THE SPECTRAL RESPONSE OF SPONTANEOUS EEG

OCCIPITAL ALPHA ACTIVITY

ANN-MARIE MAHER

BACHELOR OF SCIENCE (APPLIED PHYSICS) (HONOURS)

University of Technology, Sydney,

Broadway,

NSW 2007,

Australia.

Thesis submitted for the degree of Doctor of Philosophy

31st January 2009

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance of my Principal Supervisor, Les Kirkup and the technical assistance of and helpful discussions with Geoff McCredie.

I thank sincerely my husband Paul for his support, patience and instructive assistance. I thank my mother Margaret for all the childminding and my children Brona and Rory even though they couldn't understand what all the work was about.

PUBLICATIONS

Journal Articles

A.-M. Maher and P. D. Swift, *Providing a homogeneous visual field with an integrating sphere*, journal of physiological measurement (2002).

Maher A. M., Kirkup L., Swift P., Martin D., Searle A., Tran Y., and Craig A., *Effect of luminance level on electro-encephalogram alpha-wave synchronisation*, Medical & Biological Engineering & Computing, 39 (2001), pp. 672-677.

Conference Presentations

Maher A.M, Swift P, Kirkup L and Martin D, *The effect of high luminance levels* on the EG alpha wave for assistive technology applications, Proceedings of the International Federation of Medical and Biological Engineering, Medicon 2001,, Pula, Croatia, 2001, pp. 704-707.

Poster Publications

Maher, L. Kirkup, P. Swift, D. Martin, A. Searle, Y. Tran and A. Craig, *Assistive Technology Based On Control of the EEG Alpha Wave: Effect of LightLevels*, *CD-ROM Proceedings of the World Congress on Medical Physics and Biomedical Engineering*, Chicago, 2000, pp. 1.

A.M. Maher, P. Swift, L. Kirkup and D. Martin, *Effect of a Uniform Unpatterned Visual Field on the Alpha Wave, XV International Conference of Clinical Neurophysiology*, Buenos Aires, Argentina, 2001, pp. S50-S51.

TABLE OF CONTENTS

1	INT	RODUCTION1-1
	1.1	THE ELECTROENCEPHALOGRAM1-1
	1.2	ALPHA WAVE DESYNCHRONISATION1-3
	1.3	HISTORICAL PERSPECTIVE OF THE OCCIPITAL ALPHA RHYTHM1-4
	1.4	NEURONAL BASIS AND FUNCTION SIGNIFICANCE OF ALPHA ACTIVITY1-12
	1.5	The 'Mindswitch'1-16
	1.6	The 'Ganzfeld'1-17
	1.7	STRUCTURE OF THESIS
2	EXI	PERIMENTAL APPARATUS2-28
	2.1	INTRODUCTION2-28
	2.2	THE INTEGRATING SPHERE
	2.2.1	Photometric properties of the integrating sphere
	2.2.2	Illumination of sphere
	2.2.3	Spectral and photometric properties of integrating sphere
	2.2.4	Spectral and photometric properties of integrating spheres on Metal Halide
	illum	ination
	2.2.5	Spectral and photometric properties of integrating spheres on Laser Diode
	illum	ination
	2.3	THE BACK-PLANE ILLUMINATED CARD2-37
	2.3.1	The White LED
	2.3.2	Luminance of the paper

2.3.5	Illuminance At The Eye	2-45
2.4	EEG Recording Equipment	2-47
3 TH	E TEMPORAL RESPONSE OF OCCIPITAL ALPHA ACTI	VITY
ON EYE	E CLOSURE TO LOW LUMINANCE LEVELS	3-48
3.1	INTRODUCTION	3-48
3.2	Experimental Method	3-49
3.2.	Subjects	3-49
3.2.2	? Procedure	3-50
3.3	Results	3-51
3.4	Discussion	3-56
4 TH	E EFFECT OF HIGH LUMINANCE LEVELS PRESE	NTED
UNDER		
	HOMOGENEOUS VIEWING CONDITIONS ON OCCII	PHAL
ALPHA	A HOMOGENEOUS VIEWING CONDITIONS ON OCCI WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN E	CS 4-59
ALPHA 4.1	A HOMOGENEOUS VIEWING CONDITIONS ON OCCII WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN E-	CS 4-59
АLРНА 4.1 4.2	A HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN E- INTRODUCTION EXPERIMENTAL METHOD	CS 4-59 4-59 4-60
АLРНА 4.1 4.2 <i>4.2</i> .	HOMOGENEOUS VIEWING CONDITIONS ON OCCII WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN Edit INTRODUCTION Experimental Method Subjects	CS 4-59 4-59 4-60 4-60
ALPHA 4.1 4.2 4.2. 4.2.	 HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN Ed INTRODUCTION Experimental Method Subjects Procedure 	CS 4-59 4-59 4-60 4-60 4-61
ALPHA 4.1 4.2 <i>4.2.</i> <i>4.2.</i> <i>4.2.</i> <i>4.3</i>	HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN Ev INTRODUCTION Experimental Method Subjects Procedure Results	CS 4-59 4-59 4-60 4-60 4-61 4-62
ALPHA 4.1 4.2 <i>4.2.</i> <i>4.2.</i> <i>4.2.</i> <i>4.3</i> 4.4	HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN EV INTRODUCTION Experimental Method Subjects Procedure Results Discussion	PTTAL CS 4-59 4-59 4-60 4-60 4-61 4-62 4-64
ALPHA 4.1 4.2 4.2. 4.2. 4.3 4.4 5 AN	 HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN EXPERIMENTAL METHOD. Experimental Method. Subjects Procedure. Procedure. Discussion INVESTIGATION INTO THE EFFECT OF LOW LUMIN 	PTTAL CS 4-59 4-59 4-60 4-60 4-61 4-62 4-64 ANCE
ALPHA 4.1 4.2 <i>4.2.</i> <i>4.2.</i> <i>4.2.</i> <i>4.3</i> 4.3 4.4 5 AN LEVEL	 HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN EXPERIMENTAL METHOD. EXPERIMENTAL METHOD. Subjects Procedure Results Discussion INVESTIGATION INTO THE EFFECT OF LOW LUMIN S IN A HOMOGENOUS VISUAL FIELD ON 	PTTAL CS 4-59 4-59 4-60 4-60 4-61 4-62 4-64 ANCE THE
ALPHA 4.1 4.2 4.2. 4.2. 4.3 4.4 5 AN LEVEL SPONT	 HOMOGENEOUS VIEWING CONDITIONS ON OCCIL WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN EXPERIMENTAL METHOD. Experimental Method. Subjects Procedure. Procedure. Discussion INVESTIGATION INTO THE EFFECT OF LOW LUMIN S IN A HOMOGENOUS VISUAL FIELD ON ANEOUS EEG OCCIPITAL ALPHA ACTIVITY 	PITAL CS 4-59 4-59 4-60 4-60 4-61 4-62 4-64 ANCE THE 5-66
ALPHA 4.1 4.2 4.2. 4.2. 4.3 4.4 5 AN LEVEL SPONT 5.1	HOMOGENEOUS VIEWING CONDITIONS ON OCCII WAVE ACTIVITY FOR REMOTE ACTIVATION OF AN E- Introduction Subjects Subjects Procedure Results INVESTIGATION INTO THE EFFECT OF LOW LUMIN S IN A HOMOGENOUS VISUAL FIELD ON ANEOUS EEG OCCIPITAL ALPHA ACTIVITY	PTTAL CS 4-59 4-59 4-60 4-60 4-61 4-62 4-64 ANCE THE 5-66

5.2.1	Subjects	5-68
5.2.2	Procedure	5-69
5.3	Results and Analysis	5-69
5.4	DISCUSSION	5-72
6 INV	ESTIGATING OCCIPITAL ALPHA	WAVE
SYNCHI	RONISATION IN A WHITE HOMOGENEOUS VISUAL	FIELD
WITH	THE INTRODUCTION OF A FOVEAL FIX	ATION
PERTUR	RBATION COMPARED WITH ALPHA ACTIVITY	IN A
PATTER	RNED ENVIRONMENT	6-74
6.1	INTRODUCTION	6-74
6.2	Experimental Method	6-76
6.2.1	Subjects	6-76
6.2.2	Procedure	6-76
6.3	Results and Analysis	6-77
6.4	Discussion	6-83
7 AN	INVESTIGATION INTO THE EFFECT THAT	THE
WAVEL	ENGTH OF A HOMOGENOUS VISUAL FIELD HAS O	N THE
OCCIPI	TAL ALPHA WAVE	
7.1	INTRODUCTION	7-87
7.2	Experimental Method	7-89
7.2.1	Subjects	7-89
7.2.2	Procedure	7-89
7.3	Results and Analysis	7-90
7.4	Discussion	7-98

8	AN	INVES	ГІGATI	ON IN	ΤΟ	THE	EFFF	СТ	ON	THE
SP	ONTA	NEOUS	EEG	ALPHA	ACT	IVITY	OF	A C	HROM	ATIC
HO	омос	GENEOUS	VISU	AL FIE	ELD	INTO	WHIC	CH A	A FO	VEAL
PE	RTU	RBATION	IS INTF	RODUCE	D	••••••				8-103
:	8.1	Introductio	ONN							8-103
	8.2	Experiment	AL METHO)D						8-105
	8.2.1	Subjects.								8-105
	8.2.2	Procedur	е							8-106
	8.3	Results and	d Analys	IS	•••••					8-107
	8.4	DISCUSSION								8-115
9	CO	NCLUSIO	N	•••••	•••••	•••••	•••••			9-121
10	REI	FERENCE	S	•••••	•••••	•••••	•••••		•••••	10-129

List of Figures

Figure 2.1 The reflected signal (solid circle) as a function of detector angle for the sphere surface.
<i>The solid line (a cosine curve) represents a perfect diffuser</i>
Figure 2.2 The spectral reflectance of the paint used on the interior of the integrating sphere as a
function of wavelength
Figure 2.3 The measured spectra of the integrating sphere when illuminated with the blue, green,
yellow and red LEDs and the array of five white LEDs
Figure 2.4 The recorded spectrum of the integrating sphere illuminated with the metal halide light source
Figure 2.5 The measured spectra of the white LED as a function of wavelength for various driving currents to the LED
Figure 2.6 The luminous flux of the white LED as a function of driving current shown on a logarithmic scale
Figure 2.7 The measured illuminance of the white LED at a driving current of 1.00 mA, as a function of the reciprocal of the separation distance, d, of the detector to the LED 2-40
Figure 2.8 The intensity of the white LED as a function of driving current, both shown on logarithmic scales
Figure 2.9 Schematic diagram of the apparatus used to measure the angular dependence of intensity of the LED
Figure 2.10 The intensity of the LED as a function of angle, determined using Equation 2.8 2-43
Figure 2.11 The signal recorded at the detector of the photometric goniometer as a function of
angle, shown by data points. The line represents the cosine of the angle normalised to the signal
amplitude
Figure 2.12 The geometry of the set-up for calculating the illuminance at the eye from the back- plane illuminated white diffuse source
Figure 3.1 The grouped mean baseline as a function of illuminance at the pupil plane of the eye
(shown on log scale)

Figure 3.2 Box plot of the TTET and the number of time outs at each of the illuminance level.	ls,
showing the median values and the interquartile ranges	52
Figure 3.3 Pie charts showing the TTET categories, fast, medium and slow each of the	he
illuminance levels, E	56
Figure 4.1 The grouped mean baseline (GMBL) from the ten subjects as a function of luminance	e.
	52
Figure 4.2 Box plot of the TTET, showing the median values and interguartile ranges at the	he
luminances investigated	54
Figure 5.1 α_{int} as a function of epoch for each luminance level at recording site O1. the ple	ot
symbols represent, $x = L1$, $\bullet = L2$, $\blacksquare = L3$ and $\Diamond = L4$. (The line between data points serves i	to
guide the eye)	7]
Figure 6.1 The grouped mean α_{int} (mean α_{int} across all subjects) for the data recorded in the root	m
(e1p - e6p) and in the integrating sphere $(e1 - e33)$. The full line serves to assist with	th
interpretation of the plot and the dashed line at e6p indicates that recording of data we	as
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 32
interpretation of the plot and the dashed line at e6p indicates that recording of data we suspended at this point	as 82 of
interpretation of the plot and the dashed line at e6p indicates that recording of data we suspended at this point	as 82 of he
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 32
interpretation of the plot and the dashed line at e6p indicates that recording of data we suspended at this point	as 82 of he 32
interpretation of the plot and the dashed line at e6p indicates that recording of data we suspended at this point	as 82 of he 82 hs
interpretation of the plot and the dashed line at e6p indicates that recording of data we suspended at this point	as 82 of he 82 hs òr
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs òr 26
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs cor 26 ch
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs òor 96 ch 97
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs cor 96 ch 97 us
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs òr 26 ch 27 us ta
interpretation of the plot and the dashed line at e6p indicates that recording of data was suspended at this point	as 82 of he 82 hs čor 96 ch 97 us ta ht

LIST OF TABLES

Table 2.1 The driving current to the LEDs used in Chapters 6, 7 & 8 and the luminance level of
the integrating sphere when illuminated with these LEDs
Table 2.2 The driving current to the array of five white LEDs used in Chapter 5 and the luminance
level of the integrating sphere when illuminated with this array
Table 2.3 The measured peak wavelength of the LEDs when illuminating the integrating sphere
and the CIE chromaticity coordinates of the sphere illuminated with these light sources 2-35
Table 2.4 The chromaticity coordinates of the white LED for the driving currents to the LED. 2-41
Table 2.5 The illuminance at the eye and the luminance of the paper source for the driving
currents to the LED used in Chapter 3 2-46
Table 3.1 Contingency table of TTET and illuminance The TTET is categorised as fast (< 3.5 s),
medium $(3.5 s - 6 s)$ and slow $(> 6 s)$
Table 7.1 Results of Post hoc Bonferroni analysis of α_{int} showing the wavelengths of the stimulus
which are significantly different (p <0.05) from each other for each of the 11 epochs, where epoch
10 is the epoch of eye closure
Table 7.2 Results of Post hoc Bonferroni analysis of α_{max} , showing the wavelengths of the stimulus
which are significantly different ($p < 0.05$) from each other for each of the 11 epochs, with e10
being the epoch of eye closure
Table 7.3 Repeated measures ANOVA and Bonferonni post hoc test results for α_{int} when
comparing the epochs of wavelength stimulation in the homogeneous visual field. Comparable
results were shown for α_{max}
Table 8.1 Repeated measures ANOVA results of aint and the wavelength of the luminance source,
showing the epochs for which there are significant differences ($p < 0.05$, $p < 0.01$, $p < 0.001$).
Post Hoc Bonferonni test results show the colours that differ significantly from each other. (NS
denotes no significant difference on post hoc testing)

ABSTRACT

The desynchronisation and temporal response of the spontaneous EEG occipital alpha activity in the 8-13 Hz frequency band to a range of luminances and from spectrally characterised illumination-sources wavelengths under homogeneous viewing conditions, with and without the presence of foveal perturbations were examined. Insufficient evidence in the literature to substantiate the effect on occipital alpha to varying luminance conditions and the necessity of such knowledge for the operation of an environmental control system (ECS) provided the impetus for the work. A series of experiments were conducted in uniformly illuminated unpatterned visual fields provided by a sheet of white paper and an integrating sphere. Luminances in the range 2.6×10^{-5} - 900 cd/m^2 and peak wavelengths of 454 nm, 529 nm, 600 nm and 658 nm, for narrow band sources and white light were investigated. Results show that, (i) ECS operation based on the increased amplitude of alpha activity on eye closure is viable in the luminance range 2.6×10^{-4} -900 cd/m², (ii) Occipital alpha activity, in terms of maximum frequency, maximum amplitude and the frequency integrated amplitude, during the first 20 s of homogeneous visual stimulation or on fixation on a foveal perturbation in the field is equivalent to viewing in a typical patterned environment and (iii) Chromatic homogeneous stimulation effects ongoing alpha activity with respect to a wavelength dependency and a decrease in alpha amplitude on eye closure. The homogeneity of the visual field provides strong evidence of the occipital alpha wave behaviour in a such a visual field. The findings are at variance with previous reports because it is shown, (i) that the alpha amplitude in a homogeneous visual field does not increase to the amplitude observed on eye closure, (ii) that alpha behaviour is dependent on wavelength and (iii) that attenuation of alpha activity is observed on eye closure under red green and blue homogenous visual stimulation.