FRAMING IN DESIGN: A FORMAL ANALYSIS AND FAILURE MODES

Vermaas, Pieter (1); Dorst, Kees (2,3); Thurgood, Clementine (2)
1: Delft University of Technology, Netherlands; 2: University of Technology Sydney, Australia; 3: Eindhoven University of Technology, Netherlands

Abstract
This contribution presents a formal description of the design practice of framing and identifies two general modes in which framing can lead to failure in design projects. The first is called the goal reformulation failure mode and occurs when designers reformulate the goal of the client in a design task and give design solutions that solve the reformulated goal but not the original goal. The second is called the frame failure mode and occurs when designers propose a frame for the design task that cannot be accepted by the client. The analysis of framing and its failure modes is aimed at better understanding this design practice and provides a first step towards arriving at criteria that successful applications of framing should meet. The description and the failure modes are illustrated by critically considering an initially successful case of framing, namely the redesign of the Kings Cross entertainment district in Sydney.

Keywords: Framing, Design Theory, Design methodology, Failure modes

Contact:
Dr. Pieter Vermaas
TU Delft
Netherlands, The
p.e.vermaas@tudelft.nl
1 INTRODUCTION

One of the powerful practices in the toolkit of designers and design thinkers is the framing of a design task, that is, the creation of a new perspective on a design task. Whereas in more traditional engineering design methods the emphasis was on the modelling of how designers solve the design tasks as they are set by clients, later, after the seminal work by Donald Schön (1983), design methods started to explicitly include the notion that designers need to reformulate the design tasks as given, and are often seen to distance themselves to a degree from the formulations by which clients present these tasks. This enables designers to creatively explore design tasks, break free of suggestions how solutions should look like that can come with the clients’ formulation, and in this way broadening the solution space. This reformulation of design tasks is called ‘framing’ or ‘reframing’, and is now a prominent part of current design methods (e.g., d.School, 2011; Hekkert and Van Dijk, 2011; Dorst, 2015).

There are various sources for determining what framing is. One can return to Schön, one can analyse how it is spelled out in current design methods, or one can consult work in which framing has been studied more theoretically (Cross, 2006; Dorst and Cross, 2001; Dorst, 2011; Dorst, 2015). These sources all share the perspective that the use of framing by and large always leads to successful reformulations of design tasks; that by framing designers arrive at better and more innovative solutions and can overcome deadlock in design projects, as design tasks as set by clients are often ill-structured (Simon, 1984), wicked (Rittel and Webber, 1984) or just plain paradoxical (Dorst, 2006). In the literature one can find many discussions of design cases with framing that are in these senses successful. And although these discussions suggest that less fortunate cases may also be available, the possibility that framing may fail in a design project is more or less not considered, let alone studied. In order to improve the design practice of framing, we need to understand instances of when it goes wrong.

This contribution presents an analysis of framing with the aim to better understand this design practice and to explicitly define ways in which it may fail to be successful. It gives a somewhat formal description of framing and identifies two general modes in which framing can lead to failure in design projects, thus providing a first step towards arriving at criteria that successful applications of framing should meet. The description and the failure modes are illustrated by critically considering an initially successful case of framing, namely the redesign of the Kings Cross entertainment district in Sydney, Australia (Dorst, 2011; 2013). This design project has recently had an unfortunate sequel that calls into question the quality of the original frame, thereby demonstrating the need to better understand how to apply the design practice of framing successfully.

In Section 2 we introduce this case and in Section 3 we give our analysis of framing. In Section 4 two failure modes of framing are defined, and in Section 5 we reconsider the sequel of the Kings Cross design project.

2 FRAMING KINGS CROSS

For setting the stage, first a design project is described in which framing plays a pivotal role. This project is the redesign of Sydney’s night-time entertainment district in Kings Cross (Dorst 2011, pp. 528-530).

Being the main night-time entertainment district in Sydney, Kings Cross has increasingly become a setting for antisocial behaviours and escalating crime. High volumes of young people attend on Friday and Saturday nights, and activities are predominantly concentrated on a small stretch of nightclubs. Some of the problems that occurred include drunkenness, violence, petty theft, and drug dealing. Previous attempts at solving the problem by the City of Sydney included the implementation of strong-arm tactics and the increasing of police presence; however, the additional security measures failed to enhance feelings of public safety and instead resulted in a grim atmosphere for all.

In 2008 designers from the Designing out Crime research centre were asked by the City of Sydney to look into these issues and propose ways to reduce crimes and misdemeanours, in particular ‘alcohol-related violence.’ The designers concerned quickly realised that the situation had previously been

1 http://www.designingoutcrime.com/
treated as a law-and-order problem requiring law-and-order solutions; however, the people involved were not actually criminals. Instead, they were just young people looking to position themselves in a social setting and to have a good time. The lack of structure of the nightspot together with the sheer volume of young people meant that they were becoming bored and frustrated, and consequently were not having a good experience at all – a problem only exacerbated by the additional security measures. The designers proposed a simple analogy in which large volumes of people already successfully come together and interact in a harmonious fashion: a music festival. They effectively reframed the problem by comparing the dysfunctional situation at Kings Cross with a well-organised music festival. They asked themselves what they would do if they were organising a music festival and this triggered new scenarios for action, as a well-organised music festival offers many facilities that are not currently available in the Kings Cross district but could easily be designed in. The designers worked in conjunction with the local government authority for Sydney to execute a variety of solution directions. One example was to organise transport. In a music festival, people would be able to get there but also leave when they want. In the entertainment district, train services ended around the same time that peak influx of patronage begins. Apart from the obvious improvement of providing more trains at the nearest station, the designers also implemented a back-up system of temporary signage to lead towards a different nearby station that has trains running all night. In all, about 20 ideas/solution directions resulted from this single frame of the ‘music festival’, and over a space of five years many of these have been trialled and implemented. These include the introduction of friendly ‘Kings Cross Guides’ that welcome visitors into the area, provide information on all the facilities and also double up as extra eyes and ears for the police, providing an early warning to officials when a situation looks like it might get out of hand.

The Kings Cross case shows how the creation of a new frame provides an entirely new approach to a complex problem situation, rather than attempting to generate solutions to a problem that cannot move forward in its original terms. A full description of the Kings Cross scenario and its resolution can be found in a previous paper by the second author (Dorst, 2013).

3 MODELLING FRAMING

For arriving at a more formal description of framing that can be applied to other design projects as well, one can use the case of the redesign of Kings Cross and abstract from its specificities. Let a design task be captured by a situation S, a goal G that is to be realised, and possibly also a frame F[T], where it still has to be spelled out what this frame consists of. The situation S is a current state of affairs. In the described case, S is the original situation in the Kings Cross district, including the regular crimes and misdemeanours that take place in it. The goal G is the state of affairs that the client wants to realise. In the Kings Cross case, G is the situation that the City of Sydney envisages, that is, a situation in which the rate of crimes and misdemeanours is much lower as compared to the original situation S.

3.1 Frames

Schematically one can take a resolution of a design task as an action A by which a current state of affairs S can be transformed into the envisaged state of affairs G. Designers create this action A by exploring and evaluating solution directions, and designers arrive at these solution directions by analysing the current state of affairs S and by drawing from their knowledge of how to transform states of affairs. Framing can now be taken as characterising the current state of affairs S as resembling a particular type T of states of affairs with the aim of making solution directions available, namely those solution directions that are regularly applied to states of affairs of type T. Returning to the case: when the original situation S of the Kings Cross district is characterised as a situation of the type “crime scene”, then this framing of the entertainment district suggests all kinds of possible solution directions associated with crime. For instance, for realising a more peaceful situation G, policing actions A come to mind such as surveying the area more severely, or banning first or multiple offenders. When, instead, the original situation S is characterised as being of the type T of a (poorly organised) “festival area”, other possible solution directions come to mind, associated with the organisation and management of festivals. The same goal G of a peaceful district can then still be realised, but now through alternative actions A that come with the management of festivals, such as
providing information about transportation and introducing friendly ‘Kings Cross guides’ for assisting visitors of the Kings Cross district.

In this schematic description of designing, a frame can be modelled as the set of possible solution directions A for realising goals G in a state of affairs S that designers make available by characterising S as being of a type T of states of affairs. This modelling of a frame is rather operationalistic by black-boxing how designers arrive at frames; it simply identifies a frame with the role it plays in design, namely providing designers suggestions for solution directions to realise the goal G (Dorst, 2015). The value of this modelling does not lie in helping designers to find the frames or the solutions, but in identifying failure modes of framing, which will be the topic of Section 4. The introduction of the concept of types T of situations is motivated by the relation between metaphors and framing as can be found in the work by Schön. According to Schön framing in design may be analysed as taking a specific design situation S as being of a type T of situation, and doing so enables designers through their experience with past situations of that type T to arrive at solution directions.

3.2 Framing steps in design

A simple modelling of a design process with framing can then be as follows. This process starts with a design task (S,G) as set by the client: the client presents a current state of affairs S and asks for means to transform it into a desired state of affairs G. The designer then frames this design task by taking the current situation S as of being of type T, arriving by this step at a framed design task (S,G,F[T]). The frame F[T] provides the designer with actions A as possible solution directions to obtain the desired goal G, which are then explored for their feasibility. An action A may involve the deployment of products (extant, or yet-to-be-designed), let us call them P, and if a specific action A is chosen as the right one for meeting the design task, then the designer also gives a design description of the products P part of that action. These products may count as the final design solution, yet with the increased acknowledgment that design is about creating product-services, it may be more appropriate to model the design solution as the pair (A,P) of the accepted action A plus the products P involved. This modelling is too simplistic to capture the rich design practices that lead to the creation of new frames. Designers may also reframe design tasks by either abandoning a frame they themselves introduced when initially framing the design task, or by taking distance from a frame that is suggested by the client. Clients may already steer the design process by including in the formulation of the design task possible solution directions. The City of Sydney, for instance, already presented the task to redesign the Kings Cross district as one of reducing crimes and misdemeanours, and in this way put the focus on finding ways to prevent visitors to the district from breaking the law. Both steps of reframing can be modelled as a map from an initial framed design task (S,G,F[T]) to a reframed design task (S,G,F[Ṫ]), were Ṭ is the new type of situations S is taken to be. Adding these steps to the modelling of framing implies that the design task as set by a client may be captured by the triple (S,G) when the client does not frame this task, and may be captured by the triple (S,G,F[T]) when the client does frame it.

A second broadening of the modelling is including the possibility that a designer when considering a design task as set by a client, not only considers alternative ways to characterise the situation S the client presents but also alternative formulations of the goal G the client has. This reformulation may involve making this goal G more precise, making it broader or replacing it by an underlying goal that is taken to be the motivation for the client to adopt the original goal G in the first place. In all these cases the original goal G is replaced by a new goal ḇG. One can most probably add more reasoning steps for arriving at even more sophisticated models of framing; one can, for instance, include that designers can formulate themselves potential design tasks for clients (d.School, 2011). For finding two failure modes of framing the current modelling however suffices. So, let us take stock and take the design practice of framing as consisting of three types of steps (see Table 1). In a project the designer can take some or all of these steps, take a single step more than once, and do so in any order.

Goal reformulation in a design task:	(S,G) → (S,Ḡ) or (S,G,F[T]) → (S,Ḡ,F[Ṫ])
Framing the situation in a design task:	(S,G) → (S,G,F[T])
Reframing the situation in a design task:	(S,G,F[T]) → (S,G,F[Ṫ])

Table 1. Three framing steps; S = original situation, G = goal, ḇG = reformulated goal, F[T] = frame, F[Ṫ] = new frame
The original design task as set by a client can be without a (suggested) frame, to be modelled as \((S,G)\), or be with a frame, modelled as \((S,G,F[T])\). This initial design task can at the start of the design project by the designer be framed, reframed or goal-reformulated. And during the design project the designer may again reframe the design task or reformulate the goal.

It is important to note that we distinguish here between the act of designers interpreting a design task in terms of clarifying their understanding, and (re)framing a design task in terms of generating an alternative perspective on a situation. An interpretation of a design task in isolation does not necessarily lead to solution directions, whereas framing, through its comparison to a desired situation, should lead the designer to solutions. Importantly, one could have an erroneous interpretation of the client’s needs, which would inevitably lead to failure modes of their own.

3.3 Design solutions

For extending the modelling to the final design solution, one can add two more reasoning steps (see Table 2).

<table>
<thead>
<tr>
<th>Table 2. Two additional design steps; (A = \text{action}, \ P = \text{product})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action identification: ((S,G,F[T]) \rightarrow A)</td>
</tr>
<tr>
<td>Product identification: (A \rightarrow P)</td>
</tr>
</tbody>
</table>

The step of identifying the action \(A\) demonstrates the role of frames in finding the design solution since it is the frames \(F[T]\) that make available solution directions to designers from which or through which they can identify an action \(A\) to realise the goal \(G\). These additional two steps are not further considered in the analysis where framing can go wrong.

In Figure 1 three paradigmatic schemes of design projects are given, a first with only framing, a second with goal reformulation (and framing) and a third with reframing.

Figure 1. Three paradigmatic schemes of design projects with, from left to right, framing, goal reformulation and reframing

4 FAILURE MODES WITH FRAMING

How can framing go wrong? There are many ways in which a design project as a whole can fail, ranging from spending too many resources while finding a solution to not finding a solution at all. Two general ways in which a design project can fail are relevant to the question of what failure modes in design projects are introduced when the tool of framing is used. The first mode is that a project
leads to a design solution – actions A and products P – that does not realise the goal G as set in the design task (S,G) or (S,G,F[T]), and this possibility becomes realistic when a designer reformulates the goal G in the task. The second failure mode is that the design solution cannot be adopted by the client because the client cannot carry out the actions A or use the products P as intended, and this becomes imaginable when a designer introduces or adjusts a frame F[T].

4.1 The goal reformulation failure mode

The first failure mode that a project leads to a design solution that does not realise the goal G is of course a generic one, and may not be specific to framing. It can however be argued that the step of goal reformulation is making this failure mode rather realistic, even if one assumes that the design process is always successful by leading to a solution to the reformulated goal Ġ. With framing as modelled in the previous section, a design project leads to a solution to a design task (S,Ġ,F[T]) or (S,G,F[T]) and that opens up the possibility that the client may observe that this solution does not realise his or her original goal G.

Let us call this first failure mode the goal reformulation failure mode.

Goal reformulation failure mode:
- The design solution (A,P) solves the reformulated goal Ġ but does not solve the original goal G.

If we further unpack this mode, three cases can be discerned.
First, the reformulated goal Ġ can be a more precise description of the original goal G that the client has set. Say, the City of Sydney in the Kings Cross case has the goal G to bring the number of public disturbances down and this goal is reformulated as getting the number of crimes and misdemeanours down. Non-criminal disturbances are then no longer addressed in the design project, say visitors getting aggressive, sick or overly noisy. When a successful design solution is found for this reformulated goal Ġ, the original goal is still not realised: the City of Sydney may take the design solution as a failure because the number on non-crime and non-misdemeanour incidents remains as they are.

Second, the reformulated goal Ġ can be a broader description of the original goal G. Say, getting the number of public disturbances down and improving the time to identify these disturbances. In principle the goal reformulation failure mode is now blocked, since a design solution that realises the broader goal Ġ, realises by definition the original more limited goal G. Yet when that reformulated goal is partially realised, failure may again surface. The elements that are added to the original goal G to arrive at the reformulated goal Ġ may have been achieved well but the original goal less. Consider, for instance, a design solution that swiftly and adequately warns when a public disturbance takes place but less adequately prevents them from happening. The City of Sydney may then again conclude that this solution does not serve the original goal G well.

Third, the reformulated goal Ġ can be an underlying goal that reveals motives of the client to set the original goal G in the design task. Say, the City of Sydney is motivated to get the number of disturbances down because of the political or public outcries about what happens in the Kings Cross district. A design solution to such an underlying goal Ġ need not be a solution to the original goal. For instance, a public relations strategy that convinces politicians, the media and the general public that the Kings Cross district is a relatively well policed area and much safer for visitors than, say, daily traffic during Sydney’s rush hour, could be valid for assuaging the public’s concerns about Kings Cross. However, this strategy may backfire when the public disturbances continue and are again dominating the headlines in the media. The original goal G then may resurface and the City of Sydney is faced with the fact that this goal was not addressed in the design solution to Ġ.

4.2 The framing failure mode

The second failure mode for framing is that a design solution (A,P) cannot be adopted by the client because the client cannot carry out the actions A or use the products P as intended. Superficially it may seem that this failure mode should not occur anymore in contemporary design. Since the analyses of Donald Norman (1990) of the operation of sliding doors and other products with unintelligible interfaces, the usability of products has enjoyed continuing attention in design. And the introduction of new products and services is currently typically accompanied with careful programs to make the required actions known to users. This is illustrated by the impressive global achievement that within a
couple of years all air travellers have learned to check-in for flights, a procedure that used to be carried out by the airlines companies themselves. Framing or reframing could however introduce new ways in which clients can be faced with design solutions they are unable to adopt. Return for this again to the case of Kings Cross.

By framing the Kings Cross district as a festival area and not as a crime scene new solution directions do become available to the designers, but this change of frame also implies taking distance for existing solution directions that came with the old frame. This taking distance from the existing approach may indeed be seen as the benefit of the new frame, yet it also can make the adopting of the design solution found with the new frame problematic. Taking the Kings Cross district as a festival area suggests, for instance, also selling alcoholic drinks on the streets of Kings Cross. However such a suggestion seems less suitable given the association between alcohol and violence, the very behaviour the designers are trying to prevent. Regardless, such solution directions need not compromise the reframing of Kings Cross: since they are manifestly not contributing to realising the goal of reducing the number of crimes and misdemeanours, and will soon be dropped if designers would even mention them to the City of Sydney. Other suggestions that come with the new frame and that are adopted by the City of Sydney may however turn out to be problematic as well. Consider, for instance, the grim looking bouncers in front of and inside clubs and the more authoritative police officers that in the original situation patrolled the Kings Cross district. They came with the old frame and may not have been very effective, but the bouncers and police officers are now part of the Kings Cross district. The new frame instead suggests adding staff to Kings Cross – the ‘Kings Cross Guides’ – that informs, guides and assists visitors, and that may consist of more open and communicative young people, visible by colourful uniform clothes. The new frame also suggests reducing the number of bouncers and police officers or minimally transforming their role to one of servicing rather than policing. And this solution to the Kings Cross district may be hard to adopt by, for instance, the Sydney police. The Sydney police are present at Kings Cross because there are often public disturbances in that district, and the police are required to be there, since it remains their task to prevent such disturbances or to arrest the people involved, ‘music festival’ frame or no ‘music festival’ frame. Designers may convince the City of Sydney and its police of the benefits of a different perspective on the area, and the Sydney police may acknowledge these benefits, yet the consequential change that is required in the behaviour of the police may be harder to achieve. One may argue that by its core values the police are unable to unconditionally adopt the new frame, and are prone to return to the old one as soon as public disturbances will actually take place, as will be the topic of Section 5.

Abstracting from this case, one can argue that a new frame $F[\hat{T}]$ introduced by designers in a design project has to be acceptable to the client: the client should agree with characterising the initial situation S as of type \hat{T} and this characterisation should be compatible with the values the client has. If not, a design solution obtained within the new frame may fail to be adoptable to the client. Let us call this possibility in which a design project may lead to failure the frame failure mode:

Frame failure mode:
- The client does not adopt the design solution (A,P) by not accepting the frame $F[\hat{T}]$.

It is a mode that to our knowledge has not been studied as such, and for giving a typology of this mode, as we did for the goal formulation failure mode, further analyses and further cases are needed. For this analysis the literature on framing in the political sciences may be a useful source (e.g., Lakoff, 2004; De Bruijn, 2014). Hans De Bruijn, for instance, analysed debates in politics as guided by frames. Participants in such debates set up frames to present their views – the most well-known case being the “either you are with us, or you are with the terrorists” frame the U.S. President George W. Bush used in 2001 to rally support after the 9/11 attack. Participants are then facing the choice to accept the frames of their opponents, stay with their own frames or set up alternative ones. “Stepping into a frame” of opponents is in this literature taken to be disadvantageous since it forces participants to accept the perspective of the opponents. Returning to designing, one may analyse (re)framing in a design process as a proposition to the client to “step into the frame” T or \hat{T} the designers identified, leading to the question under what conditions a client is capable or willing to accept the frame.
4.3 Avoiding failure

Both failure modes may in practice be avoided if designers regularly brief clients about the way they develop the original design task. And by introducing moments in this process at which clients and designers reconfirm explicitly the precise design task that will be addressed.

For example, within design agencies, notably in product design, there is the practice of creating a ‘Return Brief’ before contracts are signed and a design project starts. Such a Return Brief describes how the designer understands (and interprets) the design task and plans the project in accordance with this understanding. The creation of a Return Brief is not a neutral undertaking: it often quite clearly holds the seeds of the reformulation of the client’s perceived goals and reframing of its initial frame.

Within design research, authors like Bryan Lawson have gone further and actually stated that briefing is “a continuous process” in design (Lawson and Dorst, 2009), possibly as an expression of the ‘co-evolution of problem and solution’, that is now widely accepted as being one of the core processes driving creative design.

And indeed, some empirical studies do seem to point to this: the design problem is kept fluid (within bounds) through all of the conceptual phase of the design project, and only really gets fixed at the moment a solution concept is chosen and approved for moving into embodiment design and implementation. However, with one noted exception in the field of Visual Communication (Paton and Dorst, 2011), there have been no elaborate empirical studies into these design practices. This is a grave omission, as the ability to reframe design tasks is now considered to be a key design tool and one of the cornerstones of the design thinking-movement in business schools and design schools.

5 REVISITING KINGS CROSS

For making specifically the second framing failure mode more concrete, we return for a last time to the case of redesigning the Kings Cross district. Unfortunately, in 2012 and 2013 a tragic course of events occurred that calls into question the validity and appropriateness of the imposed frame and that actually annulled the effect of the earlier design interventions in Kings Cross. Over the space of a couple of months, two separate incidents happened that severely shocked public opinion and resulted in direct Governmental intervention. In these incidents, both in the Kings Cross district, two young men were attacked by impulsive aggressors; they sustained a sudden ‘single-hit’ to the head, then cracked their skull as they fell on the pavement and died.

These tragedies and the public outcry that followed spurred the New South Wales Government (under which Sydney falls) into action, and new laws were passed that severely limit the opening times of pubs, bars and clubs in Kings Cross and surrounding parts of central Sydney.

One could argue that this response by the New South Wales Government is itself a case of wrongful framing: the Government felt duty-bound to respond to the outcry in the media that considered these two horrible incidents to be exemplars of ‘alcohol-related violence’. This framing makes reducing the alcohol intake of people in the area by limiting the opening times of pubs and clubs seem a logical cause of action. However, the two incidents that these laws seek to address both were not related to an excessive intake of alcohol at Kings Cross at all (both occurring early in the evening, by perpetrators that had been drinking at home). Thus, the new laws would not have prevented the tragic deaths, and unfortunately will not prevent such events happening in the future. The framing that supported the Government’s response can therefore be taken as suffering from the goal reformulation failure mode: the new laws may make that visitors drink less alcohol at Kings Cross (the reformulated goal \tilde{G}) but might not avoid future incidents of this type (the original goal G). These critical points do, however, not take away that the design solutions made available with the festival frame also might not avoid such incidents. (For making some progress on this point it may be noted that there is in fact a pattern here: both incidents were linked, in the sense that both perpetrators were into muscle training and Martial Arts – the excessive consumption of muscle-building amphetamines and hormones might have contributed to their sudden aggression, unlocked by a small amount of alcohol – but the banning of such widely used substances has not been considered.)

These new Government regulations have devastating effects: young people now avoid the Kings Cross area altogether, and party in other parts of the city just outside the exclusion zone. Kebab shops, convenience stores, restaurants, and bars in Kings Cross are no longer profitable, they are now closing
their doors and unless something happens, this downward spiral will continue. Soon only the organised crime/drugs/prostitution-related businesses will be left in the area. The net consequence of this tragic course of events and the Governmental response to it is that the solution for reducing the number of crimes and misdemeanours as derived by the designers with the new festival frame cannot be adopted anymore by the City of Sydney. The earlier choice of the City of Sydney to approach the Kings Cross district with this new frame has effectively been overruled by the New South Wales Government, forcing it to return to the old ‘crime scene’ frame and the use of strong-arm tactics for policing the district. Hence, the Kings Cross redesign project fell prey to the framing failure mode; the City of Sydney no longer adopts the design solutions (A,P) since it no longer will (or can) accept the proposed frame F[T].

One can analyse this failure in two ways. One can still say that the original 2008 project was successful, and reject that the reframing failed. One may, for instance, argue that the City of Sydney did accept the new festival frame and the design solution as found by it. And one can point out that the tragic events were not due to the situation at Kings Cross as created through the project, since the perpetrators got into their aggressive state outside the Kings Cross district. Moreover, the solution direction paid off in another way because since the project at Kings Cross, the City of Sydney has created a broader strategy called ‘Open Sydney’ to implement changes in other areas in the city that are similar to the ones the design project has led to for King Cross. Hence, the City of Sydney is now reinventing itself as an active framer and conductor of life in the city – effectively reformulating its goals as an organisation. Therefore, the original frame was a success of some sort.

An analysis that is more susceptible to failure is one in which it is accepted that the frame was apparently too weak for the City of Sydney to hold on to for the Kings Cross district in the face of the tragic deaths of the teenagers. In such an analysis it is accepted that this district is an intrinsically open area in which people may turn up that have already drunk elsewhere or are otherwise affected by drugs. And in such an analysis it is accepted that Sydney is part of New South Wales, with a State Government that also has a say about measures to be taken in Kings Cross. From this broader perspective the festival frame as proposed by the designers has proven to be acceptable to the City of Sydney at the time of the project (2008) but has proven to be unacceptable in the long run.

6 CONCLUSIONS

In this contribution we have considered the design practice of framing and presented a formal way of describing it. Our aim was to better understand this practice and to explicitly define ways in which it may fail to be successful. We argued that there exist two modes for framing to fail, which we called the goal reformulation failure mode and the frame failure mode. By the first mode framing fails when designers reformulate the goal of the client in the design task and give design solutions that solve the reformulated goal but not the original goal. By the second mode framing fails when designers propose a frame for the design task that cannot be accepted by the client. We illustrated these two failure modes with the case of the redesign of the Kings Cross entertainment district in Sydney.

The existence of these failure modes does not imply that framing is not a powerful design practice. Through framing, designers can arrive at creative and effective solutions to design tasks, as the Kings Cross case shows. Yet this example also demonstrates that framing is not a practice that inevitably leads to successful design solutions; care and critical evaluation are needed to steer the framing process in the right direction.

The analysis in this paper creates an initial understanding of this, and opens up a more critical research agenda on framing. We need to investigate what would be the criteria for a ‘good’ or perhaps ‘strong’ frame, and these insights in turn could lead to recommendations on how the framing process can be conducted well. The wealth of cases of framing that is available in design research is a good starting point for such research, and as mentioned, also the literature on framing in the political sciences may be a useful resource. Also, further research might lead to the identification of other failure modes than the two described here, eventually leading designers to employ this tool with even more sophistication and success.

REFERENCES

THE 20TH INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN (ICED15)

DESIGN FOR LIFE

27th-30th July 2015
Politecnico di Milano, Italy

Organised By
Politecnico di Milano, Politecnico di Torino
and the Design Society

Proceedings of ICED15
Volume 3: DESIGN ORGANISATION AND MANAGEMENT
DS 80-03

Edited By
Christian Weber
Stephan Husung
Marco Cantamessa
Gaetano Cascini
Dorian Marjanovic
Francesca Montagna

Published by the Design Society, Glasgow, Scotland
Preface by the Programme Chair

We welcome you to the proceeding of the 20th International Conference on Engineering Design 2015 (ICED 15) held at the Bovisa campus of Politecnico di Milano, Milan, Italy. The theme of the Conference is “DESIGN FOR LIFE”, inspired by EXPO 2015 in Milan.

These proceedings of ICED 15 contain 427 double-blind peer-reviewed and accepted papers. The proceedings are published in different forms: a book of abstracts and a soft-copy of all contributions on a USB-based memory device for conference delegates plus printed books (11 volumes), which are available to the public via a print-on-demand service. All these different forms of proceedings are numbered against both Design Society and ISSN/ISBN referencing to allow wider access, better referencing and improved citation in the near and distant future. Additionally, all papers contain a citation proposal for a reproducible citation. The 11 volumes of the books are structured according to the conference topics and the sequence of the sessions. All papers in the proceedings have successfully fulfilled the criteria for acceptance in ICED 15.

Continuing on from the changes introduced for ICED 13, the papers in the proceedings were produced by combining an automatically generated cover page, based on the contribution details in the Conference Management System (ConfTool), with the paper as submitted by the authors, starting with the introduction section. This procedure supports consistent data for the papers, the conference programme, the Book of Abstracts, etc.

ICED 15 and its proceedings are the result of the dedicated efforts of many people:

- the authors who submitted excellent papers (both in content and form),
- the reviewers who provided timely comments and positive feedback that helped to optimise the quality of papers,
- the chairs, assistant chairs and members of the Programme and Organising Committee and the Design Society Administration who had to deal with details galore in getting the conference and the proceedings planned, structured, organised and ready to go (it was also fun, though!).

Thank you all very much!

On behalf of the Programme Committee we hope that you enjoy the programme and participate fully in what is arguably the Premier engineering design research conference in the world. We also hope that you find time to discover Milan and EXPO 2015, that you meet old friends and make some new ones, and that – besides work – you also have as much fun as we had when preparing the conference!

Christian Weber
Programme Chair

Stephan Husung
Assistant Programme Chair
Preface by ICED15 Conference Chair

Having reached its 20th edition, ICED15 confirms to be a well-established conference in the scientific design community and we are very pleased and honoured to host this edition, which has received a very significant attention from researchers and practitioners throughout the world.

ICED15 is being organized at the same time and in the same location as the Universal EXPO. The EXPO has also inspired the theme of our conference - Design for Life - which has been further formulated as Design for a Healthy, a Sustainable and a Contented Life. While the submissions were arriving and the conference program was taking shape, we were very pleased to observe that this conference theme has indeed been picked up by many authors and has permeated their contributions. As an outcome of this emerging synergy between ICED and EXPO, we expect participants to return to their countries not only with the usual benefits that come from the ICED experience, but also with a stronger capability and determination to make positive and effective contributions to humankind through design research, education and practice.

If one looks at the program of previous ICED conferences, it is quite apparent that the field of design is continuously evolving, and that the Design Society community that is at the heart of ICED is also at the forefront of this continual evolution and adaptation to emerging opportunities and challenges. Specifically, ICED15 welcomes a growing number of contributions in fields pertaining to the human and social aspects of design, looking at humans both as actors and as recipients of the design activity. We all know that these advancements do not only take place in the formal presentation sessions, but also through other gatherings, including business meetings, information events, workshops and – of course – social events. The conference program has therefore been designed with the objective of providing ICED participants with a variety of opportunities for meeting and exchanging views.

All this will occur within the setting of a country such as Italy that – since ancient times, going through the Renaissance and until today – has been uniquely able to blend its technical know-how with an amazing quality of life. We therefore hope that you will make a memorable experience of ICED 15, the EXPO and of the ideal of Designing for Life.

Gaetano Cascini
Conference Chair

Marco Cantamessa
Conference Chair
Preface by the Design Society President

ICED 15, the 20th edition of the International Conference on Engineering Design (ICED) is coming back to Italy, the country where the idea of a design conference first took shape. The first ICED took place in Rome in March 1981. The aims were, as its initiator Vladimir Hubka wrote in December 1980, set towards: “... determining the latest state of knowledge in areas of scientific design methods, and of gathering information about current results and future trends in research, to achieve a free co-ordination of scarce research resources.”

This year, we are not in Rome, but in Milan - and for a good reason. The city of Milan itself is a synonym for quality of design as a way of thinking and living, in activity or in outcome. The conference themes indicate the breadthness of thinking about design in and around the host city and connect the conference with the Universal EXPO that is also taking place at the same time. ICED 15 participants will have chance to experience the dynamics of a city that reflects all of the dichotomies that define design old and new, the art and technology, the research and practice, the chaotic and systematic. In the past thirty-five years the conference has become the event where all the richness of design research from all the continents is presented and all aspects of design explored ICED 15 sessions are the results of continuous improvements in every aspect of conference organisation. The format of the conference is based on the previous events with a programme made up of plenary sessions, podium presentations, discussion sessions with a focused debate and workshops led by the Design Society’s Special Interest Groups. In addition, the Young Members’ Event and PhD Forum extend the networking opportunities of ICED 15 for younger or first-time participants. The ICED 15 programme will provide an exciting opportunity for researchers and practitioners to learn about the latest developments in design research and practice.

The programme of ICED 15 is the result of a joint effort from great teams that have been working together since the last ICED conference in Seoul. The Society extends its gratitude to all the authors who have submitted their papers and all the reviewers who have helped to select papers ensuring an outstanding conference experience for all participants. A special thank you goes to all the authors and Session Chairs who will make this experience possible.

Many things have changed through the last 19 conferences. The conference started in Rome by WDK (Workshop – Design – Konstruktion), has, since 2001, been organised by the Design Society. Design as a field has expanded tremendously and the conference programme has become more interactive and complex, opening new opportunities and challenges. Organising a conference with such a history takes an enormous amount of work and attention to detail. I would like to express sincere thanks of the Society to Gaetano Cascini and Marco Cantamessa and all colleagues from Politecnico di Milano and Politecnico di Torino who have made this conference happen. Special thanks also to Programme Chair Christian Weber and Assistant Programme Chair Stephan Husung and all the members of Programme Committee for ensuring that this conference presents a tremendous quality of content. Finally, thank you to all of the participants whose attendance and input are a constant sign that this conference and design as a field are going in the right direction.
ICED15 Programme Committee

Christian Weber - TU Ilmenau, Germany
Stephan Husung - TU Ilmenau, Germany
Monica Bordegoni - Politecnico di Milano, Italy
Marco Cantamessa - Politecnico di Torino, Italy
Gaetano Cascini - Politecnico di Milano, Italy
Dorian Marjanovic - University of Zagreb, Croatia
Srinivasan Venkataraman - TU Munich, Germany

ICED15 Organising Committee

Gaetano Cascini - Politecnico Di Milano
Marco Cantamessa - Politecnico di Torino, Italy
Serena Graziosi - Politecnico Di Milano, Italy
Francesca Montagna - Politecnico Di Torino, Italy
Federico Rotini - Università degli studi di Firenze, Italy
ICED15 Scientific Committee

Agogino, Alice Merner - University of California at Berkeley
Agogue, Marine - HEC Montréal
Ahmed-Kristensen, Saeema - DTU
Albers, Albert - Karlsruhe Institute of Technology (KIT)
Allen, Janet Katherine - University of Oklahoma
Allison, James T. - University of Illinois at Urbana-Champaign
Almefelt, Lars - Chalmers University of Technology
Anderl, Reiner - TU Darmstadt
Andersson, Kjell - KTH Royal Institute of Technology
Andrade, Ronaldo - Universidade Federal do Rio de Janeiro
Annamalai Vasantha, Gokula Vijaykumar - University of Strathclyde
Aoussat, Améziane - ENSAM
Arai, Eiji - Osaka University
Arciszewski, Tomasz - George Mason
Aurisicchio, Marco - Imperial College London
Austin-Breneman, Jesse - Massachusetts Institute of Technology
Badke-Schaub, Petra - TU Delft
Balan, Gurumoorthy - Indian Institute of Science
Becattini, Niccolo - Politecnico di Milano
Becetic, Sanja - University of Zagreb
Ben-Ahmed, Walid - RENAULT
Bender, Beate - Ruhr-Universität Bochum
Beneke, Frank - FH Schmalkalden
Bertoni, Marco - Blekinge Institute of Technology
Bhamra, Tracy - Loughborough University
Binz, Hansgeorg - University of Stuttgart
Birkhofer, Herbert - TU Darmstadt
Bjarnemo, Robert - Lund University
Björk, Evastina, Lilian - Göteborg University
Blanco, Eric - Univ. Grenoble Alpes, G-SCOP, F-38000 Grenoble, France CNRS, G-SCOP, F-38000 Grenoble, France
Blessing, Lucienne - University of Luxembourg
Boa, Duncan R - University of Bristol
Bohemia, Erik - Loughborough University
Bojicet, Nenad - Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb
Boks, Casper - Norwegian University of Science and Technology
Booker, Julian David - University of Bristol
Bordegoni, Monica - Politecnico di Milano
Borg, Jonathan C. - University of Malta
Borgianni, Yuri - Free University of Bolzano-Bozen
Boujut, Jean-François - Grenoble Institute of Technology
Bouwhuis, Dominic G - TU Eindhoven
Broberg, Ole - TU Denmark
Brown, David C. - Worcester Polytechnic Institute
Burvill, Colin Reginald - University of Melbourne
Bylund, Nicklas - Sandvik Coromant
Cagan, Jonathan - Carnegie Mellon University
Caillaud, Emmanuel - Université de Strasbourg
Campean, Felician - University of Bradford
Cantamessa, Marco - Politecnico di Torino
Casakin, Herman - Ariel University
Cascini, Gaetano - Politecnico di Milano
Cash, Philip - TU Denmark
Cavallucci, Denis - INSA Strasbourg
Chakrabarti, Amarendra - Indian Institute of Science
Chen, Wei - Northwestern University
Chen, Chun-Hsien - Nanyang Technological University
Childs, Peter R.N. - Imperial College London
ICED15 Scientific Committee cont.

Chiu, Ming-Chuan - National Tsing Hua University
Choi, Young Mi - Georgia Institute of Technology
Chu, Chih-Hsing - National Tsing Hua University
Clarkson, Peter John - University of Cambridge
Coatanéa, Eric - Aalto University
Collado-Ruiz, Daniel - Dynavio Cooperative
Cormican, Kathryn - National University of Ireland
Coutellier, Daniel - University of Valenciennes
Crawford, Richard - University of Texas at Austin
Crilly, Nathan - University of Cambridge
Cugini, Umberto - Politecnico di Milano
Culley, Steve - University of Bath
De Guio, Roland - INSA de Strasbourg
Deans, Joe - University of Auckland
Dekoninck, Elies Ann - University of Bath
Dhokia, Vimal - University of Bath
Dong, Andy - The University of Sydney
Donndelinger, Joseph A. - General Motors LLC
Dorst, Kees - University of Technology, Sydney
Duffy, Alex - University of Strathclyde
Duflo, Joost - KU Leuven
Eckert, Claudia - Open University
Egan, Paul Francis - ETH Zurich
Eifler, Tobias - Technical University of Denmark
Eigner, Martin - TU Kaiserslautern
Ekman, Kalevi - Aalto University
Ellman, Asko Uolevi - Tampere University of Technology
Emrah Bayrak, Alparslan - University of Michigan
Eppinger, Steven - Massachusetts Institute of Technology
Erbe, Torsten - Jenoptik OS GmbH
Ericson, Åsa - Luleå University of Technology
Eris, Ozgur - MITRE Corporation
Fadel, Georges M. - Clemson University
Fan, Ip-Shing - Cranfield University
Fanti, Guattiero - University of Pisa
Fargnoli, Mario - Ministry of Agriculture
Ferrise, Francesco - Politecnico di Milano
Filippi, Stefano - University of Udine
Finger, Susan - Carnegie Mellon University
Fischer, Xavier - ESTIA
Frankenberger, Eckart - Airbus
Fu, Katherine Kai-Se - Georgia Institute of Technology
Fujita, Kikuo - Osaka University
Fukuda, Shuichi - Keio University
Gardoni, Mickael - ÉTS / INSA de Strasbourg
Georgiev, Georgi V. - Kobe University
Gerhard, Detlef - Vienna University of Technology
Gericke, Kilian - University of Luxembourg
Gero, John - UNCC & GMU
Goel, Ashok - Georgia Institute of Technology
Goh, Yee Mey - Loughborough University
Göhlich, Dietmar - TU Berlin
Goker, Mehmet H. - Salesforce.com
Goldschmidt, Gabriela - Technion - Israel Institute of Technology
Gooch, Shayne - University of Canterbury
Gopsill, James Anthony - University of Bristol
Governi, Lapo - University of Florence
Gressler, Iris - Heinz Nixdorf Institute, University of Paderborn
Graziosi, Serena - Politecnico di Milano
Grimheden, Martin - KTH Royal Institute of Technology
Grobman, Yasha Jacob - Technion, Israel Institute of Technology
Gupta, Ravi Kumar - Ecole Centrale de Nantes
Gzara, Lilia - Grenoble Institute of Technology
Hales, Crispin - Hales & Gooch Ltd.
Hallstedt, Sophie - Blekinge Tekniska Högskola
Hansen, Claus Thorp - TU Denmark
Hasse, Alexander - FAU University of Erlangen-Nuremberg
Hatchuel, Armand - Mines ParisTech
Hicks, Ben - University of Bath
Höhne, Günter - Technische Universität Ilmenau
Holliger, Christoph - University of Applied Sciences Northwestern Switzerland
Holmild, Stefan - Linköping University
Hong, Yoo Suk - Seoul National University
Horvath, Imre - Delft University of Technology
Hosnedl, Stanislav - University of West Bohemia
Howard, Thomas J. - Technical University of Denmark
Husung, Stephan - Technische Universität Ilmenau
Ijomah, Winifred - University of Strathclyde
Ilies, Horea - University of Connecticut
Ion, William - University of Strathclyde
Isaksson, Karl Ola - GKN Aerospace Engine Systems
Jackson, Mats - Malardalen University
Jagtap, Santosh - Lund University
Ji, Haifeng - Massachusetts Institute of Technology
Johansson, Glenn - Jönköping University
Johnson, Aylmer - University of Cambridge
Jones, Simon Lloyd - University of Bath
Jowers, Iestyn - The Open University
Jun, Thomas - Loughborough University
Kannengiesser, Udo - Metasonic GmbH
Karlsson, Lennart - Alkit Communications AB
Kazakci, Akin Osman - Mines ParisTech
Keates, Simeon - University of Greenwich
Keldmann, Troels - Keldmann Healthcare A/S
Kim, Hyung Se - Sungkyunkwan University
Kim, Kee-Ok - Sungkyunkwan University
Kim, Harrison - University of Illinois at Urbana-Champaign
Kiriyama, Takashi - Tokyo University of the Arts
Kishita, Yusuke - Osaka University
Kitamura, Yoshinobu - Osaka University
Kleinsmann, Maaike - TU Delft
Kloberdanz, Hermann - TU Darmstadt
Koh, Edwin - National University of Singapore
Kokkolaras, Michael - McGill University
Komoto, Hitoshi - National Institute of Advanced Industrial Science and Technology
Kota, Srinivas - Birla Institute of Technology and Science
Kovacevic, Ahmed - City University London
Krause, Dieter - Hamburg University of Technology
Kreimeyer, Matthias - MAN Truck & Bus AG
Kremer, Gul - Penn State University
Kroll, Ehud - Technion
Krömker, Heidi - Technische Universität Ilmenau
Krus, Petter - Linköping University
Kuosmanen, Petri - Aalto University
Le Masson, Pascal - Mines ParisTech
Leary, Martin John - RMIT university
Lee, Sang Won - Sungkyunkwan University
Legardeur, Jeremy - ESTIA
Lenau, Torben Anker - TU Denmark
Liem, André - Norwegian University of Science and Technology
Lindahl, Mattias - Linköping University
Lindemann, Udo - TU Munich
Linsey, Julie - Georgia Institute of Technology
Liu, Ying - Cardiff University
Lloveras, Joaquim - TU Catalonia (Universitat Politècnica de Catalunya)
Long, David Scott - University of Dayton
Lulham, Rohan - University of Technology Sydney
Mabogunje, Ade - Stanford University
Maier, Anja Martina - Technical University of Denmark (DTU)
Malak, Richard - Texas A&M
Malmqvist, Johan Lars - Chalmers University of Technology
ICED15 Scientific Committee cont.

Manfredi, Enrico - University of Pisa
Marjanovic, Dorian - University of Zagreb
Marle, Franck - Ecole Centrale Paris
Matta, Nada - Universite of Technology of Troyes
Matthews, Jason Anthony - University of the West of England
Matthiesen, Sven - Karlsruhe Institute of Technology
Maurer, Christiane - The Hague University
Maurer, Maik - TU Munich
McAlpine, Hamish Charles - University of Bristol
McDonnell, Janet Theresa - Central Saint Martins
McKay, Alison - University of Leeds
McMahon, Christopher Alan - University of Bristol
Meboldt, Mirko - ETH Zurich
Mekhilef, Mounib - University of Orleans
Merlo, Christophe - ESTIA
Millet, Dominique - SEATECH Toulon
Mocko, Gregory Michael - Clemson University
Moehringer, Stefan - Simon Moehringer Anlagenbau GmbH
Mohan, Rajesh Elara - Singapore University of Technology and Design
Montagna, Francesca - Politecnico di Torino
Moreno Grandas, Diana Paola - University of Luxembourg
Mortensen, Niels Henrik - TU Denmark
Mörtl, Markus - Technische Universität Muenchen, Germany
Mougnot, Céline - Tokyo Institute of Technology
Moullec, Marie-Lise Therese Lydia - University of Cambridge
Moultrie, James - University of Cambridge
Mulet, Elena - University of Jaume
Mulleineux, Glen - University of Bath
Murakami, Tamotsu - University of Tokyo
Nagai, Yukari - Japan Advanced Institute of Science and Technology
Newnes, Linda - University of Bath
Ng, Ricky, Yuk-kwan - Vocational Training Council, Hong Kong
Nicquevert, Bertrand - CERN
Nielsen, Ole Fiel - Worm Development
Nomaguchi, Yutaka - Osaka University
Norell Bergendahl, Margareta E B - KTH Royal Institute of Technology
Oehmen, Josef - Technical University of Denmark
Öhrwall Rönnbäck, Anna B - Luleå University of Technology
Olsson, Annika - Lund University
Onkar, Prasad - Indian Institute of Technology Hyderabad
Otto, Kevin - Singapore University of Design and Technology
Ottosson, Stig - Gjøvik University College
Ouertani, Mohamed Zied - ABB / University of Cambridge
Paetzold, Kristin - University Bundeswehr Munich
Palm, William John - Roger Williams University
Papalambros, Panos Y. - University of Michigan
Parkinson, Matt - Pennsylvania State University
Pavkovic, Neven - University of Zagreb
Peters, Diane - Kettering University
Petersen, Soren Ingomar - ingomar&ingomar - consulting
Petiot, Jean-François - Ecole Centrale de Nantes
Pigosso, Daniela - Technical University of Denmark
Prakash, Raghu Vasu - Indian Institute of Technology Madras
Qureshi, Ahmed Jawad - Newcastle University
Radkowski, Rafael - Iowa State University
Raine, John Kenneth - Auckland University of Technology
Ray, Pascal - Ecole Nationale Supérieure des Mines de Saint-Etienne
Reich, Yoram - Tel Aviv University
Reid, Tahira - Purdue University
Remmen, Arne - Aalborg University
Ren, Yi - Arizona State University
Riel, Andreas Erik - Grenoble Institute of Technology
Riitahuhta, Asko Olavi - Tampere University of Technology
Rinderle, James - University of Massachusetts
Ringen, Geir - Sintef Raufoss Manufacturing
Ritzén, Sofia - KTH Royal Institute of Technology
Rizzi, Caterina - University of Bergamo
Robotham, Antony John - Auckland University of Technology
Rohmer, Serge - University of Technology of Troyes
Rosen, David - Georgia Institute of Technology
Rotini, Federico - Università degli Studi di Firenze
Roucoules, Lionel - ENSAM
Rovida, Edoardo - Politecnico di Milano
Russo, Davide - University of Bergamo
Sakao, Tomohiko - Linköping University
Salehi, Vahid - University of Applied Sciences Munich
Salustri, Filippo Arnaldo - Ryerson University
Sarkar, Prabir - Indian Institute of Technology Ropar
Sarkar, Somwrita - University of Sydney
Sato, Keiichi - Illinois Institute of Technology
Schabacker, Michael - Otto-von-Guericke University Magdeburg
Schaefer, Dirk - Georgia Institute of Technology
Schaub, Harald - IABGmbH
Seepersad, Carolyn Conner - University of Texas at Austin
Seering, Warren - Massachusetts Institute of Technology
Sen, Dibakar - Indian Institute of Science, Bangalore
Setchi, Rossi - Cardiff University
Shah, Jami - Arizona State University
Shea, Kristina - ETH Zurich
Sheldrick, Leila - Loughborough University
Shi, Lei - University of Bath
Shimomura, Yoshiki - Tokyo Metropolitan University
Siadat, Ali - ENSAM
Sigurjónsson, Jóhannes B. - Norwegian University of Science and Technology
Simpson, Timothy W. - Penn State University
Singh, Vishal - Aalto University
Škoc, Stanko - University of Zagreb
Snider, Chris - University of Bristol
Söderberg, Rikard - Chalmers University of Technology
Sonalkar, Neeraj - Stanford University
Spitas, Christos - TU Delft
Stal-Le Cardinal, Julie - Ecole Centrale Paris
Stankovic, Tino - ETH Zurich
Stappers, Pieter Jan - Delft University of Technology
Stark, Rainer G. - Berlin Institute of Technology
Stetter, Ralf - University of Applied Sciences Ravensburg-Weingarten
Stevanovic, Milan - Markot.tel
Stören, Sigurd - Norwegian University of Science and Technology
Storga, Mario - University of Zagreb/Faculty of Mechanical Engineering and Naval Architecture
Subrahmanian, Eswaran - Carnegie Mellon University
Suh, Eun Suk - Seoul National University
Summers, Joshua David - Clemson University
Sundin, Erik - Linköping University
Tahera, Khadija - University of Huddersfield
ICED15 Scientific Committee cont.

Tan, James Ah-Kat - Ngee Ann Polytechnic
Taura, Toshiharu - Kobe University
Terpenny, Janis P. - Iowa State University
Thoben, Klaus-Dieter - University Bremen
Tiwari, Ashutosh - Cranfield University
Todeti, Somasekhar Rao - National Institute of Technology- Goa, India
Tollenaere, Michel - Grenoble Institute of Technology
Tomiyama, Tetsuo - Cranfield University
Törlind, Peter - Luleå University of Technology
Trimingham, Rhoda - Loughborough University
Troussier, Nadege - University of Technology of Troyes
Udiljak, Toma - University of Zagreb/FMENA
Uflacker, Matthias - Hasso Plattner Institute
Umeda, Yasushi - the University of Tokyo
Vajna, Sandor J. - Otto-von-Guericke University Magdeburg
Valderrama Pineda, Andres Felipe - Aalborg University
Valkenburg, Rianne C. - The Hague University of Applied Sciences
van der Bijl-Brouwer, Mieke - University of Technology, Sydney
Van der Loos, Mike - University of British Columbia
Vaneker, Tom Henricus Jozef - University of Twente
Venkataraman, Srinivasan - Technische Universität München
Vidovics, Balazs - Budapest University of Technology and Economics
Vietor, Thomas - Braunschweig University of Technology
Vukasinovic, Nikola - Faculty of Mechanical Engineering, University of Ljubljana
Vukic, Fedja - Graduate School of Design, Faculty of Architecture, University of Zagreb

Walter, Michael - Friedrich-Alexander-Universität Erlangen-Nürnberg
Wang, Charlie C.L. - Chinese University of Hong Kong
Wang, Yue - Hang Seng Management College
Wartzack, Sandro - Friedrich-Alexander-Universität Erlangen-Nürnberg
Watanabe, Kentaro - National Institute of Advanced Industrial Science and Technology
Watty, Robert - University of Applied Sciences Ulm
Weber, Christian - Technische Universität Ilmenau
Weil, Benoit - Mines ParisTech-PSL Research University
Weiss, Menachem Peter - Technion - Israel Institute of Technology
Whitfield, Ian - University of Strathclyde
Whitney, Daniel E - Massachusetts Institute of Technology
Winkelmann, Paul Martin - University of British Columbia
Wodehouse, Andrew James - University of Strathclyde
Wood, Kristin - Singapore University of Design and Technology
Yan, Xiu-Tian - University of Strathclyde
Yanagisawa, Hideyoshi - University of Tokyo
Yang, Maria - Massachusetts Institute of Technology
Yannou, Bernard - Ecole Centrale Paris
Yilmaz, Seda - Iowa State University
Zainal Abidin, Shahriman - Universiti Teknologi MARA
Zavbi, Roman - University of Ljubljana
Zeng, Yong - Concordia University
Zolghadri, Marc - Supmeca
Table of Contents

Preface by ICED15 Programme Chair
Preface by ICED15 Conference Chair
Preface by the Design Society President
ICED15 Programme Committee
ICED15 Organising Committee
ICED15 Scientific Committee

VOLUME 1: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN FOR LIFE

DESIGN FOR A SUSTAINABLE LIFE

Design Strategies for Circular Economy
Devadula, Suman; Chakrabarti, Amaresh ...1-1

Implementing Ecodesign Principles in Product Design: the Role of Usability
Sousa, Ana M.; Sampaio, Alvaro M.; Simoes, Paulo; Oliveira, Raquel1-11

Model Based Decision Support for Value and Sustainability in Product Development
Isaksson, Ola; Bertoni, Marco; Hallstedt, Sophie; Lavesson, Niklas1-21

Improving the Management of Environmental Requirements in Clients/Suppliers Co-Design Process
Michelin, Fabien; Reyes, Tatiana; Vallet, Flore; Eynard, Benoit; Duong, Viet-Long1-31

The Business Model, A Tool for Transition to Sustainable innovation
Bisiaux, Justine; Gidel, Thierry; Huet, Frédéric; Millet, Dominique1-43

Quantification of Indoor Environmental Quality in Sustainable Building Designs using Structural Equation Modeling
Piacenza, Joseph R; Fields, John J; Hoyle, Christopher; Tumer, Irem Y1-53

Archaeonics – How to use Archaeological Solutions for Modern Product Development
Guertler, Matthias R.; Schaefer, Simon; Lipps, Johannes; Stahl, Stephan; Lindemann, Udo ...1-65

Comparison and Classification of Eco Improvement Methods
Russo, Davide; Serafini, Marco; Rizzi, Caterina; Duci, Stefano1-77

Ecodesign Maturity Model as a Framework to Support the Transition towards ISO 14.001:2015 Certification
Pigosso, Daniela C. A.; McAloone, Tim C. ...1-87

Introduction of the Ideality Tool for Sustainable Design
Helfman Cohen, Yael; Reich, Yoram ..1-97

Development of a System for Production Energy Prognosis
Stetter, Ralf; Witczak, Piotr; Witczak, Marcin; Kauf, Florian; Staiger, Benjamin; Spindler, Claudius ...1-107

Environmental Evaluation of Ideas in Early Phases: A Challenging Issue for Design Teams
Leroy, Yann; Tyl, Benjamin; Vallet, Flore; Cluzel, François1-117

ICED15 xi
Identifying Needs for New Ecodesign Tools with the DSM Value Bucket tool
- An Example in the Construction industry
Lamé, Guillaume; Leroy, Yann; Lasvaux, Sébastien ..1-127

Supporting Environmentally-Benign Design - Elucidating Environmental Impact Propagation in Conceptual Design Phase By Sapphire Model of Causality
Acharya, Shakuntala; Chakrabarti, Amresh ...1-139

Collaborative Process Between Functional Analysis et Life Cycle Assesment: Integrating Environmental Considérations into Early Stages of Design Process
Rodriguez Moreno, Paulina; Rohmer, Serge; Ma, Hwong-Wen1-151

Task-Based LCA for Environmental Impact Assessment of Multiple Heterogenous Systems
Quan, Ning; Kim, Harrison; Knight, Erica; Nelson, Jeffrey; Finamore, Peter1-161

Heuristic Guidelines in Ecodesign
Sarnes, Julian; Kloberdanz, Hermann ...1-171

Investigating the Sustainability of Product Supply Chains
Germani, Michele; Mandolini, Marco; Marconi, Marco; Marilungo, Eugenia; Papetti, Alessandra ...1-181

Degrees of Customization and Sales Support Systems - Enablers to Sustainability in Mass Customization
Gembariski, Paul Christoph; Lachmayer, Roland ..1-191

Interaction Design for Sustainable Mobility System
Gaiardo, Andrea; Di Salvo, Andrea ...1-199

Meeting Sustainability Challenges: Soft Systems Thinking as an Enabler for Change
Ericson, Åsa; Holmqvist, Johan ..1-209

Bringing a Fuller Socio-Technical Perspective to Design Decisions
Kokotovich, Vasilije ...1-217

Firing up Sustainable Behaviour
Daae, Johannes; Boks, Casper; Golle, Franziska; Selseskog, Morten1-227

Design for Sustainability – Trade-off Dilemmas from the Consumer Perspective
Shiu, Eric ...1-239

Systematic Framework for the Development of Fuons
Ostad-Ahmad-Ghorabi, Hesamedin; Collado-Ruiz, Daniel1-249

Application of Subtract and Operate Method for Developing Function Energy
Structures of Products and Systems - A Rule-Guided Approach
Markos, Panagiotis; Dentsoras, Argyris ...1-259

Stakeholder Centred Approach to Sustainable Design: A Case Study of Co-Designing Community Enterprises for Local Food Production And Consumption
Pahk, Yoonyee; Baek, Joonsang ...1-269

Substituting Conventional Materials and Manufacturing for Sustainable, Near Net Shape Grown Components
löwer, Manuel; Beger, Anna-Lena; Feldhusen, Jörg; Wormit, Alexandra; Prell, Jürgen; Usadel, Björn; Seiler, Thomas-Benjamin; Kämpfer, Christoph; Holliert, Henner; Moser, Franziska; Trautz, Martin1-279
Similarities and Differences Between Environmental Soundness and Resource Efficiency and their Consequences for Design Support
Link, Sandra; Kloberdanz, Hermann; Denz, Naemi .. 1-289

Integrated Design of Dynamic Sustainable Energy Systems
Allison, James T.; Herber, Daniel R.; Deshmukh, Anand P ... 1-299

Exploring Sustainability Impact on Interior Design Solutions
Rashdan, Wael .. 1-309

Study on a Determination of Design Policies for Solar-Boats with Different Design Philosophies
Oizumi, Kazuya; Aoyama, Kazuhiro ... 1-319

DESIGN FOR A HEALTHY LIFE

Remember to Remember: A Feasibility Study Adapting Wearable Technology to the Needs of People Aged 65 and Older with Mild Cognitive Impairment (MCI) and Alzheimer’s Dementia
Maier, Anja M; Özkil, Ali Gürcan; Bang, Maria M; Forchhammer, Birgitte H 1-331

Prototyping and Testing Basic Designs of Centrifugal Microfluidic Platforms for Biomedical Diagnostics
Fox, Stephan Cecil; Lohmeyer, Quentin; Meboldt, Mirko ... 1-341

A New Design System of Below-Limb Prostheses - the Role of a Visual Prosthetic Designer
Sansoni, Stefania; Wodehouse, Andrew; Buis, Arjan .. 1-351

Feathers, A Bimanual Upper Limb Rehabilitation Platform: A Case Study of User-Centred Approach in Rehabilitation Device Design
Shirzad, Navid; Valdés, Bulmaro A.; Hung, Chai-Ting; Law, Mimi; Hay, Justin; Van der Loos, H.F. Machiel .. 1-361

A Knowledge-Based Design Process for Custom Made Insoles
Marinelli, Paola; Mandolini, Marco; Germani, Michele ... 1-371

Improving Wellbeing for Victims of Crime
Kaldor, Lucy Joanna; Watson, Rodger ... 1-381

Can the Sports Design Process Help the inclusive Design Community?
Wilson, Nicky; Thomson, Avril; Riches, Philip ... 1-391

Applying Design Ethnography to Product Evaluation: A Case Example of a Medical Device in a Low-Resource Setting
Mohedas, Ibrahim; Sabet Sarvestani, Amir; Daly, Shanna R.; Sienko, Kathleen H. 1-401

Applying Fishbein’s Multi-Attribute Attitude Model to the Tata Swach Water Purifier
Ricks, Sean T; Winter V, Amos G ... 1-411

Design for Physical Activity: Design Aspects of Wearable Activity Trackers
Kuru, Armağan; Erbuğ, Çiğdem .. 1-421

The Effects of Training Background and Design tools on Multi-Level Biosystems Design
Egan, Paul; Ho, Tiffany; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip 1-433

ICED15 xiii
Designing for the Deepest Needs of Both Public Service Consumers and Providers; Innovation in Mental Health Crisis Response
Van der Bijl-Brouwer, Mieke; Watson, Rodger .. 1-443

Design and Validation of Diagnosis Tool of Inclusion of Children with Disabilities in Playgrounds
Mejia Piedrahita, Tatiana .. 1-453

The HESD-Model: Merging Multiple Perspectives and Creating Flexible Use Scenarios for Service Design in Healthcare
Sarri, Tommaso; Kleinsmann, Maaike; Melles, Marijke .. 1-465

A Multi-Level Activity Analysis for Home Healthcare ICT Tool Redesign
Borgiel, Katarzyna; Christophe, Merlo; Minel, Stéphanie .. 1-475

A Comprehensive Process of Care Coordination: A Skin Cancer Application
Boudjemil, Sonia; Duong, Tu-Anh; Jankovic, Marija; Le Cardinal, Julie 1-485

The Competitive Advantage of Using 3D-Printing in Low-Resource Healthcare Settings
Rismani, Shalaleh; Van der Loos, H.F.Machiel .. 1-495

Designing Child-Sized Hospital Architecture: Beyond Preferences for Colours and Themes
Verschoren, Laure; Annemans, Margo; Van Steenwinkel, Iris; Heylighen, Ann 1-505

DESIGN FOR A CONTENTED LIFE

A Framework for Understanding, Communicating and Evaluating User Experience Potentials
Kremer, Simon; Lindemann, Udo .. 1-515

Why Product Design Support for Improved Worker Contentedness?
Farrugia, Lawrence; Borg, Jonathan .. 1-525

Design for Infants is not Design for Children: On the Quest of Tools to Model a Method to Design for Infants
Monsalve, Juliana; Maya, Jorge .. 1-537

Personal Values as a Catalyst for Meaningful Innovations: Supporting Young Designers in Collaborative Practice
Onselen, Lenny Van; Valkenburg, Rianne .. 1-547

Reconceptualizing Design Thinking and Equipping Designers for the Next Wave of Digital Innovation
Kleinsmann, Maaike; Snelders, Dirk .. 1-557

Designing with Crime Prevention – Creating Community Wellbeing through Design
Watson, Rodger; Kaldor, Lucy .. 1-565

Development of a National Survey on Aging and the Domestic Bathroom: the Livable Bathrooms Survey
Mintzes, Alicia; Bridge, Catherine; Demirbilek, Oya .. 1-575

Design for Contented Life: A Proposed Framework
Ashour, Ayman Fathy .. 1-585
VOLUME 2: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN THEORY AND RESEARCH METHODOLOGY, DESIGN PROCESSES

DESIGN THEORY AND METHODOLOGY

Case Study: Individualization of a Fully Automated Coffee Machine
Kosiol, Maike; Böhmer, Annette Isabel; Lindemann, Udo .. 2-1

Design of Medical Devices for Pressure Ulcer Prevention
Velasquez, Alejandro; Almonacid, Ana Maria; Jaramillo, Lisa Maria; Aramburo, Mauricio; Velasquez, David; Iza, Camilo; Zapata, Luis Miguel .. 2-13

Bioinspired Design: A Case Study of Reconfigurable Crawling-Rolling Robot
Kapilavai, Aditya; Mohan, Rajesh Elara; Tan, Ning .. 2-23

Computational Design-to-Fabrication Using Spatial Grammars: Automatically Generating Printable Car Wheel Design Variants
Chen, Tian; Shea, Kristina .. 2-35

Virtual Validation of Functional Automotive Door Assembly Properties by Means of Superposed CAT and FEM Analysis
Ehlert, Matthias; Heling, Björn; Wartzack, Sandro .. 2-45

Generic Technique and the Dynamics of Technologies: Using Matroid and Design Theory to Design Techniques with Systemic Impact
Le Masson, Pascal; Hatchuel, Armand; Kokshagina, Olga; Weil, Benoit .. 2-55

Definition of the Form-Based Design Approach and Description of it Using the FBS Framework
Filippi, Stefano; Barattin, Daniela .. 2-65

Effectiveness of the Systematic Engineering Design Methodology
Motte, Damien .. 2-77

Product Line Design, Evolution and Pricing
Wu, Shuli; Chen, Songlin .. 2-87

An Approach for Industrial Application of Axiomatic Design
Weber, Jakob; Kößler, Johannes; Paetzold, Kristin .. 2-97

Dittenberger, Sandra; Koscher, Andrea .. 2-107

A Search and Optimization Perspective on Conceptual Design
Kroll, Ehud; Weisbrod, Gil .. 2-117

Attributes in Integrated Design Engineering - A New Way to Describe both Performance Capability and Behaviour of a Product
Vajna, Sandor J. .. 2-127

Designing PSI: An Introduction to the PSI Framework
Reich, Yoram; Subrahmanian, Eswaran .. 2-137

Improving Design Methodology: Systematic Evaluation of Principle Synthesis
Katzwinkel, Tim; Heller, Jan Erik; Schmid, Alexander; Schmidt, Walter; Löwer, Manuel; Feldhusen, Jörg .. 2-147
Towards Genetic Modeling of Machines for Engineering Design Synthesis
Shah, Jami ...2-155

Challenges in Developing an Ontology for Problem Formulation In Design
Dinar, Mahmoud; Park, Yong-Seok; Shah, Jami J ..2-165

Biocards and Level of Abstraction
Lenau, Torben Anker; Keshwani, Sonal; Chakrabarti, Amaresh; Ahmed-Kristensen, Saeema ...2-177

Using Biology as a Model for Sustainability: Insights for Ecodesign
and Bioinspired Design Practitioners
O’Rourke, Julia; Seebersad, Carolyn Conner ...2-187

Influence of Information and Knowledge from Biology on the Variety
of Technical Solution Ideas
Hashemi Farzaneh, Helena; Helms, Katharina; Lindemann, Udo2-197

Biologically Inspired Fault Adaptive Strategies for Engineered Systems
Jensen, David Charles; Huisman, Nicholas ..2-207

Visual Representations as a Bridge for Engineers and Biologists
in Bio-Inspired Design Collaborations
Hashemi Farzaneh, Helena; Helms, Katharina; Lindemann, Udo2-215

Modeling Biological Systems to Facilitate their Selection During a
Bio-Inspired Design Process
Fayemi, Pierre-Emmanuel Ifeolohoum; Maranzana, Nicolas; Aoussat, Ameziane; Chekchak, Tarik; Bersano, Giacomo2-225

System for Deriving Diverse Solutions via a Modification Method
for Emergent Design
Sato, Koichiro; Matsuoka, Yoshiyuki ..2-235

Design Repository & Analogy Computation via Unit-Language Analysis
(Dracula) Matching Algorithm Development
Briana, Lucero; Julie, Linsey; Turner, Cameron ..2-245

Computational Support of Design Concept Generation through Interaction
of Sketching, Ontology-Based Classification and Finding Voids
Nomaguchi, Yutaka; Nakagiri, Taku; Fujita, Kikuo ...2-257

Ontology in Design Engineering: Status and Challenges
Lim, Soon Chong Johnson; Liu, Ying; Chen, Yong ..2-267

Designing with Priorities and Thresholds for Health Care Heterogeneity:
the Approach of Constructing Parametric Ontology
Eivazzadeh, Shahryar; Anderberg, Peter; Berglund, Johan; Larsson, Tobias2-277

Design Talking: An Ontology of Design Methods to Support
a Common Language of Design
Roschuni, Celeste; Kramer, Julia; Zhang, Qian; Zakskorn, Lauren; Agogino, Alice2-285
DESIGN RESEARCH METHODOLOGY

Measuring Prototypes - A Standardized Quantitative Description of Prototypes and their Outcome for Data Collection and Analysis
Jensen, Matilde Bisballe; Balters, Stephanie; Steinert, Martin ... 2-295

Modelling in Business Model Design: Reflections on Three Experimental Cases In Healthy Living
Simone, Lianne W.L.; Badke-Schaub, Petra .. 2-309

Distributed Experiments in Design Sciences, a Next Step in Design Observation Studies?
Kriesi, Carlo; Steinert, Martin; Aalto-Setälä, Laura; Anvik, Anders; Balters, Stephanie; Baracchi, Alessia; Bisballe Jensen, Matilde; Bjørkli, Leif Erik; Buzzaccaro, Nicolo; Cortesi, Dario; D’Onghia, Francesco; Dosi, Clio; Franchini, Giulia; Fuchs, Matt; Gerstenberg, Achim; Hansen, Erik; Hiekkanen, Karri Matias; Hyde, David; Ituarte, Ilígo; Kalasniemi, Jari; Kurikka, Joona; Lanza, Irene; Laurila, Anssi; Lee, Tik Ho; Lønvik, Siri; Mansikka-Aho, Anniina; Nordberg, Markus; Oinonen, Päivi; Pedrelli, Luca; Pekuri, Anna; Rane, Enna; Reime, Thov; Repokari, Lauri; Rønningen, Martin; Rowlands, Stephanie; Sjöman, Heikki; Slättsevén, Kristoffer; Strachan, Andy; Strømstad, Kirsti; Suren, Stian; Tapio, Peter; Utriainen, Tuuli; Vignoli, Matteo; Vijaykumar, Saurabh; Welo, Torgeir; Wulvik, Andreas ... 2-319

Teaching Nurses CAD: Identifying Design Software Learning Differences in a Non-Traditional User Demographic
Stephenson, Katherine Jo; Pickham, David; Aquino Shluzas, Lauren 2-329

Differences in Analysis and Interpretation of Technical Systems by Expert and Novice Engineering Designers
Ruckpaul, Anne; Nelius, Thomas; Matthiesen, Sven ... 2-339

Mobile Eye Tracking in Usability Testing: Designers Analysing the User-Product Interaction
Mussgnug, Moritz; Waldern, Michael Frederick; Meboldt, Mirko 2-349

How we Understand Engineering Drawings: An Eye Tracking Study Investigating Skimming and Scrutinizing Sequences
Lohmeyer, Quentin; Meboldt, Mirko .. 2-359

Reviewing Peer Review, an Eye Tracking Experiment of Review Behaviour
Boa, Duncan R; Hicks, Ben .. 2-369

DESIGN PROCESSES

Enhanced Analytical Model for Planning the Verification, Validation & Testing Process
Yakov, Shabi; Reich, Yoram .. 2-379
Eckert, Claudia; Albers, Albert; Bursac, Nikola; Chen, Hilario Xin; Clarkson, P. John; Gericke, Kilian; Gladysz, Bartosz; Maier, Jakob F.; Rachenkova, Galina; Shapiro, Daniel; Wynn, David .. 2-389

FBS Models: An Attempt at Reconciliation Towards a Common Representation
Spreafico, Christian; Fantoni, Gualtiero; Russo, Davide .. 2-399

Modelling Practices Over Time: A Comparison of Two Surveys Taken 20 Years Apart
Moullec, Marie-Lise; Maier, Jakob; Cassidy, Stephen; Sommer, Anita F.; Clarkson, P. John .. 2-409

Value Modelling in Aerospace Sub-System Design: Linking Quantitative and Qualitative Assessment
Bertoni, Alessandro; Amnell, Henrik; Isaksson, Ola .. 2-421

Process Types and Value Configuration in Modelling Practice – An Empirical Study of Modelling in Design and Service
Sommer, Anita Friis; Maier, Jakob; Mak, Jonathan; Moullec, Marie-Lise; Cassidy, Stephen; Clarkson, P. John .. 2-431

Towards the Next Generation of Design Process Models: A Gap Analysis of Existing Models
Costa, Daniel Guzzo; Macul, Victor Cussiol; Costa, Janaina Mascarenhas Hornos; Exner, Konrad; Pförtner, Anne; Stark, Rainer; Rozenfeld, Henrique .. 2-441

An Investigation of Design Process Changes
Shapiro, Daniel; Sommer, Anita Friis; Clarkson, Peter John .. 2-451

Structure-Based System Dynamics Analysis - A Case Study of Benchmarking Process Optimization
Kasperek, Daniel; Berger, Sandra; Maisenbacher, Sebastian; Lindemann, Udo; Maurer, Maik .. 2-461

The Long Road to Improvement in Modelling and Managing Engineering Design Processes
Gericke, Kilian; Eckert, Claudia .. 2-471
VOLUME 3: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN ORGANISATION AND MANAGEMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Evolution of Terminology within a Large Distributed Engineering Project</td>
<td>Gopsill, James Anthony; Jones, Simon; Snider, Chris; Shi, Lei; Hicks, Ben James</td>
<td>3-1</td>
</tr>
<tr>
<td>Different Levels of Product Model Granularity in Design Process Simulation</td>
<td>Maier, Jakob F.; Eckert, Claudia M.; Clarkson, P. John</td>
<td>3-11</td>
</tr>
<tr>
<td>Modularization Management and Network Configuration</td>
<td>Hansen, Poul Kyvsgaard; Nielsen, Louise Møller</td>
<td>3-21</td>
</tr>
<tr>
<td>Influence of Design-For-X Guidelines on the Matching Between the Product Architecture and Supply Network</td>
<td>Behncke, Florian G. H.; Thimet, Paula; Barton, Benjamin; Lindemann, Udo</td>
<td>3-31</td>
</tr>
<tr>
<td>A Study to Identify Engineering Design Resources in Complex Product Development Projects</td>
<td>Xin Chen, Hilario Lorenzo; Clarkson, Peter John; Sommer, Anita Friis</td>
<td>3-43</td>
</tr>
<tr>
<td>Matching Product Architecture and Supply Network - Systematic Review and Future Research</td>
<td>Behncke, Florian G. H.; Kayser, Liza; Lindemann, Udo</td>
<td>3-53</td>
</tr>
<tr>
<td>Understanding Engineering Projects: An Integrated Vehicle Health Management Approach to Engineering Project Monitoring</td>
<td>Snider, Chris; Gopsill, James A.; Jones, Simon; Shi, Lei; Hicks, Ben</td>
<td>3-65</td>
</tr>
<tr>
<td>Implementation of R&D Management Models in Global Organisations</td>
<td>Johansson, Glenn; Säfsten, Kristina; Adolfsson, Ann-Cathrine</td>
<td>3-75</td>
</tr>
<tr>
<td>An Agent-Based Approach to Support Planning for Change During Early Design</td>
<td>Fernandes, João; Henriques, Elsa; Silva, Arlindo; Pimentel, César</td>
<td>3-83</td>
</tr>
<tr>
<td>Considering Risk Attitude in a Value of Information Problem</td>
<td>Hsiao, Chuck; Malak, Richard</td>
<td>3-93</td>
</tr>
<tr>
<td>Crisis Situations in Engineering Product Development - A Method to Identify Crisis</td>
<td>Muenzberg, Christopher; Venkataraman, Srinivasan; Hertrich, Nicolas; Fruehling, Carl; Lindemann, Udo</td>
<td>3-103</td>
</tr>
<tr>
<td>Safety of Individual Products – Perspectives in the Context of Current Practices and Challenges</td>
<td>Roth, Michael; Gehricher, Steffi; Lindemann, Udo</td>
<td>3-113</td>
</tr>
<tr>
<td>Utilizing Failure Information for Mission Analysis for Complex Systems</td>
<td>DeStefano, Charlie; Jensen, David</td>
<td>3-123</td>
</tr>
<tr>
<td>Framing in Design: A Formal Analysis and Failure Modes</td>
<td>Vermaas, Pieter; Dorst, Kees; Thurgood, Clementine</td>
<td>3-133</td>
</tr>
<tr>
<td>Design Driven Startups</td>
<td>Petersen, Søren Ingomar</td>
<td>3-143</td>
</tr>
</tbody>
</table>
Characteristics and Enablers of Transparency in Product Development
Risk Management
Shaffer, Ryan M.; Olechowski, Alison L.; Seering, Warren P.; Ben-Daya, Mohammad .. 3-153

Actor-Based Signposting: A Modeling Tool to Improve the Socio-Technical Design Processes
Hassannezhad, Mohammad; Cantamessa, Marco; Montagna, Francesca 3-165

The Impact of Technology Uncertainty on Early Supplier Integration in Product Development
Geissmann, Lukas; Rebentisch, Eric Scott ... 3-175

Impact of Architecture Types and Degree of Modularity on Change Propagation Indices
Colombo, Edoardo Filippo; Cascini, Gaetano; De Weck, Olivier L. 3-187

Dependency Identification for Engineering Change Management (ECM): An Example of Computer-Aided Design (CAD)-Based Approach
Masmoudi, Mahmoud; Leclaire, Patrice; Zolghadri, Marc; Haddar, Mohamed 3-199

An Intelligent Design Environment for Changeability Management - Application To Manufacturing Systems
Benkamoun, Nadège; Kouiss, Khalid; Huyet, Anne-Lise ... 3-205

Changes on Changes: Towards an Agent-Based Approach for Managing Complexity in Decentralized Product Development
Kehl, Stefan; Stiefel, Patrick; Müller, Jörg P. ... 3-215

How to Integrate Information about Past Engineering Changes in New Change Processes?
Wickel, Martina Carolina; Lindemann, Udo .. 3-229

Envisioning Products to Support the Agile Management of Innovative Design
Carvalho, Fábio Henrique Trovon De; Costa, Janaina Hornos Mascarenhas Da; Amaral, Daniel Capaldo ... 3-239

Exploring Tensions Between Creativity and Control in Product Development Projects
Bojesson, Catarina; Backström, Tomas; Bjurström, Erik ... 3-249

Constant Dripping Wears Away the Stone: Linking Design Thinking and Effectual Action in Designing New Ventures
Niedworok, Anja; Schloegl, Stephan; Mirski, Peter J.; Greger, Rudolf; Ambrosch, Marcus ... 3-259

Constructing a Multi-Dimensional Model to Understand Team Design through Language
Xu, Jiang; Guo, Feng; Gan, Xiang; Wang, Xiuyue ... 3-269

The Use and Value of Different Co-Creation and Tools in the Design Process.
Ali, Abu; Liem, Andre ... 3-279

xx ICED15
Physical Interaction Mappings: Utilizing Cognitive Load Theory in order to Enhance Physical Product Interaction
Young, Bryan Gough; Wodehouse, Andrew; Sheridan, Marion

An Exploratory Study of the Specifications Process in a Customer-Supplier Collaborative New Product Development
Yager, Matthieu; Le Dain, Marie-Anne; Merminod, Valéry

Correlations Between Successful Consumer Goods in the Market and Creativity in Form And Function Attributes
Sehn, Cristina Morandi; Bernardes, Mauricio Moreira E Silva; Jacques, Jocelise Jacques De

Meetings in The Product Development Process: Applying Design Methods to Improve Team Interaction and Meeting Outcomes
Bavendiek, Ann-Kathrin; Thiele, Lisa; Meyer, Patrick; Vietor, Thomas; Kauffeld, Simone; Fingscheidt, Tim

Modelling of Immersive Systems for Collaborative Design
Rohmer, Serge

Online Ways of Sharedness: A Syntactic Analysis of Design Collaboration in OpenIDEO
Bianchi, Joost; Knopper, Yuri; Eris, Ozgur; Badke-Schaub, Petra; Roussos, Lampros

Can Algorithms Calculate The “Real” Sharedness in Design Teams?
Yamada, Kaori; Badke-Schaub, Petra; Eris, Ozgur

How an Open Source Design Community Works: The Case of Open Source Ecology
Macul, Victor; Rozenfeld, Henrique

A Framework of Working across Disciplines in Early Design and R&D of Large Complex Engineered Systems
McGowan, Anna-Maria Rivas; Papalambros, Panos; Baker, Wayne

Identifying and Visualising KPIs for Collaborative Engineering Projects: A Knowledge Based Approach
Shi, Lei; Newnes, Linda; Culley, Steve; Gopsill, James; Jones, Simon; Snider, Chris

The Sensory Delivery Rooms of The Future: Translating Knowledge across Boundaries in a Public-Private Innovation Partnership
Pedersen, Signe

Meaning Making in the Intersection between Sketches and 3D Mock-Up
Ali, Abu; Liem, Andre

Argumentation Analysis in an Upstream Phase of an Innovation Project
Abou Eddahab, Fatima-Zahra; Prudhomme, Guy; Masclet, Cedric; Lund, Kris; Boujut, Jean-François

Rethinking Operating Models for Intangible Services: From a Mechanistic Structure to a Sustainable Model
Minzoni, Angela; Mounoud, Eleonore
Pragmatic Team Compositions in Scrum-Based Development Projects
Ovesen, Nis ... 3-427
A Longitudinal Study of Globally Distributed Design Teams:
The Impacts on Product Development.
Taylor, Thomas Paul; Ahmed-Kristensen, Saeema .. 3-437
Boundary Objects in Open Source Design: Experiences from OSE Community
Affonso, Claudia Andressa Cruz; Amaral, Daniel Capaldo 3-447
Work Sampling Approach for Measuring Intellectual Capital Elements
in Product Development Context
Škec, Stanko; Štorga, Mario; Tečec Ribarić, Zlatka; Marjanović, Dorian 3-457
VOLUME 4: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN FOR X, DESIGN TO X

Approach to Consider Rapid Manufacturing in the Early Phases of Product Development
Weiss, Florian; Binz, Hansgeorg; Roth, Daniel ... 4-1

Result Visualization and Documentation of Tolerance Simulations of Mechanisms
Walter, Michael Simon Josef; Pribek, Michael; Spruegel, Tobias Constantin; Wartzack, Sandro ... 4-11

The Design and Manufacture of Individualised Perfect-Fit Packaging Solutions
Dhokia, Vimal; Newman, Stephen Thomas ... 4-21

Assembly Sequence Planning with the Principles of Design for Assembly
Sąsiadek, Michał .. 4-31

Handling Product Variety in a Mixed-Product Assembly Line: A Case Study
Asadi, Narges; Jackson, Mats; Fundin, Anders ... 4-41

Design for Recovery - Applying Multivariate Statistics to Define Groupings of French WEEE Pre-Treatment Operators
Alonso Movilla, Natalia; Zwolinski, Peggy ... 4-51

Design for Retrofitting
Coenen, Jenny; Ruiz, Valentina; Fernandez Hernando, Jose Manuel; Frouws, Koos .. 4-61

The Realization of an Engineering Assistance System for the Development of Noise-Reduced Rotating Machines
Küstner, Christof; Wartzack, Sandro .. 4-71

Development of Portability Design Heuristics
Hwang, Dongwook; Park, Woojin .. 4-81

Dealing with Non-Trade-Offs for Frugal Design
Lecomte, Chloé; Blanco, Eric .. 4-91

Exploring Benefits of Using Augmented Reality for Usability Testing
Choi, Young Mi; Mittal, Sanchit .. 4-101

Development of an Interface Analysis Template for System Design Analysis
Uddin, Amad; Campean, Felician; Khan, Mohammed Khurshid 4-111

The Application of Crowdsourcing for 3D Interior Layout Design
Wu, Hao; Corney, Jonathan; Grant, Michael .. 4-123

Assessing Time-Varying Advantages of Remanufacturing: A Model for Products with Physical and Technological Obsolescence
Kwak, Minjung; Kim, Harrison .. 4-135
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Development in Low-Volume Manufacturing Industries:</td>
<td>Javadi, Siavash; Bruch, Jessica; Bellgran, Monica</td>
<td>4-145</td>
</tr>
<tr>
<td>Characteristics and Influencing Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methodical Support for Concurrent Engineering across</td>
<td>Stoffels, Pascal; Vielhaber, Michael</td>
<td>4-155</td>
</tr>
<tr>
<td>Product and Production (System) Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling Factory Systems Using Graphs - Ontology-Based Design</td>
<td>Plehn, Christian; Stein, Florian; Reinhart, Gunther</td>
<td>4-163</td>
</tr>
<tr>
<td>of a Domain Specific Modeling Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks and Challenges in Prototype Development</td>
<td>Ravn, Poul Martin; Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik</td>
<td>4-173</td>
</tr>
<tr>
<td>with Novel Technology – An Empirical Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design-For-Manufacture of Sheet-Bulk Metal Formed Parts</td>
<td>Breitsprecher, Thilo; Sauer, Christopher; Sperber, Christian; Wartzack,</td>
<td>4-183</td>
</tr>
<tr>
<td>Melting Process</td>
<td>Sandro</td>
<td></td>
</tr>
<tr>
<td>Digital Aesthetic of New Products Obtained by Selective Laser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive Manufacturing Design Feature Selection for Variable Product Platforms</td>
<td>Yao, Xiling; Moon, Seung Ki; Bi, Guijun</td>
<td>4-205</td>
</tr>
<tr>
<td>Approach for a Comparatively Evaluation of the Sustainability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Additive Manufactured Aluminum Components</td>
<td>Lachmayer, Roland; Gottwald, Philipp; Lippert, Rene Bastian</td>
<td>4-215</td>
</tr>
<tr>
<td>Indicators and Design Strategies for Direct Part Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Additive Manufacturing</td>
<td>Leutenecker, Bastian; Klahn, Christoph; Meboldt, Mirko</td>
<td>4-225</td>
</tr>
<tr>
<td>Design Method and Taxonomy of Optimized Regular Cellular Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Additive Manufacturing Technologies</td>
<td>Savio, Gianpaolo; Gaggi, Flavio; Meneghelo, Roberto; Concheri, Gianmaria</td>
<td>4-235</td>
</tr>
<tr>
<td>Design for Mass Customization Using Additive Manufacture:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-Study of a Balloon-Powered Car</td>
<td>Chen, Tian; Fritz, Stöckli; Shea, Kristina</td>
<td>4-245</td>
</tr>
<tr>
<td>A Call for FDM Design Rules to Include Road Deposition</td>
<td>Fornasini, Giacomo; Schmidt, Linda C.</td>
<td>4-255</td>
</tr>
<tr>
<td>Redefining Product Family Design for Additive Manufacturing</td>
<td>Lei, Ningrong; Moon, Seung Ki; Rosen, David W.</td>
<td>4-267</td>
</tr>
<tr>
<td>Combining Additive Manufacturing with CFRP Composites:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Potentials</td>
<td>Türk, Daniel-Alexander; Züger, Andreas; Klahn, Christoph; Meboldt,</td>
<td>4-279</td>
</tr>
<tr>
<td>Crowdsourced Design Principles for Leveraging the Capabilities</td>
<td>Mirko</td>
<td></td>
</tr>
<tr>
<td>of Additive Manufacturing</td>
<td>Perez, K Blake; Anderson, David S; Holtta-Otto, Katja; Wood, Kristin L</td>
<td>4-291</td>
</tr>
</tbody>
</table>
Exploring the Significance of In-Process Knowledge to Composites Design and Production
Jones, Helene Victoria; Chatzimichali, Anna; Potter, Kevin; Ward, Carwyn4-301
Natural Fibre-Reinforced, Injection Moulded Polymers for Light Weight Constructions – Simulation of Sustainable Materials for the Automotive Industry –
Albrecht, Katharina; Osswald, Tim; Wartzack, Sandro; Müssig, Jörg4-313
Energy Efficiency Oriented Development of Production Systems
Stoffels, Pascal; Vielhaber, Michael ...4-323
Evaluation of a Strategic Method to Improve Prototype Performance with Reduced Cost and Fabrication Time
Camburn, Bradley Adam; Jensen, Daniel; Crawford, Richard;
Otto, Kevin; Wood, Kristin ...4-333
A Generic Approach to Sensitivity Analysis in Geometric Variations Management
Schleich, Benjamin; Wartzack, Sandro ...4-343
VOLUME 5: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN METHODS AND TOOLS – PART 1

Kang, Namwoo; Emmanouilopoulos, Manos; Ren, Yi; Feinberg, Fred M.; Papalambros, Panos Y. ... 5-1

A Comparison of Conjoint Analysis and Interactive Genetic Algorithms for the Study of Product Semantics
Petiot, Jean-François; Francisco, Cervantes Chavez; Ludivine, Boivin ... 5-11

Stakeholders’ Diverging Perceptions of Product Requirements: Implications in the Design Practice
Borgianni, Yuri; Rotini, Federico ... 5-21

The Malicious Labyrinth of Requirements - Three Types of Requirements for a Systematic Determination of Product Properties
Mattmann, Ilyas; Gramlich, Sebastian; Kloberdanz, Hermann ... 5-31

Requirements Checklists: Benchmarking the Comprehensiveness of the Design Specification
Becattini, Niccolo; Cascini, Gaetano; Rotini, Federico ... 5-41

Considering User’s Impact in Validation Activities – An Approach for the Determination of Requirements
Pinner, Tobias; Jost, Franz; Schmid, Daniel; Albers, Albert ... 5-51

Understand the Design Requirement in Companies
Li, Xuemeng; Ahmed-Kristensen, Saeema ... 5-63

A Product Planning of E-Sports Headphone by Blending Replication ZMET with QFD
Wang, Hung-Hsiang ... 5-75

Quality Function Deployment Using Multispace Design Model and its Application
Kato, Takeo; Horiuchi, Shigehiro; Miwa, Toshiharu; Matsuoka, Yoshiyuki ... 5-83

Moreno Grandas, Diana Paola; Blessing, Luciënne; Yang, Maria; Wood, Kristin ... 5-93

A Qualitative Investigation of Ideation Practices in Engineering and Product Design
Currano, Rebecca; Henriksson, Emily ... 5-105

Synthesis of Conceptual Designs for Sensors Using SAPPhIRE-lite
Sarkar, Biplab; Chakrabarti, Amaresh; Ananthasuresh, G.K ... 5-115

When Costs from Being a Constraint Become a Driver for Concept Generation
Altavilla, Stefania; Montagna, Francesca ... 5-125
Form Follows Data: A Method to Support Concept Generation
Coupling Experience Design with Motion Capture.
Camere, Serena; Caruso, Giandomenico; Bordegoni, Monica;
Di Bartolo, Carmelo; Mauri, Duccio; Pisino, Enrico 5-135
Integrated Function Modelling: Comparing the IFM Framework with SysML
Eisenbart, Boris; Mandel, Constantin; Gericke, Kilian; Blessing, Lucienne 5-145
Capture of Actual Development Processes of Hybrid Intelligent
Design Elements in Order to Define a Target Development Process
Crostack, Alexander; Binz, Hansgeorg; Roth, Daniel 5-157
Improving Generative Grammar Development and Application
through Network Analysis Techniques
Königseder, Corinna; Stanković, Tino; Shea, Kristina .. 5-167
Management and Visualization of Relationships Between Engineering Objects
Pavkovic, Neven; Martinec, Tomislav; Rohde, Danijel; Sikic, Bruno 5-177
Evaluating the Need for Traceability in Product Development:
A Preliminary Study
Koehler, Nico; Naumann, Thomas; Vajna, Sandor ... 5-187
Building Brands Through Design: A Systematic Bibliographical Review
Michelini, Gustavo; Amaral, Daniel Capaldo ... 5-197
On the Development of Visualisation Concepts as Tools in Product Design
Gebhardt, Nicolas; Krause, Dieter .. 5-205
Evaluation of Clay Modelling and Surfacing Cycles From Designers Perspective
Chandra, Sushil .. 5-215
Determining the Similarity of Products Using Pairwise Comparisons
and Eye Tracking
Boa, Duncan R; Ranscombe, Charlie; Hicks, Ben .. 5-225
The Value of Prototypes in the Early Design and Development Process
Isa, Siti Salwa; Liem, Andre; Steinert, Martin .. 5-235
An Automated Function Decomposition Method Based on a
Formal Representation of Solid Material’s Shape
Yuan, Lin; Zhang, Zhinan; Liu, Yusheng .. 5-243
A Bayesian Network Approach to Improve Change Propagation Analysis
Lee, Jihwan; Hong, Yoo S. ... 5-253
Digital Intermediary Objects: The (Currently) Unique Advantage
of Computer-Supported Design Tools
Guerra, Andrea Luigi; Gidel, Thierry; Vezzetti, Enrico .. 5-265
An Approach to the Property-Based Planning of Simulations
Reitmeier, Jochen; Chahin, Abdo; Paetzold, Kristin .. 5-275
Applying Matrix-Based Methods for Improving User Experience
of a Driver Advisory System
Michailidou, Ioanna; Diergarten, Lorenz; Lindemann, Udo ... 5-287
Eco-Evaluation of Technical Systems in the Conceptual Phase
Midžić, Ida; Štorga, Mario; Marjanović, Dorian ... 5-299
Designing of Hybrid Joints at the Early Embodiment Design Stage
Kellermeyer, Markus; Klein, Daniel; Wartzack, Sandro ..5-309
Extension of the Lightweight Design Thinking Tools for the Application
on More Complex Problems
Posner, Benedikt; Binz, Hansgeorg; Roth, Daniel ..5-319
A Methodical Approach to Model and Map Interconnected Decision Making
Situations and their Consequences
Luft, Thomas; Schneider, Samuel; Wartzack, Sandro ..5-329
Using Balance Variables to Describe System Interfaces
and Assess In-Progress Designs
Salustri, Filippo Arnaldo; Rogers, Damian ..5-341
Real-Time Product Recovery Decision Making Algorithm
for Sustainability
Kanchanasri, Passaporn; Moon, Seung Ki; Ng, Gary Ka Lai5-351
VOLUME 6: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN METHODS AND TOOLS – PART 2

A Visual Interface Diagram for Mapping Functions in Integrated Products
Ingerslev, Mattias; Jespersen, Mikkel Oliver; Göhler, Simon Moritz; Howard, Thomas J. .. 6-1

How to Define a Sustainability Design Space
Hallstedt, Sophie .. 6-11

Highlighting the Importance of Testing in the Product Development Process
Tahera, Khadija; Eckert, Claudia; Earl, Chris .. 6-21

Rerouting Failure Flows Using Logic Blocks in Functional Models for Improved System Robustness: Failure Flow Decision Functions
Short, Adam R.; Van Bossuyt, Douglas Lee .. 6-31

Integrated Approach for Efficient Tolerance Optimization on Sheet Metal Parts
Litwa, Frank; Gottwald, Martin; Vielhaber, Michael ... 6-41

An Approach to Analysing Interface Uncertainty Using the Contact and Channel Model
Freund, Tillmann; Kloberdanz, Hermann; Lotz, Julian; Würtenberger, Jan 6-53

A Robust Design Applicability Model
Ebro, Martin; Krogstie, Lars; Howard, Thomas J. .. 6-63

Measuring Functional Robustness With Network Topological Robustness Metrics
Haley, Brandon; Dong, Andy; Tumer, Irem .. 6-75

Design Roadmapping: Challenges and Opportunities
Kim, Euiyoung; Yao, Shin; Agogino, Alice Merner ... 6-85

Avoiding Resonant Frequencies in a Pipeline Application by Utilising the Concept Design Analysis Method
Khamuknin, Alexander; Bertoni, Marco; Eres, Murat Hakki .. 6-95

Introduction of a Computational Approach for the Design of Composite Structures at the Early Embodiment Design Stage
Klein, Daniel; Malezki, Waldemar; Wartzack, Sandro .. 6-105

Assessing the Differences Between Numerical Methods, CAD Evaluations and Real Experiments for the Assessment of Reach Envelopes of the Human Body
Delangle, Mathieu; Petiot, Jean-François; Poirson, Emilie .. 6-115

Efficient Design Evaluation Through the Combination of Numerical and Physical Computations
Foehr, André G. C.; Stücheli, Marius; Meboldt, Mirko .. 6-125

Simultaneous Optimisation: Strategies for Using Parallelization Efficiently
Wünsch, Andreas; Jordan, André; Vajna, Sándor ... 6-133
Stack-Up Analysis of Statistical Tolerance Indices for Linear Function Model Using Monte Carlo Simulation
Otsuka, Akimasa; Nagata, Fusaoi

Taking Into Account the Change of Geometry in System Simulation Processes
Mauser, Kristian; Breitsprecher, Thilo; Hasse, Alexander; Wartzack, Sandro

Functional Assembly Using Synaptic Networks: Theory and a Demonstration Case Study
Mavrikas, Georgios; Spitas, Vasilios; Spitas, Christos

Integrating the Ability for Topology Optimization in a Commercial CAD-System
Schmelcher, Johannes; Stetter, Ralf; Till, Markus

Concept and Application of Automatic Part-Recognition with Artificial Neural Networks for FE Simulations
Spruegel, Tobias C.; Wartzack, Sandro

Simulation Ready CAD-Models as a Means for Knowledge Transfer Between Technology Development and Product Development
Johansson, Joel; André, Samuel; Elgh, Fredrik

Definition of the Collaborative Simulation System (CM&SS) from a Systemic Perspective in Vehicle Industry Context
Roa Castro, Laura; Stal-Le Cardinal, Julie

Graphical Support Adapted to Designers for the Selection of an Optimal Solution in Design By Shopping
Abi Akle, Audrey; Minel, Stéphanie; Yannou, Bernard

Heterogeneous Simulated Annealing Teams: An Optimizing Search Algorithm Inspired by Engineering Design Teams
McComb, Christopher; Cagan, Jonathan; Kotovsky, Kenneth

Feature Based Interpretation and Reconstruction of Structural Topology Optimization Results
Stangl, Thomas; Wartzack, Sandro

From Simulation to Invention, Beyond the Pareto-Frontier
Dubois, Sebastien; Lin, Lei; De Guio, Roland; Rasovska, Ivana

Design for Scalability and Strength Optimisation for Components Created Through FDM Process
Qureshi, A.J.; Mahmood, Shahrain; Wong, W.L.E.; Talamona, Didier

Fairness and Manipulation: An Empirical Study of Arrow’s Impossibility Theorem
McComb, Christopher; Goucher-Lambert, Kosa; Cagan, Jonathan

Proposal of a Framework for Characterizing Virtual Collectives in the Engineering Design Field
El Badawi El Najjar, Rachad; Blanco, Eric; Pourroy, Franck; Prudhomme, Guy; Maussang-Detaille, Nicolas
Bridging the ‘Valley of Death’ in Product Development:
A Case Study of the Drill Cover Project
Gheorghe, Florin; Hodgson, Antony J.; Van Der Loos, H.F. Machiel

Interactive Immersive Engineering System for Distant Collaboration
Fechter, Marius; Damgrave, Roy Gerhardus Johannes; Wartzack, Sandro

Subject Lines as Sensors: Co-Word Analysis of Email to Support the Management of Collaborative Engineering Work
Jones, Simon L.; Payne, Stephen J.; Hicks, Ben J.; Gopsill, James A.; Snider, Chris; Shi, Lei

ICED15 xxxi
PRODUCT MODULARISATION AND ARCHITECTURE

Assessing Modularisation Transition with Metrics
Heilemann, Markus; Steve, Culley; Maike, Schlueter; Vera, Lindemer

Cost Prognosis of Modular Product Structure Concepts
Ripperda, Sebastian; Krause, Dieter

Zapico, Miguel; Eckert, Claudia; Jowers, Iestyn; Earl, Christopher

Structuring Perceived Quality Attributes for Use in the Design Process
Stylidis, Konstantinos; Landahl, Jonas; Wickman, Casper; Johannesson, Hans; Söderberg, Rikard

Towards a Decision Support Framework for System Architecture Design
Ben Hamida, Sonia; Jankovic, Marija; Callot, Martine; Monceaux, Anne; Eckert, Claudia

Framework for Diagnosing Standardization Potential in Current Product Range
Chandra, Sushil

Conceiving Modular Solutions in Early Conceptual Design Activities
Fiorineschi, Lorenzo; Rotini, Federico; Rissone, Paolo

Platform Concept Development within the Integrated PKT-Approach
Kruse, Moritz; Ripperda, Sebastian; Krause, Dieter

A Revision of Product Architecture Design for Multi-Modal Products
Liu, Cong; Hildre, Hans Petter; Zhang, Houxiang; Rølvåg, Terje

The Impact of Criteria in System Architecture Selection: Observation from Industrial Experiment
Moullec, Marie-Lise; Jankovic, Marija; Eckert, Claudia

Portfolio Management for Electric Drives in Powertools at Hilti: Challenges and Solution Approaches
Ponn, Josef

An Engineering Design Approach to Lithium-Ion Cells - Modular Kit Configuration for an Innovative Technology Application
Tschech, Matthias; Vietor, Thomas

Developing an Objective Formulation for Motorcycle Architecture
Chandra, Sushil

Brownfield Process for the Rationalisation of Existing Product Variety Towards a Modular Product Family
Pakkanen, Jarkko; Juuti, Tero; Lehtonen, Timo
Index-Based Metrics for the Evaluation of Effects of Custom Parts on the Standardization of Mechanical Systems
Sinigalias, Pavlos Christoforos; Dentsoras, Argyris ... 7-145

Design for Embodiment through Smart Archives
Rosa, Francesco; Vigano, Roberto; Rovida, Edoardo .. 7-155

Exploratory Research about the Customization or Personalization of Assistive Products for Walking
Gois, Marcel; Thomann, Guillaume; Autreau, Jeremiah ... 7-165

Product Architecture Design Methodology for Developing Standardized Modules
Thumm, Benjamin Roland; Göhlich, Dietmar ... 7-175

Sustainability of Modular Product Families
Bahns, Tammo; Beckmann, Gregor; Gebhardt, Nicolas; Krause, Dieter 7-185

Higher Order Interactions: Product and Configuration Study on DSM Saturation
Phelan, Keith; Summers, Joshua David; Pearce, Brian; Kurz, Mary E. 7-195

Harnessing Social Media and Cloud-Computing Technologies for Co-Design in Open Collaborative Innovation: The Case of 24 Hours of Innovation
Jimenez-Narvaez, Luz-Maria; Dalkir, Kimiz; Gelinas, Valerie; Gardoni, Mickael 7-207

SYSTEMS ENGINEERING

An Algorithm for Behaviour Prediction of Complex Technical Systems
Osman, Krešimir; Štorga, Mario; Marjanović, Dorian .. 7-217

Cost-Benefit Analysis in Model-Based Systems Engineering: State of the Art and Future Potentials
Eigner, Martin; Huwig, Christian; Dickopf, Thomas ... 7-227

Improving Order Fulfillment Processes with MBSE
Westermann, Thorsten; Anacker, Harald; Dumitrescu, Roman 7-237

Industrial Application of a Mechatronic Framework
Torry-Smith, Jonas Mørkeberg; Mortensen, Niels Henrik; Ploug, Ole; Achiche, Sofiane 7-247

PRODUCT-SERVICE SYSTEMS

A Tool for Facilitating Semantic Reframing of Service Design Insight Discovery
Yuan, Soe-Tsyr Daphne; Hsieh, Pei-Kang ... 7-259

A Model to Describe use Phase of Socio-Technical Sphere of Product-Service Systems
Hollauer, Christoph; Venkataraman, Srinivasan; Omer, Mayada 7-271

Potential of Nature-Inspired Approach for Organisation Design in Product-Service System
Kim, Sojung; Baek, Joon Sang .. 7-281
Product-Service System (PSS) Design Process Methodologies: A Systematic Literature Review
Mendes, Glauco H. S.; Oliveira, Maicon Gouvea; Rozenfeld, Henrique; Marques, Caio Augusto Nunes; Costa, Janaina Mascarenhas Hornos 7-291
Facilitating Industrial Adoption of Design Methods for Product-Service Systems
Matschewsky, Johannes; Lindahl, Mattias; Sakao, Tomohiko 7-301
An Exploratory Study to Evaluate the Practical Application of PSS Methods and Tools Based on Text Mining
Marques, Caio Augusto Nunes; Matsuno, Ivone Penque; Sinoara, Roberta Akemi; Rezende, Solange Oliveira; Rozenfeld, Henrique 7-311
Product-Service Systems Representation and Repository for a Design Support Tool
Kim, Yong Se; Kim, Sohui; Roh, Eunrae .. 7-321
INNOVATION AND CREATIVITY

INNOVATION

Risk and Innovation Balance in Crowdfunding New Products
Song, Chaoyang; Luo, Jianxi; Hölttä-Otto, Katja; Seering, Warren; Otto, Kevin 8-1

Open Design Platforms for Open Source Product Development:
Current State and Requirements
Bonvoisin, Jérémy; Boujut, Jean-François ... 8-11

How to Search for Open Innovation Partners?
Guertler, Matthias R.; Von Saucken, Constantin;
Schneider, Maria; Lindemann, Udo ... 8-21

Open Innovation Ecosystem: Towards Collaborative Innovation
Böhmer, Annette Isabel; Lindemann, Udo .. 8-31

Using Crowds in Engineering Design – Towards a Holistic Framework
Panchal, Jitesh H .. 8-41

Supporting Need Seeker Innovation: The Radical Innovation Design Methodology
Yannou, Bernard ... 8-51

Design Innovation for Societal and Business Change
Thurgood, Clementine; Dorst, Kees; Bucolo, Sam;
Van Der Bijl-Brouwer, Mieke; Vermaas, Pieter ... 8-61

Socio-Technical Design for Resilience: A Case Study of Designing
Collaborative Services for Community Resilience
Baek, Joon Sang ... 8-71

The Role of Ambiguity and Discrepancy in Early Phases of Innovation
Laursen, Linda Nhu; Tollestrup, Christian ... 8-81

Innovative and Sustainable Design: Perceptions of Experts
Telenko, Cassandra; Wood, Kristin ... 8-91

Design Methodology Applied for Product Innovation in
a Multi-Disciplinary Project – A Case Study
Almefelt, Lars; Claesson, Anders .. 8-101

A New Knowledge Sourcing Framework to Support KBE Development
Quintana-Amate, Santiago; Bermell-Garcia, Pablo;
Balcazar, Luis; Tiwari, Ashutosh ... 8-111

An Idea Generation Method for the Late Phases of Engineering Design
Meyer, Andreas Wilhelm; Wünsch, Andreas; Vajna, Sándor; König, Oliver 8-121

The Characteristics of Excellent Designers – Findings from an
Interview Study with Swedish Innovators
Axelsson, Louise; Blome, Simon; Nourbapour, Dennis; Nänzen, Johan;
Yvonne, Platon; Malmqvist, Johan Lars ... 8-131
Idea Development and its Constituting Elements
– An Empirical Investigation
Karlsson, Anna ... 8-141
Design Driven Innovation – Minimum Viable Products for Local
Entrepreneurship In Nepal
Keitsch, Martina Maria .. 8-151
A Water Saving Solution with a TRIZ Based Method
Russo, Davide; Spreafico, Christian; Mores, Nicola 8-163
Production Innovation in Manufacturing Firms:
The Case of Swedish SMEs
Viveros-Eulogio, Brenda; Öhrwall Rönbäck, Anna; Ramirez-Portilla, Andres 8-173
Investigation and Support of Evolutionary Design
Stetter, Ralf; Möhringer, Stefan; Günther, Joachim; Pulm, Udo 8-183
A Model of Idea Evaluation and Selection for Product Innovation
Stevanovic, Milan; Marjanovic, Dorian; Storga, Mario 8-193
A Method Model for Distinguishing and Selecting Open Innovation Methods
Von Saucken, Constantin; Görtler, Matthias; Schneider, Maria; Lindemann, Udo 8-203
The Implementation of Innovation Metrics: A Case Study
Benaim, Andre; Elfsberg, Jenny; Larsson, Tobias C.; Larsson, Andreas 8-213
Innovation Ambidexterity in Medium Size Enterprises
Lavayssière, Pierre; Blanco, Eric; Le Dain, Marie-Anne; Chévrier, Pierre 8-225
Enabling Front End of Innovation in a Mature Development Company
Broennum, Louise; Clausen, Christian ... 8-235
Inverse Technology C-K in Environment C-K to Overcome Design Fixation
Jean, Fabien; Le Masson, Pascal; Weil, Benoît 8-245
Maslow Meets the Stonecutter
Winkelmann, Paul Martin .. 8-255
Design Acumen
Petersen, Søren Ingomar .. 8-265
Formulations of Paradigms of Technical Inheritance
Mozgova, Iryna; Lachmayer, Roland; Gottwald, Philipp 8-271
The Impact of Design Methods on The Creativity of 1st-Year Engineering Student Projects: The Case Of Computer Programming
Beghelli, Alejandra; Prieto, Pablo .. 8-279
Fusion of Old and New, Creativity In Educational and Historical Way:
Board Game with Servicescape Concept in Taipei Tech University Town.
Wang, Sheng-Ming; Huang, Chieh Ju ... 8-289
Reggio Emilia Engineering Education
Vignoli, Matteo; D’Onghia, Francesco .. 8-297
CREATIVITY

Supporting Idea Generation through Functional Decomposition: An Alternative Framing for Design Heuristics
Gray, Colin M.; Yilmaz, Seda; Daly, Shanna; Seifert, Colleen M.; Gonzalez, Richard8-309

A Cross-Functional Approach for the Fuzzy Front End: Highlights from a Conceptual Project
Figueiredo, João Filipe; Correia, Nuno C.; Ruivo, Inês Secca; Alves, Jorge Lino8-319

Strategies to Employ Social Networks in Early Design Phases (Idea Generation)
Escandon-Quintanilla, Ma-Lorena; Jimenez-Narvaez, Luz-Maria; Gardoni, Mickael ...8-329

Modulation of Ambiguity, A Cognitive Function of Representations During Idea Generation
Kasatkina, Olga; De Vries, Erica; Masclet, Cédric; Boujut, Jean-François8-339

Using Idea Materialization to Enhance Design Creativity
Georgiev, Georgi V.; Taura, Toshiharu8-349

Creativity Tool Selection for Design Engineers in Idea Generation.
Yan, Yanliuxing; Childs, Peter R N8-359

Inspirational Design Briefing Performance
Petersen, Søren Ingomar; Joo, Jaewoo; Takahashi, Shelley8-371

Evaluation Method which Promote Creativity: Case Study about Ergonomic Design in Pointing Devices
Namayandegi, Mohammad Hossein8-379
VOLUME 9: Proceedings of the 20th International Conference on Engineering Design (ICED15)

USER-CENTRED DESIGN

DESIGN OF SOCIO-TECHNICAL SYSTEMS

USER-CENTRED DESIGN

Empathic-Design Assisted by the Kano Method – A Human-Centered Design Method for Medical Devices Considering Patients
Ahrens, Martin; Hehenberger, Peter ... 9-1

Navigation System Based on Humane Engineering for Wheelchair Users
Nagai, Yukari; Kihara, Hironori ... 9-11

A Capability Approach Based Stakeholder Analysis for the Base of the Pyramid: A Case Study Of The Firewood Based Cook-Stoves
Khadilkar, Pramod Ratnakar; Mani, Monto ... 9-23

User Involvement in Product Design Practices: A Case Study on Technologies for Older Adults
Lee, Chaiwoo; Coughlin, Joseph F. .. 9-33

Inclusive Design; From Physical to Psychosocial - A Literature Analysis Toward a Definition of Psychosocial Dimensions in Design
Lim, Yonghun; Dr. Nickpour, Farnaz ... 9-45

Description of a Competence Oriented Approach for Designing Technical Assistance Systems
Walter, Johanna; Paetzold, Kristin; Nitsch, Verena ... 9-57

Design Towards Better Life Experience: Closing the Gap between Pharmaceutical Packaging Design and Elderly People
Carli Lorenzini, Giana; Olsson, Annika ... 9-65

Design for Assistive Technology Applications: Usefulness of Re-Use?
Walsh, Edwin Peter; Daems, Walter; Steckel, Jan; Peremans, Herbert; Baelus, Christiaan ... 9-77

Dynamic Products: An Instrument for Saving Resources. Improve User’s Awareness through Designing Product Experiences.
Bergamaschi, Sara .. 9-87

A Study on Consumer Trend and Service Innovation in Korean Market
Ahn, Kyungmi; Kim, Kee-Ok; Sung, Hyunjin .. 9-97

Behaviour-Attentive Prototyping of a Design and Simulation System for IC Chambers
Hou, Yuemin; Horvath, Imre; Rusak, Zoltan; Ji, Linhong; Sun, Yunchun; Lin, Jia 9-109

Identifying the Factors to Influence Product Attachment through Product Fandom Phenomenon
Bae, Jieun; Kim, Chajoong ... 9-119
Experimental Setup for Visual and Tactile Evaluation of Materials and Products through Napping® Procedure
Faucheu, Jenny; Caroli, Antonio; Del Curto, Barbara; Delafosse, David .. 9-129

Product Design of Novel Technology-Based Products
- The Importance of Users
Sampaio, Álvaro M.; Pontes, António J. .. 9-139

How Does Expectation Change Perception? : A Simulation Model of Expectation Effect
Yanagisawa, Hideyoshi; Mikami, Natsu .. 9-149

Towards Improvement of Interaction Aesthetics of Mobile Music Listening Journeys
Sen, Güzin; Sener, Bahar .. 9-159

Collective Brand Imagery Weave: Connecting Brand Values to Product Characteristics using Physical Complex Installation
Mulder-Nijkamp, Maaike; Chueng-Nainby, Priscilla ... 9-169

Aiding Designers to Make Practitioner-Like Interpretations of Life Cycle Assessment Results
Uchil, Praveen; Chakrabarti, Amresh; Fantke, Peter ... 9-179

A Model of Lost Habits: Towards a Strategy to Improve the Acceptance of Product Service Systems
Schotman, Hendrikus; Ludden, Geke D.S. ... 9-189

Integration of User Knowledge across the Lifecycle of Integrated Product-Service Systems – An Empirical Analysis of the Relevance for PSS Development and Management
Schmidt, Danilo Marcello; Preißner, Stephanie; Hermosillo Martínez, José Alonso; Quiter, Michael; Mörtl, Markus; Raasch, Christina ... 9-199

An Investigation of Diet Apps for Enhancing People’s Health and Wellbeing.
Tuna, Nur Nagihan; Şener, Bahar ... 9-209

The Shape of Light: An Interactive Approach to Smart Materials
Piselli, Agnesi; Garbagnoli, Paola; Cavarretta, Giorgia; Del Curto, Barbara 9-219

HCI/HMI Pleasure: Push Your Buttons
Wendrich, Robert E. .. 9-229

Principles for Designing for Perception
Perez Mata, Marta; Ahmed-Kristensen, Saeema .. 9-239

The “Ideal” User Innovation Toolkit - Benchmarking and Concept Development
Roth, Michael; Harmeling, Jonas; Michailidou, Ioanna; Lindemann, Udo 9-249

Ielegems, Elke; Herssens, Jasmien; Vanrie, Jan .. 9-259

Integration of End-User Needs into Building Design Projects: Use of Boundary Objects to Overcome Participatory Design Challenges
Latortue, Xavier; Minel, Stéphanie; Pompidou, Stéphane; Perry, Nicolas 9-269
Photography - A New Tool in Needfinding
Wulvik, Andreas; Balters, Stephanie; Steinert, Martin .. 9-279

Integration of Universal Design Principles into Early Phases of Product Design - A Case Study
Kett, Susan Gretchen; Wartzack, Sandro ... 9-289

The Role of the Inner Child in Process of Decision Making for Product Selection
Sepahpour, Ghazaleh ... 9-301

Analysis of the Perception of Future Designers about Usage Scenario Integration in Product Design (SIPD)
Royo, Marta; Mulet, Elena; Galán, Julia; Felip, Francisco; García-García, Carlos 9-311

Designed for, with, and by Kids. Integrating Children’s Approach into Design Teaching and Research Visualisation
Luccarelli, Martin; Di Iorio, Mariagiovanna ... 9-321

DESIGN OF SOCIO-TECHNICAL SYSTEMS

Designing for Children’s Play Ground, a Social Skills Improvement Approach
Sepahpour, Ghazaleh; Shahabi Haghighi, Hamid Reza; Choopankareh, Vahid 9-331

Designing with Daylight; The Relationship between Daylight and Health
Hauge, Bettina .. 9-341

The Design and Dimensions of Social Innovation: The Brazilian Case of the “Ecological Network”
Xavier, Amanda Fernandes; Naveiro, Ricardo Manfredi; Aoussat, Améziane; Mello, Carlos Henrique Pereira ... 9-353

Effective Simplification for Logo Design
Chen, Chung-Yun; Cheung, Vien; Li, Dian; Cassidy, Thomas 9-365
VOLUME 10: Proceedings of the 20th International Conference on Engineering Design (ICED15)

DESIGN INFORMATION AND KNOWLEDGE MANAGEMENT

Digital Support of Wiring Harness Development (Based on the 3D Master Method)
Neckenich, Jonas; Winter, Roland; Vielhaber, Michael ... 10-1
Generating Hybrid Geometry Models for More Precise Simulations by Combining Parametric CAD-Models with 3D Surface Scanned Geometry Inserts
Katona, Sebastian; Koch, Michael; Wartzack, Sandro .. 10-11
Visualisation of Biomechanical Stress Quantities within CAD Environments
Krüger, Daniel Benjamin; Wartzack, Sandro ... 10-21
Issues in Learning Engineering Graphics Fundamentals: Shall we Blame CAD?
Metraglia, Riccardo; Baronio, Gabriele; Villa, Valerio .. 10-31
Analyzing the Generative Effects of Sketches with Design Theory: Sketching to Foster Knowledge Reordering
Brun, Juliette; Le Masson, Pascal; Weil, Benoit .. 10-41
A Sustainable Product Model
Vadoudi, Kiyan; Troussier, Nadège .. 10-51
PLM Implementation: Case Study
Bojcetic, Nenad; Salopek, Damir; Marjanovic, Dorian .. 10-61
Study of the Efficiency of Product Development Teams through Combined Virtual Communities of Practice, PLM and Social Media Technologies
Doumit, Nancy; Fortin, Clément; Huet, Gregory ... 10-71
PLM-MES Integration to Support Collaborative Design
D’Antonio, Gianluca; Sauza Bedolla, Joel; Chiabert, Paolo; Lombardi, Franco 10-81
Identifying Flexible Design Opportunities: Getting from a Procedural to an Execution Model
Allaverdi, David; Herberg, Arne; Lindemann, Udo .. 10-91
Crowdsourcing for Search of Disaster Victims: A Preliminary Study for Search System Design
Burnap, Alex; Barto, Charlie; Johnson-Roberson, Matthew; Ren, Max Yi; Gonzalez, Richard; Papalambros, Panos Y. .. 10-103
Strength Mapping Algorithm (SMA) for Biomechanical Human Modelling Using Empirical Population Data
Miehling, Jörg; Wartzack, Sandro .. 10-115
Systematic Online Lead User Identification - Case Study for Electrical Installations
Pajo, Sanjin; Vandevenne, Dennis; Dufliou, Joost R. ... 10-125
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualizing The Effectiveness of Product Portfolio with Respect to Product Specifications</td>
<td>Oh, Gyesik; Kang, Chang Muk; Kang, Kilmo; Hong, Yoo S.</td>
<td>10-133</td>
</tr>
<tr>
<td>A Strategy for Artefact-Based Information Navigation in Large Engineering Organisations</td>
<td>Jones, David Edward; Chanchevrier, Nicolas; McMahon, Chris; Hicks, Ben</td>
<td>10-143</td>
</tr>
<tr>
<td>Visual Conjoint – From Discrete to Continuous</td>
<td>Orsborn, Seth; Cagan, Jonathan; Boatwright, Peter</td>
<td>10-155</td>
</tr>
<tr>
<td>Integrated Value Engineering - Framework for the Application of Methods for Visualization of Information</td>
<td>Sadi, Tarek; Behncke, Florian G. H.; Maisenbacher, Sebastian; Kremer, Simon</td>
<td>10-165</td>
</tr>
<tr>
<td>Unfolding The Design Process Architecture: A Networked Perspective on Activities</td>
<td>Parraguez, Pedro; Maier, Anja M.</td>
<td>10-177</td>
</tr>
<tr>
<td>Data Science as a New Frontier for Design</td>
<td>Kazakci, Akin Osman</td>
<td>10-189</td>
</tr>
<tr>
<td>Supporting the Configuration of New Product Variants by Reusing the Implicit Knowledge of Past Solutions</td>
<td>Malatesta, Marco; Cicconi, Paolo; Raffaeli, Roberto; Germani, Michele</td>
<td>10-199</td>
</tr>
<tr>
<td>Evaluating the Effectiveness of Methods for Capturing Meetings</td>
<td>Hall, Mark John; Bermell-Garcia, Pablo; McMahon, Chris A; Johansson, Anders; Gonzalez-Franco, Mar</td>
<td>10-209</td>
</tr>
<tr>
<td>It's Not Personal: Can Logbooks Provide Insights into Engineering Projects?</td>
<td>Snider, Chris; McAlpine, Hamish; Gopsill, James A.; Jones, Simon; Lei, Shi; Hicks, Ben</td>
<td>10-219</td>
</tr>
<tr>
<td>An Integrated RFBSE Model for Managing and Reusing Engineering Design Knowledge</td>
<td>Qin, Hao; Wang, Hongwei; Liu, Yusheng</td>
<td>10-231</td>
</tr>
<tr>
<td>Building a Cohesive Body of Design Knowledge: Developments from a Design Science Research Perspective</td>
<td>Cash, Philip; Piirainen, Kalle A</td>
<td>10-241</td>
</tr>
<tr>
<td>Knowledge Management in Customer Integration: A Customer Input Ontology</td>
<td>Füller, Kathrin; Liu, Hanxi; Böhm, Markus; Krcmar, Helmut</td>
<td>10-251</td>
</tr>
<tr>
<td>A Proposal for Knowledge Formalization in Product Development Processes</td>
<td>Klein, Patrick; Lützenberger, Johannes; Thoben, Klaus-Dieter</td>
<td>10-261</td>
</tr>
<tr>
<td>Analysing the Effects of Value Drivers and Knowledge Maturity in Preliminary Design Decision-Making</td>
<td>Bertoni, Alessandro; Bertoni, Marco; Johansson, Christian</td>
<td>10-273</td>
</tr>
<tr>
<td>Identification of Knowledge and Processes in Design Projects</td>
<td>Schmidt, Danilo Marcello; Kammerl, Daniel; Schultz, Bernhard; Schenkl, Sebastian Alexander; Mörtl, Markus</td>
<td>10-283</td>
</tr>
</tbody>
</table>
Knowledge Management Tools and Techniques:
Extent of use in Organizations and Support for Modularization
Stenholm, Daniel; Rossi, Monica; Bergsjö, Dag; Terzi, Sergio10-293
Proposed Evaluation of the use of K-Briefs for Knowledge Acquisition in KBE
Marthinusen, Ivar; Kalavrytinos, Christos; Sivertsen, Ole Ivar10-305
Digital Repository for Design Knowledge Reuse
Firdaus, Mochammad; Wang, Hongwei; Qin, Hao; Liu, Yusheng10-315
Approach for Modelling Knowledge Management Solutions within
the Product Development Process using the ‘Knowledge Modeling
and Description Language’
Laukemann, Alexander; Binz, Hansgeorg; Roth, Daniel10-325
Design Knowledge Representation as an Integration of Functional
Knowledge Modelling and Design Structure Matrix
Zhu, Guo-Niu; Hu, Jie; Qi, Jin; Gu, Chao-Chen; Peng, Ying-Hong10-337
Knowledge Sharing in Heterogeneous Data Context: Application in PLM
Pham, Cong Cuong; Matta, Nada; Durupt, Alexandre; Eynard, Benoit; Ducellier, Guillaume ...10-347
HUMAN BEHAVIOUR IN DESIGN

Design for Behavior Change: An Elaboration-Based Approach to Persuasion in Product Design
Montazeri, Soodeh; Panos, Papalambros; Rich, Gonzales

The Use of Multisensory Feedback to Make Users Behave in a Sustainable Way
Graziosi, Serena; Ferrise, Francesco; Costanzi, Alessandro Achille Maria; Bordegoni, Monica

Support of the System Integration with Automatically Generated Behaviour Models
Kößler, Johannes; Paetzold, Kristin

Technology-Supported Design Research
Thoring, Katja; Mueller, Roland M.; Badke-Schaub, Petra

Moving Targets: How Consumers Change Value Systems through Interaction with Designed Products and Other Consumers
Thomas, Russell C.; Gero, John S.

Developing a Framework of New Mixed Method, Social Networking Services Group Diary and its Application in Practice
Bae, Jieun; Cho, Kwangmin; Kim, Chajoong

Physiologically Based Segmentation of Design Protocol
Nguyen, Philon; Nguyen, Thanh An; Zeng, Yong

Surprise as a Situated Phenomenon
Becattini, Niccolo; Borghianni, Yuri; Cascini, Gaetano; Rotini, Federico

Creativity Intervention: Using Storytelling and Math Problems as Intervening Tasks for Inducing Incubation
Al-Shorachi, Evan; Sasasmit, Koonlada; Gonçalves, Milene

Influence of Information Collection Strategy in Problem Formulation on Design Creativity through Mental Stress: A Theoretical Analysis
Wang, Xiaoying; Nguyen, Thanh An; Zeng, Yong

Developing a Computational Framework to Study the Effects of Use of Analogy in Design on Team Cohesion and Team Collaboration
Singh, Vishal; Casakin, Hernan

Exploring Problem Decomposition in Design Team Discussions
Tobias, Connor; Herrmann, Jeffrey W.; Gralla, Erica

Physiology and Sensorial Based Quantification of Human-Object Interaction – The QOSI Matrix
Balters, Stephanie; Bisballe Jensen, Matilde; Steinert, Martin
A Design Course Combining Aesthetics and Engineering Knowledge in PBL Style
Chang, Hsiang-Tang .. 11-297

Advanced Business Coaching Approach in Combination with Systemic Constellation Work to Improve the Business Engineering Process
Burchardt, Carsten .. 11-307

Understanding the Characteristics Between Design and Non-Design Background Students in Product Development Process and its Implications
Kim, Chajoong; Kim, Yeonghun ... 11-319

Interdisciplinary Learning through Design Activities Uniting Fundamentals of Engineering Curriculum
Fu, Katherine Kai-Se; Tan, U-Xuan; Teo, Tee Hui; Soh, Gim Song; Wood, Kristin L. 11-329

Design Learning Mind-Sets
Hamat, Basyarah; Badke-Schaub, Petra; Eris, Ozgur .. 11-341

Applying a Combined User-Centred Design Approach to Assistive Shopping Trolley Development in Design Education
Mengoni, Maura; Bevilacqua, Roberta; Peruzzini, Margherita .. 11-351