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Abstract—This paper presents a Sliding Window approach to
viewpoint selection when exploring an environment using a RGB-
D sensor mounted to the end-effector of an inchworm climbing
robot for inspecting areas inside steel bridge archways which
cannot be easily accessed by workers. The proposed exploration
approach uses a kinematic chain robot model and information
theory-based next best view calculations to predict poses which
are safe and are able to reduce the information remaining in an
environment. At each exploration step, a viewpoint is selected
by analysing the Pareto efficiency of the predicted information
gain and the required movement for a set of candidate poses.
In contrast to previous approaches, a sliding window is used to
determine candidate poses so as to avoid the costly operation
of assessing the set of candidates in its entirety. Experimental
results in simulation and on a prototype climbing robot platform
show the approach requires fewer gain calculations and less robot
movement, and therefore is more efficient than other approaches
when exploring a complex 3D steel bridge structure.

I. INTRODUCTION

It is estimated that there are more than 42,000 steel bridges
in the European Union, 270,000 in the United States [1]
and an estimated 4,000 in Australia. Regular inspection and
maintenance of bridges present considerable challenges to
workers due to the threat of moving traffic, and working both
at heights (Figure 1a) and in confined spaces (Figure 1b).
Advances in robotics and sensor technology are beginning to
make it possible to automate increasingly complicated tasks,
such as robotic surface inspection [2]. However, traversing
a steel bridge environment requires that a robot be able
to transfer between surfaces with all possible orientations,
negotiate rivets and go through small manholes. A 7DOF
inchworm manipulator design [3] with magnetic footpads for
climbing steel structures has been developed and field-tested
in steel bridge environments.

There are many challenges associated with placing a robot
in an unknown environment to autonomously perform an
inspection task. Generally in industry, robotic manipulators
are used in controlled and known areas where infrastructure
is built around them or tasks are brought to them. However,
in the case of a bridge inspection task, it is not possible
for the environment to be restructured for the robot. Thus,
the robot must have the capability to generate a map of the
environment for two purposes: (a) to enable the robot to
further explore while avoiding collisions and (b) to convey
information about the geometry and condition of surfaces back

(a) (b)

Fig. 1. (a) Condition inspection required inside the arch indicated; (b) Worker
performing inspection inside the confined space of the archway.

to the inspector for further analysis and storage in an asset
management system.

In order for a map of the environment to be useful for
robot motion planning and surface inspection, the map needs
to accurately encapsulate the 3D surface geometry. The map
also needs to contain information about the occupancy state
(i.e. existence of surfaces) and allow for the integration of
surface condition and material-type information. Therefore, an
approach is required to safely, efficiently and autonomously
explore and build a 3D map of an initially unknown area, such
as the environment in Figure 1b. It is important to explore in
such a way that the map is generated online and is a high-
quality 3D representation that accurately represents the up-to-
date state and layout of the environment.

II. RELATED WORK

There has been significant interest in robot mapping in
the robotics community for many years. In particular, SLAM
has been used for building small and large scale maps [4].
Exploration and geometry mapping in 2D, 2.5D or 3D using a
mobile robot equipped with sensors such as laser range finders
and stereo cameras is a extensively researched field [5]. Often
the focus of such work is a robot moving on a 2D plane to
build 2.5D or 3D maps of an environment [6], or the focus is
localisation [7] rather than on generating highly-accurate 3D
maps of the geometry of surfaces.

Exploring the surfaces in a 3D environment using a sensor
mounted on a robot manipulator is challenging since the sensor
needs to be positioned anywhere in the 3D environment to
collect detailed information about the geometry and surface



condition, while keeping both the sensor and the manipulator’s
kinematic chain in freespace that is known to be empty
(i.e. unoccupied). In the specific scenario addressed in this
paper, it is necessary to determine a sequence of discrete
viewpoints where the manipulator can position a sensor to
gather information for generating a 3D map with the required
quality. The robot manipulator movements used to position
the sensor in a partially known environment must be safe and
efficient, so as to avoid potential collisions with known objects
or objects that may be present in currently unknown regions.

Mapping techniques using robot manipulators [8], [9], [10]
to produce quality surrounding maps or part models, typically
have pre-programmed robot movements or have historically
been time consuming. When a manipulator’s configuration
space is explored [11], the exploration process facilitates path
planning by sensing the surrounding space that affects the
ability to plan safe paths - resulting in the discovery of the
occupancy of space in the immediate vicinity of the robot
manipulator without offering a guarantee about map complete-
ness [12]. Coverage and next best view (NBV) algorithms for
manipulators in obstacle-free and known environments need to
be extended to address the problem of gathering information
while also considering collision-free exploration. One such
extension was presented in [13] with a fixed base eye-in-hand
manipulator setup being used to identify the structural elements
in an environment. This approach has three drawbacks that
make it unsuitable for the current mobile system: 1) it relies
upon a large number of information gain calculations to be
computed at every iteration; 2) viewpoints are selected without
considering possible time-consuming robot joint movements;
and 3) the sensor minimum range issue is disregarded because
of the sensing hardware.

This paper presents the Autonomous eXploration to Build a
Map - Sliding Window (AXBAM SW) approach that extends
the manipulator-based exploration algorithm from previous
work on selecting viewpoints to map a surrounding environ-
ment [13]. Instead of using an exhaustive search to find a suit-
able viewpoint, a sliding window is used to first select a subset
of candidate viewpoints. The approach incorporates a sensor’s
minimum range for improved information gain predictions, as
well as selecting viewpoints in nearby configuration space to
reduce a robot’s joints movement. AXBAM SW’s information
gain calculator can also enable a planner to compare potential
robot base locations for exploration. The remainder of this
paper is organised as follows. Section III details the proposed
approach to predicting exploration viewpoints, planning the
movements, and generating a map. Section IV presents exper-
imental results using both simulated and data collected in our
laboratory. Finally, Section V provides concluding remarks.

III. METHODOLOGY

Prior research [13] into an exploration approach for ex-
ploring with a fixed-base industrial robotic manipulator found
that an information theoretical approach to exploration could
be used to estimate the potential geometric information gain
given a sensor’s position and orientation. A brief overview of
exploration information theory is presented henceforth.

An environment to be explored can be divided into nv
equally sized, independent voxels (volumetric pixels), anal-
ogous to “occupancy grids” that can be used to generate

maps given incomplete sensor data [14]. Each voxel has a 3D
position in space and a probability of occupancy. A voxel’s
probability of occupancy will take one of the three states:
freespace, unknown and occupied (i.e. containing a surface).
Where jX is a discrete state variable, the probability that
the jth voxel is occupied is contained in a tristate buffer,
P (jX = jxo) for the voxels, j ∈ {1, . . . nv}, and states,
o ∈ {free, unknown, occupied}. Therefore the probability
of occupancy is P (jxo) ∈ {0, 0.5, 1}, if the jth voxel’s
occupancy state, jxo is respectively {freespace, unknown,
occupied}. The occupancy state of freespace and occupied are
complementary (i.e. the probability of freespace is 1−P (jxo)).

A standard way to measure information is with the math-
ematical notion of entropy which describes the information
which remains to be discovered. Initially all voxels, except
those in the volume occupied by the robot, are unknown
(P (jxo) = 0.5). In accordance with Shannon’s entropy the
measure of geometric information, H(jX), can be taken of a
voxel where jX is a discrete state random variable that can
take on the occupancy states. Since the ‘unknown’ state occurs
where there is an equal probability of the state being free or
occupied, the state space is effectively reduced to two states
(i.e. a Bernoulli distribution model) and binomial entropy is
used to calculate the information in the jth voxel:

H(jX) = −P (jxo) log
(
P (jxo)

)
−(

1− P (jxo)
)
log
(
1− P (jxo)

) (1)

As the environment is discretised into nv voxels with a
probability of occupancy P (jxo), the geometric information
remaining, H(X), in all voxels with occupancy state vector, X,
can be used as a measure of cumulative information remaining
in all nv independent voxels.

H(X) =

nv∑
j=1

H(jX) (2)

The information remaining is zero only when there is no
uncertainty (i.e. P (jxo) = 0 or P (jxo) = 1). Therefore the
information remaining measure, H(X), is directly related to
the number of unknown voxels, nu.

Exploration by a robot at base location, 0Tb, requires pre-
dictions to be made in order to select a viewpoint which min-
imises the remaining occupancy information. Given an nDOF
manipulator pose, q = [q1, q2, . . . qn]

T and using forward
kinematics, it is possible to compute the position/ orientation
of the end-effector where a sensing tool, such as an Asus Xtion
depth camera is mounted. An end-effector position/orientation
in base coordinate frame can be expressed as a homogeneous
transformation matrix, bTf (q), and computed by performing
transformations using joint angles, qi∀i ∈ {1, . . . n} as,

bTf (q) =

n∏
i=1

i−1Ti(qi) (3)

The transformation matrix between the end-effector and the
sensor is denoted fTs. Together these two matrices de-
scribe the viewpoint in global coordinate frame, 0Ts(q) =
0Tb

bTf (q)
fTs. Henceforth, q will refer to both a particular

robot pose and the resulting viewpoint.

The unknown voxel’s volume of space which can be
sensed, is equivalent to H(X) and is denoted, Vnew(q) since



Fig. 2. Using robot and sensor models, the information gain calculation can
predict voxels that will be penetrated by rays cast from the sensor - and thus
be declared free after the scan. Only the penetration of voxels by the center
ray is shown, along with points on the surface that will be ray-cast to.

this volume is a function of the sensor location. The prediction
of Vnew(q) can be determined by ray casting from the sensor
into the partial map. Figure 2 shows how for each of the
sensor’s depth pixel values, a ray is cast from the proposed
sensor viewpoint, 0Ts(q), through the partially known map
to the extent of the sensing range. Voxels that are penetrated
within the sensor’s minimum range are discarded. If the ray
doesn’t intersect with a known surface, all unknown voxels
(beyond the minimum range) which the ray passes through (up
to its maximum range) are included in the predicted volume,
Vnew(q). If the ray intersects with one or more surfaces then
only the unknown voxels between the sensor and the closest
surface intersection point are included in Vnew(q). Thus, the
geometric information reduction can be predicted for each q.

When selecting the next viewpoint it is necessary to balance
the predicted information gain with the effort needed to
reposition the sensor. Movements between exploration poses
must be safe; i.e. avoid any intersection (collision) of the robot
with obstacles or with unexplored space. In the eye-in-hand 3D
exploration scenario where a sensor is mounted to a manipula-
tor’s end-effector, both the manipulator’s kinematic chain and
the sensor need to be within known freespace. The entire robot
must remain within known freespace throughout the entire path
whereby the manipulator moves from the current pose to the
next viewpoint. Planning a manipulator’s trajectory between
two poses is a well established problem even with many
obstacles in the environment. An established bidirectional
RRT planner [15] computes multiple paths, shortens plans
with Voronoi path shortening, then selects the shortest plan
consisting of a joint movement trajectory. Collision-free poses
and plans can be achieved by performing safety checks in a
map using ellipsoidal virtual bounding fields [16]. The effort
required to move between the current pose and candidate NBV
poses is thus calculable and available for consideration by the
exploration algorithm.

Figure 3 shows how, at each iteration of the exploration
process, the currently available map is analysed so as to
determine the next safe viewpoint. The next pose is chosen
based upon the predicted potential to reduce the information
remaining as well as the effort required to move to this pose.
Using the information gain and the joint movement from the
planner, the poses are ranked and then analysed. Attention
is restricted to poses that are Pareto efficient with regard to
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Fig. 3. The exploration approach includes information gain calculations and
motion planning to select next viewpoints.

gain and effort. A pose, qnbv, is chosen from the Pareto
frontier by selecting the pose with the highest ratio of gain
over effort. Once the new data has been acquired by scanning
at the viewpoint, the map is updated.

Exploration gain calculations, which ray cast into a map,
have been shown to be time consuming [13]. To avoid in-
tractable numbers of these gain calculations inherent to an
exhaustive viewpoint search, it is necessary to select a subset of
n poses, Q = qi∀i ∈ n, such that the small pose set is closely
representative of all possible poses without being intractable.
In [13] a greedy approach was adopted which maximised the
information gain for the entire set of poses, however this was
found to be inefficient, especially when (as is the case in this
application) the robot base is mobile and the robot’s DOF
count is increased. Alternatively, the nearest neighbour could
be selected by analysing the pose set and moving to the nearest
pose in configuration space (C-space) [17]. Randomly selecting
a safe pose from the set would require no gain calculations but
can be expected to be inefficient since it is undirected.

Therefore, this paper makes several important improve-
ments so as to: (a) utilise the sensor model to assist with
information gain estimations such that the poses in Q are
ranked according to ideal information gain; (b) utilise the
robot model so as to compute and avoid poses which are in
collision with obstacles; and (c) a sliding window approach
to select a subset of nmax Pareto optimal viewpoint poses,
Qsw to perform gain calculations on, and planning to (rather
than using the entire pose set, Q). During the exploration
approach, poses are removed from the set Q if they are: (1)
selected for use; or (2) found to result in a collision with
obstacles in the environment; or (3) predicted to have less than
an information gain threshold, Vmin. Algorithm 1 shows the
details of AXBAM SW’s selection of the NBV pose, qnbv,
given the current robot pose, qcurr, the map, M , and the sorted
candidate pose database, Q.

1 2 3 � N-1 N

Subset QSW,1

� M

Full candidate pose set Q

M-1 1 2 3 � N-1 N

Subset QSW,2

� M

Full candidate pose set Q

N+1

(a) (b)

Fig. 4. Sliding window showing the subset of poses which are to be analysed
at an iteration of AXBAM SW. Note unsafe, already used or poses with little
information gain are crossed. a) First subset; b) Second subset after pose 1 is
used to scan.

A subset of poses in a sliding window of interest is



determined, and each of these evaluated, rather than the entire
set. The sliding window consists of a subset of poses such as
Qsw,1 (Figure 4a) from the ordered pose set, Q, where the
poses in Qsw,1 ⊂ Q are analysed, i.e. have their information
gain estimated. Then the robot’s joint rotation angle difference
from the current pose, as well as the predicted information gain
are jointly considered. The next time the viewpoint needs to
be selected from the updated Q, the sliding window is moved,
as shown by Qsw,2 (Figure 4b). Sliding the window over just
the best subset of the sorted Q overcomes the inefficiency
drawback of the previous method when selecting qnbv from
a large candidate pose set.

Considering only a subset of the poses is an improvement
over the exhaustive search (that maximises the information
gain) in two regards: firstly, since the C-space distance is
considered, poses are expected to be closer together and thus
require less movement of the robot. Secondly, since it is a
subset it requires significantly fewer gain calculations than
exhaustively checking the entire set. It was found empirically
that sliding windows size, nmax of 1% of the total pose set
(equivalent to several hundred) is desirable in most cases. The
AXBAM SW algorithm terminates once all candidate poses
have been considered, and have either been used, are are
determined unsafe or can not provide an adequate amount of
new information.

Input: qcurr,M,Q
Output: qnbv, path,Q

1 qnbv = ∅, Vnew = ∅;
2 Q = RemoveUnsafeOrLowGainPoses(Q,M);
3 if Q 6= ∅ then
4 while size(Qsw) < nmax do
5 q← POP(Q);
6 gain = G(q,M);
7 if gain < Vmin then
8 continue;
9 Vnew(q) = gain;

10 PUSH(Qsw,q);
11 rank1 = sort(|Qsw − qcurr|);

rank2 = sort(Vnew);
Qsw = ParetoOptimalSet(rank1, rank2);

12 while 0 < size(Qsw) do
13 q← POP(Qsw);
14 [valid, path] = PlanPath(qcurr,q,M);
15 if valid then
16 qnbv = q;
17 return

18 if Qsw == ∅ then
19 TerminateExploration

Algorithm 1: AXBAM SW Algorithm

To support fusion of multiple scans into surface location
estimates, an adaptive distance field map representation (volu-
metric technique) based on [18], is implemented as a real-time
solution. The distance field is also used to store the occupancy
state of voxels in the map. The output of this iterative data
fusion process is a map which can be rapidly queried. Once
exploration is completed locally at a base location, the normals

on the generated surface map can be sampled. The variation
in normals and the continuity of the surfaces is analysed
using previous work on surface segmentation [19] to find
holes, surface edges, and surface perturbations. Areas near
the boundaries of surfaces are considered as potential future
base locations. Using the presented gain calculation technique
on the state of the map (i.e. the unknown, unoccupied and
occupied voxels), it then becomes possible to estimate the
potential knowledge that can be gained from a candidate base
location.

IV. EXPERIMENTS

In order to test the presented approach, two experiments
have been conducted. Experiment 1 presents the exploration of
two simulated bridge archway tunnel environments in compar-
ison with alternative methods for selecting the next viewpoint.
Experiment 2 presents results from exploring a real environ-
ment built with the dimensions of the target environment, and
with similar surface materials and rivets. The simulations and
control have been run on an Intel Core i7 quad-core (2.7 GHz)
with 4 GB of RAM. Both experiments are conducted using
the same prototype 7DOF degree of freedom climbing robot
model. All joints are revolute, and the Denavit-Hartenberg
parameters of the robot are α = π/2 for odd joint numbers and
α = −π/2 for even joints, and d = [0, 0.14, 0, 0.12, 0, 0.14, 0].
The minimum and maximum ranges of the joint motion are
±90o for all joints except 1 ([q1,min, q1,max] = [−110, 90]o)
and joint 7 ([q7,min, q7,max] = [−110, 90]o). The initial manip-
ulator pose is the same for all experiments. Experiment 2 used
a prototype robot and takes scans using an eye-hand calibrated
Asus Xtion sensor attached to the end-effector.

A. Experiment 1: Exploring Simulated Environments

In this experiment the Method 1: AXBAM SW approach
is compared to three other exploration methods. These are
Method 2: Random Poses, Method 3: Maximum Information
Gain [13], Method 4: C-Space Discretised. A large pose set is
initially constructed offline by sampling each joint 5 or 6 times
in their range. The angle between each joint is chosen to match
the sensor’s vertical FOV. Poses that would cause the robot to
collide with itself or the base are discarded. A pose set, Q of
approximately 50,000 candidate poses are therefore available
for each method to select the next viewpoint pose from, and
for AXBAM SW the sliding window size, nmax = 500. All
methods terminate once 95% of the voxels that can be sensed
(based upon an exhaustive search), have been sensed.

In Method 2: Random Poses, the poses are selected at
random from the candidate set. Although this method does
not perform the time-consuming information gain calculations
(i.e. the selected poses are suboptimal), Method 2 was still
hypothesised to be the least efficient since a large number
of poses and robot movements are expected to be required
to explore the environment. Method 3: Maximise Information
Gain is based upon the previously proposed exploration al-
gorithm [13]. At every viewpoint every possible viewpoint
is checked for information gain and the viewpoint that has
the largest predicted information gain is selected. This was
expected to require fewer viewpoints than the other three
methods since each viewpoint is selected due to the prediction
that it will have the largest information gain. However, this



method has previously been shown to be time consuming
due to the number of gain calculations necessary. Method 3
also does not consider the robot motions required. Thus, it
is expected that the robot movements required per viewpoint
will be significant. Method 4: C-Space Discretised uses a
predetermined set of configuration space (C-Space) poses that
are uniformly distributed within the robot’s C-Space. Each of
these poses is sequentially iterated through.

Two simulated environments (Figure 5a and b) are used
for this experiment. Figure 5a consists of a simple tunnel
environment with 2 walls, a floor and ceiling. Figure 5b is more
complex, consisting of an open tunnel, with 1 wall, a floor
and ceiling, a manhole and a partition plate within the tunnel.
Figures 5c and d show the voxels penetrated from a single
pose using the information gain calculation technique. Note
the voxels from the one scan are in green and the disregarded
voxels (within the sensor’s minimum range) are in red.

Table I shows the results (e.g. average and standard de-
viation, µ(σ) of the number of poses, the voxels gained per
viewpoint, the computation time, and the movement time) for
the two environments with the average of the 4 base locations
shown in Figure 5a and b. In this simulation the movement
times are calculated based upon the robot joints moving at a
maximum of 10RPM. In each environment the robot is placed
at 4 different base locations. The stochastic method, Method 2:
Random Poses is run 10 times at each of these base positions,
so for each environment it is run a total of 40 times and µ(σ)
is shown. The three deterministic methods are run once at each
of the 4 base locations.

(a) (b)

(c) (d)

Fig. 5. The 4 base locations of a single robot in a) Environment 1: simple
tunnel with walls, roof and floor and; b) Environment 2: complex example
containing a partial partition and manhole plate; c,d) A single exploration
scan from a viewpoint at the first base location in each environment.

As predicted, Method 2 requires the least computation
time; however, due to the large number of viewpoints required
it is the least efficient. Method 3 is shown to require fewer
poses on average but has a significant amount of computation
time and chooses poses without regard for the robot move-
ments required. In Environment 1, Method 3 has similar overall

movements (426 seconds worth) to AXBAM SW, despite it
only using 36 poses on average where Method 1 uses 50
on average. Note also that the σ of the poses required for
Method 3 is low since it always requires a similar number of
viewpoints to obtain 95% coverage. In Environment 2, Method
1 AXBAM SW outperforms Method 3 for the 4 base locations.
AXBAM SW required the fewest number of poses and the
least amount of robot motion. Also it requires less planning
time than all except Method 3: Random (as expected). In
general AXBAM SW is always able to terminate with less
iterations and less movement than both Method 2 and Method
4. This is even though on average AXBAM SW takes slightly
longer to determine the next pose, 36 seconds per pose for
Environment 1 and 50 seconds per pose for Environment 2.

B. Experiment 2: Prototype Robot Exploring Environment

In this experiment a prototype climbing robot with identical
DH parameters to the previous experiment is shown in Figure
6a. In this experiment the exploration approach is tested in
a real-world environment. Figure 6b shows a portion of the
occupied region of the occupancy map produced through 53
iterations of exploration. Each gain calculation takes between
30 seconds and 1 minute. In total only 4 minutes was required
for the robot movements. The voxel resolution is 50mm where
in the simulated case it was 100mm. Also the environment size
is slightly larger. In total, 93,870 voxels were sensed, of which
61,502 were found to be unoccupied. This closely matched the
ground truth model of the environment.

(a) (b)

Fig. 6. a) Prototype climbing robot in mock bridge maintenance environment;
b) Resulting map from exploration.

C. Discussion

As shown in these results AXBAM SW is able to select
exploration viewpoints for a mobile manipulator such that
the time to explore is reduced compared to several stochastic
and deterministic alternatives. The completeness and resolution
of the maps that are generated is high (above 95%). The
exploration algorithm succeeds in selecting new and safe
viewpoints to move the entire manipulator so as to explore the
environment in a minimal number of iterations. The overall
outcome of the system is a valid solution for building a map
of the internal archway tunnels for bridge condition inspection.
These maps can also provide a 3D geometric map which can be
integrated with other information including: surface material-
type, surface condition, and high resolution color images. It
would be be interesting to analyse the effect that the sliding
window size has on improving the exploration efficiency. It



Method 1: Method 2: Method 3: Method 4:
Environment 1 AXBAM SW Random Poses Maximum Information Gain C-Space Discretised
Average Poses 50(13) 168(18) 36(6) 130(16)
Voxels Per Pose 75.36 22.42 104.1 28.71
Comp. Time (sec) 1834(586) 783(322) 2961(1403) 1712(840)
Move Time (sec) 492(104) 1931(198) 426(80) 1513(195)

Environment 2
Average Poses 13(4) 117(64) 22(11) 56(26)
Voxels Per Pose 104.37 11.53 61.42 24.15
Comp. Time (sec) 665(244) 460(183) 872(302) 963(762)
Move Time (sec) 139(32) 1230(236) 284(163) 669(307)

TABLE I. EXPLORATION RESULT IN TWO ENVIRONMENTS FROM 4 BASE POSITIONS. RESULTS ARE ROUNDED AND IN THE FORM: µ(σ) .

is noted that the prototype climbing robot faces issues that
mean the end-effector location cannot always be accurately
determined. Map alignment corrections or more ridge joints,
would theoretically improve the map quality. The method
used to determine the next base position can in future be
further optimised to ensure that the exploration is complete.
There are other potential ways to improve the AXBAM SW
approach such as combining it with a search in the nearest
neighbourhood of manipulator’s configuration space.

V. CONCLUSIONS

This paper has presented AXBAM SW, an approach to
autonomously explore an environment using a depth sensor
mounted to the end-effector of a mobile robot. Testing has been
conducted in a steel tunnel environment using a biologically-
inspired climbing robot. The presented exploration and map-
ping approach used the end-effector transform calculated from
a kinematic chain robot model to project rays into a partial
map. Simulation and real-world experimental results were col-
lected which verified the presented algorithm. AXBAM SW
requires fewer sensor scans to observe the environment and
planning takes less time than previous approaches. Safe base
locations can also be calculated at the extremities of the
environment to direct the robot next-base-location exploration
plans. Future work will investigate the combination of nearest
neighbour searches with the presented algorithm to reduce both
the path planning required and the number of gain calculations
that must be performed when determining the next viewpoint.
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