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This paper presents an approach to using noisy and incomplete depth-camera

datasets to detect reliable surface features for use in map construction for a
caterpillar-inspired climbing robot. The approach uses a combination of plane

extraction, clustering and template matching techniques to infer from the re-
stricted dataset a usable map. This approach has been tested in both labora-

tory and real-world steel bridge tunnel datasets generated by a climbing robot,

with the results showing that the generated maps are accurate enough for use
in localisation and step trajectory planning.
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1. INTRODUCTION

Recent advances in robotics and sensor technology increasingly enable ev-

ermore complicated tasks to be automated. When a climbing robot1 must

perform tasks in a three dimensional(3D) environment, for example in-

specting the health of structures1–3 a geometric map is crucial for online

localisation, motion planning and accurately determining foot placements

that avoid certain areas and collisions. Building an accurate map in repet-

itive structured environment such as a tunnel is challenging due to noisy

and incomplete sensor data and the lack of visual features.

Many mobile robot systems that perform 3D geometric mapping and

SLAM4 have been developed using laser range finders and/or depth cam-

eras, combined with scan-matching algorithms to construct 3D volumetric

maps. To overcome occlusions, a 3D map can be generated from multi-

ple locations using manipulator-mounted sensor exploration approaches.5–7

In these cases, data is registered and overlapping parts of several views

are fused together. However, a robot manipulator with the flexibility to
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traverse complicated surfaces, and carry its own adhesion mechanism, has

been found to be subject to sag in its links,1 making sensor data taken from

multiple poses more complicated to fuse than for a rigid industrial manip-

ulator. Noisy and incomplete sensor data, combined with inaccuracies in

the manipulator model, or flexible joints/links, often mean that even after

exploring an environment the geometry cannot be determined with suffi-

ciently high accuracy.

Prior knowledge about structural elements in a workspace has previously

been used for an eye-in-hand sensor configuration mounted on a static base

to identify and localise these elements.8 However, our prior work made

several assumptions that simplified the problem: a) the exact shape of the

templates was known a priori so fused point to template plane ICP could be

performed, and b) a static base meant template locations could be confined

in a limited bounding box. For a mobile climbing robot in a tunnel, where

scans can only happen at certain locations, planes must be detected from

the noisy data necessarily gathered by looking at surfaces at near-parallel

angles (i.e. into the tunnel), and templates need to be created online since

tunnel sizes vary at all locations.

This paper presents an approach that combines plane extraction, plane

clustering, and template matching techniques so as to infer a smooth tunnel

map given incomplete noisy depth datasets. There are two main contribu-

tions of this paper. First, we exploit organised point clouds and local surface

normal features to implement a region growing algorithm for plane extrac-

tion which enhances the speed significantly. Then we combine prior knowl-

edge encoded in a set of variable shaped templates to achieve geometrically

accurate mapping of the environment which can be used to localise the

robot in the environment. The reliable maps generated are currently being

used to map and localise a caterpillar-inspired climbing robot in real-world

repetitive structural tunnel environments. The remainder of this paper is

organized as follows. Section 2 describes the proposed approach to eye-in-

hand map generation, region growing, then template matching. Section 3

presents experimental results using data collected for both simulated and

real-world tunnels and discusses the limitations and possible drawbacks to

the current approach. Finally, Section 4 provides conclusions.

2. Methodology

Given a depth sensor mounted on a robot’s end effector in an “eye-in-

hand” configuration, and the nDOF manipulator pose, q = [q1, . . . qn]T , it

is possible to compute the position and orientation of the sensor, 0Ts(q)
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using forward kinematics. When the sensor is a Kinect-like depth camera it

gives images comprised of a matrix of M×N depths values, D = dm,n∀m ∈
M,n ∈ N . A 3D point is computed using 0Ts(q) for each image pixel with

an index in m, and n, such that in the cameras coordinate frame a R3 point,

pm,n corresponds to the image’s mth collum and nth row.

2.1. Plane Extraction

In a repetitive structural tunnel, we know a priori that the environment

is bounded with four sets of main coplanar plane patches as well as many

smaller plates with rivets connecting these. Extracting planes largely elim-

inates sensor noise, and since the templates required are a set of bounded

planes, plane extraction is fundamental to template matching. The plane

extraction problem is, given N 3D points, {pi}i=1,...N , extract a set of

planes, Πi = {pi,ni} for i = 1, . . .M . Each plane detected should consist

of a set of data including a point that is within that i′th plane’s region, pi

and a normal, ni of i′th plane. The plane model for Πi is

ni · (r− pi) = 0. (1)

Region growing based methods9–11 are the most popular approach for

plane segmentation since they extract bounded plane patches from point

clouds. Our plane growing algorithm is based on10 and consists of several

steps: first, pick three or four adjacent points as a seed plane model and test

their neighbor points, if a neighbor point combines then the plane model is

still a plane, so grow the plane group and update the plane model. Iterate

the test/add step until no point can be added, then a new plane is grown.

The popular coplanar criterion is mean square error (MSE) of plane

fitting and can feed into the plane model update. This operation is time

consuming since a plane fit is required for each test. We present a novel

coplanar judgement and model update which utilises each point’s local sur-

face normal. The coplanar criterion used are, the normal angle between

local surfaces at point and plane, as well as the point-to-plane distance.

‖n∗ · (pnew − r∗)‖ ≤ ε
arccos(nnew, n

∗) ≤ λ (2)

where ε and λ are maximum distance and angle thresholds. The plane model

is updated by averaging all points and their normals, thus significantly

simplifying region growing computations.

Calculating surface normals at each point is generally time consuming.

However, in organised point clouds, the adjacent points in the image are
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the adjacent points in space, and the order is maintained from the original

depth image. We use a fast normal estimate algorithm12 to compute surface

normals using the cross product between two tangential vectors to the local

surface and using integral images to rapidly compute tangential vectors.

A plane model update consists of updating (p∗,n∗). It is straightfor-

ward to prove that the plane centroid is on the optimal plane under MSE.

Additionally, optimal plane normals, n∗ are usually computed with prin-

cipal component analysis; however, an approximate plane normal can be

computed by averaging all points’ normal as

(p∗,n∗) =

(
1

N

N∑
i=1

pi,
1

N

N∑
i=1

ni

)
(3)

then adopting a iterative model update,

p∗N+1 = 1
N+1 (Np∗N + pN+1)

n∗N+1 = 1
N+1 (Nn∗N + npN+1

)
(4)

so only N ,r∗N ,n∗N need to be stored for incremental plane model updates.

2.2. Robust Tunnel Detection

After plane extraction a map of the tunnel (Fig. 1) needs to be generated.

In order to ensure that maps are constrained within expected bounds and

to enable efficiency gains during later trajectory and step planning proce-

dures, tunnel detection uses a combination of prior knowledge and template

matching. Tunnel detection requires that at least four planes are detected.

In the case of looking down a tunnel almost parallel to the surfaces (i.e. the

image plane is not perpendicular to any surfaces), and due to the nature

of a depth camera that projects light and requires a reflection from the

surface, there are often several spurious points detected and the points on

the surfaces are noisy and patchy. However, it turns out that the largest de-

tected planes are the walls, roof and floor planes. Generally the tunnel can

be assumed to follow a rectangular frame as shown in Fig. 1, even though

the interior walls consist of jagged zone planes of varying thickness, and

there are several challenging zones. Tunnel detection must overcome these

issues in order to robustly generate a tunnel map that incorporates prior

knowledge and is idealised for step and path planning.

In order to determine the tunnel width and height, the angle between

the normals of two candidate planes, Πi and Πj can be determined, ni ·nj.

Then, if the normals are approximately in opposite directions, the distance
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Fig. 1. Simulated robot attached to the right wall by its foot (right footpad) while the

sensor-mounted hand (left footpad) looks into the tunnel. Note the simulated tunnel
dataset shown here has been manually reconstructed from raw field scan data. Zones

adjacent to tunnel edges contain rivets, and are therefore referred to as forbidden zones

since the robot must avoid stepping on them. The middle zone plates are the robot’s
moving base. Multi-thickness zones can cause inconsistent tunnel dimensions to be mea-

sured. Rivets on forbidden zones and surface rust can also skew plane normals detected.

between the two planes at the points detected as the center of the planes

can be found by the average of the two point to plane distances as,

D ≈ 1

2

(
ni · pj − ni · pi

|ni|
+

nj · pi − nj · pj

|nj|

)
, (5)

and simplified to, 1
2 (ni +nj) · (pi−pj), since the normals are of unit length.

In order to robustly detect a rectangular tunnel shape in the presence

of uneven wall surfaces, classification and clustering methods are utilised.

Tunnels have geometric structure properties that are known a priori and

exploitable, such as that multiple zones associated with each wall are a plane

shifted by small distances, and all zones are symmetric about the tunnel

axis that extends into the tunnel. The zone plane normals and positions can

thus be dealt with independently since they are uncorrelated. To prepare

candidate zone planes, stringent plane parameters are chosen so as to detect

planes that are small and accurate. This results in a large set of small planes

from the same zone. Initially, each small plane is classified and assigned

to one of the four wall classes: left, right, top and bottom, based on the

plane’s normal orientation. The distribution of the R3 axial components of

the normals in each class can be assumed to follow a Gaussian distribution.

The sample mean becomes the wall normal, and is made more accurate

after outlier rejection based on histogram analysis. The zone’s position on

a wall is then determined by forcing each zone plane normal to be equal

to the sample mean, and performing a statistical analysis on newly formed

planes’ positions. Clustering of the positions is used to categorise zones and
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the cluster’s mean becomes the zone’s position. For each pair of parallel

walls in a tunnel (top-bottom, left-right), the clusters that are the furthest

apart are assigned to be the distance between that set of parallel walls.

If there are too few planes detected that are sufficiently large, then the

robot moves to a different pose, and takes another scan until the tunnel

is detected. Once four walls are detected and dimensions are found to be

within the template threshold for tunnel width and height (given the con-

text from previous scans), then a map is generated and combined with prior

knowledge about forbidden zone locations.

3. Results

Two experiments where conducted in steel bridge tunnel environments us-

ing a 7DOF climbing robot with two cameras mounted to the end effector:

a Structure Sensor depth camera, and a Logitech C930e RGB camera. Fig.

2a shows the robot attached to the roof while scanning into the lab tunnel.

Experiment 1 was conducted in the laboratory, with the robot attached to

the roof or walls, depth data was collected (Fig. 2b) and fused with RGB

and triangulated to generate a mesh (Fig. 2c), then analysed to detect the

tunnel. Experiment 2 was conducted in the field in a steel bridge tunnel

and depth images were collected at 3 different distances (i.e. 1.8m, 3m and

5m) from the manhole as the robot walked along the tunnel. Fig. 2d and

Fig. 2e show field data: a depth image and the fused mesh and tunnel.

(a) (b) (c) (d) (e)

Fig. 2. a) The robot scanning the tunnel from the roof; b) Lab: depth image of tunnel
(aspect ratio altered); c)Lab: fused RGB-D and detected tunnel boundary (blue) and

traversable planes (red); d) Field: depth image (aspect ratio altered); e) Field: fused
RGB-D and resulting tunnel boundary (blue) and main traversable planes (red)

Planes are extracted from VGA (i.e. 640 × 480) frames and all plane

areas and contours are computed in under 100ms, which is real-time enough
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for the intended application. In experiments, the values for parameters in

our Plane Growing and Clustering (PG&C) algorithm are as follows: the

region growing’s point normal to plane normal angle is 4o, and point to

plane distance is 15mm; the point to candidate point distance is 40mm;

the min. points that constitute plane is 40; the min. allowable plane area is

0.004m2; the max. usable range from the sensing plane is 5m; the candidate

search of n2−1 neighboring points has n = 5; the max. allowable differences

are 40mm for parallel wall normals, and 10mm for similar walls.

The results are presented in Table 1. Our PG&C approach is com-

pared to two alternative algorithms: a RAndom SAmple Consensus &

Least Squared Error (R&L) fitting approach13(p.59) that iteratively per-

form RANSAC and returns the result with the LSE; and Qhull algorithm14

(i.e. MATLAB’s convhulln function to determine the bounding minimum

convex set containing the points, then an axial alignment). Processed was

done on an Intel i7-2620M with 8GB RAM. Although speed is not directly

comparable since PG&C was written in C++ while the alternative algo-

rithms are in MATLAB, both PG&C and the Qhull approach can detect

the tunnel from a 640x480 depth image and create a tunnel map at a rate

of approximately 1FPS, whereas the R&L, which is set to iterate 100 times

and output the LSE result, runs at 0.07FPS.

Approach PG & C Qhull RANSAC & LSE

Exp. 1: Lab w̄(σ) h̄(σ) w̄(σ) h̄(σ) w̄(σ) h̄(σ)

Pose 1 824(2.9) 1310(1.8) 849(94.1) 1260(7.8) 752(0.4) 1199(0.7)
Pose 2 827(3.8) 1307(0.8) 803(6.1) 1260(16.1) 751(0.9) 1198(0.8)
Pose 3 824(0.6) 1312(4.2) 827(32.3) 1279(44.8) 751(0.5) 1198(1)

Exp.2: Field w̄(σ) h̄(σ) w̄(σ) h̄(σ) w̄(σ) h̄(σ)

5m to plate 841(1.1) 1234(2.4) 825(10.4) 1174(2.4) 761(2.6) 1099(3.3)
3m to plate 841(3.7) 1225(15.9) 824(14) 1169(11.1) 756(4.6) 1093(9.2)
1.8m to plate 844(1.7) 1213(15.8) 814(5.1) 1155(7.7) 762(1.6) 1083(59.7)

The dimensions of the lab test rig in Experiment 1 are width=0.82m

x height=1.3m. The robot was moved to 3 different poses with 10 depth

frames captured at each. Our PG&C approach’s average width and height

measurements (i.e. w̄ and h̄) were within 12mm of the correct dimensions,

and only had a maximum standard deviation, σ of 4mm. The Qhull method

detected w̄ and h̄ within 49mm of the correct result, however values varied

significantly with σ up to 45mm. The R&L method was the slowest but most

invariant due to the 100 iterations and internal LSE calculation. However,
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R&L constantly underestimated the dimensions (w̄ by 70mm and h̄ by

100mm) since parts of another inner surface were often taken to be part

of an incorrect inner surface. In Experiment 2 data was collected in the

field at 3 locations as the robot walked in a steel bridge with dimensions,

[0.84m x 1.2m]. The locations are indicated by their distance to the manhole

shown in Fig. 2e. A larger distance from the manhole plate means more

tunnel depth data is available for detecting the tunnel, which improves

detection accuracy. Conversely, close proximity to a manhole results in less

data being available to detect the tunnel, and thus poorer results. In the

field, PG&C detected the width correctly and was within 34mm of the

correct height, although the variance was larger than the lab (16mm) due

to the rough, rusted surface condition. The Qhull method once again slightly

underestimated the dimensions with the largest σ=15mm. R&L once again

underestimated the dimensions but with a low variance, except for at 1.8m

where insufficient data resulted in several incorrect detections.

The presented approach has been shown to work well in both lab, and in

the real field environment, where the sensor data was often noisy and sparse

for metal surfaces whose condition and reflectivity varied significantly. The

approach has been shown to have a similarly low variability to a RANSAC

method run over 100 LSE iterations, similar speed as a QHull method, and

the suitably high accuracy in both lab and field environments.

4. Conclusions

This paper presents an approach that uses a combination of plane extrac-

tion, and template matching techniques to infer from the restricted dataset

a usable map. Surface normal features are used which enhance the plane

growing speed significantly. A set of variable shaped templates are built

using prior knowledge, plane clustering and classification. A sufficiently ac-

curate tunnel map is thus generated from noisy and spurious sensor data,

and used to localise a climbing robot in a real-world steel bridge environ-

ment. Future work will combine the approach with an exploration approach

for automatically detecting the tunnel, and extend this method to become

a localisation solution for a climbing robot which is subject to sag.
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