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Abstract

This paper studies volatility derivatives such as variance and volatility swaps,

options on variance in the modified constant elasticity of variance model using the

benchmark approach. The analytical expressions of pricing formulas for variance

swaps are presented. In addition, the numerical solutions for variance swaps, volatil-

ity swaps and options on variance are demonstrated.
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1 Introduction

This paper considers the modified constant elasticity of variance (MCEV) model, which is

an extension to the Black-Scholes-Merton model and the stylized minimal market model;
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see [20]. The standard CEV model was originally introduced by [9]. The main advantages

of using the CEV model are that it can account for the implied volatility smile and smirk

by capturing the leverage effect.

The pricing of different kinds of options under the constant elasticity of variance

(CEV) model have provided interesting and challenging research topics; see e.g. [2][11]

[18][13][20]. The latter paper modeled the growth optimal portfolio (GOP) under the real

world probability measure, where it is referred to as the MCEV model. The current paper

will study volatility derivatives under this model.

Since the S&P 500 volatility index VIX was introduced in 1993, there have been more

and more volatility derivatives tradable on the exchanges or over the counter. The VIX in-

dex can be theoretically interpreted as the standardized risk-neutral expected realized vari-

ance; see [4][6]. Recent literature discussing volatility derivatives include [12][5][7][17][8].

We will apply the benchmark approach, documented in [20], which uses the GOP as

the numéraire so that the contingent claims will be priced under the real world probability

measure. This avoids the restrictive assumption on the existence of an equivalent risk

neutral probability measure. As argued in [20], this measure seems not to exist for realistic

models and does not exist for the MCEV model. In the following, we derive closed-

form formulas for variance swaps under the MCEV model and show numerical results for

volatility derivatives.

2 Volatility Derivatives

A variance swap is a forward contract on annualized variance. Let σ2
0,T denote the realized

annualized variance of the log-returns of a diversified equity index or related futures over

the life of the contract such that

σ2
0,T :=

1

T

∫ T

0

σ2
udu . (2.1)
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Assume that one can trade the underlying futures or index price at discrete times ti = i∆

for i ∈ {0, 1, ...} with time step size ∆ > 0. The period ∆ between two successive potential

trading times is typically the length of one day. Sδ∗ti denotes the index price at time ti for

i ∈ {0, 1, 2, ...}.

Let (Ω,AT ,A,P) denote the underlying filtered probability space satisfying usual

conditions. Here P is the real world probability measure and A = (At)t∈[0,T ] the respec-

tive filtration. For simplicity, assume throughout the paper that the interest rate r > 0 is

constant. Furthermore, we assume that the index is the GOP Sδ∗t , also called benchmark

of the market. We call any price or payoff denominated in units of the GOP the respec-

tive benchmarked price. We employ in this paper the real world pricing formula, which

provides for a replicable AT̄−measurable contingent claim HT̄ with E( |HT̄ |
Sδ∗
T̄

) <∞ the real

world pricing formula

Vt = Sδ∗t E[
HT̄

Sδ∗
T̄

|At] (2.2)

for all t ∈ [0, T̄ ], T̄ ∈ [0, T ]; see [20].

Let Kv denote the delivery price for realized variance and L the notional amount of

the swap in dollars per annualized variance point. Then, the payoff of the variance swap

at expiration time T is given by L(σ2
0,T −Kv).

A volatility swap is a forward contract on annualized volatility. Let Ks denote the

annualized volatility delivery price and L the notional amount of the swap in dollar per

annualized volatility point. Then, the payoff function of the volatility swap is given by

L(σ0,T −Ks), where σ0,T =
√
σ2
0,T .

Additionally, we will consider the payoffs of call options on variance, defined by (σ2
0,T−

K)+, as well as, the payoffs of put options on variance, defined by (K − σ2
0,T )

+, where

a+ = max(0, a).
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3 Modified Constant Elasticity of Variance Model

As shown in [14], the MCEV model for the GOP is obtained when the volatility of the

GOP takes the form

|θt| = (Sδ∗t )a−1ψ, (3.1)

for t ∈ [0,∞) with exponent a ∈ (−∞,∞), a ̸= 1, and scaling parameter ψ > 0. From

[14], recall that the discounted GOP satisfies the SDE

dSδ∗t =

(
rSδ∗t + (Sδ∗t )2a−1ψ2

)
dt+ (Sδ∗t )aψdW (t), (3.2)

for t ∈ [0, T ]. Now set Xt = (Sδ∗t )2(1−a). Then we have

dXt = k(ϑ−Xt)dt+ σ
√
XtdW (t), (3.3)

where k = −2(1−a)r, ϑ = −ψ2(3−2a)
2r

, σ = 2ψ(1−a). Note that Xt is a space-time changed

squared Bessel process of dimension δ = 3−2a
1−a ; see [15].

4 Explicit Formula for Variance Swaps

Due to (2.2) the value of a variance swap Vv(t, S
δ∗
t ) at time t = 0 is given by:

Vv(0, S
δ∗
0 ) = Sδ∗0 E[

L(σ2
0,T −Kv)

Sδ∗T
] = Sδ∗0 LE[

σ2
0,T

Sδ∗T
]− Sδ∗0 LKvE[

1

Sδ∗T
] . (4.1)

Hence, the evaluation of the price of a variance swap can be reduced to the problem of

calculating the expected value E[
σ20,T

Sδ∗T
] of the benchmarked realized annualized variance

and the zero coupon bond BT (0, S
δ∗
0 ) = Sδ∗0 E[

1

Sδ∗T
].

As follows from [19], the price of a zero-coupon bond BT (t, S
δ∗
t ), calculated at time t

with maturity T under the given MCEV model, equals

BT (t, S
δ∗
t ) = e−r(T−t)χ2

(
ΥT ;

1

1− a

)
, (4.2)
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where

ΥT =
2r

|θt|2(1− a)[1− exp{−2(1− a)r(T − t)}]
(4.3)

for t ∈ [0, T ] and χ2(u, ν) = 1− Γ(u
2
; ν
2
)

Γ( ν
2
)

for u ≥ 0 and where Γ(α) for α > −1 is the gamma

function, and Γ(., .) is the incomplete gamma function; see [20].

Furthermore, we have

E[
σ2
0,T

Sδ∗T
] =

ψ2

T
E

[∫ T
0
(Sδ∗s )2(a−1)ds

Sδ∗T

]
=
ψ2

T
E

[∫ T
0

1
Xs
ds

X
1

2(1−a)
T

]
. (4.4)

Lemma 4.1 Let X = {Xt : t ∈ [0, T ]} satisfy the SDE (3.3) and set β = 1 +m −
1

2(1−a) + ν/2, m = 1
2
(2kϑ
σ2 − 1), ν = 2

σ2

√
(kϑ− σ2

2
)2 + 2µσ2, µ > 0 and X0 = x > 0. Then

if m > 1
2(1−a) −

ν
2
− 1, we have

E

[ ∫ T
0

ds
Xs

X
1

2(1−a)
T

]
= − d

dµ

1

2νxm
e
− 2kx

σ2(ekT−1)
+kmt

(
2kekT

(ekT − 1)σ2

)−m+ 1
2(1−a)−

ν
2

×
(

4k2x

σ4 sinh2(kT
2
)

)ν/2Γ(1 +m− 1
2(1−a) +

ν
2
)

Γ(1 + ν)
1F1(β, 1 + ν,

2kx

σ2(ekT − 1)
)|µ=0.

(4.5)

Here the function 1F1(., ., .) is the confluent hypergeometric function; see [8].

Proof: Similar to Proposition 8.1 in [8], we can prove this. However, we provide an

alternative proof as below.

For λ > 0 and µ > 0, use the Corollary 5.9 of [10], the joint Laplace transform of XT
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and
∫ T
0

ds
Xs

admits the expression

E

(
e−λXT−µ

∫ T
0

ds
Xs

)
=

Γ(m+ ν/2 + 1)

Γ(ν + 1)

k
√
x

σ2 sinh(kT/2)
x−(m+ 1

2
)

× exp

(
k

σ2

(
kϑT + x− x

tanh(kT/2)

))
× σ2 sinh(kT/2)

k
√
xα̂(m+ 1

2
)
e

k2x
2σ4 sinh2(kT/2)α̂M−(m+ 1

2
),ν/2

(
k2x

σ4 sinh2(kT/2)α̂

)
.

(4.6)

Here α̂ = k
σ2

(
1+coth

(
kT
2

))
+λ andMs,r(z) is the Whittaker functions of the first kind.

Multiplying both sides of (4.6) by λ
1

2(1−a)−1

Γ( 1
2(1−a) )

and integrating with respect to λ, gives

∫ ∞

0

E

(
e−µ

∫ T
0

ds
Xs e−λXT

)
λ

1
2(1−a)−1 dλ

Γ( 1
2(1−a))

=

∫ ∞

0

Γ(m+ ν/2 + 1)

Γ(ν + 1)

k
√
x

σ2 sinh(kT/2)
x−(m+ 1

2
)

× exp

(
k

σ2

(
kϑT + x− x

tanh(kT/2)

))
σ2 sinh(kT/2)

k
√
xα̂(m+ 1

2
)
e

k2x
2σ4 sinh2(kT/2)α̂

× M−(m+ 1
2
),ν/2

(
k2x

σ4 sinh2(kT/2)α̂

)
λ

1
2(1−a)−1 dλ

Γ( 1
2(1−a))

.

(4.7)

On the left-hand side, changing the order of integration gives the expression

E

(
exp

(
− µ

∫ T

0

ds

Xs

)
X

− 1
2(1−a)

T

)
.

(4.8)

The right-hand side of (4.7) can be integrated explicitly in form of

1

2νxm
e
− 2kx

σ2(ekt−1)
+kmT

(
2kekT

(ekT − 1)σ2

)−m+ 1
2(1−a)−

ν
2

×
(

4k2x

σ4 sinh2(kT
2
)

)ν/2Γ(1 +m− 1
2(1−a) +

ν
2
)

Γ(1 + ν)
1F1(β, 1 + ν,

2kx

σ2(ekT − 1)
).

(4.9)
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Differentiating the expression (4.8) and the expression (4.9) with respect to µ gives

E

[ ∫ T
0

ds
Xs

X
1

2(1−a)
T

]
= − d

dµ

1

2νxm
e
− 2kx

σ2(ekT−1)
+kmT

(
2kekT

(ekT − 1)σ2

)−m+ 1
2(1−a)−

ν
2

×
(

4k2x

σ4 sinh2(kT
2
)

)ν/2Γ(1 +m− 1
2(1−a) +

ν
2
)

Γ(1 + ν)
1F1(β, 1 + ν,

2kx

σ2(ekT − 1)
)|µ=0.

(4.10)

Next we verify the integrability condition, that is if m > 1
2(1−a) −

ν
2
− 1, then the inte-

gral of right-hand side of (4.7) is finite. In (4.7), make the substitution ξ =

(
k
σ2

(
1 +

coth

(
kT
2

))
+ λ

)−1

to rewrite the expression of the right-hand side as

∫ ∞

0

Γ(m+ ν/2 + 1)

Γ( 1
2(1−a))Γ(ν + 1)

k
√
x

σ2 sinh(kT/2)
x−(m+ 1

2
)

× exp

(
k

σ2

(
kϑT + x− x

tanh(kT/2)

))
× σ2 sinh(kT/2)

k
√
x

ξ(m+ 1
2
)e

k2xξ

2σ4 sinh2(kT/2)

× M−(m+ 1
2
),ν/2

(
k2xξ

σ4 sinh2(kT/2)

)(
1

ξ
− k

σ2

(
1 + coth(kT/2)

)) 1
2(1−a)−1

(−ξ−2)dξ.

(4.11)

For small ξ, the integrand is proportion to

ξm− 1
2(1−a)−

1
2 e

k2xξ

2σ4 sinh2(kT/2)M−(m+ 1
2
),ν/2

(
k2xξ

σ4 sinh2(kT/2)

)
= ξm− 1

2(1−a)+
ν
2

(
k2x

σ4 sinh2(kT/2)

) 1
2
+ ν

2

1F1

(
1 +m+ ν/2, 1 + ν,

k2xξ

σ4 sinh2(kT/2)

)
= ξm− 1

2(1−a)+
ν
2

(
k2x

σ4 sinh2(kT/2)

) 1
2
+ ν

2

.

The above expression follows from the fact that |ξ| → 0, 1F1(a, b, 0) = 1, b ̸= −n. This

shows why we need m > 1
2(1−a) −

ν
2
− 1. �
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Now, we give an example for variance swaps. The values for the parameters of the

model are set to k = 0.052, a = 2
3
, ϑ = 24.0385, ψ = 1.5, m = 3

4
, σ = 0.3162, x = 1,

L = 1 million dollars and Kv = 1.

Table 4.1 displays the prices of variance swaps for various maturities.

Table 4.1: Prices of variance swaps
maturities Prices of variance swaps

1/6 1.58587

0.25 1.85638

0.5 2.51737

1 1.83401

1.5 0.89961

2 0.301646

5 Options on Variance

According to (2.2), the value of a call option on variance at time zero is given by:

Cv(0, S
δ∗
0 ) = Sδ∗0 E[

(σ2
0,T −K)+

Sδ∗T
] = Sδ∗0 E

[(
σ2
0,T

Sδ∗T
− K

Sδ∗T

)+]
. (5.1)

Whereas the value of a put option on variance at time zero can be written as:

Pv(0, S
δ∗
0 ) = Sδ∗0 E

[
(K − ψ2

T

∫ T
0
(Sδ∗s )2(a−1)ds)+

Sδ∗T

]
= Sδ∗0 E

[(
K

X
1

2(1−a)
T

−
ψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

)+]
.

(5.2)

8



Let h(K) =

(
K

X

1
2(1−a)
T

−
ψ2

T

∫ T
0

ds
Xs

X

1
2(1−a)
T

)+

and c = ψ2

T

∫ T
0

ds
Xs

, then the Laplace transform

L(h(K)) =

∫ ∞

0

e−zK
(

K

X
1

2(1−a)
T

−
ψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

)+

dK

=

∫ ∞

c

e−zK
(

K

X
1

2(1−a)
T

− c

X
1

2(1−a)
T

)
dK

= − K

X
1

2(1−a)
T z

e−zK |∞c − 1

X
1

2(1−a)
T z2

e−zK |∞c +
c

X
1

2(1−a)
T z

e−zK |∞c

=
1

X
1

2(1−a)
T z2

e−zc =
1

X
1

2(1−a)
T z2

e
−zψ2

T

∫ T
0

ds
Xs .

(5.3)

Inverting the Laplace transform gives

L−1(h(K)) =
1

2πi

∫ d+∞i

d−∞i

1

X
1

2(1−a)
T z2

e
−zψ2

T

∫ T
0

ds
Xs ezKdz.

(5.4)

Hence,

E

[(
K

X
1

2(1−a)
T

−
ψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

)+]
=

1

2πi

∫ d+∞i

d−∞i

ezK

z2
E

[
e

−zψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

]
dz.

(5.5)

Similar as in [8], we have

E

[
e

−zψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

]
=

1

2νxm
e
− 2kx

σ2(ekT−1)
+kmT

(
2kekT

(ekT − 1)σ2

)−m+ 1
2(1−a)−

ν
2

×
(

4k2x

σ4 sinh2(kT
2
)

)ν/2Γ(1 +m− 1
2(1−a) +

ν
2
)

Γ(1 + ν)
1F1

(
β, 1 + ν,

2kx

σ2(ekT − 1)

)
,

(5.6)
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where µ = zψ2

T
. Therefore, the value of a put option on variance at time zero is

Pv(0, S
δ∗
0 ) = X

1
2(1−a)
0 E

[(
K

X
1

2(1−a)
T

−
ψ2

T

∫ T
0

ds
Xs

X
1

2(1−a)
T

)+]

=
x

1
2(1−a)

2πi

∫ d+∞i

d−∞i

ezK

z2

[
1

2νxm
e
− 2kx

σ2(ekT−1)
+kmT

(
2kekT

(ekT − 1)σ2

)−m+ 1
2(1−a)−

ν
2

×
(

4k2x

σ4 sinh2(kT
2
)

)ν/2Γ(1 +m− 1
2(1−a) +

ν
2
)

Γ(1 + ν)
1F1

(
β, 1 + ν,

2kx

σ2(ekT − 1)

)]
dz.

(5.7)

The corresponding formula for a call option on variance can be obtained by using put-call

parity.

To give an example, assume the parameters x = 1, T = 1, a = 2
3
, β = ν

2
+ 1

4
, k = 0.052,

ψ = 3
2
, m = 3

4
and ν = 2

√
9
16

+ 9z
2
; see [10],[8].

Table 5.1 displays the prices of put options on variance for various strike prices.

Table 5.1: Prices of put options on variance
Strike Prices Prices of put Options on variance

1 7.606 × 10−4

1.5 0.0223

2 0.1013

2.5 0.2428

3 0.4345

3.5 0.6632

4 0.9191

6 Volatility Swaps

Since there are no closed-form formulas for the price of volatility swaps, we will use a

quasi-Monte Carlo simulation in the sequel. For details of quasi-Monte Carlo methods of

this kind, we refer to [3].
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The joint Laplace transform of XT and
∫ T
0

ds
Xs

is given by

E

(
e−λXT−µ

∫ T
0

ds
Xs

)
=

Γ(m+ ν/2 + 1)

Γ(ν + 1)

k
√
x

σ2 sinh(kT/2)
x−(m+ 1

2
) exp

(
k

σ2

(
kϑT + x− x

tanh(kT/2)

))
× σ2 sinh(kT/2)

k
√
xα̂(m+ 1

2
)
e

k2x
2σ4 sinh2(kT/2)α̂M−(m+ 1

2
),ν/2

(
k2x

σ4 sinh2(kT/2)α̂

)
,

where α̂ = k
σ2 (1 + coth(kT

2
)) + λ and Ms,r(z) is the Whittaker function of the first kind,

and in [10] the inverse Laplace transform with respect to λ is explicitly given by

p(T, x, y) =
k

σ2 sinh(kT/2)

(
y

x

)( kϑ
σ2

− 1
2
)

exp

(
k

σ2

(
kϑT + x− y − x+ y

tanh(kT/2)

))
Iν
( 2k

√
xy

σ2 sinh(kT/2)

)
.

Here Iν is the modified Bessel function of the first kind. Hence, to obtain the joint density

of (XT ,
∫ T
0

ds
Xs

), we only need to invert a one-dimensional Laplace transform, which can

be achieved via the Euler method from [1].

As shown in [3], the joint density f(x, z) obtained by numerically inverting the Laplace

transform can be mapped into the unit square by setting the exponential transforms,

x1 = 1 − exp(−λ1x), x2 = 1 − exp(−λ2z), x, z ∈ ℜ+, and hence x = Ψ−1
1 (x) = log(1−x1)

−λ1 ,

z = Ψ−1
2 (z) = log(1−x2)

−λ2 , ψ1(x) = λ1 exp(−λ1x), ψ2(z) = λ2 exp(−λ2z). For a given
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transformation (Ψ1,Ψ2), the following formula is adopted from [3]:

E

(
H(

∫ T
0

ds
Xs

)

X
1

2(1−a)
T

)
=

∫ ∞

0

∫ ∞

0

H(z)

y
1

2(1−a)
f(y, z)dydz

=

∫ 1

0

∫ 1

0

H(Ψ−1
2 (x2))

(Ψ−1
1 (x1))

1
2(1−a)

f(Ψ−1
1 (x1),Ψ

−1
2 (x2))

2∏
j=1

1

ψ(Ψ−1
j (xj))

dxj

=

∫ 1

0

∫ 1

0

H(Ψ−1
2 (x2))

(Ψ−1
1 (x1))

1
2(1−a)

f(Ψ−1
1 (x1),Ψ

−1
2 (x2))

2∏
j=1

1

ψj(Ψ
−1
j (xj))

dxj

≈ 1

N

N∑
i=1

H(Ψ−1
2 (xi,2))

(Ψ−1
1 (xi,1))

1
2(1−a)

f(Ψ−1
1 (xi,1),Ψ

−1
2 (xi,2))

2∏
j=1

1

ψj(Ψ
−1
j (xi,j))

,

(6.1)

where {(xi,1, xi,2)}Ni=1 is a two-dimensional quasi-Monte Carlo point set.

Recall that the price Vs(t, S
δ∗
t ) of a volatility swap at time t = 0 is:

Vs(0, S
δ∗
0 ) =

Sδ∗0 Lψ√
T

E

[√∫ T
0

1
Xs
ds

X
1

2(1−a)
T

]
− Sδ∗0 LKsBT (0, S

δ∗
0 ), (6.2)

where the expectation E

[√∫ T
0

1
Xs

ds

X

1
2(1−a)
T

]
is computed by using (6.1) with H(.) =

√∫ T
0

1
Xs
ds.
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Examples of volatility swaps are shown below in Table 6.1 with the same parameter

setting as in Section 5. Table 6.1 displays numerical results for volatility swaps.

volatility swaps

maturity(years) (λ1 = 0.5, λ2 = 0.18)

1/6 0.5618

0.25 0.6842

0.5 0.79

1 0.6323

1.5 0.4384

2 0.3076

Table 6.1: Numerical results for volatility swaps.
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