDS), cholesterol (99% purity), dithiothreitol (DTT), indanyloxyacetic acid

(IAA-94), anthracene-9-carboxylic acid (A9C), and 4,49-diisothiocyano-2,29stil-

bene-disulfonic acid (DIDS), bovine plasma thrombin.

CLIC Proteins as Oxidoreductases

PLOS ONE | DOI:10.1371/journal.pone.0115699 January 12, 2015 3 / 19



Glutathione Sepharose 4B resin was purchased from GE Healthcare

(Piscataway, USA). Saxitoxin was supplied by National Research Council (NRC)

of Canada Institute of Marine Biosciences (Halifax, NS, Canada).

Expression and Purification of wild-type recombinant CLIC1,

CLIC2, CLIC4, HcTrx-5 and CLIC1 mutant proteins

Wild-type CLIC1 protein was expressed in E. coli BL21 (DE3) using the His-tag

pET28a vector (Novagen) as previously described [39]. Briefly, the transformed

cells were grown and incubated in 2xYT media at 37 C̊ overnight. The cells were

then induced with 1 mM IPTG and allowed to grow for a further 16 hours at

20 C̊. Soluble fractions of cell lysates were run over Ni2+-NTA resin

chromatography column. The bound CLIC proteins were cleaved from their His-

tag and eluted from the column following incubation with 30 NIH units of bovine

plasma thrombin per litre of cell culture for ,16 hours. 1 mM DTT was added

and CLIC1 protein further purified on a Superdex-75 high performance Size

Exclusion Chromatography (SEC) column at 4 C̊. The CLIC1 monomer fraction

was eluted and stored in 100 mM KCl, 1 mM NaN3, 20 mM HEPES pH 7.5),

containing 1 mM DTT in order to maintain the CLIC1 protein in its reduced

monomeric form.

CLIC2 in the pGEX-2T vector was expressed in E. coli BL21(DE3). This vector

coded for an N-terminal GST purification tag from which the full length CLIC2

product was then cleaved via an internal thrombin digestion site. Cells were grown

in 2xYT media at 37 C̊ and induced at mid-log phase with 1 mM IPTG before

harvesting after an additional 16 hours of growth at 15 C̊. Soluble CLIC2 was

purified on glutathione sepharose 4B resin (Amersham Bioscience, USA) and

eluted from the column in phosphate buffered saline after overnight incubation

with bovine plasma thrombin (,1 NIH unit/mg). 0.3 mM DTT was then added

and the CLIC2 sample further purified on a Superdex 75 SEC column equilibrated

in 100 mM KCl, 1 mM NaN3, 20 mM HEPES, pH 7.5.

Fig. 1. Conserved G-site motif in members of the CLIC family. Multiple sequence alignment of human proteins: CLIC 1-6, GST-omega and Grx1-3.
Highlighted in grey is the glutaredoxin/thioredoxin active site motif (G-site) (Accession numbers: CLIC1 (CAG46868), CLIC2 (CAG03948), CLIC3
(CAG46863.1), CLIC4 (CAG38532), CLIC5 (AAF66928), CLIC6 (NP_444507), GST-omega (AAF73376), Grx-1 (BAAO4769), Grx-2 (AAK83089) and Grx-3
(AAH0528289) obtained from ClustalW.

doi:10.1371/journal.pone.0115699.g001

CLIC Proteins as Oxidoreductases

PLOS ONE | DOI:10.1371/journal.pone.0115699 January 12, 2015 4 / 19



CLIC4 protein was purified as previously described [40]. HcTrx-5 protein from

Haemonchus contortus was also purified as previously described [41]. Mutant

versions of CLIC1-C24A and CLIC1-C59A in pET28a vector were made using the

site-directed mutagenesis kit (Stratagene, USA) and purified as previously

described [39]. The mutant CLIC1-C24S in pGEX-4T-1 (AMRAD-Pharmacia)

vector was made and purified as previously described [13, 39].

Purification of recombinant CLIC1 dimer

CLIC1 dimer was prepared as previously described [40]. Briefly, CLIC1 was

oxidised by the addition of H2O2 to a final concentration of 2mM in phosphate

buffered saline (pH7.4). The protein was incubated under oxidizing conditions for

2 hours, after which the dimer form was isolated via size exclusion chromato-

graphy as outlined previously [42].

Enzyme assays

Assays were performed in 96-well plates, with a final volume of 200 uL and

absorbance read using a BioTek microplate spectrophotometer. All kinetic

analyses were performed using Microsoft Excel 2010 and GraphPad Prism 6.

HEDS Enzyme Assay

Assays were carried out following the method described in [35]. Briefly, either

reduced monomeric CLIC1 (WT), oxidised dimeric CLIC1 (WT), CLIC1-C24A,

CLIC1-C24S, CLIC1-C59A, CLIC2, CLIC4, HcTrx-5 or Grx-1 (5 uM final

concentration) was added to 5 mM potassium phosphate buffer (pH 7)

containing 1 mM EDTA, 250 uM NADPH, 50 nM GR and 1 mM HEDS. The

mixture was incubated for 5 minutes at 37 C̊, with the reaction initiated by

addition of 1 mM GSH. Consumption of NADPH was monitored at A340 nm.

HEDS Enzyme Assay for CLIC Proteins in the Presence of

Thioredoxin Reductase

5 uM final concentration of either CLIC1, CLIC2, CLIC4 or Trx-1 were added to

0.1 M Tris-HCl buffer (pH 7.5) containing 1 mM EDTA, 200 uM NADPH and

50 nM TrxR (from rat liver). The mixture was incubated for 5 minutes at 37 C̊,

with the reaction initiated by addition of 750 uM HEDS. Consumption of

NADPH was monitored at A340 nm.

Insulin Disulfide Reductase Assay

The insulin disulfide reductase assay was used to measure the reduction of insulin

disulfides by dithiothreitol (DTT) in the presence of Trx-1 or CLIC1 following the

method described in [43]. The reaction was performed in 50mM Tris, 2 mM

EDTA buffer (pH 7.5) containing 0.13 mM insulin, 0.33 mM DTT and 5 uM of

CLIC Proteins as Oxidoreductases
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Trx-1 or CLIC1. The change in solution turbidity due to insulin reduction was

measured by monitoring absorbance at Lambda650 nm over a period of 30 minutes.

Glutathione-S-Transferase enzymatic activity of CLIC1

The enzymatic activity of CLIC1 monomeric (WT) protein in the presence of 1-

chloro-2,4-dinitrobenzene (CDNB); p-nitrophenyl acetate and trans-octenal were

performed following protocols described in [44–46]. Briefly, CLIC1 protein

(5 uM final concentration) was added to a mixture containing 0.1 M potassium

phosphate buffer (pH 6.5), 1 mM substrate (CDNB or p- nitrophenyl acetate or

trans-octenal). The reaction was initiated by addition of 1 mM GSH. The GS-

substrate conjugate was measured at A340 nm.

Glutaredoxin-like Activity of CLIC1 using Sodium Selenite

The assay was performed following the method in [47]. Briefly, CLIC1 or Grx-1

(5 uM final concentration) was added to a mixture of 0.1 mM Tris-HCl buffer

(pH 7.5) containing 1 mM EDTA, 200 uM NADPH, 50 nM GR, 0.1 mg/mL

bovine serum albumin and 15 uM sodium selenite. The mixture was incubated

for 5 minutes at 37 C̊, with the reaction initiated by addition of 50 uM GSH.

Consumption of NADPH was monitored at A340 nm.

Assay for Dehydroascorbic Acid Reductase (DHAR) Activity of

CLIC1

The assay was performed following method in [48]. Briefly, CLIC1, CLIC4 or

HcTrx-5 (5 uM final concentration) was added to 137 mM sodium phosphate

buffer (pH 7.5), containing 0.35 mM NADPH, 50 nM GR and 2 mM GSH. The

mixture was incubated for 1 minute at 30 C̊ prior to initiation of reaction with

1 mM DHA. Consumption of NADPH was monitored at A340 nm.

Ion Channel Blocker Drug and Cholesterol Experiments

CLIC1 (5 uM final concentration) was incubated with 10 uM IAA-94, A9C, DIDs

or saxitoxin for 1 hour prior to performing the HEDS enzyme assay as outlined

above. Similarly, 5 uM of CLIC1 in 156 uL of 5 mM potassium phosphate buffer

(pH 7.5) was incubated with 0.4, 0.8 and 1.6 mM of cholesterol (34 mM

cholesterol dissolved in ethanol) for 1 hour on ice (as previously described in

[11]) prior to use of the protein sample in the HEDS assay.

Results

CLIC proteins show glutathione-dependent oxidoreductase

activity

HEDS, 2-hydroxyethyl disulphide, is a low molecular weight compound found to

act as a specific and sensitive substrate, suitable for use in assaying glutaredoxin

CLIC Proteins as Oxidoreductases
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enzymatic activity [35, 36, 49]. The HEDS assay was therefore employed in the

current study to test for similar enzymatic activity by members of the CLIC

protein family. As seen in Fig. 2A, consumption of NADPH increases (resulting in

a decreased A340 nm) in the presence of the positive controls HcTrx-5 and Grx-1,

well-known glutathione-dependent oxidoreductases. Similar consumption of

NADPH is observed when CLIC1, CLIC4 and to a lesser extent CLIC2, are

substituted for HcTrx-5 in the HEDS assay. This indicates that all three proteins

reduced the HEDS substrate when coupled with glutathione (GSH) and

glutathione reductase (GR) in the presence of NADPH. However CLIC2 is less

active than CLIC1 and CLIC4.

Upon oxidation, soluble CLIC1 forms a non-covalent dimer, where the N-

terminal thioredoxin fold domain structure is completely altered, disrupting the

glutaredoxin-like active site [13]. The dimer is stabilized via an intramolecular

disulfide bond between Cys24 and Cys59. The Cys59 residue is unique to CLIC1

and corresponds to a conserved alanine residue in the other five CLIC proteins

[13]. The dimer form of CLIC1 was therefore tested for oxidoreductase enzymatic

activity in the HEDS assay system. The CLIC1 dimer was found to reduce the

HEDS substrate and demonstrated a similar rate of oxidised NADPH production

of 0.02 uM/min, compared to monomeric CLIC1, with a rate of 0.03 uM/min

(Fig. 2B).

Substitution of the HEDS substrate with the following three common GST

substrates CDNB, p-nitrophenyl acetate or trans-octenal, in the enzyme assay

system, with CLIC1 wild type protein did not result in any detectable enzymatic

activity (data not shown).

Oxidoreductase activity of CLIC proteins is glutathione-dependent

Thioredoxins were the first antioxidants identified in cells, and are known to act

as general protein disulfide reductase enzymes [50–52]. Thioredoxins are generally

maintained in a reduced state in cells by accepting protons from NADPH via the

enzyme thioredoxin reductase (TrxR) [35, 36, 52]. In order to determine whether

CLIC protein enzymatic activity is linked to the TrxR system, CLIC1, CLIC2 and

CLIC4 were assayed in a system containing TrxR, in place of GR. As expected,

thioredoxin-1 (Trx-1) reduced the HEDS substrate when coupled with TrxR,

evidenced by a reduction in NADPH absorbance over time, as seen in Fig. 3A.

However CLIC1, CLIC2 and CLIC4 were unable to reduce the HEDS substrate in

the presence of TrxR, demonstrating the CLIC proteins are not substrates for the

thioredoxin system and hence cannot regain their reduced state.

Another common assay used to assess oxidoreductase activity by the

thioredoxins is the insulin disulfide reductase assay as described by Holmgren

(1979) [43]. In this assay the reduction of insulin disulfides by DTT is catalysed by

Trx-1, resulting in increased solution turbidity via precipitation of the free insulin

B chain [43]. CLIC1 was found to have no catalytic activity in this system when

compared to Trx-1 (Fig. 3B).

CLIC Proteins as Oxidoreductases
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Conserved Cys24 is essential for CLIC1 oxidoreductase activity

In CLIC1; Cys24 represents the monothiol residue within the enzyme active site.

In order to confirm Cys24 is the key active cysteine residue involved in CLIC1

oxidoreductase activity, mutant versions of CLIC1 were assayed, with Cys24

mutated to either alanine (C24A) or serine (C24S). In addition, Cys59, which

forms an intramolecular disulphide bond with Cys24 in the CLIC1 dimer, was

also mutated to alanine (C59A), and tested in the HEDS assay. Both Cys24

mutants of CLIC1, C24A and C24S were found to have no enzymatic activity in

Fig. 2. Oxidoreductase activity of the CLIC proteins. Oxidoreductase enzymatic activity was measured using 5 uM of CLIC proteins or HcTrx-5 or Grx-1,
250 uM NADPH, 1 mM HEDS and 50 nM GR. The reaction was initiated by the addition of 1 mM GSH and the absorbance of NADPH was monitored at
A340 nm. Reaction conditions: 5 mM potassium phosphate with 1 mM EDTA, pH 7, at 37˚C. (A) Activity of CLIC1, CLIC2 and CLIC4 compared to HcTrx-5
and Grx-1 (positive controls). (B) Activity of 5 uM CLIC1 dimer compared to 5 uM CLIC1 monomer. Error bars represent the S.E. of at least three
independent measurements.

doi:10.1371/journal.pone.0115699.g002

Fig. 3. Glutathione-dependant activity of the CLIC proteins. (A) The reaction mixture contained 2 mM EDTA in 0.1 M Tris-HCl (pH 7.5), 5 uM reduced
CLIC1, CLIC2 or CLIC4 (WT) protein, 200 uM NADPH, 750 uM HEDS, 50 nM TrxR and 5 uM Trx-1 (included as a positive control). (B) Insulin disulfide
reductase assay to determine catalytic activity of Trx-1 and CLIC1 based on solution turbidity monitored by A650 nm over 30 minutes.

doi:10.1371/journal.pone.0115699.g003
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the HEDS assay (Fig. 4A). However the mutant C59A was capable of reducing the

HEDS substrate in the presence of GR with a Km of 1.25¡0.65 uM, which is

indistinguishable to that of the wild type CLIC1 monomer (Km of

1.28¡0.65 uM) (Fig. 4B).

Sodium Selenite and Dehydroascorbic acid as substrates for

CLIC1

Glutaredoxins are known to act on a number of substrates such as selenium

compounds [47] as well as dehydroascorbic acid (DHA) [35, 36, 48]. In order to

investigate the ability of CLIC1 protein to reduce the selenite anion, a

glutaredoxin-like activity assay was carried out in the presence of human Grx-1 or

CLIC1 (WT) and sodium selenite (Na2SeO3) as the substrate, with the reaction

initiated by the addition of GSH. In the presence of CLIC1 or Grx-1, the

consumption of NADPH is stoichiometric to the selenite anion, which suggests

that CLIC1 was also able to reduce sodium selenite, in a manner similar to Grx-1

(Fig. 5A). Titration of the sodium selenite substrate between (0–16 uM)

demonstrated that CLIC1 has a relatively high Km (4.81¡3.00 uM) (refer to

Fig. 5B), compared to the normal concentration of selenium found in most cells

(,1 uM) [53]. This would suggest that the binding affinity of CLIC1 to sodium

selenite is low and as a result, product formation is dependent on the availability

of sodium selenite.

Glutaredoxins are known to be involved in the reduction of DHA to ascorbate,

which is a vital process for normal cellular function [35, 36]. We investigated the

ability of the CLIC proteins to catalyse the reaction between GSH and DHA. In

Fig. 5C, it can be seen that NADPH consumption increased in the presence of

CLIC1 or CLIC4 and demonstrated similar activity to HcTrx-5, a known

dehydroascorbate reductase (DHAR) from the parasitic worm Haemonchus

contortus [41]. Kinetic studies using 5 uM CLIC1 protein and different

concentrations of DHA (0-6 uM) indicate a linear relationship (Fig. 5D). This

indicates CLIC1 has a strong binding affinity for DHA, suggesting soluble CLIC1

would be saturated by DHA under normal intracellular conditions.

Inhibition of CLIC1 enzymatic activity by chloride ion channel

blocker drugs but not cholesterol

IAA-94, A9C and DIDS are known chloride ion channel blockers.

Electrophysiological studies have shown that both IAA-94 and A9C block CLIC1

ion channel activity in cells, while DIDS had no effect [22]. In vitro studies

confirm that IAA-94 inhibits CLIC channels produced by adding recombinant

soluble CLIC1 to artificial bilayers [8, 9, 51]. As seen in Fig. 6, both IAA-94 and

A9C completely blocked the enzymatic activity of CLIC1, while DIDS had no

effect. In addition, a known sodium ion channel blocker, saxitoxin, was found to

have no effect on the enzymatic activity of CLIC1 in the HEDS enzyme assay.

CLIC Proteins as Oxidoreductases
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We have recently shown that cholesterol is critical for the insertion and

conductance of CLIC1 in artificial membrane systems and that pre-incubation of

CLIC1 with 0.4, 0.8 or 1.6 mM cholesterol prior to addition of the protein to

membranes inhibited CLIC1 membrane insertion and ion conductance [11]. We

therefore assessed whether cholesterol could also regulate CLIC1 enzymatic

activity. Pre-incubation of the protein with cholesterol resulted in no change in

CLIC1 enzymatic activity in the HEDS enzyme assay (refer to Fig. 7).

Discussion

Members of the CLIC family are soluble proteins capable of spontaneously

inserting into lipid membranes - in particular intracellular membranes - to form

chloride selective ion channels [8, 14, 20, 54]. To date, characterization of these

proteins has focused on their membrane insertion and their ion channel activity,

with no distinct function assigned to their soluble form.

In the current study we have shown that CLIC proteins can act as glutathione-

dependent oxidoreductases in the HEDS enzyme assay. This assay system is

considered a characteristic assay for the glutaredoxin proteins which act as

enzymes by deglutathionylating the mixed disulphide between glutathione (GSH)

and the beta-mercaptoethanol region of the HEDS reagent [55]. This in vitro

demonstration of Grx-like activity for CLICs 1, 2 and 4 suggests the soluble form

of these proteins may act to catalyse the reduction of disulfides and thus function

as oxidoreductases in cells (Fig. 2A). The glutaredoxin-like activity of CLIC1 was

further supported by its lack of activity in the common Trx disulfide reductase

Fig. 4. Comparison of the oxidoreductase activity of CLIC1 (WT) monomer and CLIC1-Cys mutants. (A) The reaction contained 1 mM EDTA in 5 mM
potassium phosphate (pH 7), 250 uM NADPH, 50 nM GR, 1 mM HEDS and 5 uM of reduced CLIC1 (WT), CLIC1-C24A, CLIC1-C24S or CLIC1-C59A. The
mixture was incubated for 5 mins at 37˚C before initiation of the reaction with the addition of 1 mM GSH followed by monitoring NADPH absorbance at
A340 nm. Error bars represent the S.E. of at least three experimental repeats. (B) A reaction of 5 uM of CLIC1 (WT) reduced monomer or CLIC1-C59A
protein, 250 uM NADPH, HEDS (0, 0.25, 0.5, 1, 2, 4 or 6 mM) and 50 nM GR. The reaction was initiated by the addition of 1 mM GSH and the absorbance
of NADPH was monitored at A340 nm. The reaction conditions where 5 mM potassium phosphate with 1 mM EDTA, pH 7, at 37˚C.

doi:10.1371/journal.pone.0115699.g004
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assay (Fig 3B), as well as, its lack of demonstrable enzymatic activity against the

common GST substrates, CDNB, p- nitrophenyl acetate and trans-octenal.

Several dithiol glutaredoxins (e.g. human Grx2) have been found to perform

diverse activities, including being reduced by thioredoxin reductase (TrxR) as well

as GSH and glutathione reductase (GrxR) [56]. However CLICs 1, 2 and 4 were

not reduced by the selenoenzyme, thioredoxin reductase (TrxR) (Fig. 3A). Of

particular note was CLIC2, which as a dithiol protein containing the additional

cysteine residue in its enzyme active site, may be expected to show similar activity

to these dithiol Grxs. Given the lack of activity by all three CLIC proteins, one

Fig. 5. Sodium selenite and dehydroascorbic acid as substrates for CLIC1. (A) The oxidoreductase enzymatic reaction using sodium selenite as a
substrate was performed in 0.1 mM Tris-HCl (pH 7.5) with 1 mM EDTA containing 200 uM NADPH, 50 nM GR,15 uM sodium selenite, 0.1 mg/mL BSA and
5 uM CLIC1(WT) reduced monomer or 5 uM Grx-1 as a control. The reaction was initiated by the addition of 50 uM GSH at 20˚C with consumption of
NADPH measured at A340 nm. Error bars represent the S.E. of at least three experimental repeats. (B) The reaction was performed in 0.1 mM Tris-HCl
(pH 7.5) with 1 mM EDTA containing 200 uM NADPH, 50 nM GR, 5 uM CLIC1 (WT) reduced monomer and sodium selenite (0, 1, 2, 4, 8 or 16 uM). The
initiation of the reaction was achieved by adding 50 uM GSH at 20˚C where the consumption of NADPH was measured at A340 nm. (C) The oxidoreductase
enzymatic reaction using DHAR as a substrate was performed in 137 mM sodium phosphate buffer (pH 7.5) containing 2 mM EDTA, 0.35 mM NADPH,
50 nM GR, 2 mM GSH and 1 mM DHA. The reaction was initiated after addition of 5 uM reduced CLIC1, CLIC4 or HcTrx-5 (as control). Consumption of
NADPH was measured at A340 nm. Error bars represent the S.E. of at least three experimental repeats. (D) DHAR activity of the CLIC proteins was
determined using 137 mM sodium phosphate buffer (pH 7.5) with 2 mM EDTA, 0.35 mM NADPH, 50 nM GR, 2 mM GSH and DHA (0, 0.25, 0.5,1, 2, 4 or
6 uM). The reaction was initiated after the addition of 5 uM CLIC1 (WT) protein and the NADPH consumption was monitored at A340 nm.

doi:10.1371/journal.pone.0115699.g005
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could speculate that they have GSH-dependent enzymatic activity that is distinct

to the dithiol glutaredoxins, however further comparative studies are needed in

order to ascertain a distinct CLIC enzymatic profile.

Of the three CLIC proteins studied, CLIC2 demonstrated the lowest level of

enzymatic activity in the HEDS assay, compared to either CLIC1 or CLIC4. We

note that a previous study found no significant enzymatic activity for CLIC2 in

the HEDS enzyme assay [57]. The apparent lower activity of CLIC2 compared to

Fig. 6. Effect of chloride ion channel inhibitor drugs on the oxidoreductase enzymatic activity of
CLIC1. 5 uM of CLIC1 reduced (WT) or HcTrx-5 protein was incubated with 10 uM IAA-94, A9C, DIDS or
Saxitoxin for ,1 hour prior use of the protein in the assay. The enzyme assay mixture contained 250 uM
NADPH, 1 mM HEDS, 50 nM GR in 5 mM potassium phosphate buffer with 1 mM EDTA, pH 7, at 37˚C. The
consumption of NADPH was monitored at A340 nm post addition of 1 mM GSH. Error bars shown represent the
S.E. of at least three experimental measurements.

doi:10.1371/journal.pone.0115699.g006

Fig. 7. Effect of cholesterol on the enzymatic activity of CLIC1. 5 uM of CLIC1 monomer (WT) protein was
incubated with 0.4, 0.8 and 1.6 mM cholesterol for ,1 hour prior to its addition to a reaction mixture of 250 uM
NADPH, 1 mM HEDS, 50 nM GR in 5 mM potassium phosphate buffer with 1 mM EDTA, pH 7, at 37˚C. The
consumption of NADPH was monitored at A340 nm post addition of 1 mM GSH. Control included all the
reaction components including 1.6 mM cholesterol, except with no CLIC1 protein. The error bars shown
represent the S.E. of at least three experimental measurements.

doi:10.1371/journal.pone.0115699.g007
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CLIC1 and CLIC4 may be related to the variation in the active site between these

proteins, with CLIC2 containing the dithiol motif (CPFC), whilst both CLIC1 and

CLIC4 contain the monothiol motif (CPFS). However, further studies are needed

in order to establish a distinct dithiol catalytic mechanism by CLIC2 compared to

the monothiol members CLIC1 and CLIC4.

Enzymes exhibiting a glutaredoxin-like activity require an active site cysteine.

In the glutaredoxin system, the first cysteine residue in the G-site motif is reported

to attack the sulfur atom in disulfide bridges - as occurs within glutathione mixed

disulfide bonds - and therefore promotes thiol transfer [58]. Similarly the GST-

omega and -beta groups demonstrate glutaredoxin-like activity in the HEDS

enzyme assay with the first cysteine residue in their G-site also found to be

essential for their enzymatic activity [59, 60]. Our mutagenesis results show that

Cys24 is the essential catalytic cysteine, as expected from the CLIC1 structure [8].

Although Cys59 is essential for the transition of CLIC1 from the reduced

monomer to the oxidized dimer state [13], mutation of Cys59 to alanine does not

alter the enzymatic activity of the soluble monomer. This confirms Cys24 in

CLIC1 as the central redox catalytic residue, essential for the enzymatic function

of CLIC1, with no apparent involvement of Cys59. We note that mutation of

either Cys24 or Cys59 to serine reduced the ability of CLIC1 to form ion channels

in artificial bilayers [13]. Thus the cysteine residues that are essential for the

enzymatic activity of the soluble form of CLIC1 are a subset of the cysteines that

are necessary for its ion channel activity.

The glutathione-dependent oxidoreductase activity of the oxidised CLIC1

dimer is an unexpected finding (Fig. 2B). The structure of this soluble form of

CLIC1 is radically different from the reduced CLIC1 monomer [13]. The N-

terminal domain of the dimer no longer resembles glutaredoxin and the reactive

cysteine, Cys24, forms a disulphide bond with Cys59. Thus, this dimeric form of

CLIC1 should not possess the same catalytic activity as the reduced monomer.

The solution of this conundrum comes by examining the assay conditions, which

include 1 mM GSH. These reducing conditions will rapidly convert the CLIC1

oxidised dimer back into the reduced monomeric form as the structural transition

is fully reversible [13]. Thus, over the thirty minute timeframe of the experiment

the enzymatically active molecule will be the regenerated CLIC1 monomer. For

clarity, we note that the oxidised CLIC1 dimer does not have a GST fold and

certainly does not resemble the GST dimer, which is the normal form for all GSTs

including GST-omega class [33].

Phylogenetic studies have shown that the plant dehydroascorbate reductases

(DHAR) are the closest relatives of the CLIC protein family [61]. Thus, these plant

DHAR proteins are predicted to adopt a three-dimensional structure similar to

the soluble form of CLIC1 [61, 62]. A recent study has demonstrated

oxidoreductase activity in the DHAR from Populus tomentosa [61]. Upon alanine

substitution of the Cys20 residue which is located in the predicted GSH binding

site in the protein PtoDHAR2, its reductase activity was abolished [61]. These

findings correlate closely with our results for the two CLIC1 mutants (C24A and

C24S) (Fig. 3), where both were inactive in the HEDS enzyme assay, while the
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C59A mutant remained active. We also note that a DHAR from Arabidopsis

thaliana, AtDHAR1, has been cloned and transiently expressed in mammalian

cells where it shows CLIC-like ion channel activity [62].

In cells, selenide, which is the reduced form of selenium, undergoes redox

cycling with oxygen and thiol causing a significant production of reactive oxygen

species (ROS) [51]. In turn, increased generation of ROS and superoxides leads to

cellular damage and can induce apoptosis. According to our findings (Fig. 4A),

CLIC1 is able to metabolise sodium selenite in a manner similar to Grx-1. This

finding supports the hypothesis that soluble CLIC1 may function as an

antioxidant and an oxidoreductase enzyme in cells. Ascorbic acid or vitamin C is

found in high concentration in some body tissues and is believed to be an effective

scavenger of superoxide, hydroxyl radical and hydrogen peroxide [47]. The metal-

catalyzed oxidation products of ascorbate are DHA and H2O2, which are highly

toxic to cells and have been linked to many diseases including senile cataracts in

ocular lenses [63]. Glutaredoxins, being redox active proteins, demonstrate

DHAR activity by catalyzing the reactions between GSH and DHA and thus

reduce the DHA back to ascorbate. CLIC1 demonstrated the same oxidoreductase

activity by reducing DHA (Fig. 5B). From these results, one could speculate that

members of the CLIC family serve a protective function in cells by metabolizing

substrates such as sodium selenite and DHA and thus maintaining the

intracellular levels of ascorbate. Given the low binding affinity of CLIC1 for

sodium selenite, DHA is the more likely physiological substrate for the CLIC

proteins. DHAR activity of the CLIC proteins is consistent with their close

evolutionary relationship with the plant DHAR proteins [14, 61, 62]. If this

putative activity by the CLICs is considered within the context of the ocular lens,

reduction of DHA by CLIC proteins could aid in preventing selenite cataract

formation.

An intriguing finding of our work was the inhibitory effect on CLIC1’s

enzymatic activity in the HEDS enzyme assay by the chloride ion channel blockers

IAA-94, A9C but not DIDS. These findings are consistent with the structural and

evolutionary relationship between the GST and CLIC families as IAA-94 is a

homologue of ethacrynic acid [64] which is a known inhibitor of the enzymatic

activity of a number of GSTs [65] a point also noted on the determination of the

structure of CLIC1[8].

The inhibition of CLIC1 enzymatic activity coincides with previous electro-

physiological experiments that demonstrated CLIC1 channel activity was blocked

by IAA-94 and A9C but not by DIDS [22]. CHOK1 cells grown in the presence of

IAA-94 and A9C resulted in their arrest at G2M phase of the cell cycle, but this

was not the case for DIDS. Given that these drugs are membrane permeable, their

cellular inhibitory effects and arrest of the cell cycle progression, could be due to

inhibition of CLIC1 enzymatic activity rather than directly blocking the integral

membrane form of the CLIC1 channel.

This concurrence of enzymatic inhibitory profile and channel function blockage

has profound consequences. The structural transition of CLIC1 from the soluble

form to the integral membrane form is likely to result in a complete disruption of
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the thioredoxin-like N-terminal domain of the CLIC1 GST fold [8, 12, 13, 42, 54].

Thus, if IAA-94 binds to the soluble form of CLIC1 in the cleft between the N-

domain and the C-domain, as seen in the structures of GST proteins [66, 67] then

it is unlikely to bind directly to the integral membrane form as this binding site is

unlikely to exist. This leaves two possible explanations for the inhibition of the

CLIC1 ion channel by IAA-94: (1) the inhibitor binds to a new, distinct site on the

integral membrane form of CLIC1 or (2) the inhibition of the channel is mediated

by the inhibition of the enzymatic activity of the soluble form of CLIC1. Binding

of the inhibitors to a new, distinct site seems unlikely, albeit possible. The more

likely explanation is that the inhibitors, IAA-94 and A9C, act by binding near the

active site of the soluble form of CLIC1 thus inhibiting its enzymatic activity and

consequently its channel activity.

How can the soluble CLIC1 enzyme control the ion channel function of the

membrane-inserted form of CLIC? In vitro experiments have shown that CLIC1

(and other CLIC proteins) alone can form electrophysiologically active anion

channels in artificial bilayers where the electrophysiological properties resemble

those of the CLIC currents observed in cells [9, 10, 15]. Thus, in vitro, the CLIC

protein must auto insert into the bilayer to form the channel. It is possible that the

CLIC1 enzymatic activity can either control this membrane insertion process or

that once some CLIC1 has inserted and formed a channel, then the remaining

soluble CLIC1 controls the channel via its enzymatic activity. In cells, it is also

possible that the soluble CLIC enzyme controls other channels as has been shown

for CLIC2 and the ryanodyne receptor Ca2+ release channel [57]. We note that it

is still possible that the inhibitors, IAA-94 and A9C, bind directly to the channel

form of CLIC1, however, this site would be different from the one observed in the

soluble form, as noted above.

Glutathionlyation is a reversible modification of proteins in which a mixed

disulfide bond forms between glutathione (GSH) and a cysteine residue of a

protein. It is considered a critical process for signal transduction as well as cellular

homeostasis, where it plays an essential role in protecting cysteine residues from

oxidative damage [68, 69]. Glutaredoxins and GST-omega-1 were found to

catalyse protein deglutathionylation in order to maintain cellular sulfhydryl

homeostasis [59, 69]. Recent studies suggest that the change in glutaredoxin levels

affect protein glutathionylation status and, subsequently, downstream signalling

events [61].

Given these activities by the Grxs, we could also expect that members of the

CLIC family are capable of carrying out target protein de/glutathionylation

activity. This is supported by the X-ray crystallographic studies that reveal an open

slot adjacent to the GSH binding site in CLIC1 that is large enough to

accommodate a protein substrate [23]. De/glutathionylation may well be the

mechanism by which CLIC proteins control ion channel activity and other cellular

processes [14, 70].

In conclusion, members of the CLIC protein family, which are known to

function as ion channels when integrated into membranes, also demonstrate

monothiol glutaredoxin-like enzymatic activity when in their soluble form. This
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supports an additional role for these proteins in the cellular processes of

detoxification and oxidoreduction. Furthermore, the enzymatic activity of CLIC1,

appears to be distinct to its ion channel activity, as demonstrated by cholesterol’s

regulation of the latter activity but not the former, which would support

classification of the CLICs as moonlighting proteins [38]. Finally, the fact that the

same CLIC1 channel blockers inhibit CLIC1 enzymatic function suggests that the

enzymatic properties of CLIC1 may also control the function of the channel form.
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