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A Comparison of Continuous- and
Discrete- Time Three-State Models for

Rodent Tumorigenicity Experiments

by Jane C. Lindsey1and Louise M. Ryan2

The three-state illness-death model provides a useful way to characterize data from a rodent tumorigenicity experiment.
Most parametrizations proposed recently in the literature assume discrete time for the death process and either discrete
or continuous time for the tumor onset process. V compare these approacheswith a third alternative that uses a piecewise
continuous model on the hazards for tumor onset and death. AU three models assume proportional hazards tocharacterize
tumor lethality and the effect of dose on tumor onset and death rate. AU ofthe models can easily be fitted using an Ex-
pectation Maximization (EM) algorithm. The piecewise continuous model is rticularly ap ling in this context because
the complete data likelihood corresponds tostandard piecewise exponential model with tumor presence as a time-varying
covariate. It can be shown analytically that differences between the param estimates given by each model are explained
by varying assumptions about when tumor onsets, deaths, and sacrifices occur within intervals. The mixed-time model
is seen to be an extension ofthe grouped data proportional hazards model [Mutat. Res. 24:267-278 (1981)]. VW argue that
the continuous-time model is preferable to the discrete- and mixed-time models because it gives reasonableestimateswith
relatively few intervals while still making full use ofthe available information. Data from the ED,, experiment illustrate
the results.

Introduction
Rodent tumorigenicity experiments play an important role in

evaluating the carcinogenic potential of pesticides, food ad-
ditives, and drugs. A standard experiment involves about 600
animals ofboth sexes in each oftwo strains randomized to a con-
trol group or one of two or three exposed groups. Animals are
observed over an average lifetime of 18-24 months with the goal
of comparing dose groups with respect to tumor development.

It is now well known that time-adjusted statistical analyses are
desirable due to toxic effects ofthe high experimental dose levels
typically used (1). Such analyses are complicated, however, by
the fact that tumors are detectable only at the time of death. Ap-
propriate methods are available ifone assumes that tumors are
either nonlethal (2) or instantly lethal (1). However, most tumors
are of intermediate lethality, in which case alternative methods
of analysis are needed. In recent years, many authors have turned
to methods based on fitting the three-state illness-death model
depicted in Figure 1. The quantity ofinterest is X(t z), the tumor
incidence rate at time t for an animal exposed at dose level z (3).
The functions a and represent the instantaneous death rates at
time t, with and without tumor, respectively. Note that, in
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general, the rate ofdeath with tumor may also depend on the time
ofonset (x). While all ofthe methods proposed in the literature
have in common the objective of characterizing or testing for a
dose effect on X(t z), they vary considerably in the type ofpara-
metrization used; and there has been relatively little discussion
regarding the similarities and differences among the various
methods available.
The most straightforward approach is to assume that the func-

tions characterizing the transition rates in the three-state process
follow some fully specified parametric form (4,5). To relax the
need for strong parametric constraints, Borgan et al. (6) propose
the use ofpiecewise exponential models, claiming that these are
only loosely parametric if enough change points are allowed.
Most of the proposals in the literature, however, formulate the
problem in discrete time, arguing in analogy to standard survival
analysis that the results are fully nonparametric (3,7-9). In a
variation ofthis approach, Dinse (10) suggests the use ofa mixed-
time formulation where the death process is modeled in discrete
time and tumor onset in continuous time. In practice, the ap-
proaches using discrete time end up imposing coarse grouping
ofthe data because the number ofallowable distinct death times
is limited by the number of sacrifices in the experiment.
To avoid the limitation of requiring one sacrifice per interval,

Portier (11 ) and Portier and Dinse (12) suggest the use of semi-
parametric models that place parametric restrictions on the
tumor incidence function, but use a nonparametric discrete-time
parametrization on the death process. Recently, Dinse (13) sug-
gested a different kind ofsemiparametric model that uses a single
parameter to characterize the relationship between a(t) and ,8(t),
the hazards for death with and without tumor. More precisely,
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Tumor

Dem

The Models
LetXbe the time to first event, either tumor onset or death, let

6 indicate whether the first event is tumor onset (6 = 1) or death
(6 = 0), and let T denote time to death. Finally, let Z be a

covariate representing exposure level. Presently we will discuss
a(tlx, z) experiments with control (Z = 0) and exposed (Z = 1) groups,

but for now we will concentrate on a single dose group. Suppose
that time is broken into J intervals, I, = (ijy-, rj) for] = 1, .. ,

J with the same interval boundaries for both tumor onset and
death. Each model can be defined in terms of (2J+1) parameters,

7t = (X43,O), where X and( 3areJ x 1 vectors. The interprtation
lath off3 and X varies with the time parametrization being used.

FIGURE 1. Three-state illness death model.

Dinse suggests using either an additive model [a(t x), = f3(t)
+ A] or a multiplicative model [a(t x) = 3(t) eel. The advan-
tage of this approach is that the model can be fit to data from ex-

periments with as few as one sacrifice time. Lindsey and Ryan
(14) also propose the use of a multiplicative model, but unlike
Dinse (13), who uses a mixed-time formulation wherein deaths
occur in discrete time and tumor onsets in continuous time, they
assume a piecewise exponential model on both X(t) and f3(t).
The main purpose of this paper is to discuss the impact of

modeling in continuous versus discrete versus mixed time, il-
lustrating the conceptual and computational similarities and dif-
ferences among the three approaches. Related questions about
the choice oftime-frame have been discussed in the standard sur-

vival context by Cox and Oakes (15), Hamerle (16), Heitjan (17),
Hoel and Walburg (2), and Xekalaki (18). To provide a common
basis for comparison, we focus on the semiparametric
multiplicative or proportional hazards model discussed by Dinse
(13) and Lindsey and Ryan (14). All three models can be fit us-
ing an Expectation Maximization (EM) algorithm (19), treating
time oftumor onset as missing data. After describing the models
in the next section, we discuss the steps oftheEM algorithm and
use these results to compare and contrast the models analytically.
Next, extensions to further covariate structures are explored.
Two special cases are discussed. First, when 0 = 0, standard
methods for interval-censored data (20) can be applied because
death (the censoring mechanism) is independent ofthe event of
interest (tumor onset). It will be seen that the mixed-time for-
mulation is the same as the grouped data survival parametriza-
tion described by Kalbfleisch and Prentice (21). Second, the
score test for dose effects in the special case of one interval is
derived. The score test from the mixed-time model has the same
numerator as the well-known lifetime incidence test, which can
be biased in the presence of toxicity. The methods are applied to
a subset ofdata from the EDO, study. We illustrate with the data
that all three approaches are similar when many intervals are us-
ed. Establishing this formally is more difficult because the
number ofparameters increases with the number ofanimals and
inference using standard likelihood theory is no longer applicable
(22). When fewer intervals are used, the example illustrates that
the discrete and mixed time models yield biased estimates ofthe
hazards for tumor onset. Results are summarized in the last
section.

Continuous Time
When tumor onset and death occur in continuous time, the

hazards in Figure 1 are interpretable as instantaneous prob-
abilities of failure, and can be written as:

A(t) = lim Pr(t < X < t + c = 1 X > t)/e

3(t) = lim Pr(t <X <t+, 6=0 |X > t)/E
c(tlx) = lim Pr(t < T < t + e T > t, X =x)/e

where t 2 x > 0.

Under the piecewise constant hazards model, the hazards within
each of the J time intervals are:

A(x) = Aj for rj, < x < j

d(t) = Pj for r1< t <trj
a(t) = j3ee for Tj-l < t < rj.

Discrete Time
Under the discrete-time model, the hazards in Figure 1 corre-

spond to the probability offailing at a particular time given sur-
vival to that time:

AP = Pr(X =rj, 6= 1 | X > -rj)
D= Pr(T =rj T > rj,6 = 0)
P= Pr(T= rj iT rj, 6 = 1)

1-(1 _/3f)Ce,

where the relationship between acx and UP is based on the

Kalbfleisch and Prentice (21 ) grouped data parametrization and
is used to ensure comparability of 0 among the three models.

Mixed Time
Dinse's (13) mixed-time model assumes deaths occur in dis-

crete-time with hazards defined exactly as for the discrete-time
model above:

Tumor-free A(x, z)

10

p(tiz)

I
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= Pr(T = rj T > j, 6= 0)
= Pr(T = rj |T >j, =1)

-1-(1/3M)e .

Unlike the discrete-time formulation, however, tumors are
assumed to occur in continuous time, so that the likelihood in-
volves the following conditional probabilities that a tumor
developed within the interval, given that no tumor had developed
as of the beginning of the interval:

M = 1-e '_ A(u)du

Fitting the Models
Four types ofevents are possible at any observed event time:

death, no tumor (DNT); death with tumor (DWT); sacrifice, no
tumor (SNT); and sacrifice with tumor (SWT). The likelihood
contributions of these events for all three models are shown in
detail in Appendix A. For each formulation, the likelihood con-
tributions ofanimals with tumor involve integrals or sums over
the tumor onset distribution which make the observed data
likelihood difficult to work with directly.
The EM algorithm provides a useful alternative to maximiz-

ing the observed data likelihood for all three models and also
facilitates comparison of the models. The complete data
likelihood is calculated assuming exact times to tumor are known
in the piecewise continuous model and assuming the intervals of
onset are known in the discrete and mixed models. The E step of
the EM algorithm involves finding the expected values of the
complete data sufficient statistics conditional on the observed
data (Y) and assuming the current parameter estimates (i). The
complete data likelihood is then maximized (theM step) and the
steps repeated until the parameter estimates converge.

Complete Data Log Likelihoods
The complete data log likelihoods are based on observed data,

as well as on the imputed sufficient statistics from the unobserv-
able data. The observed data in each oftheJintervals consists of
counts ofanimals experiencing one ofthe four possible events.
Let aj and mj be the number of animals dying or sacrificed
without tumor, and bj and nj be the number dying or sacrificed
with tumor in thej ' interval. Let the number of animals still
alive at the beginning ofeach interval be denoted by Rj. The suf-
ficient statistics imputed from the unobservable data include Ni,
the number oftumor onsets in thej]' interval and RjT the number
of animals at risk of death with tumor. The continuous-time
model also requires TjTand j the times at risk with and
without tumor, respectively.
The complete data log likelihood under the continuous

piecewise constant hazards model is:

J

Lc = {Nj In Aj -(Aj+,j)T
j=1

+ aj lnfj + bjIn3j3e0-# 3eTTf 1.

Under the discrete-time model:

J
LD = Z{NjInAj+(R--RT-a;)1n(1-Aj-/,j)

j=1

+aj In Pj + bj In[1- (1 - )e] + (RjT- bj) In(1 -j)C

The mixed-time model leads to the complete data likelihood:
J

LM = {Nj InAj + (Rj-RT)ln(l-Aj)
j=1

+ aj In/j + bj ln[ -(1 -
+ (Rj-RfT-aj) ln(1-/,i) + (RfT- b) ln(1 - ;3)e9}

The log likelihoods under the continuous- and mixed-time
models have the attractive feature of splitting into two pieces that
can be maximized independently. The continuous-time model is
particularly simple because software already exists to maximize
piecewise exponential survival models. Alternatively, iterative,
weighted least squares or a Newton-Raphson algorithm can be
easily programmed in a matrix language. Even within an EM
framework, maximizing the discrete time log likelihood is
cumbersome and requires a Newton-Raphson algorithm with
complicated derivatives. Because the baseline hazards in the
discrete- and mixed-time models are required to lie between 0
and 1, constrained maximization techniques are advisable for
these two models.
By examining the solutions to the complete data log

likelihoods, one can see that differences among the three ap-
proaches can largely be explained by their differing assumptions
about how events are distributed within the intervals in which
they occur. To see this more clearly, consider the maximum
likelihood estimates for the baseline tumor onset rates in thej '
interval:

Piecewise continuous:

Discrete: A - -
I (Ri

i -TNT

Nj
-RT+N,-ai)/(l -,3i)

Mixed: AM = N-,-jRRT + NT3 + '

I1I
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All three have in their numerators the number oftumor onsets in
the interval. The different denominators correspond to different
ways ofcharacterizing the risk set. Connections among the three
approaches are further clarified by making some simplifying
assumptions regarding when events occur within intervals for the
continuous-time model. For example, iftumors and deaths were
to occur at the beginning ofan interval, sacrifices at the end, and
if the intervals were of unit length, then time at risk without
tumor, TjNT can be expressed as:

TNT = (Rj-RT + Nj),

so that the continuous- and mixed-time models yield identical
solutions.

Expectation Steps
In all three models, the E step involves calculation of the ex-

pected number of tumor onsets in interval j, Nj:

E(Nj Y,i) = E pj(4)
{i: 6,=1}

where pj(ti) is the conditional probability that an animal ac-
quired its tumor in interval Ij given it died or was sacrificed with
tumor at ti. The precise form of pj(ti) differs for the three
models and is given in Appendix B. In all three cases, ofcourse,
pj(ti) equals zero for all intervals after the one in which t, falls.
The continuous-time model requires the additional calculation
of the expected times at risk with and without tumor, 7/ and 7jT'
Expressions for these quantities are also given in Appendix B.

Adding Covariates
For each model, covariates can easily be added to the hazards

for death and tumor onset. To allow for a dose effect on tumor
onset, for example, a proportional hazards assumption can be
placed on X:

A(tz) - A(t)elz,

where Z indicates exposure group. Using the Kalbfleisch and
Prentice (I) parametrization,

1 - Aj(Z) = (1 -A3) ,

for the mixed and discrete models maintain comparability of ^t'
across the three models.

Similarly, covariates can be added to the death hazard with no
tumor to account for toxic effects ofthe carcinogen. Hazards for
death in the continuous-time model are then:

6(t, z) = P(t)ePz
a(t, z) = ,6(t)eG+P.

In general, tests of hypothesis are most easily computed using
likelihood ratio tests.

Some Special Cases
Nonlethal Tumors
When 0 = 0, the three-state model can be thought ofas a stan-

dard interval-censoring problem with death as the censoring
mechanism being independent oftumor incidence, the event of
interest. Animals observed to die with tumor are left-censored
(0,t), and those dying without tumor are right-censored (t, oo ).
The observed data likelihoods for the continuous- and mixed-
time models factor into two independent pieces, one involving
only tumor onset parameters and the other, death parameters.
The death (censoring) process is noninformative, and standard
methods for interval-censored data can be used on the likelihood
for tumor onset. The discrete time likelihood does not factor and
so has no analogue in standard survival analysis.
Under the mixed-time model, the hazards for death cancel

from the E step of the EM algorithm, and the resulting estima-
tion corresponds to fitting the grouped data proportional hazards
model suggested by Kalbfleisch and Prentice (21 ) and extended
by Prentice and Gloeckler (23). The mixed-time formulation that
allows for tumor lethality is thus an extension ofthe grouped-data
survival problem. Prentice and Gloeckler (23) require that cen-
sored individuals (deaths in the rodent context) be removed at
fixed points in an interval, e.g., at the midpoint or at the end.
Analogously, the mixed-time model assumes that deaths occur
at the end of intervals.

One Interval
In general, testing for dose effects is most easily done using

likelihood ratio tests. However, it is useful to consider the score
test for dose effects in the simple case ofone interval (J = 1). For
both the mixed- and discrete-time models, the score test can be
shown to take the following form:

(b1 + n) -(b + n)p,

wherep denotes the proportion of animals allocated to the ex-
posed group, and subscripts refer to the number ofanimals in the
exposed group. This is nothing other than the lifetime incidence
test based on total tumor counts. The score test in the continuous-
time model is:

(b1+1)- E(T1NT)

(b, + ni) -(b + n) 1(r(bnE(TNT).
It is based on expected times at risk with no tumor and uses in-
formation about the death times ofthe animals. This extreme ex-
ample illustrates one ofthe important benefits ofthe continuous-
time model over the other two. This point will be further il-
lustrated with the examples in the next section.

Application: ED01 Data
The EDO1 experiment was conducted at the National Center for

Toxicological Research, and involved 24,000 female mice ran-

12
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Table 1. EDO, data: control dose group.

Bladder Lung

Month DNT DWT SNT SWT DNT DWT SNT SWT _

4 0 1 0 0 1 0 0 0 :
5 1 1 0 0 1 1 0 0

3

7 1 1 0 0 2 0 0 0
8 1 0 0 0 1 0 0 0 U
10 0 0 23 0 0 0 22 1
13 0 0 24 0 0 0 22 2 n
14 2 0 23 0 1 1 20 3
15 2 0 0 0 2 0 0 0 .:
16 1 0 20 0 0 1 17 3 2
17 1 1 47 0 2 0 40 7 *2
18 3 0 42 0 3 0 36 6
19 3 0 134 1 3 0 118 17
20 1 0 0 0 0 1 0 0 E

22 6 0 0 0 2 4 0 0 1
23 3 0 0 0 2 1 0 0 ,
24 5 1 0 0 4 2 0 0
25 5 2 0 0 4 3 0 0
26 4 2 0 0 4 2 0 0
27 3 0 0 0 2 1 0 0
28 7 2 0 0 2 7 0 0 1
29 3 1 0 0 1 3 0 0
30 4 0 0 0 3 1 0 0
31 4 0 0 0 2 2 0 0
32 1 0 0 0 1 0 0 0

Abbreviations: DNT, death without tumor; DWT, death with tumor; SNT,
sacrifice without tumor; SWT, sacrifice with tumor.

Table 2. EDO, data: high dose group.

Bladder Lung

Month DNT DWT SNT SWT DNT DWT SNT SWT

1 3 0 0
2 0 1 0
3 2 0 0
5 0 3 0
8 0 1 0
9 1 0 0
10 0 0 22
12 1 1 0
13 0 1 19
14 2 2 19
15 0 2 0
16 0 3 12
17 2 3 12
18 0 1 11
19 1 1 64
20 1 3 0
21 1 1 0
22 0 2 0
23 0 1 0
24 0 1 0
25 0 3 0
27 0 3 0
28 0 1 0
29 0 1 0
31 0 1 0
32 0 1 0
33 0 1 0

0 2
0 0

0 2
0 1
0 1
0 1
0 0

0 2
4 0
4 4
0 2
9 2
9 2
9 1
38 2
0 2
0 2
0 1
0 0

0 1
0 2
0 3
0 0

0 0

0 1
0 0

0 0

1 0
1 0
0 0

2 0
0 0

0 0

0 22
0 0

1 23
0 20
0 0

1 18
3 18
0 15
0 82
2 0
0 0

1 0
1 0
0 0

1 0
0 0

1 0
1 0
0 0

1 0
1 0

FIGURE 2. Cumulative bladder incidence function with three intervals.
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Abbreviations: DNT, death without tumor; DWT, death with tumor; SNT,
sacrifice without tumor; SWT, sacrifice with tumor. FIGURE 3. Cumulative lung incidence function with three intervals.

domized to either a control group or one of seven dose levels of months. We will examine a subset of data from one room con-
the known carcinogen 2-acetylaminofluorene (AAF) (24). There sidering control and high-dose groups only. Results are reported
were eight interim sacrifice times, and a terminal sacrifice at 33 on bladder and lung tumors from 671 animals. It is known that

A.
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FIGURE 6. Cumulative bladder incidence function with monthly intervals.

FIGURE 4. Cumulative bladder incidence function with seven intervals.
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FIGURE 7. Cumulative lung incidence function with monthly intervals.

FIGURE 5. Cumulative lung incidence function with seven intervals.

bladder tumors show strong dose effects on tumor onset and lung
tumors do not. Bladder tumors are more lethal than the nonlethal

lung tumors (24). The data are summarized by month in Tables
1 and 2, where numbers ofdeaths and sacrifices with and without
tumor are shown. Note that the bladder tumor incidence rate in
the control group is low compared to lung tumor incidence but
that many more bladder tumors occur in the high-dose group.
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Table 3. Parameter estimates for bladder and lung tumors for
varying numbers of intervals.

Number of Intervals
Parameter Model 3 7 24

Bladder tumors
Continuous 3.0253 3.0290 2.9213
Mixed 2.7445 2.7929 2.9300

0 Continuous 1.9424 1.9472 2.6310
Mixed 1.9498 1.9161 2.7610

Continuous -0.6606 -0.6637 -0.7531
Mixed -1.0000 -0.9595 -0.7721

Lung tumors
Continuous 0.2455 0.2497 0.2560
Mixed 0.0849 0.1171 0.2505

O Continuous 1.2055 1.2126 1.3963
Mixed 1.2191 1.2226 1.3004

p5 Continuous 0.3551 0.3580 0.5610
Mixed -0.0186 -0.0073 0.5773

a Lethality, 0; dose effect on tumor onset, '; dose effect on death rate, b.

Models with varying numbers of intervals were fit incor-
porating dose effects on tumor onset (&) and on the death rate
(p). The three-interval model breaks the 33 months ofdata at 12,
18, and 33 months. The seven-interval model has breakpoints that
coincide with scheduled sacrifice times. The model with 24 in-
tervals allows hazards to change at each month. Results for the
discrete-time model were virtually identical to those for the
mixed-time model, and are not discussed further in this section.
Parameter estimates from the mixed and continuous models are
shown in Table 3. Significant dose effects are observed for blad-
der tumors in all three models (p < 0.0001) and no significant
results are seen for lung tumors. Quantitatively, results are con-
sistent with each model regardless of the number of intervals.

It is also useful to compare plots ofcumulative incidence func-
tions. The two methods can be compared graphically by looking
at cumulative tumor incidence functions. These are shown for 3,
7, and 24 intervals, for bladder and lung tumors in Figures 2 to
7. Curves are shown for both dose groups. For three and seven
intervals, the curves for both models are similar until the final in-
terval where the mixed-time model shows much lower estimates
for the hazards of acquiring tumor than the continuous-time
model. This is a result ofassuming that animals can only die or
be sacrificed at interval boundaries and is most easily understood
in the context ofa continuous-time model. Tumor onset hazards
from the continuous-time model would reduce to those from the
mixed-time model ifdeaths occurred at the beginning ofthe in-
terval and sacrifices at the end. In this data set there is a big
sacrifice at 19 months. If these animals are assumed to survive
to 33 months, the tumor-free time at risk is overestimated,
resulting in underestimates of the hazards for tumor onset.
Allowing more intervals will decrease the bias due to group-

ing of the death times. Figures 6 and 7 show the results ofbreak-
ing time into monthly intervals. The continuous- and mixed-time
models now agree very closely. However, the approach ofallow-
ing the number of intervals to increase with the number ofdeath
times has several disadvantages. Parameter estimates must lie
between 0 and 1 for the mixed model, making constrained max-
imization techniques advisable. In reality, even the model with

24 intervals is still imposing grouping on the data, as animals can
die at any point during the month. Fitting a mixed model with the
number of intervals equal to the number ofdeath times would be
computationally unfeasible and would no longer allow the ap-
plication of standard likelihood theory. The continuous-time
model has the advantage ofallowing exact death times to be us-
ed, but still imposes limits on the number of parameters to
estimate. It is clear from looking at Figures 6 and 7 that a model
with as few as five intervals would closely match the curves. The
number of intervals for analysis could be fixed in advance ofan
experiment, and then likelihood ratio tests could be used to see
iffewer intervals were adequate. Although the primary interest
ofthe experiments lies in the test for dose effects, examining how
tumor onset hazards change over time may also be of interest.

Conclusions
The relationship of the three modeling assumptions becomes

clear after looking at the complete data likelihoods and their
maximum likelihood estimators. The continuous-time model
will reduce to either the discrete or mixed models when assump-
tions are made about when deaths, sacrifices, and tumors can oc-
cur during an interval.
When tumors are nonlethal, the models reduce to a simple sur-

vival analysis with interval censoring on tumor onset. The mixed
model is seen to be an extension ofthe grouped data parametriza-
tion ofKalbfleisch and Prentice (21). The continuous piecewise
model reduces to the usual parametric case, but the discrete-time
model has no analogue in this context.
Looking at the single-interval case, the test for dose effects in

the mixed- and discrete-time models reduce to the well-known
lifetime incidence test. The continuous-time model incorporates
expected times of tumor onset based on the lifetime of the
animals and is less likely to be biased than the discrete- or mixed-
time model tests when compounds are toxic. Further exploration
ofthe bias and relative efficiency ofthe estimates using simula-
tion techniques would be useful.

In summary, the results of this paper suggest that the
continuous-time model has several advantages over the discrete-
and mixed-time models. Like the discrete-time models, it im-
poses only a weakly parametric (6) structure on the underlying
hazards for death and tumor onset. Although it is slightly more
computationally intensive (it requires the calculation of expected
times at risk without tumor), the continuous-time model does not
require the use ofconstrained maximization techniques, as there
are no upper limits on the ranges ofthe parameters. Because the
continuous model uses information about exact death times, the
placement of deaths and sacrifices at interval boundaries re-
quired by the mixed- time and discrete-time models need not be
made. Realistic estimates of the underlying hazards can be ob-
tained with relatively few intervals which, when chosen aprior,
allow the application of standard likelihood theory.

Appendix A
Observed Data Likelihoods

Suppose the death time t -for the io animal falls in Ij. Then
under the three different models, the likelihood contributions for
death with and without tumor can be written as follows:

15
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(a) Continuous time:

SNT : e,- 1- ('\'+Ot)l--l-(j0)(.
DNT : /jSNT

SWT: E q(x, ti)dx + q(x, ti)dx
k=l-1 f-

DWT: /je SWT,

where

q(x, t1) = A(x)e- 0f[A()+I(u)Idt3(ti)eee f,' 3(u)eidu

is the probability that an animal acquires its tumor atx and dies
at ti.

(b) Discrete model:

j-1

DNT : fl1f(1-Al- L1)
1=1

SNT : -7A(-1-301)
l-l

DWT : EAk H(l- Al-0)[1- (1 -dj
k= 1=1
j-1

I=k
j k-1 i

SWT : EAkH(1-AI- 01)Yj(1-_Q1)
k=1 1=1 l=k

(c) Mixed time:

DNT : rj|(1 - 0) =(1 - Al)

SNT : 1f(1 -3i)f(1 -A1)
1=1 l=l
j k-1 k-1 j-1

DWT : E k (1-Ai) (1-1) r(1 -

[1 - (1 -p)e
j k-1 k-1 i

SWT : Ak H(1- Al) 11(1 - ,) 1(1 - 0)e
k=1 1=1 1=1 l=k

Appendix B
Terms Involved in E Step ofEM Algorithm

All three models require pj(tQ), the conditional probability
that an animal acquired its tumor in interval Ij given it died or

was sacrificed with tumor at ti. The form ofpj(ti) is as follows
for the three models.

(a) Continuous piecewise model:

f J, q(z,t,)dx

fol ~ ~ fo

p3(ti) = ft'q1x 6t,)d , for t1E Ij

0 , otherwise

where q(x,ti) is defined in Appendix A.

f xq(x,t,)dx
E3(xr1)=f" xq(xt,)dx

,for ti > Ij
f r-i 7 .7i~d

Ej(xiti) = < for t iE I

0, otherwise

(b) Discrete time:

Aj n3H (1 - Ak - k) H1' (1 P-/k)
p,(t1-rA, H5' ( -Ak - 1k) Hr l(1i-k

(c) Mixed time:

Aj I-l (1 - Ak) Hkj1 - /3k) Hki(1 - Nk)
p,(t) = - Al r'1" (i -Ak)AO k-il(1 - 00k) k (-l1(l /Pk)e

The E step for the continuous-time model also requires the ex-
pected time at risk with no tumor, T7Nv E(T7NTY, 1)

= E ~~~~(ti-T-)+ (Trj -Tj_1)
1i:4 f-Ij &6.=0} fi:ticIl & si=0, l>j}

+ E [Ej(xlti) -,rj-,] pj(ti)
{i:t,eI & 6,=1}

+ E (Tj - Tj_1)pl(ti).
{i:ticIj & 6,=1, l>j}

Ej(x t,) is the same for naturally dying and sacrificed animals
and is the expected time without tumor contributed to thejfth in-
terval given tumor onset in that interval.

This work was supported by grants CA-48061 and CA-33041 from the National
Cancer Institute.
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