The Expression and Localization of Kappa Myeloma Antigen on Malignant and Normal B cells

Andrew Tasman Hutchinson

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Technology, Sydney
NSW, Australia

August 2009
Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the written preparation of the thesis, and all experimental work associated with it, has been carried out solely by me, unless otherwise indicated. Finally, I certify that all information sources and literature used are acknowledged in the text.

Andrew Tasman Hutchinson
August 2009
Acknowledgements

I would first like to thank my supervisors and good friends, Professor Bob Raison and Darren Jones. Bob was instrumental in getting my PhD off the ground with Immune System Therapeutics Ltd and I am grateful for the time and patience he dedicated to my project. He never once held me back from chasing even the most outrageous hypotheses and provided both support, and more importantly, a critical examination during the creative process. Bob, I wish you all the best for your retirement and congratulate you on your recent appointment as Emeritus Professor at UTS.

When I was an undergraduate ‘wash up boy’ during the early days of PacMab, Darren took me under his wing and nurtured my development as a scientist. He trained me on most aspects of working in an immunology lab, including that most invaluable technique of flow cytometry. In a wider context Darren has, and will continue to be an inspiration, having taught me the importance of science, as well as what it means to lead a balanced and ‘well-rounded’ life. Darren, it has been a great journey. I have no doubt this is only the beginning, and I am already looking forward to the next step!

To all past and present at Immune System Therapeutics Ltd / PacMab, what a ride it has been! It was with great perseverance that we got this antibody to clinical trial, and in this regard, the venture has been a tremendous success. Thank you for finding the funds to support my project throughout the years. I am grateful that I was given space to pursue basic research in a commercial environment. Hopefully something valuable will one day come out of it! In particular, I would like to thank Maria Lund and Dr Cameron Jennings.

Maria for being a dedicated and outstanding research assistant. Without the help of Maria, I would still be slaving away in the lab. She was especially helpful in working up the artificial membrane systems which became one of the main cores of my project. She did this with very little help, and for a time, the student became the master whilst she taught me these new techniques. Maria, it has been a great pleasure watching you develop into a scientist. Good luck with your upcoming honours year. I am sure you’ll continue to excel as a researcher.
Cameron for being a great work colleague and friend. He provided me with a number of materials needed to complete my studies. Cameron, and his honours student, Vanessa Bockhorni, also performed the κLC HEK-293 transfections which were used as cellular models of KMA expression in this thesis.

Special thanks go to Paul Ramsland and Allen Edmundson - two generations of structural immunologists. For a long time my only goal was to try and reconcile my observations with what these structuralists thought was possible. Immunology, after all, performs its magic at the molecular level. Allen was an early supporter of the misfolded FLC theory. This eventually culminated into the aggregation hypothesis after a stimulating week of work in Paul’s lab. Here we performed the dynamic light scattering measurements, as well as built the phosphocholine - FLC models. Thank you both for your interest and time in my project. It was a pleasure working alongside such accomplished scientists and individuals.

To my parents, family and friends, thank you for all your continued support and interest over the years. I am lucky to be surrounded by such a diverse and interesting bunch of people!

Finally, to my partner and best friend, Lucinda, you have been an invaluable source of encouragement, love and support. Thank you for all your patience. I am looking forward to a bright and happy future with you by my side.
Table of Contents

CERTIFICATE OF AUTHORSHIP/ORIGINALITY ...1
ACKNOWLEDGEMENTS ..II
TABLE OF CONTENTS ...iv
LIST OF FIGURES AND TABLES ...viii
ABBREVIATIONS ...x
ABSTRACT ...1

CHAPTER 1: INTRODUCTION ...4

Section 1.1 Kappa Myeloma Antigen ... 5
Section 1.2 Immunoglobulins .. 3
 1.2.1 Immunoglobulin Genes ... 3
 1.2.2 Immunoglobulin Light Chain Restriction 9
 1.2.3 Molecular Chaperones and Light Chain Synthesis 10
 1.2.4 Free Immunoglobulin Light Chain ... 10
Section 1.3 Proposed Biological Roles of Free Immunoglobulin Light Chain 12
 1.3.1 Antigen Recognition ... 12
 1.3.2 Proteolysis ... 13
 1.3.3 Type 1 Hypersensitivity ... 13
 1.3.4 Anti-Angiogenesis .. 14
 1.3.5 Alternative Pathway of Complement Activation 14
 1.3.6 Inhibition of Chemotaxis ... 14
 1.3.7 Anti-Apoptotic Stimulus ... 15
Section 1.4 B Cell Biology .. 15
 1.4.1 B cell Development ... 15
 1.4.2 B cell Activation ... 16
 1.4.3 Co-Stimulatory Cell Independent Activation 16
 1.4.4 Co-Stimulatory Cell Dependent Activation 17
Section 1.5 Plasma Cell Biology ... 18
 1.5.1 B-1 and MZ B cell Derived Plasma Cells 18
 1.5.2 GC Derived Plasma Cells .. 18
 1.5.3 Short-Lived and Long-Lived Plasma Cells 19
 1.5.4 Transcription Factors Involved in Plasma Cell Development 20
 1.5.5 Phenotypic Changes Associated with Plasma Cell Differentiation 21
Section 1.6 Plasma Cell Related Disorders .. 22
 1.6.1 Plasma Cells as Effectors of Autoimmunity 22
 1.6.2 Multiple Myeloma ... 23
 1.6.3 Waldenström's Macroglobulinaemia 24
 1.6.4 Monoclonal Gammapathy of Undetermined Significance (MGUS) 24
 1.6.5 Diseases with Monoclonal Immunoglobulin Deposition 25
Section 1.7 Therapies for Plasma Cell Disorders ... 27
 1.7.1 Immunomodulatory Compounds 27
 1.7.2 Alkylating Agents .. 27
 1.7.3 Glucocorticoids ... 28
 1.7.4 Proteasome Inhibitors ... 28
 1.7.5 Monoclonal Antibodies ... 28
Section 1.8 KMA as a Therapeutic Target .. 30
 1.8.1 mKap and cKap Monoclonal Antibodies 30
 1.8.2 mKap and cKap Mechanisms of Action 30
 1.8.3 Expression of KMA on B cells ... 31
Section 1.9 The Plasma Membrane .. 31
 1.9.1 Structure and Function of the Plasma Membrane........... 31
CHAPTER 2: MATERIALS AND METHODS..40

Section 2.1 General Reagents and Buffers ..41
 2.1.1Buffers ..41
 2.1.2Cell Lines ...41
 2.1.3Production of mKap/cKap mAbs and FxLCs ..42
 2.1.4Conjugation of Abs and Proteins ..42

Section 2.2 Cell Biology ..43
 2.2.1Flow Cytometry ..43
 2.2.2Purification of Primary Cells ..45
 2.2.3in vitro Activation of CD19+ B cells ...46
 2.2.4ΔLC HEK-293 Transfectants ..46
 2.2.5Heat Shock of JJN-3 Cells ...47
 2.2.6Brefeldin A Treatment on ARH-77_100 Cells ...47
 2.2.7Cholesterol Depletion by Methyl β Cyclodextrin (mβCD) on Cell Lines47
 2.2.8Small Inhibitory RNA (siRNA) Knockdown of Target Genes ..48
 2.2.9GW4869 Neutral Sphingomyelinase (N-Smase) Inhibitor Treatment on Cell Lines49
 2.2.10High Salt, Low pH Washes on ARH-77_100 Cells ..49
 2.2.11PLC, Cholesterol Esterase and O-Glycosidase Treatment on ARH-77_100 Cells49
 2.2.12Confocal Fluorescence Microscopy ...50

Section 2.3 Protein and Lipid Biology ...51
 2.3.1Enzyme-Linked Immunosorbent Assays (ELISA) ..51
 2.3.2Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)52
 2.3.3Western Blotting ..52
 2.3.4Preparation of Cellular Membranes ..53
 2.3.5Immunoprecipitation of KMA with mKap ..54
 2.3.6Sodium Carbonate Membrane Extraction ..54
 2.3.7Triton X 114 (TX114) Phase Separation ...55
 2.3.8Acyl-Biotin Exchange on JJN-3 Cellular Lysates ...55
 2.3.9Analysis of the Oxidation State of FxLC in KMA ..56
 2.3.10Preparation of Large Unilamellar Vesicles (LUV) ..56
 2.3.11FxLC Binding to LUVs: Sucrose Flotation Assay ..57
 2.3.12Assessment of FxLC Binding to LUVs ..57
 2.3.13Dynamic Light Scattering (DLS) Measurements ...58
 2.3.14BCA Protein Assay ..59
 2.3.15Amplex Red Total Cellular Cholesterol Assay ..59
 2.3.16Total Cellular Sphingomyelin Assay ..59

Section 2.4 Molecular Biology ..60
 2.4.1Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR)60

Section 2.5 Bioinformatics ...61
 2.5.1ARH-77 and JJN-3 FxLC Dimer Phosphocholine Binding Models ...61

Section 2.6 Suppliers ..63

CHAPTER 3: EXPRESSION OF KMA ON NORMAL B CELLS..64

Section 3.1 Introduction ..65
CHAPTER 4: MOLECULAR CHARACTERIZATION OF KMA

Section 4.1 Introduction...83
Section 4.2 Results...85
4.2.1 KMA is Expressed on Lymphoblastoid Cell Lines...85
4.2.2 KMA Does not Associate with a Surface Receptor...86
4.2.3 KMA is Directly Associated with the Plasma Membrane...87
4.2.4 KMA is not Linked by a GPI Anchor..91
4.2.5 KMA is not Palmitoylated..92
4.2.6 KMA is not Linked to Cholesterol...93
4.2.7 KMA is not Linked via a Carbohydrate Anchor..94
4.2.8 KMA is Not Linked to Membrane..95
4.2.9 KMA Associates with Sphingomyelin and Saturated Phosphatidylcholine.............111
4.2.10 The V-domain is Required for KMA Expression..120
4.2.11 Recombinant FkLC Expression Induces KMA...109
5.2.6 A FkLC Partially Oxidized Mutant Shows Greater Propensity to Bind Membranes and Form KMA..111
5.2.7 KMA is Fully Oxidized FkLC..113
5.2.8 Mild Heat Treatment of FkLC Induces Membrane Association...............................114
5.2.9 Mild Heat Treatment Aggregates FkLC...119
5.2.10 The V-domain is Required for KMA Expression..121
Section 5.3 Discussion...122
5.3.1 The Molecular Chaperone Hypothesis...126
5.3.2 The Native State Hypothesis..127

CHAPTER 6: THE MOLECULAR CHAPERONE HYPOTHESIS

Section 6.1 Introduction...131
Section 6.2 Results..133
6.2.1 Heat Shock Up-Regulates LC Chaperones and Lowers Expression of KMA.............133
6.2.2 LC Chaperones are Down-Regulated in KMA Expressing Cell Lines......................134
6.2.3 siRNA Knock-Down of GRP58, GRP78 and GRP94 Does Not Induce KMA Expression...136
Section 6.3 Discussion...139

CHAPTER 7: THE NATIVE STATE HYPOTHESIS

Section 7.1 Introduction...142
Section 7.2 Results..144
7.2.1 Cholesterol Depletion Disrupts KMA But Enhances Binding of FkLC to Cell Membranes...144
7.2.2 KMA is Co-Localized with the Lipid Raft Marker CD59...146
7.2.3 KMA is TX100 Soluble at 4°C..148
7.2.4 FkLC Associates with Sphingomyelin and Saturated Phosphatidylcholine.............150
7.2.5 Cholesterol Inhibits Binding of FkLC to Sphingomyelin...154
7.2.6 Cellular Cholesterol Levels are not a Factor in KMA Expression 156
7.2.7 KMA Expression is Dependent on Sphingomyelin.. 157
7.2.8 Structural Models of FxLC Display a Potential Phosphocholine Binding Pocket in the V-domain... 162

Section 7.3 Discussion .. 165
7.3.1 Do FxLCs Associate with Lipid Rafts?... 165
7.3.2 Interaction of Phosphocholine with the Conventional Antigen Binding Pocket of FxLCs.. 170
7.3.3 Aggregation as a Requirement for Membrane Association of FxLCs.................. 172
7.3.4 Is KMA Expression Down-Regulated by N-SMases?... 176
7.3.5 Toxicity of Protein Aggregates... 176
7.3.6 Aggregated Membrane Proteins as a Target for Therapies................................. 178
7.3.7 FxLCs Associate with Membranes.. 179
7.3.8 Possible Functions of FxLC Binding to Phosphocholine Lipids and Related Molecules.. 180
7.3.9 Concluding Remarks ... 183

CHAPTER 8: SUMMARY AND CONCLUSIONS ... 185

BIBLIOGRAPHY .. 190
List of Figures and Tables

Figure 1.1: The polypeptide ribbon structure of an IgG Ab molecule ..6
Figure 1.2: kLC gene recombination and expression ...8
Figure 1.3: Polypeptide ribbon structure and schematic of a FcLC ..11
Figure 1.4: Phenotypes used to identify human B cells at different stages of differentiation22
Figure 1.5: LC deposition pathway ...26
Figure 1.6: Common lipids found in eukaryotic membranes ..32
Figure 1.7: Types of membrane proteins ..37
Figure 2.1: Sequence alignment of ARH-77 and JJN-3 kLC ..62
Figure 3.1: KMA expression on Protein A enriched SAC activated CD19+ peripheral B cells67
Figure 3.2: Phenotypic analysis of protein A enriched SAC activated B cells ...68
Figure 3.3: KMA expression on IL-21, anti-CD40 and anti-IgM activated CD19+ peripheral B cells70
Figure 3.4: Phenotypic analysis of IL-21, anti-CD40 and anti-IgM activated B cells71
Figure 3.5: Analysis of KMA expression on peripheral blood plasma cells ...72
Figure 3.6: Analysis of KMA expression on TMNCs from Donor 1 ..75
Figure 3.7: Analysis of KMA expression on TMNCs from Donor 2 ..76
Figure 3.8: CD45 status on KMA+ tonsillar plasma cells ..77
Figure 3.9: Model of KMA expression during normal B cell differentiation ...79
Figure 4.1: KMA expression on lymphoblastoid cell lines ..85
Figure 4.2: Immunoprecipitation of KMA from JJN-3 and ARH-77_100 purified cellular membranes87
Figure 4.3: Sodium carbonate extraction of ARH-77_100 and JJN-3 membranes89
Figure 4.4: Effect of high salt, low pH washes on KMA expression ..90
Figure 4.5: TX114 phase extraction of JJN-3 purified membranes ..91
Figure 4.6: PLC treatment of ARH-77_100 cells ...92
Figure 4.7: Biotin palmitoyl exchange on membrane FcLC ...93
Figure 4.8: Effect of cholesterol esterase treatment on KMA expression ..94
Figure 4.9: O-Glycosidase treatment of ARH-77_100 cells ...95
Figure 5.1: Biotinylated FcLC bind to cell lines ...100
Figure 5.2: Biotinylated FcLC binds PBMCs ..102
Figure 5.3: Comparison of the binding of different biotinylated FcLC BJPs to MC-116 cells103
Figure 5.4: Comparison of binding biotinylated kFab and FcLC to MC-116 cells ...104
Figure 5.5: Induction of KMA expression by exogenous FcLC ...105
Figure 5.6: Models of FcLC membrane association giving rise to surface expression of KMA106
Figure 5.7: Analysis of expression of KMA and CD59 after brefeldin A treatment of ARH-77_100 cells107
Figure 5.8: Comparison of FcLC secretion over time by kLC lymphoblastoid cell lines109
Figure 5.9: KMA expression on kLC transfected HEK-293 cells ...110
Figure 5.10: Comparison of secreted FcLC between wild type (WT) and C-terminal cysteine deleted (-cys) kLC HEK-293 transfectants ...112
Figure 5.11: Schematic diagrams of wild type (WT) and C-terminal cysteine deleted (-cys) FcLC synthesized by HEK-293 transfectants ...112
Figure 5.12: Analysis of oxidation state of membrane associated FcLC as KMA114
Figure 5.13: Mild heat treated biotinylated FcLC binding to MC-116 cells ...115
Figure 5.14: Mild heat treated FcLC associates with LUVs ...117
Figure 5.15: KMA on the surface of LUVs ...118
Figure 5.16: DLS of VOR FcLC under different temperatures ...120
Figure 5.17: Comparison of KMA expression on HEK-293 cells transfected with full kLC or C-domain only kLC ...121
Figure 5.18: Membrane associated FxLC, as KMA, resides in a large molecular complex of approximately 450kDa.

Figure 5.19: Model of FxLC association with membranes as KMA

Figure 5.20: The molecular chaperone and native state hypotheses

Figure 6.1: FLC V-domain folding is dependent on molecular chaperones

Figure 6.2: Heat shock down-regulates KMA expression on JNJ-3 cells

Figure 6.3: mRNA expression of kLC, GRP58, GRP78 and GRP94 in KMA positive and negative cell lines

Figure 6.4: siRNA knock-down of GRP58, GRP78 and GRP94 on NCI-H929. Analysis of KMA expression

Figure 7.1: Effect of cholesterol depletion on KMA expression

Figure 7.2: Effect of cholesterol depletion on FxLC binding to cellular membranes

Figure 7.3: KMA co-localizes with CD59 on JNJ-3 cells

Figure 7.4: Effect of TX100 at 4°C on KMA expression

Figure 7.5: Structure of phospholipids used in ELISA and LUV assays

Figure 7.6: Binding of bVOR FxLC to various lipid monolayers

Figure 7.7: Assessment of VOR FxLC binding to different phosphocholine lipid based LUVs

Figure 7.8: Binding of bVOR FxLC to sphingomyelin monolayers in the presence of cholesterol

Figure 7.9: Total cellular cholesterol content in KMA positive and negative cells

Figure 7.10: Total cellular sphingomyelin content in KMA positive and KMA negative cells

Figure 7.11: Measurement of sphingomyelin on the plasma membrane of KMA positive and KMA negative cells

Figure 7.12: Effects of GW4869 N-Smase inhibitor on KMA expression of NCI-H929 and ARH-77_neg cells

Figure 7.13: The phosphocholine binding pocket of McPC603 kFab, ARH-77 and JNJ-3 FxLC V-domain dimer models. ribbon and surface diagrams

Figure 7.14: Lipid raft and lipid raft-like membrane models

Figure 7.15: Model membranes containing saturated and unsaturated lipid species

Figure 7.16: Model for KMA expression by a FxLC secreting cell

Table 2.1: Cell lines used in this study

Table 2.2: Staining reagents used for flow cytometry experiments

Table 2.3: siRNA sequences used in gene expression knockdown study

Table 2.4: Abs and conjugates used for the detection of proteins by western blot

Table 2.5: Sequences of primers used in qPCR study
Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>negative</td>
</tr>
<tr>
<td>+</td>
<td>positive</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
</tr>
<tr>
<td>ε</td>
<td>epsilon</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>κ</td>
<td>kappa</td>
</tr>
<tr>
<td>λ</td>
<td>lambda</td>
</tr>
<tr>
<td>μ</td>
<td>mu</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody dependent cellular cytotoxicity</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>AP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>APC</td>
<td>allophycocyanin</td>
</tr>
<tr>
<td>APCs</td>
<td>antigen presenting cells</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>Auto-Ab</td>
<td>auto-antibody</td>
</tr>
<tr>
<td>Az</td>
<td>azide</td>
</tr>
<tr>
<td>BCR</td>
<td>B cell receptor</td>
</tr>
<tr>
<td>BiP</td>
<td>immunoglobulin heavy chain-binding protein</td>
</tr>
<tr>
<td>BJP</td>
<td>bence jones protein</td>
</tr>
<tr>
<td>bκFab</td>
<td>biotinylated κ Fab</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>bVOR</td>
<td>biotinylated VOR</td>
</tr>
</tbody>
</table>
C3 complement component 3
CCDA co-stimulatory cell dependent activation
CCIA co-stimulatory cell independent activation
CD cluster of differentiation
CDC complement-dependent cytotoxicity
C-domain constant domain
CDR complementarity determining regions
D diversity
Da dalton
ddH₂O double distilled water
D₀ hydrodynamic diameter
DLS dynamic light scattering
DNA deoxyribonucleic acid
DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
DTT dithiothreitol
ECL enzymatic chemiluminescence
ELISA enzyme-linked immunoabsorbent assay
ER endoplasmic reticulum
EWB enzyme-linked immunoabsorbent assay wash buffer
EWB-T enzyme-linked immunoabsorbent assay wash buffer with tween 20
Fab fragment, antigen binding
Fc crystallisable fragment
FITC fluorescein
FLC free immunoglobulin light chain
FxLC free immunoglobulin kappa light chain
FαLC free immunoglobulin lambda light chain
FSC forward scatter
FSW flow cytometry staining wash
g gram or centrifugal force
GC germinal centre
GFP green fluorescent protein
gp41 glycoprotein 41
GPI glycosylphosphatidylinositol
GRP glucose-regulated protein
h hours
HC heavy chain
HCD heavy chain disease
HRP horse radish peroxidase
hsp heat shock protein
Ig immunoglobulin
IgA immunoglobulin A
IgD immunoglobulin D
IgE immunoglobulin E
IgG immunoglobulin G
IgM immunoglobulin M
IL interleukin
J joining
k kilo
kDa kilodalton
KMA kappa myeloma antigen
L litre
LC light chain
LCA light chain amyloidosis
LCDD light chain amorphous deposition disease
LMA lambda myeloma antigen
LUV large unilamellar vesicle
M molar
mAb monoclonal antibody
mβCD methyl β cyclodextrin
mg milligram
MGUS monoclonal gammopathy of undetermined significance
MHC II major histocompatibility complex class II
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>MM</td>
<td>multiple myeloma</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>M-protein</td>
<td>monoclonal protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>MZ</td>
<td>marginal zone</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>N-Smase</td>
<td>neutral sphingomyelinase</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAMPs</td>
<td>pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PBMCs</td>
<td>peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PDI</td>
<td>protein disulfide isomerase</td>
</tr>
<tr>
<td>PE</td>
<td>phycoerythrin</td>
</tr>
<tr>
<td>PerCP</td>
<td>peridinin-chlorophyll-protein complex</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>POPC</td>
<td>1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine</td>
</tr>
<tr>
<td>POPE</td>
<td>1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine</td>
</tr>
<tr>
<td>POPS</td>
<td>1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylserine</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>R10</td>
<td>RPMI 1640 media and 10% foetal bovine serum</td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoid arthritis</td>
</tr>
<tr>
<td>RMSD</td>
<td>root mean square deviation</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>reverse transcriptase quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>RU</td>
<td>arbitrary response unit</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SAC</td>
<td>Staphylococcus aureus cowan I strain</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>siRNA</td>
<td>small inhibitory ribonucleic acid</td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>SP-A</td>
<td>surfactant protein-A</td>
</tr>
<tr>
<td>SPR</td>
<td>surface plasmon resonance</td>
</tr>
<tr>
<td>SSC</td>
<td>side scatter</td>
</tr>
<tr>
<td>TLR</td>
<td>toll-like receptor</td>
</tr>
<tr>
<td>TMNCs</td>
<td>tonsil derived mononuclear cells</td>
</tr>
<tr>
<td>TX100</td>
<td>triton X 100</td>
</tr>
<tr>
<td>TX114</td>
<td>triton X 114</td>
</tr>
<tr>
<td>V</td>
<td>variable</td>
</tr>
<tr>
<td>V-domain</td>
<td>variable domain</td>
</tr>
<tr>
<td>V(D)J</td>
<td>variable, (diversity), joining</td>
</tr>
<tr>
<td>VH</td>
<td>variable heavy chain</td>
</tr>
<tr>
<td>VL</td>
<td>variable light chain</td>
</tr>
<tr>
<td>WM</td>
<td>Waldenström’s macroglobulinaema</td>
</tr>
<tr>
<td>XBP-1</td>
<td>x-box binding protein 1</td>
</tr>
</tbody>
</table>
Abstract

Kappa Myeloma Antigen (KMA) is a plasma membrane associated form of free immunoglobulin kappa light chain (F\(\kappa\)LC) expressed on malignant B cells from patients with multiple myeloma (MM), Waldenström’s macroglobulinaema (WM) and non-Hodgkin’s lymphoma (Walker et al. 1985). KMA is recognized by the murine monoclonal antibody (mAb) mKap, and its human-mouse chimeric equivalent, cKap, which is currently undergoing clinical trials as a therapy for kappa type MM (Boux et al. 1983; Raison et al. 2005).

Earlier expression studies on KMA suggested that the antigen is not expressed by normal B cells *in vivo*. However, *in vitro* activation of tonsillar B cells induced expression of KMA on a subset of cells. Like their KMA expressing malignant counterparts, these were presumed to be F\(\kappa\)LC secreting plasma cells or plasmablasts but, due to the lack of B cell lineage specific markers at the time, these cells were not phenotyped (Walker et al. 1985). Furthermore, given the extremely low frequency of plasmablasts and plasma cells in normal tissues, it was not possible to exclude the presence of a ‘normal’ KMA positive cell population *in vivo*.

The first section of this thesis expands upon this earlier work. By utilizing *in vitro* activation protocols on peripheral blood CD19+ B cells, KMA expression was induced on a subset of cells. Phenotypic analysis revealed that the majority of KMA positive cells were CD27++ CD38+- plasmablasts and CD38++ plasma cells. Analysis from normal human tissues found that a subset of plasma cells in the tonsils expressed the antigen. These cells co-expressed CD45, indicating that they are at an immature stage of plasma cell differentiation. In contrast, peripheral plasma cells, considered to be more fully mature cells in transit from secondary lymphoid organs to plasma cell niches in bone marrow or spleen, did not express KMA. This implies that KMA expression, *in vivo*, is limited to a small subset of immature plasma cells in secondary lymphoid organs such as the tonsils.
Despite cKap's current assessment in clinical trials for the treatment of MM, very little is known about its molecular target KMA. Previous studies have showed that KMA is comprised of FκLC (Goodnow and Raison 1985); however it was never determined as to how FκLC is associated with the plasma membrane. Since FκLC is a secreted molecule, it was initially presumed that it associated with a proteinaceous 'membrane receptor' (Goodnow and Raison 1985). However membrane extraction studies, as described in the second part of this thesis, reveal that FκLC directly associates with the plasma membrane through a combination of hydrophobic and electrostatic forces to form KMA. Further investigations confirmed that FκLCs can bind directly to cellular and artificial membranes. Moreover, this binding is likely dependent on self-association processes, which suggest that KMA consists of aggregated, membrane associated FκLCs.

Lipid binding studies revealed that FκLCs associate specifically with saturated phosphocholine species such as sphingomyelin in membranes, and KMA expression was positively correlated with sphingomyelin expression in FκLC secreting cell lines.

The final section of this thesis examines how FκLCs might interact with saturated phosphocholine lipids. Molecular modeling of dimeric FκLC suggests they are able to weakly associate with phosphocholine in the conventional antigen binding pocket formed by the κLC variable domain (V-domain). Since FκLC aggregation is a feature of KMA, then the avidity effects of multi-valent binding likely increases the strength of the proposed FκLC-phosphocholine interaction. This hypothesis explains the observation of both electrostatic and hydrophobic interactions by FκLC, as KMA, with the plasma membrane - the electrostatic component, governed by single FκLC molecules interacting with the charged phosphocholine headgroups, and the hydrophobic component, due to self-association of adjacent FκLC molecules.

Finally, a model of KMA expression by FκLC secreting cells is proposed. FκLC is synthesized in the endoplasmic reticulum (ER) then transported to the golgi-apparatus and encapsulated into vesicles destined for secretion. There FκLCs interact with saturated
phosphocholine lipids, such as sphingomyelin, and undergo aggregation resulting in stable association on the inner vesicular membrane. Fusion of the vesicle with the plasma membrane during exocytosis allows for membrane associated FxLC to become exposed on the extracellular face as KMA.