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A Human-System Interface Risk Assessment 

Method Based on Mental Models  

 

Abstract: 

In many safety-critical systems, it is necessary to maintain operators‟ situation awareness at a high level to ensure the 

safety of operations. Today, in many such systems, operators have to rely on the principles and design of human-

system interfaces (HSIs) to observe and comprehend the overwhelming amount of process data. Thus, poor HSIs may 

cause serious consequences, such as occupational accidents and diseases including stress, and they have therefore 

been considered an emerging risk. Despite the importance of this, very few methods have as yet been developed to 

assess the risk of HSIs. This paper presents a new risk assessment method that relies upon operators‟ mental models, 

human reliability analysis (HRA) event tree, and the situation awareness global assessment technique (SAGAT) to 

produce a risk profile for the intended HSI. In the proposed method, the operator‟s understanding (i.e. mental models) 

about possible abnormal situations in the intended plant is modeled on the basis of the capabilities of Bayesian 

networks. The situation models are combined with the HRA event tree, which paves the way for the incorporation of 

operator responses in the assessment method. Probe questions in line with the SAGAT through simulated scenarios in 

a virtual environment are then administrated to gather operator responses. Finally, the proposed method determines a 

risk level for the HSI by assigning the operator responses to the developed situational networks. The performance of 

the proposed method is investigated through a case study at a chemical plant.  

 

Keywords: Risk assessment, Situation awareness, Situation awareness measurement, Human-system interfaces, 

Mental models. 

1. Introduction 

Following several high impact disasters such as those at Three Mile Island, Bhopal and Chernobyl, 

many high-hazard industries have focused on different contributing factors to reduce their accident rates 

as much as possible. In most industrial accidents, there is a chain of organizational conditions and human 

errors which show that 70-80% of such accidents are attributable to human-factor causes (Isaac et al., 

2002; Sneddon et al., 2006). Among those causes, the ability of operators to maintain an adequate 

understanding of their worksite situations is a critical factor in preventing accidents. This cognitive ability 

is referred to as situation awareness (SAW); it indicates a high level of awareness of task and 

environmental conditions, as well as the ability to predict how these conditions may change in the near 

future to aid understanding of how situations will develop (Nazir et al., 2012; Nazir et al., 2014b). To 

date, several SAW models such as Taylor (1990), Endsley (1995b), Adams et al. (1995), and Bendy and 

Meister (1999), have been developed; however, Endsley‟s model has undoubtedly received the most 

attention. This information processing-based model describes SAW as “the perception of the elements in 

the environment within a volume of time and space, the comprehension of their meaning and the 

projection of their status in the near future”. It introduces SAW as a product that has three levels: Level 1, 

the perception of relevant elements in the task environment; Level 2, the comprehension of the elements 
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with regard to the goals; and Level 3, the projection of the state of those elements in the near future 

(Endsley, 1995b). 

In many safety-critical systems today, advanced control rooms are equipped with many automated 

systems; however operators are still responsible for accident diagnosis and mitigation, thus information 

acquisition and decision making are emphasized more than manual manipulation. Human-system 

interfaces (HSIs) should therefore support operators by helping them to understand situations and act 

more effectively and less ambiguously. Poor HSI can have serious consequences, such as occupational 

accidents and diseases including stress, therefore HSI has recently been considered an emerging risk  

which may jeopardize safety (Flaspoler et al., 2009; Jovanovic and Balos, 2012). To design an adequate 

HSI, the specific properties and qualities of human factors as well as the working environment must be 

taken into account, but very few methods and tools have as yet been developed to assess this kind of risk 

in the design of HSIs, despite its importance. Fuchs-Frohnhofen et al. (1996) proposed a methodology to 

incorporate users‟ mental models in a HSI for a CNC system. Carvalho et al. (2008) suggested several 

principles based on human factors to improve an interface screen, alarm system, and procedure guidelines 

in a nuclear power plant simulator. Ha and Seong (2009) proposed a difficulty evaluation method in 

information search, based on two measures: Fixation-to-importance ratio and selective attention 

effectiveness. Lee and Seong (2013) recently developed a computational situation assessment model to 

design HSIs in nuclear power plants based on SAW.  

This paper argues that a range of methods and techniques are required for evaluating the safety of 

HSIs from the human factor perspective. It may be argued that human error is best examined from a 

cognitive perspective, as traditional reliability engineering techniques do not appear to fit well with 

human factor concerns. Therefore, it may be more appropriate to quantify safety from a human factor 

perspective in terms of the level of SAW acquired through the interface. In this sense, the paper considers 

operators‟ behavior when they are confronted with abnormal situations in a safety-critical environment. 

To achieve this, the operators‟ mental models with regard to possible abnormal situations in the intended 

plant are first modeled by exploiting the capabilities of Bayesian networks (BNs). Secondly, the aspects 

of the situation that are important for operators‟ SAW are determined using a cognitive task analysis 

called goal-directed task analysis (GDTA) methodology. Thirdly, online probe questions based on 

identified SAW requirements and in line with the situation awareness global assessment technique 

(SAGAT) are administrated in a simulation environment where operators‟ responses are collected and 

assigned to developed BN-based situational networks as evidence to form the assessment result. 

The paper is organized as follows. Section 2 presents the operators‟ cognitive activities. Section 3 

describes the operators‟ mental models. Measuring SAW is explained in Section 4. The HSI risk 

assessment method is presented in Section 5. The performance of the proposed method is investigated in 

Section 6 in which a residue treater unit at a chemical plant is used for demonstration. The conclusion and 

future work are outlined in Section 7. 
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2. Operators’ Cognitive Activities 

Large-scale technological systems usually contain multilevel control loops and interconnections which 

need to be monitored and supervised for normal operations. Once the system becomes unstable, the 

conditions are referred to as an abnormal situation, which can lead to near misses and possible accidents 

with both economic and human loss. In the last two decades, technological systems have experienced a 

significant increase in multidimensional automation that has significantly increased the complexity and 

sensitivity of the role of operators and their teams. However, the operators lack the ability to intervene or 

tackle abnormal situations as such systems are usually designed for routine operating conditions (Nazir et 

al., 2013; Nazir et al., 2014a). Therefore, any attempt to develop operator support systems should 

consider both normal and abnormal situations.  

Generally, the cognitive tasks that operators perform to carry out their roles and responsibilities 

include monitoring and detection, situation assessment, response planning, and response implementation 

(O‟Hara and Persensky, 2011), as illustrated in Figure 1. Any breakdown in these generic tasks can lead 

to human error. Therefore, a balanced automated system that avoids an excessive workload for its 

operators and keeps them in the loop of decision-making, taking action, and updating related information 

will benefit the intended industry. The activities involved in extracting information from the environment 

are referred to as monitoring and detection. In current systems, this task is highly supported through 

various heterogeneous sensors and appropriate signal-processing methods that are used to extract as much 

information as possible about the dynamic environment. Good monitoring results in operators‟ achieving 

perception or SAW level 1. Situation assessment is the evaluation of current conditions to determine 

whether they are acceptable, or to discover the underlying causes of abnormalities. Situation assessment 

which underlies the achievement of SAW is therefore critical to taking appropriate human action. The 

HSI must thus provide additional support for assessing the situation besides providing alarms and 

displays that are used to obtain information to support situation assessment. This development 

corresponds to SAW levels 2 and 3, which enable support operators to infer real situations and to project 

their status in the near future. Response planning refers to deciding upon a course of action to address the 

current situation. In general, response planning involves operators using their situation model to identify 

goal states and the transformations required to achieve them. Response implementation is performing the 

actions specified by response planning. These actions include selecting a control, providing control input, 

and monitoring the system and process response (O‟Hara and Persensky, 2011). 

Cognitive Tasks 

Situation 
Assessment 

Monitoring 
and Detection 

Response 
Planning 

Response 
Implementation 

Figure 1: General cognitive tasks. 
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The human reliability analysis (HRA) event tree is a technique that shows that the final operation 

result is correct if the components of all four cognitive tasks have been carried out correctly. Figure 2,    

and    indicates the probability of an operator reading an indicator correctly or incorrectly. As can be 

seen, the basic event tree does not include a decision support system. If a decision support system is used 

in any step, new branches are added to the basic event tree. For instance,    and    refer to the probability 

that the support system will generate correct or incorrect results. q represents the probability that the 

operator will recognize incorrect diagnosis results produced by the support system, while r indicates the 

recovery probability that an operator who has assessed the situation incorrectly will make a decision 

change based on correct results delivered by the support system (Lee et al., 2008). As in this paper, a 

simulated environment is used to show the performance of the HSI risk assessment method, the first three 

layers–monitoring, situation assessment, and response planning– are just considered. 

 

3. Operators’ Mental Models 

The concept of mental models has a very long tradition in applied cognition. Mental models are 

mechanisms that enable humans to generate descriptions of system purpose and explanations of system 

functioning (Endsley, 2000b). Mental models embody stored long-term knowledge about systems that can 

be called upon to interact with the relevant system when needed. These internally developed models aid 

in efficiently directing limited attention. They provide a way to integrate information without overloading 

working memory. The use of mental models to achieve SAW is believed to be dependent on the 

individual‟s ability to pattern match critical cues in the environment with elements in their mental model, 
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Figure 2: Basic and extended HRA event trees. 
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and being able to incorporate the use of these models into SAW can provide the operator with quick 

retrieval of actions from memory (Pridmore, 2007). 

Mental models have often been used in studies trying to model human control of various processes. 

Rouse and Morris (1986) define mental models as “mechanisms whereby humans are able to generate 

descriptions of system purpose and form, explanations of system functioning and observed system states, 

and predictions of future states”. They believe that mental models are multi-purpose mental devices. The 

three basic functions: (1) Description of system and form (2) Explanation of system functioning and 

observed system states, and (3) Predictions of future system state, are all compatible with the three-level 

SAW model. However, they believe that mental models are not a state but sets of processes. Endsley‟s 

representations provide a context for some form of judgment and contribute to SAW in the form of 

references to prior experience. Her approach presents mental models as default information that helps to 

form higher levels of SAW even when needed data is missing or incomplete. Features in the environment 

are mapped to mental models in the operator‟s mind, and the models facilitate the development of SAW. 

Mental models (formed by training and experience) are used to facilitate the achievement of SAW by 

directing attention to critical elements in the environment (level 1), integrating the elements to aid 

understanding of their meaning (level 2) and generating possible future states and events (level 3) 

(Salmon et al., 2008).  

A situation model can be developed not only by observing the world, but also by being influenced by 

the operator‟s underlying mental models. These mental models can help to determine what information is 

attended to, how that information is interpreted and integrated, and what projections are made about what 

will happen to the system in the near future. In this sense, the situation model is the current instantiation 

of the mental model, which is more general in nature (Endsley, 2000b). For example, an operator may 

perceive several dynamics in the flow lines (considered to be important elements according to the mental 

model) as being hydrate forming conditions based on critical cues (perception). By pattern-matching to 

prototypes in memory, these separate pieces of information may be classified as a recognized hydrate 

formation (comprehension). According to an internally held mental model, the engineer is able to 

generate probable scenarios for this type of condition (projection). Based on this high-level SAW, the 

operator is then able to select suitable actions that will prevent their formation of mental models. 

4. Measuring Situation Awareness 

Situation awareness measures determine the degree to which design concepts and new technologies 

improve or degrade an operator‟s SAW. They are therefore a critical part of any system and procedural 

design process, and evaluation efforts to assure that SAW is improved and not degraded by new systems, 

interfaces or procedures is essential (Endsley, 1995a). Unfortunately, difficulties arise when trying to 

measure SAW because there is no universally accepted model. Measures of SAW, in general, try to infer 

it from other constructs that are easier to assess (i.e. indirect measures), or obtain it directly. Endsley‟s 

research shows that direct SAW measurements, including subjective and objective measures, are the best 

way to evaluate a system design (Endsley et al., 2003); however, even the most successful measures are 

not able to assess operators‟ SAW during real operations (Jones and Endsley, 2004). The Situation 
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Awareness Global Assessment Technique (SAGAT), which is a popular freeze probe technique, was 

developed to assess pilots‟ SAW based on Endsley‟s three level model (Endsley and Garland, 2000). It 

has been widely used in a variety of domains, such as air traffic control (Endsley, 2000a), commercial and 

military aviation (Endsley et al., 1998), nuclear power plant operations (Jenkins et al., 2012), and 

simulated air traffic management (Paige Bacon and Strybel, 2013). Operators training with SAGAT 

execute the experimental scenarios, during which several freezes occur at randomly selected intervals. 

The freezes are not predictable by the operators. At the time of each freeze, the displays are blanked and 

the simulations are suspended. The operators‟ responses are scored 1 for correct answers and 0 for 

incorrect answers, and final SAGAT scores are calculated by summing all correct responses for each 

participant.  

5. A HSI Risk Assessment Method 

A situation is defined as a set of circumstances in which a number of objects may have relationships 

with one another and the environment, and a hazardous situation is defined as a possible circumstance 

immediately before harm is produced by a hazard. Therefore, an abnormal situation is defined as a 

hazardous situation if its risk is not acceptable (Naderpour et al., 2014c). When an abnormal situation 

occurs in a safety-critical system, operators firstly recognize it by an alarm, and secondly need to perform 

a situation assessment, which means that they try to understand what is happening in the plant. During the 

situation assessment process, operators receive information from observable variables or other operators 

and process the information to establish situation models based on their mental models (Kim and Seong, 

2006).  

In the context of automation systems, an operator‟s mental model will be greatly influenced by the 

system design being employed, and this is especially pertinent now that operators are increasingly 

physically removed from the process. The visible aspects of the system, the actions that seem applicable 

and the prior experience of the operator combine to form the mental model of how the process works. The 

degree to which the operator‟s mental model accurately reflects how the process truly does work has a 

significant effect on the operator‟s ability to use the automation system (Pridmore, 2007). This paper 

assumes that the operator‟s mental model can be modeled using BNs as a representation of static cause–

effect relationships between objects in the situation, administering freeze probe questions in simulated 

scenarios in regard to SAGAT, calculating a HSI risk level for every operators by introducing their 

responses to probe questions as evidence into developed BN-based mental models, and forming an overall 

risk level by averaging individuals. The core idea of the proposed method is illustrated in Figure 3 and 

explained in the sections that follow.  
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5.1. Identifying Situation Awareness Requirements 

This paper considers the safety assessment of HSIs when operators are confronted with abnormal 

situations (i.e. not routine operation situations) in which process optimization is a concern. The GDTA 

methodology is a method to determine the aspects of a situation that are important for a particular user‟s 

SAW requirements, and the main goal is to eliminate or reduce the risks to a level that is as low as 

reasonably practicable (ALARP). According to the ALARP principle, it is necessary for operators of a 

potentially hazardous facility to demonstrate that: a) the facility is fit for its intended purpose, b) the risks 

associated with its functioning are sufficiently low, and c) sufficient safety and emergency measures have 

been instituted (or are proposed) (Melchers, 2001). The other elements of GDTA are shown in Table 1. 

The main goal is supported by two sub-goals: risk determination and risk reduction. The major decisions 

that need to be made in association with each sub-goal are identified, and the SAW requirements for 

making these decisions and fulfilling each sub-goal are determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Simulation Environment 

Human System Interface Human’s Mental Models 

HSI Risk Assessment 

Reasoning 

Situation Awareness Probes 

 

 

 

 
 

Plant 

 

 

 

 

 

 

 

Simulation Environment 

Figure 3: A human-system interface risk assessment method. 
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Table 1: Safety goals, decisions and SAW requirements. 

Goal: Eliminate or reduce the risks to a level that is as low as reasonably practicable 

Subgoal 1: Determine the risks 

Decision 1-1: Hazardous situation identification 

  L1 Observable variable states 

   L1: Alarm status 

   L2: Objects and relationships which contribute to creating a hazardous situation  

 L2: Situations and relationships which contribute to creating a hazardous situation 

Decision 1-2: Probability determination 

 L1: Objects which are relevant to the hazardous situation  

 L1: Observable variables which are relevant to the hazardous situation 

 L2: Prior probability of the hazardous situation 

 L3: Posterior probability of the hazardous situation 

Decision 1-3: Severity determination 

 L2: Possible consequences of the hazardous situation 

 L3: Degree of loss 

 Decision 1-4: Risk level estimation  

 L2: Probability of the hazardous situation (Decision 1-2) 

 L2: Severity of the hazardous situation (Decision 1-3) 

 L3: Current level of risk  

Subgoal 2: Reduce the risks 

Decision 2-1: Choosing practical options  

 L2: Available reduction and containment options 

Decision 2-2: Options impact prediction 

 L2: The severity of the hazardous situation 

 L3: Projecting the new probability of the hazardous situation  

 L3: New level of risk 

 L3= Projection of SAW; L2= Comprehension of SAW; L1= Perception of SAW. 

5.2. Modeling of Mental Models 

Learning, education, training, and other experiences enable operators to form mental models on plant 

components in their long-term memories. Bayesian networks offer nodes, arcs, and CPTs that can be used 

to encode an operator‟s knowledge about a plant and is thus an appropriate method for modeling a causal 

process with uncertainty. As modeling complex systems may lead to complicated models, a particular 

class of BNs, the object oriented Bayesian networks (OOBNs) has been defined to avoid this 

phenomenon. The authors have developed an abnormal situation modeling (ASM) method  that tries to 

represent operators‟ mental models in regard to abnormal situations (Naderpour et al., 2015a). The ASM 

method models the operators‟ mental model using BNs to represent these cause–effect relationships 

between objects in a situation. It also describes how the states and CPTs of objects in the situation models 

should be determined, and how they should be connected to each other to create the situational networks. 

As a situation of interest can be inferred by observable variables in the environment, the ASM method 

explains how situations can be connected to observable variables. 

In this paper, the ASM method is modified by adding nodes (i.e. Monitoring/Detection (MD), 

Situation Assessment (SA), and Response Planning (RP)) related to the HRA event tree to incorporate the 

operators‟ responses to the SAGAT probe questions. For example, consider a vessel that needs to be 
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maintained at a defined temperature for production and safety purposes. The vessel has an automatic 

cooling system (ACS) to remove excess heat generated by the exothermic decomposition of substances 

inside the vessel. The cooling system includes a temperature sensor (TS), automatic water valve (AWV), 

and recirculation pump (RPU) which provides steady state recirculation, and there is a flow transmitter 

(F) that measures the flow of liquid through the recirculation pipeline. The operator‟s mental model of a 

situation of abnormal recirculation (SAR), as demonstrated in Figure 4, can be described as follows: A 

SAR exists if the FT is out of order and the ACS is not working properly (i.e. AND gate). The ACS is 

also failed if any of TS, AWV, or TS is out of order (i.e. OR gate). In addition, as the SAR can be inferred 

from F, there is a relationship between the SAR node and the F node. 

Several situations can generally exist in parallel, and the complete modeling of their dependencies 

results in one or more networks of situations. This may also include temporal dependencies, i.e. that the 

existence probability of an inferred situation in future can be supported by the earlier existence of the 

situation itself or other situations. 

5.3. Probabilistic Risk Assessment 

The developed BN-based situational networks discussed in the previous section are able to provide the 

prior and posterior probabilities of situations and objects. A quantitative analysis can be conducted by the 

forward method (or predictive analysis) to compute the posterior probability distribution of any situation 

given the observation of a set of evidence. The proposed HSI risk assessment method uses operators‟ 

responses to the probe questions of SAGAT as evidence and assigns them to the situational networks. 

Thus, a risk level can be calculated as a multiplication of the posterior probability and severity of 

consequences. The severity of each consequence can be determined in a common currency in which 

human loss, asset loss, and environmental loss are converted to money to provide a coherent view of the 

totality of loss associated with an abnormal situation. Table 2 provides an example in AUD.  

Risk profiles may provide designers with a clearer vision of how the risk profile may change due to 

variations in the parameters, information, or supplementary materials provided. Appropriate efforts can 

therefore be effectively applied to reduce or maintain the risk within defined acceptance criteria for the 

majority of operators. 

 

Figure 4: A combined situation model and HRA event tree. 
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Table 2: Estimated damage of consequences. 

Consequence Symbol Damage (AUD) 

Safe C1 0 

Near miss C2 5,000 
Incident C3 50,000 

Accident C4 1,000,000 

Major accident C5 10,000,000 

6. A Case Study 

On 28 August 2008, a runaway chemical reaction at a residue treater unit caused an explosion, and 

two employees who were investigating why the residue treater pressure was increasing were killed 

(Naderpour et al., 2014a). Several factors, including deviation from the written start-up procedures and 

bypassing of critical safety devices, contributed to the accident. In addition to these precursors, a poor 

newly-installed process mimic screen which could not provide adequate SAW for the board operator was 

another important contributing factor (CSB, 2011). In this case, the new control system significantly 

changed the interactions between the board operators and the DCS
1
 interface. The new visual displays 

and modified command entry method, which changed from a keyboard to a mouse, influenced the 

usability of the HSI and impaired human performance. The new workstation had five display screens 

available to monitor the processes and one display screen dedicated to process alarms. Routine activities 

such as starting a reaction or troubleshooting alarms required operators to move between multiple screens 

to complete a task. It can therefore be concluded that it was very difficult to interpret the data or to detect 

deviation from safety set points. In addition to identified level 1 SAW errors, several level 2 SAW errors 

that could occur were determined. Firstly, a good mental model was lacking, particularly in respect of the 

new automated system, as the facility‟s management failed to provide operators with comprehensive 

formal training and practice in the use of the new DCS. Secondly, it is worth noting that the wrong mental 

model or the mental model of a similar system, i.e. the methomyl unit adjacent to the residue treater, 

could have been used to interpret information, leading to an incorrect diagnosis or understanding of the 

situation. Thirdly, over-reliance on defaults in the mental models might be another problem (Naderpour et 

al., 2015b). 

6.1. Plant Description 

Methomyl is classified as a carbamate insecticide and is a white crystalline solid with a slight 

sulfurous odor that is usually produced from methyl isocyanate (MIC). MIC can cause a highly 

exothermic reaction if mixed with water, therefore it needs to be stored in stainless steel or glass 

containers at temperatures below 40 °C. The production process of methomyl starts with the production 

of methylthioacetaldoxime (MSAO) by reacting chloroacetaldoxime with sodium methyl mercaptide. The 

MSAO then reacts with MIC to produce methomyl. The crystallizers remove excess MIC from the 

methomyl-solvent solution by adding an anti-solvent that causes the methomyl to become crystallized. 

Lastly, a centrifuge separates the crystallized methomyl from the solvents. The methomyl cake is dried, 

                                                           
1
 Distributed Control System 
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packaged and moved to the warehouse. The liquid residue in the centrifuge contains very small quantities 

of methomyl and other impurities (CSB, 2011). 

The solvent recovery flasher separates the solvents and recycles them to the beginning of the process. 

The accumulated liquid in the bottom of the flasher, called “flasher bottoms”, includes unvaporized 

solvents and impurities containing up to 22 percent methomyl. The flasher bottoms are used as fuel in the 

facility steam boilers after the methomyl concentration has been reduced to less than 0.5 percent by 

weight. This rate is essential for environmental and processing considerations (CSB, 2011).  

The incoming flasher bottoms are diluted in a 4500-gallon pressure vessel (50 psig is the maximum 

allowable operating pressure) called the residue treater. The concentration of methomyl in the flasher 

bottom stream will be below 0.5 percent by weight if the residue treater is operated at a high enough 

temperature, and with sufficient residence time, to decompose the content. An auxiliary fuel tank is used 

to store the solvent and residual waste material and to transfer them to the facility steam boiler where they 

will be used as fuel. Toxic and flammable vapour are removed from vapour generated in the methomyl 

decomposition reaction when it exits through the vent condenser to the process vent system (CSB, 2011).  

6.2. Observable Variables 

There are several transmitters in the environment that provide the online condition for the residue 

treater. The discrete states of observable variables are determined in terms of operation and safety set-

points, as shown in Table 3. 

Table 3: Discrete states of observable variables. 

Observable variable States Definition 

Liquid Level (L) 

Low        
Normal          

High       

Recirculation Flow (F) 

Very low        
Low          

Normal       

Temperature (T) 

Low         
Normal            

High        

Pressure (P) 

Normal        
High          

Very high       

6.3. Situation Models 

Seven abnormal situations in the environment were determined as follows: situation of vent condenser 

failure (SVC), situation of high liquid level (SHL), situation of abnormal recirculation (SAR), situation of 

high pressure (SHP), situation of high temperature (SHT), situation of high concentration of methomyl 

(SHC), and situation of runaway reaction (SRR). The objects are presented in Table 4, but the CTPs are 

omitted as the details can be found in (Naderpour et al., 2015a). The situational network is then modified 

by the HRA event tree, as shown in Figure 5. The focal objects representing situations are colored blue, 

the basic objects are yellow, the observable variables are green and the HRA event tree nodes are orange. 

The consequence node is red. As can be seen, in the abnormal situations that are not directly inferable 

from observable variables, the MD node of the HRA event tree is removed. 
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Table 4: Abnormal situations and their objects. 

Situation/Objects Symbol Failure Probability 

SVC   

Loss of chilled cooling water supply LCW 3.66E-05 

Cooling water isolation valve is inadvertently closed CWC 2.00E-02 
Cooling water isolation valve is plugged CWP 6.91E-03 

SHL   

Level transmitter LT 1.40E-04 

Automatic feed valve AFV 2.02E-05 
Automatic feed control AFC OR gate 

Automatic discharge valve ADV 2.75E-05 

Automatic discharge control ADC OR gate 
Automatic level control ALC OR gate 

Failure of operator in operating manual valves FOL 2.70E-01 
Manual feed valve MFV 1.40E-01 

Manual discharge valve MDV 1.40E-01 

Manual level control MLC OR gate 

SAR   

Flow transmitter FT 7.13E-06 

Recirculation pump RP 4.00E-02 

Temperature sensor in recirculation TS 4.00E-02 
Automatic water valve AWV 8.68E-06 

Automatic cooler system ACS OR gate 

SHP   

Pressure transmitter PT 1.64E-01 
Automatic relief valve (mechanical failure) ARV 3.40E-01 

Automatic pressure control APC OR gate 

Failure of operator in operating manual valve FOP 2.70E-01 
Manual relief valve MRV 1.39E-01 

Manual pressure control MPC OR gate 

High pressure protection system HPP AND gate 
Accumulating deposits at vent condenser piping AD 4.95E-06 

Situation of vent condenser failure SVC Independent situation 

Inadequate ventilation IV OR gate 

SHT   

Temperature transmitter TT 6.84E-06 

Situation of abnormal recirculation SAR Independent situation 

Automatic temperature control ATC OR gate 
Failure of operator to notice temperature change FOT 1.00E-01 

Manual water valve MWV 1.39E-06 

Manual temperature control MTC OR gate 

SHC   

Situation of high liquid level SHL Independent situation 

Situation of high temperature  SHT Dependent situation 

SRR   

Situation of high pressure SHP Dependent situation 
Situation of high concentration of methomyl   SHC Dependent situation 

Air monitor system AM 0.18E-06 

Fire alarm FA 1.30E-03 
Fire cannon FC 4.00E-01 

Ignition barrier IB 1.00E-01 

Consequence Consequence NA 
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6.4. The Intended Human-System Interface 

The simulation environment consists of a HSI that displays the necessary information for operators to 

monitor the residue treater operation and manipulate the components, as shown in Figure 6. Flow 

directions are indicated by vertical and horizontal lines between components. Instantaneous values, i.e. 

pressure, flow rate, liquid level and temperature are displayed as gauge values adjacent to their respective 

components. If the values exceed high or low limits, the system triggers an alarm and indicates to the user 

that the values appearing as a flashing value have fallen outside of their allowable range. The interface 

also provides a pop-up window, accessible by mouse-clicking any component, giving the available 

options to deactivate the alarm, turn the system pumps on and off, and maintenance suggestions. 

Figure 5: The combined situational network of the residue treater with HRA event trees. 
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Figure 6: The human-system interface of a simulated residue treater plant. 

6.5. Risk Assessment 

Ten experienced operators (M=5.40 yrs, SD=1.42) currently involved in the operation of an oil 

refinery took part in the risk assessment. All participants became familiar with the characteristics of 

abnormal situations and the simulation environment and features of the HSI. During the simulated 

scenarios, they observed variables, heard alarms, identified abnormal situations, answered probe 

questions, and took the actions necessary to recover the abnormal situations. Two kinds of operation for a 

residue treater can be considered: Startup and Routine. During startup, the residue treater is manually pre-

filled with solvent to a minimum level of about 30 percent. This means that the operation will not start at 

a lower level. The solvent is heated by steam that flows through the heater. When the liquid temperature 

has increased to set-point limit, the steam flow valve is closed, recirculation flow is redirected from the 

heater to the cooler, and the routine operation is started. The current study considers the routine operation. 

6.5.1. Scenarios 

Two 40-min counterbalanced scenarios are defined. In Scenario 1, the vessel is filled with solvent and 

heated. Methomyl is added to the residue treater, and a normal recirculation loop flow is ensured to mix 

the concentrated methomyl feed with preheated solvent in the residue treater. The field operator opens the 

feed control valve and begins to feed flasher bottoms into the vessel. At normal flow rate, it takes 

approximately 10 minutes to fill the residue treater to 50 percent, the normal operating level. The 

recirculation pump is then started. Table 5 shows the timeline of Scenario 1 in which, after 17 minutes, 
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the residue treater liquid level reaches approximately 51 percent, the temperature ranges between 130 and 

135 °C, and the pressure is at 22 psig. The temperature begins to rise steadily about two degrees per 

minute when the recirculation flow suddenly drops to zero in 30 minutes. In less than three minutes, the 

temperature is at 147 °C, the highest safe operating limit. 

Table 5: Scenario 1 timeline. 

Time into  

scenario (min) 
Event 

00:00 Scenario is started 
05:00 Level reaches 30%. 

07:00 Flow is steady at normal rate and temperature is about 130°C. 

09:00 Automatic feed valve is opened and flasher bottoms are introduced into the vessel. 
17:00 Level reaches 50% and the pressure is at 22 psig. 

18:00 Automatic feed valve is closed and recirculation pump is then started 

23:00 The temperature begins to rise steadily about two degrees per minute. 
30:00 The recirculation flow suddenly drops to zero. 

31:00 The temperature is at 147 °C, the highest safe operating limit. 

32:00 Cooling water isolation valve is plugged. 
35:00 Field operator fails to operate water valve. 

37:00 Automatic relief valve fails. 

39:00 Scenario is ended. 

6.5.2. Probe Questions 

Five freezes occur at randomly selected intervals, and they are not predictable by the operators. At the 

time of the freeze, the HSI is blanked and the simulation is suspended. Each freeze lasts approximately 

two minutes. The 13 questions, summarized in Table 6, are derived from the GDTA results. Responses to 

all the questions are collected at each stop via a pop-up window displayed in the HSI. The correct answers 

are not shown to the operators at freeze times; however, they will be able to see the scenario, probe 

questions, and their correct answers at the end of the trial. 

Table 6: Probe questions for Scenario 1. 

Time into  

scenario (min) 

SAW 

level 
Question 

07:00 Level 1 What is the current level of temperature? (Low, Normal, High) 

07:00 Level 1 What is the current level of flow? (Very low, Low, Normal) 

18:00 Level 1 Climbing, decreasing, or steady: Which is correct for liquid level?  

24:00 Level 2 Which abnormal situation threatens the unit? (SHL, SAR) 

24:00 Level 2 What is the most probable explanation? (Failure of the recirculation pump, Failure of automatic 

level control) 

24:00 Level 3 What is the current state of the abnormal situation? (Hazardous, Safe) 

31:00 Level 1 Climbing, decreasing, or steady: Which is correct for temperature? 

31:00 Level 2 Is SHT abnormal? (Yes, No) 

31:00 Level 2 What are the best actions for reduction or containment of risk? (Replace temperature 

transmitter, Manually control the temperature) 

31:00 Level 3 What will be the level of risk? (Acceptable, Tolerable acceptable, Not acceptable) 

37:00 Level 1 What is the current level of pressure? (Low, Normal, High) 

37:00 Level 2 What are the best actions for reduction or containment of risk? (Automatic relief valve needs 

maintenance, Field operator should remove accumulating deposits at vent condenser piping) 

39:00 Level 3 Is SRR abnormal? (Yes, No) 

6.5.3. Results 

The conditions of the scenarios along with the operator‟s responses are assigned to the situational 

network. For example, if the operator has answered question 1 correctly (i.e. in relation to the actual state 

of the simulation environment), the success state of the desired object (i.e. failure of control room 

operator to notice the temperature changes) will have been selected as evidence. If the answer is incorrect, 
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the failure state will have been selected. If the operator was unable to recognize the abnormal situation, 

the failure state of the desired object (i.e. failure of control room) will have been selected. If the operator 

was unable to determine the cause of situation, then the failure state of the desired object (i.e. failure of 

control room to take appropriate action) will have been selected. Apart from the human responses, the 

scenario conditions at the determined time are manipulated into the situational network; for example, at 

min 30, „failure‟ is chosen as the state of the recirculation pump. 

Both the SAGAT scores and risk assessment results are considered. The final SAGAT scores are 

calculated by summing all the correct responses for each participant, giving them a possible total score of 

13 each. Figure 7 shows the results obtained from Scenario 1. 

Figure 7: The SAGAT score and risk profile for Scenario 1 using HSI. 

It can be seen that, as the SAW scores obtained from the SAGAT for the HSI decrease, the risk 

profiles significantly increase. The mean total SAGAT score for using the HSI is 4.50 (SD =2.27) while 

the mean risk profile is 16.82E+2. The highest total SAGAT score is 7 and the lowest score is 3. The 

mean overall SAGAT score for level 1 SAW probes is 3.10 (SD = 0.76) while it is 0.60 (SD = 0.48) and 

0.80 (SD =0.17) for levels 2 and 3, respectively. Clearly, the SAGAT scores for levels 2 and 3 are really 

low compared to level 1. 

6.5.4. The HSI with a Decision Support System 

To perform Scenario 2, the HSI was used with the support of a decision support system named the 

situation awareness support system (SASS), developed by the authors (Naderpour et al., 2014b). The HSI 

of the SASS is shown in Figure 8. The SASS incorporates the collapsed form of mental models into the 

display by applying the characteristics of OOBNs. Mouse-clicking any situation in the interface opens a 

pop-up window that contains the related sub-network, including contributing objects, their failure 

probabilities, and the most probable explanation for the current situation.  
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Figure 8: The human-system interface of the SASS. 

The mean risk profile for the HSI with the support of SASS is 570.6 as shown in Figure 9 that in 

comparison with the original HSI, is lower. Analysis of variance (ANOVA) shows that the new risk level 

is significantly lower with the use of SASS F(1,18)=18.13  p<0.001. 

Figure 9: The SAGAT score and risk profile for Scenario 2 with support of SASS. 

Table 7 shows the SAGAT scores under different interfaces. The mean total SAGAT score for the 

modified HSI is 11.60 (SD =1.37). The highest total SAGAT score is 13 and the lowest SAGAT score is 

9. The SAGAT score decomposition corresponding to SAW levels is 3.80 (SD = 0.17) for level 1, 4.50 

(SD = 0.27) for level 2, and 3.30 (SD = 0.45) for level 3. ANOVA shows that the SAGAT rating of SAW 
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is significantly higher with the use of the modified HSI F(1,18)=137.90 p<0.001. The results particularly 

indicate the improvement in SAW in levels 2 and 3 with the modified HSI. 

Table 7: The SAGAT scores under different systems. 

Interfaces SAW level 

 Perception  Comprehension  Projection  Overall 

 M SD  M SD  M SD  M SD 

HSI 3.10 0.76  0.60 0.48  0.80 0.17  4.50 2.27 

HSI with SASS 3.80 0.17  4.50 0.27  3.30 0.45  11.60 1.37 

7. Conclusion and Future Work 

In many safety-critical systems today, humans increasingly share the control of systems with 

automation, rely on HSIs, and move into positions of higher-level decision making. Many recent 

accidents blamed on operator error could therefore more accurately be labeled as resulting from flawed 

system and interface design. This paper considers the HSI as an emerging risk issue in such complex 

systems. The core idea of this paper is formed on the basis of the fact that by designing HSIs that support 

all levels of SAW, effective and efficient systems that support decision making and performance are more 

likely to be developed. Mental models play a key role in how information is interpreted, comprehended 

and used to make projections. Therefore, a HSI risk assessment method is proposed based on operators‟ 

mental models, and SAGAT to evaluate HSIs in simulated environments. The performance of the 

proposed method was investigated through a case study at a case study concerning a residue treater at a 

virtual chemical plant. Ten experienced operators participated in this study to interact with the HSI and 

respond to the online probe questions, and a risk level was produced by taking into account the operators‟ 

responses as evidence in the BN-based situation models. The results show that the proposed method can 

be successfully used in the design and evaluation processes of HSIs of dynamic systems. 

Attention and working memory decay are also important factors that affect operators‟ SAW. The 

future direction of this study will take both these factors into account in the risk assessment process, along 

with the mental workload, to provide more realistic results.  
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