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Abstract. When errors are inevitable during data classification, finding 
a particular part of the classification model which may be more suscep-
tible to error than others, when compared to finding an Achilles’ heel of 
the model in a casual way, may help uncover specific error-sensitive 
value patterns and lead to additional error reduction measures. As an in-
itial phase of the investigation, this study narrows the scope of problem 
by focusing on decision trees as a pilot model, develops a simple and 
effective tagging method to digitize individual nodes of a binary deci-
sion tree for node-level analysis, to link and track classification statis-
tics for each node in a transparent way, to facilitate the identification 
and examination of the potentially “weakest” nodes and error-sensitive 
value patterns in decision trees, to assist cause analysis and enhance-
ment development. 

This digitization method is not an attempt to re-develop or transform 
the existing decision tree model, but rather, a pragmatic node ID formu-
lation that crafts numeric values to reflect the tree structure and decision 
making paths, to expand post-classification analysis to detailed node-
level. Initial experiments have shown successful results in locating po-
tentially high-risk attribute and value patterns; this is an encouraging 
sign to believe this study worth further exploration.  

1 Introduction 

The ultimate goal of this study is to find the most problematic and error-sensitive 
part of a classification model, and this would require the collection, identification and 
comparison of classification statistics of its individual component parts. Decision 
trees have been selected as the pilot model for this study because it is a well-
researched classification model with a simple structure, decisions on attributes and 
values are clearly displayed in a form of branches and nodes, as shown in Figure 1. 



 
Figure 1 - A decision tree example 

  
Using the first branch of the above decision tree as an example: 

alm1 <= 0.57 and aac <= 0.64 and mcg <= 0.73: neg (189.0/6.0) 

This branch contains three nodes with three split point values, (1) <= 0.57 for at-
tribute “alm1”, (2) <= 0.64 for attribute “aac”, and (3) <= 0.73 for attribute “mcg”. 
While all these three split points play a role in leading to the 6 classification errors 
amongst the 189 instances along this classification path in the form of a decision tree 
branch, one key question is, which node and its related attribute and value may have 
been more susceptible to the 6 errors? When expanding this node-specific examina-
tion to all branches of the decision tree model, the question can then generalized as – 
are there some tree nodes more error-prone and error-sensitive than others? If so, can 
the most error-sensitive nodes and their related attributes and values be identified in a 
systematic way? These two questions are now the focus of this study. 

The rest of this paper is organized as follows. Section 2 describes some initial 
questions and thoughts that led to the decision tree digitization idea. Section 3 reviews 
some early influential work that inspired this study. Section 4 outlines the major steps 
in the decision tree digitization process. Section 5 summarizes experiments on five 
datasets. Section 6 discusses the experiment results and their implications. Finally, 
Section 7 concludes the current progress and outlines a plan for future exploration. 

2 Initial issues and background  

Decision trees provide an easy-to-follow graphical view of the classification pro-
cess at a glance, outlines each classification rule from root to leaf step by step in the 
form of node by node. One issue with such visual representation is, when a large da-
taset is used and the decision tree structure becomes complex, its graphical view can 



be clustered and muddled by the full-blown mass of crisscross branches and nodes 
even when pruning is applied. It can obscure the identification of attributes and values 
when detailed analysis is required on certain classification rules and components.  

Another issue is, when node-level statistics are required in such a detailed analysis, 
the visual space reserved for each node on a decision tree may not be the most suita-
ble place to present its node-level statistic values, as this would cluster the presenta-
tion of existing branches and nodes even further, making the node scanning and visual 
interpretation process even more difficult. 

One possible solution to address these issues is, to provide a unique tag for each 
tree node, to collect and maintain the node-level classification statistics away from the 
tree structure, and to link them with their respective node by using the unique node 
tag as the retrieval key. As a result, classification statistics of each node can be stored 
and analyzed without any convoluted addition to the existing tree structure.  

This decision tree digitization method and error-sensitive pattern analysis may 
seem trivial when compared to some major published work as outlined in Section 3, 
but because no such specific analysis has been observed so far, that nevertheless in-
spired this study and the digitization idea development. 

3 Related work  

Decision tree classification and attribute selection methodologies are two key re-
search areas closely related to this study. Amongst the vast number of research litera-
ture and many innovative algorithms on decision trees, the C4.5 model [1] and CART 
model [2] are two benchmarks used as the foundation and guidance for the proposed 
decision tree digitization method. While the C4.5 model utilizes the gain ratio to “di-
vide and conquer” data attributes and values to form a classification tree, the CART 
model makes use of the Gini impurity measure to split the attributes and data values 
to build a decision tree. 

In the area of attribute selection, many of the renowned methodologies, such as In-
formation Gain, Gain Ratio, Gini Index, RELIEF, SFS and SBE algorithm [1-6], as 
well as some newly established techniques such as SAGA [7] and UFSACO [8], they 
have been developed as a pre-process procedure or as an integrated part of the classi-
fication process. One key logic shared by these algorithms is to select and prioritize 
the most informative and differentiating data attributes before or during classification. 
While these methodologies have improved the classification performance in a holistic 
and “macro” way, they are not particularly designed to examine attribute and value 
patterns at an individual node and “micro” level. 

Ongoing research and development have resulted new techniques in data sampling 
and classification process, such as bagging [9], boosting [10] and randomization to 
reduce bias [11], and provided the ground for individual tree models to be incorpo-
rated into an ensemble of tens or hundreds or even thousands of classifiers to achieve 
better performance. For example, the AdaBoost model [12] that adapts a weak learn-
ing algorithm such as a decision tree model as a starting point, then to reweight sam-
ples, retrain and rebuild a new tree after each intermediate learning cycle, and to vote 



in the best performing tree from “the crowd”. RandomForest [13] is another popular 
ensemble approach; it applies the bagging technique to a subset of attributes as well 
as training samples that are randomly selected, to generate new trees via iterations and 
to vote in the best performing tree amongst the peers in “the forest”. The AdaTree 
method [14], the Probabilistic Boosting-Tree method [15], and a combined Bayesian 
model approach [16] are some new additions to the ensemble trend development.  

Compared to standalone decision tree models, ensemble methods provide higher 
accuracy but at the cost of increased complexity and computational resources, the 
clarity and ease of result interpretation have also been reduced [17-18]. Amongst the 
above and other major literatures that have been studied, detailed analysis on error-
sensitive attributes and values had not been apparent. One recent evaluation study on 
error-sensitive attributes (ESA) [19] intended to begin a detailed examination at an 
attribute level based on three specific terms using binary decision trees. The term 
“ambiguous value range” describes the “overlapped” value ranges between Positive 
and Negative instances; the term “attribute-error counter” describes the number of 
misclassified instances of an attribute with attribute values reside in ambiguous value 
ranges; and the term “error-sensitive attribute” describes an attribute that is consid-
ered to be more prone and risky to cause or associate with errors in a data classifica-
tion process. All the above work has provided either the inspiration or the basis for 
the current study, and explained why decision trees have been adopted as the pilot 
model in this initial phase.  

4 The decision tree digitization process 

A decision tree model can be transformed into an array of branches and each 
branch consists of an array of nodes, and each node represents its underlying attribute 
and value’s split point condition. Because each node can be considered as a child 
node from its immediate parent node, and all levels of parent nodes can be traced 
back to the root node as the origin, therefore, each node can be uniquely identified by 
a form of regression or inference process based on its hierarchical position within the 
tree and using the root as the starting point, and a graphical tree can subsequently be 
mapped into a matrix of referential and digitized node IDs, which can link and re-
trieve node level classification statistics for detailed analysis. The following pseudo 
code outlines the digitization process step-by-step:  

Input : a binary decision tree with m branches and each branch contains a varying 
number of nodes, and a dataset with n instances 

Output : an enumerated map of individual node IDs and a collection of node level 
classification statistics 

Process: stage-1 is to enumerate each tree node and produce a map of node IDs; 
stage-2 is to collect classification statistics for individual nodes and using IDs as keys 

Stage-1: construct an enumerated decision tree map 
for 1 to m branches of the decision tree 
  for all nodes in the current branch 



1. if a node is the root  node then assign “1” as the starting value of its node 
ID  

2. if a node is an immediate child node from the root node, then first append 
a “.” to the current node ID as a node delimiter,  then add x to form 1.x as 
its 2nd part of the node ID, x denotes the current number of immediate 
child nodes branching out from the root and increments by 1 by counting 
from left to right, e.g. 1.1 as the 1st child node, 1.2 as the 2nd child node, 
and so on 

3. if a non-root node has child nodes then first append a “.” to the current 
node ID as a node delimiter, then assign 1 to its 1st child node on the left 
as its node ID, assign 2 to its 2nd child node on the right as its node ID; a 
node ID example is: 1.1.2.2.2.1 

Stage-2: traverse and collect individual node level classification statistics 
for 1 to n data instances 
  for 1 to m branches in the enumerated matrix map 
    for all nodes in the current branch 

1. if current instance’s attribute value satisfies current node’s split point val-
ue condition, then continues to next node along current branch 

2. if current node’s split point condition cannot be satisfied, then advance to 
the start of next branch in the map 

3. if end of current branch is reached and the leaf-node condition is satisfied, 
then update and store the node-level statistics using the node ID as the key 
for all nodes of the current branch, and move to the next data instance 

On completion of the tree digitization and statistics collection, a simple ranking of 
the classification error rate by node IDs can then potentially reveal the “weakest” and 
most error-sensitive node in the tree. The word “potentially” has to be highlighted and 
emphasized here. Using a node’s error rate value instead of its error count number 
may avoid the bias towards “heavy traffic” nodes; however, this may unduly magnify 
the “weakness” of some “low traffic” nodes. For example, node-A has been traversed 
by 10 instances with 5 errors and its error rate is 50%, node-B has been traversed by 
100 instances with 48 errors and its error rate is 48%, while node-A is subsequently 
ranked as a “weaker” node than node-B by comparing error rate, this may not neces-
sarily be true when more data are used for testing. In a later stage of the study, signifi-
cant test and threshold value control on selection criteria can be implemented as an 
enhancement measures. 

Nevertheless, this decision tree digitization method is another step forward in the 
study of error-sensitive value patterns in data classification, and results of initial ex-
periments appeared to be supporting this idea.  

5 Experiments  

During the evaluation study of error-sensitive attributes (ESA) [19], five UCI da-
tasets [20], Ecoli, PIMA Diabetes, Wisconsin Cancer, Liver Disorder and Page 
Blocks, were used in the evaluation process. These datasets have been used again in 



the current study so their experiment results can be analyzed and compared side by 
side against the ESA evaluation results. Experiments have been conducted using 
WEKA’s [21] C4.5/J48 decision tree classifier with standard configuration, e.g. con-
fidence factor for pruning is 0.25, minimum number of instances per leaf is 2, MDL 
correction is used and test option is 10-fold cross-validation. 

5.1 Digitization reflects decision trees in a concise and effective way 

A decision tree model for the Ecoli dataset contains 7 branches and 13 nodes, as 
shown in Figure 1. On completion of its digitization, the digitized form of branches 
and nodes is shown in the 1st row of Table 1. Each node is uniquely tagged by a digi-
tal ID, and each ID reflects the node’s hierarchical location in the tree. Because of its 
self-structured and self-referenced nature, the ID also encapsulates its preceding 
nodes of the same branch and presents itself as a compact and enumerated decision 
path; therefore, a collective display of each branch’s leaf node resembles the decision 
tree model in a simplified and digitized form, as shown in the 2nd row of Table 1. 

Table 1 - Ecoli dataset's decision tree in digitized form 

Numerated tree map showing 
all node IDs in each decision 

path 
 

Branch 1: 1.0 -> 1.1 -> 1.1.1 -> 1.1.1.1 
Branch 2: 1.0 -> 1.1 -> 1.1.1 -> 1.1.1.2 -> 1.1.1.2.1 -> 1.1.1.2.1.1 
Branch 3: 1.0 -> 1.1 -> 1.1.1 -> 1.1.1.2 -> 1.1.1.2.1 -> 1.1.1.2.1.2 
Branch 4: 1.0 -> 1.1 -> 1.1.1 -> 1.1.1.2 -> 1.1.1.2.2 
Branch 5: 1.0 -> 1.1 -> 1.1.2 -> 1.1.2.1 
Branch 6: 1.0 -> 1.1 -> 1.1.2 -> 1.1.2.2 
Branch 7: 1.0 -> 1.2 

Leaf-node IDs resemble a  
simplified and enumerated tree 

Branch 1: 1.1.1.1 
Branch 2: 1.1.1.2.1.1 
Branch 3: 1.1.1.2.1.2 
Branch 4: 1.1.1.2.2 
Branch 5: 1.1.2.1 
Branch 6: 1.1.2.2 
Branch 7: 1.2 

In the second example, the Pima diabetes dataset model has 20 branches and 39 
nodes, as shown in the left column of Table 2, they have been concisely and effective-
ly represented by their leaf-node IDs, as shown in the right column of Table 2: 

Table 2 - Pima dataset's decision tree represented by enumerated leaf-node IDs 

Pima diabetes dataset’s decision tree model Leaf-node IDs 



 

Branch 1:   1.1.1  
Branch 2:   1.1.2.1 
Branch 3:   1.1.2.2.1 
Branch 4:   1.1.2.2.2.1 
Branch 5:   1.1.2.2.2.2.1.1 
Branch 6:   1.1.2.2.2.2.1.2.1 
Branch 7:   1.1.2.2.2.2.1.2.2.1 
Branch 8:   1.1.2.2.2.2.1.2.2.2 
Branch 9:   1.1.2.2.2.2.2 
Branch 10: 1.2.1.1 
Branch 11: 1.2.1.2.1 
Branch 12: 1.2.1.2.2.1.1 
… 
 
Branch 18: 1.2.2.1.2.1 
Branch 19: 1.2.2.1.2.2 
Branch 20: 1.2.2.2 

Similarly, the Wisconsin cancer dataset’s decision tree which has 14 branches and 
27 nodes, the Liver Disorders dataset’s decision tree which has 26 branches and 51 
nodes, and the Page Blocks dataset’s decision tree which has 41 branches and 81 
nodes, all have been correctly mapped by their leaf-node IDs respectively in a concise 
manner, as shown in Table 3: 

Table 3 - Another 3 decision trees represented by enumerated lead-node IDs 

Wisconsin cancer dataset’s  
enumerated decision tree 

Liver Disorders dataset’s 
enumerated decision tree 

Page Blocks dataset’s  
enumerated decision tree 

Branch 1:  1.1.1  
Branch 2:  1.1.2.1  
Branch 3:  1.1.2.2.1.1 
Branch 4:  1.1.2.2.1.2 
Branch 5:  1.1.2.2.2 
Branch 6:  1.2.1.1 
Branch 7:  1.2.1.2 
Branch 8:  1.2.2.1.1.1 
Branch 9:  1.2.2.1.1.2 
Branch 10: 1.2.2.1.2.1.1 
Branch 11: 1.2.2.1.2.1.2.1 
Branch 12: 1.2.2.1.2.1.2.2 
Branch 13: 1.2.2.1.2.2 
Branch 14: 1.2.2.2 

Branch 1: 1.1.1.1  
Branch 2: 1.1.1.2.1 
Branch 3: 1.1.1.2.2.1.1 
Branch 4: 1.1.1.2.2.1.2.1 
Branch 5: 1.1.1.2.2.1.2.2.1 
Branch 6: 1.1.1.2.2.1.2.2.2 
… 
Branch 17: 1.2.1.1.2.1.2.2.1  
Branch 18: 1.2.1.1.2.1.2.2.2  
Branch 19: 1.2.1.1.2.2.1 
Branch 20: 1.2.1.1.2.2.2.1 
… 
Branch 24: 1.2.2.1.2.1 
Branch 25: 1.2.2.1.2.2 
Branch 26: 1.2.2.2 

Branch 1:  1.1.1.1  
Branch 2:  1.1.1.2  
Branch 3:  1.1.2.1.1.1  
... 
Branch 12: 1.1.2.2.2 
Branch 13: 1.2.1 
Branch 14: 1.2.2.1.1.1.1.1 
… 
Branch 30: 1.2.2.1.2.1.1.2.1.2.1  
Branch 31: 1.2.2.1.2.1.1.2.1.2.2  
Branch 32: 1.2.2.1.2.1.1.2.2  
... 
Branch 39: 1.2.2.2.2.1  
Branch 40: 1.2.2.2.2.2.1  
Branch 41: 1.2.2.2.2.2.2 

Once each individual node is uniquely tagged, its classification statistics can then 
be collected, stored and analyzed at an individual node- and micro-level, as compared 
to the typical holistic model- and macro-level analysis based on the whole decision 
tree and its overall result. Some of the statistics collection and comparison results are 
documented in the following section. 



5.2 Node-level statistics comparison and error-sensitive pattern identification 

There may be different ways to examine the node-level statistics, for example, to 
compare the “heaviest” and “lightest” nodes using the highest and lowest counts of 
instances that traversed through, but the focus of this study is to identify and explore 
the “weakest” nodes with the highest error rates and the involved value patterns. 

As a first step, the attributes and values involved with the top-3 nodes in error rate 
ranking are compared with the top-3 ranked attributes identified in the error-sensitive 
attribute (ESA) evaluation [19], to cross-check these two different error-sensitive 
pattern evaluation methods, as shown in Table 4. It is showing that three datasets - 
Pima, Wisconsin and Page Blocks, have closely comparable “underscored” error-
sensitive attributes, and two datasets - Ecoli and Liver Disorders, have partially com-
parable “underscored” error-sensitive attributes. 

Table 4 - The "weakest" nodes' attributes & values VS. The most error-sensitive attributes 

Rank Ecoli dataset’s enumerated tree node & error-rate  
… attributes & values involved 

Attributes identified in ESA 
evaluation by attribute-error count 

1 1.2 (3.36%: 4/119)  … alm1>0.57  chg (17) 
2 1.1.1.1 (3.17%: 6/189) … alm1<=0.57 & aac<=0.64 & mcg<=0.73 alm1 (15) 
3 1.1.1 (3.02%: 6/199) … alm1<=0.57 & aac<=0.64 lip (14) 

 

Rank 
Pima diabetes dataset’s enumerated tree node & error-rate  

… attributes & values involved 
Att ributes identified in ESA 

evaluation by attribute-error count 

1 
1.1.2.2.2.1 (40.48%: 34/84) … plas<=127 & mass>26.4& age>28 & 
plas>99 & pedi<=0.561 

plas (83) 

2 
1.2.2.1.2.1 (32.50%: 13/40) … plas>127 & mass>29.9 & plas<=157 & 
pres>61 & age<=30 

nmass (70) 

3 
1.1.2.2.2 (30.51%: 36/118) … plas<=127 & mass>26.4 & age>28 & 
plas>99 

age (31) 

 

Rank Wisconsin cancer dataset’s enumerated tree node & error-rate  
… attributes & values involved 

Attributes identified in ESA 
evaluation by attribute-error count 

1 
1.2.2.1.2.1.2.1 (20.00%: 1/5) … UC_Sz>2 & UC_Sh>2 & UC_Sz<=4 & 
Bare_Nuc>2 & Clump_Th<=6 & UC_Sz>3 & Mg_Adh<=5 

UC_Sz - Unif Cell Size (35) 

2 
1.2.2.1.2.1.1 (15.38%: 2/13) … UC_Sz>2 & UC_Sh>2 & UC_Sz<=4 & 
Bare_Nuc>2 & Clump_Th<=6 & UC_Sz<=3  

UC_Sh - Unif Cell Shape (35) 

3 
1.2.2.1.2.1 (13.04%: 3/23) … UC_Sz>2 & UC_Sh>2 & UC_Sz<=4 & 
Bare_Nuc>2 & Clump_Th<=6 

Clump_Th - Clump Thickness (30) 

 

Rank 
Liver Disorders dataset’s enumerated tree node & error-rate  

… attributes & values involved 
Attributes identified in ESA  

evaluation by attribute-error count 

1 
1.2.2.1.2.2 (40.91%: 18/44)… gammagt>20 & drinks>5 & drinks<=12 & 
sgpt>21 & sgot>22 

sgot (22) 

2 
1.1.2.2.1.1 (38.10%: 8/21)… gammagt<=20 & sgpt>19 & sgot>20 & 
drinks<=5 & sgpt<= 26 

mcv (16) 

3 
1.2.2.1.2 (34.55%: 19/55)… gammagt>20 & drinks>5 & drinks<=12 & 
sgpt >21 

alkphos (10) 

 
Rank Page Blocks dataset’s enumerated tree node & error-rate  Attributes identified in ESA 



… attributes & values involved evaluation by attribute-error count 

1 
1.2.2.1.1.1.2.1.1.2 (30.00%: 3/10)… height>3 & eccen>0.25 & height <=27 
& wb_trans<=7 & p_black<=0.178 & wb_trans>4 & blackpix <=20 & 
area<=108 & blackpix>7 

mean_tr (89) 

2 
1.1.2.1.1.1 (28.57%: 2/7)… height<=3 & mean_tr>1.35 & lenght<=7 & 
height<=2 & blackpix<=7 

p_black (43) 

3 
1.1.2.2.1.1.1.2 (25.00%: 1/4) … height<=3 & mean_tr>1.35 & lenght> 7 & 
mean_tr<=4.08 & height<=1 & wb_trans<=2 & mean_tr>3.75 

eccen (29) 
3 

1.2.2.1.1.1.2.1.1 (25.00%: 3/12)… height>3 & eccen>0.25 & height<= 27 
& wb_trans<=7 & p_black<=0.178 & wb_trans>4 & blackpix<= 20 & area 
<=108 

In a second step, data records associated with the “weakest” nodes identified by the 
digitization method are removed and a re-test is carried out, and another re-test is 
carried out on the datasets after certain most error-sensitive attributes are removed as 
specified in the ESA evaluation study [19]. Initial results confirm improved accuracy 
in all five datasets after the “weakest” records are removed, and one improved signifi-
cantly, as shown in Table 5. Also outlined in this table are the ESA removal scenario 
retest results, three datasets return improved accuracy, and the other two return poorer 
accuracy, and further analysis on the results is discussed in the Section 6. 

Table 5 – Three-way performance comparison after removing the potentially “weak-
est” records and the most error-sensitive attributes 

Ecoli’s original dataset of  
336 records 

Re-test 217 records after  
removing 119 “weakest” records 

Re-test original data after removing 
top most ESA – alm1 

Accuracy: 94.05% with 20 errors Accuracy: 97.70% with 5 errors ���� Accuracy: 92.86% with 24 errors ���� 

 
Pima diabetes’ original dataset of  

768 records 
Re-test 684 records after 

 removing 84 “weakest” records 
Re-test original data after removing 

top 2 most ESAs – plas &  mass 

Accuracy: 73.83% with 201 errors Accuracy: 77.19% with 156 errors ���� Accuracy: 67.84% with 247 errors ���� 

 
Wisconsin cancer’s original dataset of 

699 records 
Re-test 694 records after  

removing 5 “weakest” records 
Re-test original data after removing 
top 2 most ESAs - UC_Sz &  UC_Sh 

Accuracy: 94.13% with 41 errors Accuracy: 95.97% with 28 error ���� Accuracy: 95.71% with 30 errors ���� 

 
Liver Disorders’  original dataset of  

345 records 
Re-test 301 records after  

removing 44 “weakest” records 
Re-test original data after removing 

top 2 most ESAs – sgot &  mcv 
Accuracy: 68.70% with 108 errors Accuracy: 77.08% with 69 errors ���� Accuracy: 71.01% with 100 errors ���� 

 
Page Blocks’ original dataset of  

5473 records 
Re-test 5463 records after  

removing 10 “weakest” records  
Re-test original data after removing 

top most ESA – mean_tr  

Accuracy: 97.19% with 154 errors Accuracy: 97.36% with 144 errors ���� Accuracy: 97.24% with 151 errors ���� 



6 Experiment analysis  

The purpose of decision tree digitization is not simply to convert a graphical deci-
sion tree into a digital map of nodes, but rather, to use such a digital map to facilitate 
the collection of node-level statistics for the purpose of node-level error-sensitive 
value pattern analysis, to help highlight the potentially “weakest” part of the decision 
tree and the specific error-sensitive attributes and values involved, to distinguish data 
records with such risky value patters for further error analysis and the development of 
error-reduction measure. Results from the initial experiments appeared to be support-
ing this digitization idea and the identification of the “weakest” node and the related 
attribute and value patterns. The following sections discuss the results and possible 
implications.   

6.1 Digitized node IDs facilitate node-level analysis 

The proposed decision tree digitization method makes the node-level analysis easy 
by formulating individual node IDs in a unique, numeric and contextual way. For 
example, the ID 1.2.1.1.2.1.2.2.1 as shown in the Liver Disorders example, is in a 
numeric text string format and incorporated with its preceding node IDs hierarchically 
within the same branch starting from the root. Because each ID is unique to the node 
in the tree, classification statistics can then be collected and stored for individual 
nodes using their IDs as the keys, and later to locate and retrieve the node-level statis-
tics more efficiently than using the branch and node description text, e.g. “gammagt > 
20 &  drinks <= 5 & drinks <= 3 & alkphos > 65 & sgot <= 24 & gammagt > 29 & 
mcv > 87 & mcv <= 92”, even if such lengthy verbiage is consolidated and simplified 
as “gammagt > 29 & drinks <= 3 & lkphos > 65 & sgot <= 24 & mcv between 87 
and 92”, it is still awkward.  As decision trees grow bigger, such concise node IDs 
can become more useful because of its systematic and self-referential characteristics. 

One way to utilize such node-level statistics is, to ranking the classification error 
rate from high to low, the top node with the highest error rate may then be considered 
as the “weakest” node in the tree, and the attributes and values associated with the 
“weakest” node may be considered more error-sensitive than others, in relative terms. 

6.2 Examine the “weakest” nodes and error-sensitive value patterns 

To evaluate the effectiveness of the proposed digitization method, the subsequent 
node-level investigative results can be validated by performance comparison, and one 
practical but rather non-deterministic measure can be to compare the classification 
accuracy after some simplistic error-reduction measure is applied. For example, by 
using the attribute and value patterns associated with the “weakest” node, the poten-
tially “weakest” and most error-sensitive data records, include both the misclassified 
and correctly classified data instances, can be identified and separated for further 
examination, and the original dataset becomes smaller in size but potentially higher in 
reliability and accuracy. Experiment results seemed to confirm the validity of the 
“weakest” node and the associated error-sensitive value patterns in all five datasets, 



one with a significant improvement in accuracy, and others with a modest but con-
sistent level of improvement. 

The best example is the Wisconsin cancer dataset with 699 records. After sorting 
and ranking the classification error rate of individual nodes, node 1.2.2.1.2.1.2.1 
(20.00%: 1/5) is identified as the “weakest” node, as shown in Table 4. When the five 
data records associated with this “weakest” node are identified and separated from the 
dataset, that is 5/699=0.007% reduction in sample size, the accuracy improves by 
almost 2% in a re-test, as shown in Table 5. Instead of one less error due to the re-
moval of five error-sensitive records, there are 13 less errors in the re-test. 

The other four datasets also show various levels of success in accuracy enhance-
ment. For example, in the Liver Disorders dataset with 345 records, node 1.2.2.1.2.2 
(40.91%: 18/44) is identified as the “weakest” node, as shown in Table 4, and there 
are 44 records associated with this node and 18 of them are errors. A re-test to the 
updated dataset after the removal of those 44 error-sensitive records shows the actual 
error reduction is 39 instead of 18, and the overall accuracy has improved from 
68.70% in the original dataset to 77.08% in the updated dataset. 

One possible explanation to such impressive result is, the inclusions of the “weak-
est” data records have made “potentially significant” adverse impact to the info-gain 
(entropy) calculation when constructing C4.5/J48 decision trees because of their er-
ror-sensitive attributes and values, which leads to error-prone split point conditions 
and the consequent “weakest” nodes. If the impact is less significant, then the differ-
ence between the original and re-test result may be not so noticeable, as shown in the 
Page Blocks dataset. 

This reasoning may partially explain why ensemble tree models, such as Random 
Forest, are considered superior to standalone tree models. The Random Forest model 
selects a portion of the data attributes randomly and generates hundreds and thou-
sands of trees accordingly, and then votes for the best performing one to produce the 
classification result. The random attribute selection process may have inadvertently 
generated and voted for trees without some highly error-sensitive attributes, and also 
with bigger value ranges to split on due to fewer attributes involved, therefore enables 
ensemble models to produce more accurate results, but on the expense of resources 
and simplicity. 

6.3 Discuss possible contribution, effectiveness and weakness  

The evaluation study on error-sensitive attributes [19] has provided some construc-
tive leads for this current study, but this decision tree digitization and node-level ex-
amination idea can be considered as another step forward because of its expansion 
from attribute level evaluation to individual node and split-value level evaluation. 
While still at an early stage, this latter expansion and study has shown encouraging 
and consistent experiment results, therefore, this can be considered as a potential con-
tribution to the node-level analysis topic for decision trees.  

In terms of effectiveness, this digitization method applies a digital way to tag each 
individual node of a decision tree uniquely and concisely with contextual reference, to 
simplify node-level statistics collection and analysis and expand the typical tree-level 



“macro” analysis with focus on the whole classification model into the node-level 
“micro” analysis with focus on specific attributes and values, and in a systematic and 
transparent way. 

Meanwhile, the list of weakness of this study is also long and obvious. First, the 
successful experiments are based on the removal of the “weakest” data records, which 
may seem drastic and lacking of formal and theoretical proof; however, this has still 
highlighted the usefulness in identifying the “weakest” value patterns. This has led to 
the second major weakness - it is unclear what to do with the “weakest” records. 
Their removal improves overall accuracy, so a new question is, should a separate 
model be used to evaluate these error-sensitive records? If the “one size fits all” ap-
proach is not recommended, why not introduce a separate model for the “doubtful” 
data? The third major weakness is, this study is not based on ensemble methods, and 
ensemble trees are now the preferable classification models due to their superior per-
formance to the standalone decision tree models, this makes the proposed decision 
tree digitization method less relevant to the latest classification development. Despite 
more weaknesses are still to be discussed, they have been recognized and will be used 
as a form of inspiration to broaden and advance this study. 

7 Conclusion 

This study attempts to address the question - “Is there a way to identify an Achil-
les’ heel of a classification model?”, that is, finding a way to locate the ‘weakest’ and 
most error-sensitive spot in the model. Towards this goal, the study develops a deci-
sion tree digitization method to facilitate the identification and examination of the 
potentially “weakest” nodes and error-sensitive value patterns in the model using 
decision trees as a pilot model. Initial experiment have demonstrated successful re-
sults when comparing to earlier evaluation study of error-sensitive attributes, but also 
prompted more questions.  

Many of the study’s own weak and questionable areas have been recognized, such 
as the need of formal and theoretical proof, the expansion of evaluation into ensemble 
methods and non-binary trees etc., and they will form the basis for the next phase of 
the study, such as a revision of the digitization method to cover ensemble models, and 
to find a more logical way to understand and utilize the “weakest” data records with 
error-sensitive value patterns.  
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