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Abstract

Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is
known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes
bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several
Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We
introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the
Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved
segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical
methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions
contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater
number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested
by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an
over-representation of ‘‘symmetric inversions’’—inversions with endpoints that are equally distant from the origin of
chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in
Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a
single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and
terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of
DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome
arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic
rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of
circular bacterial chromosomes.
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Introduction

Genome arrangement has profound effects on organismal

phenotype. Genome arrangement likely impacts gene expression

[1,2,3], and can result in total loss of gene function when a

rearrangement breakpoint occurs inside a reading frame. More-

over, rearrangements are known to affect linkage and introduce

genetic incompatibility in eukaryotes [4]. Similar recombination-

stifling effects have been proposed in prokaryotes [5,6], whose

capacity for genetic exchange among divergent taxa has only

recently been appreciated [7]. In naturally competent microbes

which undergo frequent homologous recombination, genome

arrangements themselves may be better indicators of vertical

inheritance than other molecular characters.

Our ability to measure gene order and chromosome structure has

undergone several revolutions, beginning with careful study of

linkage maps [8], later moving towards direct observation by

microscope, FISH, Radiation Hybrid, paired-end genome sequenc-

ing, and Optical Mapping techniques [9,10,11,12]. The continued

improvement in measurement technology has offered revelations

regarding the pattern and extent of genome rearrangement in

organisms ranging from bacteria [13] to mammals [14].

In circular bacterial chromosomes, DNA replication divides the

circular chromosome into two domains called replichores.

Replication begins when DNA polymerase holoenzymes anneal

to the origin of replication (ori). Two holoenzymes then simultaneously

copy the circular chromosome in opposite directions, and initially

the DNA polymerase holoenzymes are co-localized in the cell in a

so-called ‘‘replication factory’’ [15]. Each holoenzyme copies

about half the chromosome, and they eventually meet each other

in the Ter macrodomain. The Ter macrodomain spans a large portion of

the chromosome opposite the origin of replication and contains

several ter sites which bind proteins that halt procession of DNA

polymerase [16]. In cases where homologous recombination has

taken place during replication, the XerCD molecular machinery

resolves the chromosome dimer at the dif site [17,18]. Moreover,
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the predominant site of replication termination appears to be at or

near the dif site [19]. We refer to each half of the chromosome,

delineated by ori and dif, as a replichore. Hereafter we will use the

word ‘‘terminus’’ or phrase ‘‘terminus of replication’’ to refer to

the approximate location of the dif site.

Genome sequencing has revealed that rearrangements do not

occur with uniformly distributed endpoints on circular prokaryotic

chromosomes. Instead, a striking pattern of inversions with

endpoints biased by the origin and terminus of replication has

commonly been observed [20,21,22,23]. Several explanations for

the observed pattern have been devised, all of which focus on the

nature of DNA replication in circular chromosomes.

An inter-replichore inversion refers to a chromosomal inversion

with one endpoint in each replichore. Such inversions swap the

relative orientations of the origin and terminus. If the inversion

endpoints are equally distant from the origin, then replichore sizes

remain unchanged—a so-called ‘‘symmetric inversion’’. Previous

genome analyses indicate that inversions typically occur with

breakpoints in oppositely oriented repetitive elements [24,25,26].

When DNA damage occurs, the homology-dependent recombina-

tion-repair machinery recruits another copy of the repetitive element

as a repair template. Inversions, deletions, and duplications occur

when the resulting Holliday junction is incorrectly resolved. Whereas

recombination among inverted repeats leads to inversions, recombi-

nation among direct repeats leads to deletion. When the recombi-

nation among direct repeats occurs during replication, the segment

becomes deleted from one chromosome and duplicated in the other.

Bacterial DNA replication appears to induce a multitude of

mutational biases and selective forces with respect to their

chromosome architecture [27]. Chromosomes are thought to

remain small due to a general deletion bias [28]. Strand-specific

oligomers such as x sites [29] assist with DNA repair, while

KOPS/AIMS [30,31] have roles in DNA replication and

chromosome segregation. Such sequence signals would be

disrupted by inversions within a single replichore, but not by

inter-replichore inversions. Moreover, a large survey of Salmonella

genomes in culture has provided evidence that genomes with

equal-sized replichores (balanced replichores) may be under

positive selection [32]. It is currently unknown whether symmetric

inter-replichore inversions are frequently observed simply because

they occur more frequently than other rearrangements (a

recombination bias), or whether other patterns of rearrangement

commonly occur but are strongly selected against [26].

The observed frequency of rearrangement relative to neutral

substitution is highly variable in different organisms. The frequency

of observed rearrangement in modern genomes correlates with the

presence of repeats induced by mobile genetic elements [26,33].

Interestingly, mobile genetic elements (IS elements/transposons) are

also associated with the generation of pseudogenes, genome

reduction, and adaptive evolution of niche change [34]. Large-

scale inversion and deletion are both driven by homologous

recombination among repeat elements. Taken together, these

associations suggest that methods to predict episodes of ancient

genome rearrangement may be able to uncover historical genome

reduction and transitions in ecological niche.

Studies of Yersinia have revealed extensive genomic rearrange-

ment relative to conspecific isolates, and IS elements have been

implicated in the rearrangement process. The recent availability of

several finished Yersinia genome sequences offers the possibility to

investigate patterns and biases associated with genomic rearrange-

ment. Yersinia pestis played a role as the causative agent of the three

major plague epidemics which together resulted in millions of

deaths over the past two millenia [35]. Previous molecular studies

have indicated that Yersinia pestis is a recently emerged clone of Y.

pseudotuberculosis, with an estimated divergence less than 20,000

years ago [36], although some ambiguity in the branching order of

Y. pestis isolates remains [37].

Given its pathogenic lifestyle, Y. pestis population dynamics are

different from those of non-pathogens and the effect of population

dynamics on genome arrangement warrants consideration. Upon

infection of a human host, Y. pestis likely undergoes expansive

population growth. Transmission to a new host is usually mediated

by a flea vector which can viably harbor only a small number of

Yersinia cells compared to an infected human. As such, modern Y.

pestis may have undergone several cycles of unconstrained

population growth followed by extreme transmission bottlenecks.

The unconstrained growth phase could permit generation of cell

lines with genomic rearrangement, which are subsequently fixed

by the transmission bottlenecks. Such population dynamics would

serve to increase the observed rate of rearrangement.

Previous experimental work has characterized patterns of

genome arrangement in isolates of E. coli and Salmonella whose

genomes were artificially perturbed in the laboratory [38]. Our

study represents the first attempt to quantify selection and

recombination bias acting on genome arrangement in a naturally

evolving population.

Results

Genome Arangement History of Yersinia
We apply a Bayesian MCMC sampler to investigate selection

and recombination bias acting on genome rearrangements in

sequenced Yersinia isolates. At the time of this study, nine finished

Yersinia genomes were publicly available, listed in Table 1, and

several more had been sequenced to draft quality. As the Yersinia

pestis are very recently diverged, only a small number of nucleotide

substitutions have been observed in fully sequenced genomes [39],

and efforts to reconstruct the Yersinia phylogeny have consequently

been forced to integrate presence/abscence patterns of IS elements

and VNTR sequences [37].

Author Summary

Whole-genome sequencing has revealed that organisms
exhibit extreme variability in chromosome structure. One
common type of chromosome structure variation is
genome arrangement variation: changes in the ordering
of genes on the chromosome. Not only do we find
differences in genome arrangement across species, but in
some organisms, members of the same species have
radically different genome arrangements. We studied the
evolution of genome arrangement in pathogenic bacteria
from the genus Yersinia. The Yersinia exhibit substantial
variation in genome arrangement both within and across
species. We reconstructed the history of genome rear-
rangement by inversion in a group of eight Yersinia, and
we statistically quantified the forces shaping their genome
arrangement evolution. In particular, we discovered an
excess of rearrangement activity near the origin of
chromosomal replication and found evidence for a
preferred configuration for the relative orientations of
the origin and terminus of replication. We also found real
inversions to be significantly shorter than expected. Finally,
we discovered that no single reconstruction of inversion
history is parsimonious with respect to the total number of
inversion mutations, but on average, reconstructed
genome arrangements favor ‘‘balanced’’ genomes—where
the replication origin is positioned opposite the terminus
on the circular chromosome.

Dynamics of Genome Rearrangement in Bacteria
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Pairwise comparisons of Yersinia genomes have revealed a large

number of genomic rearrangements [25,40] which may be suitable

phylogenetic characters. As large-scale genome rearrangement is

thought to be a low-homoplasy molecular character [41]

impervious to lateral exchange by homologous recombination,

even a small number of rearrangements may suffice to resolve

phylogenetic tree topology.

Genome Alignment and Replichore Sizes
In order to compute a rearrangement history, we require

genomes to be encoded as a signed permutation matrix indicating

order and orientation of homologous segments in each genome. We

used the Mauve multiple genome alignment software to identify and

align 84 Locally Collinear Blocks (LCBs) shared among the 9 Yersinia

genomes. Differential gene content among Yersinia lineages

precludes a nine-way alignment that completely covers each

genome. On average 81.5% of each genome is contained within

LCBs, and the remaining lineage-specific regions reside in break-

point regions. The breakpoint regions cannot be unambiguously

assigned to either neighboring LCB, and the uncertainty about their

placement in ancestral genome arrangements causes corresponding

uncertainty in ancestral replichore sizes.

While Y. pestis and Y. pseudotuberculosis share a majority of their

gene content, Y. enterocolitica has substantial differential content

relative to the other eight taxa [42]. To mitigate inference problems

related to differential gene content (see Methods), we removed Y.

enterocolitica from our analysis and computed an alignment on the

remaining 8 taxa using a procedure described in Methods.

The alignment of eight Y. pestis and Y. pseudotuberculosis strains,

shown in Figure 1, consists of 78 LCBs (79 before considering

genome circularity) that cover an average of 93.3% of each genome.

The distribution of LCB lengths (Figure 2) appears to be geometric,

consistent with expectation under the Nadeau-Taylor random

breakage model [14]. For the purpose of inferring ancestral

replichore sizes, we divide each of the 78 breakpoint regions in

half and assign each half to a neighboring LCB. The origin and

terminus of replication in each genome were assigned on the basis of

a consensus prediction and homology (see Methods).

Bayesian Analysis of Rearrangement Phylogeny
We used a modified version of the BADGER 1.01b software to

sample the posterior probability distribution of phylogenetic trees,

mutation rate, and genome arrangement histories using inversions

as mutation operations. The model treats all inversion events to be

equally likely a priori, with no explicit preference for rearrange-

ments that maintain or improve replichore balance. The prior

distribution on branch lengths creates a strong preference for

histories with fewer inversions. Like other Bayesian MCMC

samplers for phylogenetics, the method used here creates an initial

phylogenetic tree with mutation events mapped onto the branches,

then repeatedly proposes modifications to the current tree

topology, mutation history, and branch lengths. Any proposed

modifications are accepted with probability dictated by the

Metropolis-Hastings ratio [43,44]. The initial proposed recon-

struction of inversion history typically has very low likelihood and

proposed modifications are generally accepted until the likelihood

reaches a local maxima. The initial period of sampling is

commonly referred to as burn-in. Samples taken during burn-in

are discarded since the Markov-chain has not yet converged to the

true posterior distribution.

As applied to the 78 Yersinia LCBs, we ran chains with 1,510,000

modification proposal steps, discarded the first 10,000 steps of

each chain as burn-in and then subsampled every 50 steps (details

in Methods). The resulting posterior sampling consists of 30,000

complete genome arrangement histories. Each sampled history

contains a tree topology with inversion events mapped onto the

branches. In total, the sampled histories contain 30,000 tree

topology estimates and 2,520,185 genome arrangements, of which

2,280,185 are inferred ancestral arrangements and 240,000 are

modern genome arrangements. Visualization of the posterior

distribution of trees using SplitsTree v4 [45] reveals a small

amount of topological ambiguity as a splits network (Figure 3).

Contributing to topological ambiguity are seven different tree

topologies with parsimonious inversion histories of 79 events. All

seven parsimonious topologies differ in their grouping of Y. pestis

isolates. Nonetheless, the Y. pestis are found to be monophyletic,

with subgroupings that are consistent with previously published

genome analyses [39]. Application of a maximum parsimony

algorithm to reconstruct inversion phylogeny recovers one of the

seven parsimonious topologies identified by BADGER, also with

79 inversions [46,47]. Internal branches of the Y. pestis clade are

very short relative to external branches, a phenomenon which

could have numerous explanations including exponential popula-

tion growth, population subdivision, an ancestral selective sweep,

or recently accelerated mutation rates possibly associated with

pathogen population dynamics or relaxed selection in culture. Of

note, SNP phylogenies also exhibit short internal branches [39].

Table 1. Fully sequenced Yersinia genomes analyzed for genome rearrangements.

Organism Pathogenesis Genome Size dif o Accession Ref

Y. pestis Antiqua Plague 4,702,289 nt 0.39 + CP000308 [39]

Y. pestis Nepal516 Plague 4,534,590 nt 0.43 + CP000305 [39]

Y. pestis 15–70 (Pestoides F) Plague 4,517,345 nt 0.77 + NC009381 unpubl.

Y. pestis CO92 Plague 4,653,728 nt 0.55 + AL590842 [54]

Y. pestis KIM Plague 4,600,755 nt 0.51 + AE009952 [25]

Y. pestis 91001 avirulent 4,595,065 nt 0.50 + AE017042 [78]

Y. pseudotuberculosis IP 32954 enterocolitis 4,744,671 nt 0.54 + BX936398 [79]

Y. pseudotuberculosis IP 31758 enterocolitis 4,721,828 nt 0.46 2 AAKT02000001 [80]

Y. enterocolitica 8081 enterocolitis 4,615,899 nt 0.48 + AM286415 [42]

The reported genome size is the size of the primary circular chromosome without plasmids. The dif column indicates the approximate position of the replication
terminus dif site, ranging between 0 and 1, where the origin of replication is at 0 and 1 on the circular chromosome. The o column indicates whether the origin and
terminus dif site have the canonical relative orientation (+) or the inverse relative orientation (2): see text for details.
doi:10.1371/journal.pgen.1000128.t001

Dynamics of Genome Rearrangement in Bacteria
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Visualizing Inversion History
To quickly scan for patterns in the genome rearrangement

history of Yersinia, we developed a 3D video system to visualize the

series of rearrangement events. The posterior sampling of

inversion history contains 30,000 samples. We selected the one

history with maximum a posteriori probability and rendered the

series of rearrangement events on each branch of the phylogeny

using custom Java software. The chromosome is rendered as a

torus with positions of the replication origin and terminus marked.

The replichores present in an ancestral node of the tree are

colored distinctively, left replichore in blue, right replichore in

green. The intensity of the colors changes on a gradient from

origin to terminus, such that segments near the origin in the

ancestor are dark blue or green, while segments near the terminus

are light.

Supplementary Videos S1, S2, S3, S4, S5, S6, S7, and S8 show

the inversion history along each external branch of the maximum

a posteriori tree estimate. Several striking patterns of rearrangement

can be seen in the videos, especially those representing longer

branches such as the branch leading to Y. pestis 91001 (Video S3).

First, the terminus remains positioned mostly opposite the origin

throughout the rearrangement history. Second, light-colored

segments which were near the terminus in the ancestral genome

arrangement tend to remain near the terminus. Third, when large

inversions happen within a single replichore, they appear to be

quickly followed by a second inversion that reverts the first. We

now describe statistics to quantify the significance of these

observations, along with other aspects of genome arrangement

evolution that are not as easily recognizable through visualization.

Figure 1. A genome alignment of eight Yersinia isolates. Whole genome alignment of eight Yersinia genomes using Mauve [77] reveals 78
locally collinear blocks conserved among all eight taxa. Each chromosome has been laid out horizontally and homologous blocks in each genome are
shown as identically colored regions linked across genomes. Regions that are inverted relative to Y. pestis KIM are shifted below a genome’s center
axis. The origin of replication in each genome is approximately at coordinate 1 and the terminus dif sites are approximately midway through each
genome, as marked by grey vertical bars. The termini were identified by sequence comparison with Y. pestis KIM, where they were characterized by
extensive sequence analysis [25]. Figure generated by Mauve, free/open-source software available from http://gel.ahabs.wisc.edu/mauve.
doi:10.1371/journal.pgen.1000128.g001

LCB length distribution

LCB length in Kbp

co
u

n
t

100 150 200

10
15

20
5

0

0 50

Figure 2. Lengths of Locally Collinear Blocks shared by the
eight Yersinia genomes. Block lengths are taken from the Y. pestis
KIM reference genome.
doi:10.1371/journal.pgen.1000128.g002

Dynamics of Genome Rearrangement in Bacteria

PLoS Genetics | www.plosgenetics.org 4 July 2008 | Volume 4 | Issue 7 | e1000128



Selection for Replichore Balance
When the terminus of replication lies opposite the origin on the

circular chromosome, replichore sizes are equal and the genome is

said to be balanced. If we assume the origin is at positions 0 and 1

on the circular chromosome and the terminus dif site lies at some

position b where 0,b,1, we can quantify the degree of imbalance

as the deviation from perfect balance:
0:5{bj j

0:5 . Thus, a perfectly

balanced genome with b = 0.5 will have 0 imbalance, and

imbalance increases to 1 as the terminus dif site position b

approaches 0 or 1.

Of the 2,520,185 sampled ancestral arrangements, 77.9% of the

arrangements have a replichore within 20% of perfect balance,

and 88.5% are within 30% of perfect balance. The full distribution

of balance for ancestral arrangements can be gleaned from the

historic terminus position plot in Figure 4A. To prove that the

ancestral positioning of the terminus can not be explained by a

series of inversions with arbitrary endpoints, we performed 30,000

simulations of replichore balance evolution in a genome that

undergoes inversions with uniformly chosen endpoints. Compar-

ison with the null model suggests it can not explain the observed

data (KS test, median p-value,1021). Even when the simulated

terminus dif site position is restricted to the range observed in

modern genomes, the null model cannot explain the observed

genomic balance (KS test, median p-value<0.0001).

Not all modern genomes are balanced genomes. Y. pestis Pestoides

F is conspicuously imbalanced, with a terminus position of 0.77

(54% imbalance). As such, we might ask whether the imbalance

observed in ancestral genome arrangements is confined to the Y.

pestis Pestoides F lineage. Figure 4B shows the imbalance observed

on each external branch of the phylogeny, with internal branches

pooled. Clearly all lineages undergo imbalance, although the

Pestoides F isolate has a greater fraction of imbalanced genomes in

its history. Surprisingly, the Y. pseudotuberculosis exhibit a high degree

of imbalance as well. As they are sister taxa to Pestoides F, the

imbalance could be attributed to imbalance at the common

ancestor. In fact, the common ancestor is frequently predicted to

have an imbalanced genome, and reconstructions with a balanced

common ancestor require intermediate states of imbalance on

branches leading to the modern Y. psuedotuberculosis genomes.

Alternative explanations for the unusual terminus position in Y.

pestis Pestoides F could be entertained, one such explanation being

assembly error. As the assembly has been validated using a 40 kb

Fosmid library, we do not believe this to be the case (P. Chain,

personal comm.). Another alternative is that the primary

replication terminus has shifted to a different location in the Y.

pestis Pestoides F lineage. Visual inspection of the rearrangement

pattern for Y. pestis Pestoides F in Figure 1 reveals several instances

of local overlapping inversions characteristic of symmetric

inversion about the terminus (seen as a ‘‘fan’’ pattern of crossing

lines). If Pestoides F has indeed switched to a new primary

terminus site it would introduce some error in our calculation of

the historic replichore balance distribution. However, since only

about 10% of inversions occur on the branch leading to Y. pestis

Pestoides F, the error would be negligible. The error would serve

to overdisperse the estimated balance distribution and result in

weaker apparent bias towards replichore balance.

Substantial ambiguity exists in the phylogenetic tree topology

reconstructed from the Yersinia genome arrangements. BADGER

found seven parsimonious topologies, and in total 48 unique

topologies were sampled with inversion counts ranging from 79 to

87. Parsimony has enjoyed a long history as a guiding philosophy

in evolutionary inference, so it is of interest to know whether

parsimonious reconstructions agree with our expectation of

replichore balance in genome arrangements. The mean estimate

of imbalance turns out to be slightly smaller for parsimonious

histories and the variance is much lower, as shown in Table 2. The

difference in balance between parsimonious and other reconstruc-

tions is significant (KS test, p,2e-16) but the difference is small

Y. pestis KIM

Y. pestis Nepal516

Y. pestis 91001

Y. pestis CO92

Y. pestis Antiqua

Y. pestis Pestoides F 15-70

Y. pseudotuberculosis IP32953

Y. pseudotuberculosis IP31758

1.0 inversions

Splits at 0.2 bpp
Splits at 0.1 bpp

Figure 3. Consensus phylogenetic network of Yersinia based on inversions. Consensus phylogenetic network for eight of the Yersinia listed
in Table 1. Branch lengths are proportional to the average number of per-branch inversion events. Splits with Bayesian posterior probability
(Bpp).0.2 are shown in black, splits with Bpp between 0.1 and 0.2 in gray. To visualize the network at Bpp 0.2, imagine removing gray edges and
straightening the black edges. The inversion phylogeny supports a Y. pestis clade, and at Bpp 0.2 it supports subclades which agree with SNP
phylogenies [39]. Of note, internal branches in the Y. pestis are short relative to Y. pseudotuberculosis, suggesting either rapid population growth,
subdivision, or other effects. Network visualization created using SplitsTree 4 [45].
doi:10.1371/journal.pgen.1000128.g003

Dynamics of Genome Rearrangement in Bacteria
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(KS D = 0.016). If we believe that strong selection for balanced

genomes exists and inversions not affecting balance are neutral,

then parsimonious reconstructions appear slightly more favorable.

Symmetric Inversions
Previous studies have suggested that DNA replication introduc-

es a recombination bias that favors inversions with endpoints that

are equally distant from the origin of replication [22,20], so-called

symmetric inversions. Given our inferred inversion histories, we

can formally test for an excess of symmetric inversions. To do so,

we introduce the following notation. Let V be the ordered set of

inversions mapped onto tree branches in a sampled reconstruction

of the inversion history, and let vi represent the ith inversion. Then

we define a symmetry statistic for inter-replichore inversions as:

Si~ OL við Þ{OR við Þð Þ2 ð1Þ

where OL(vi) is the distance between the origin and the left-end of

the ith inter-replichore inversion, while OL(vi) is the distance

between the origin and the inversion’s right-end. Thus, the

equation expresses the distance between inversion endpoints and

the origin in each replichore, and computes the squared-difference

of distances. Equation 1 assigns a perfectly symmetric inversion a

value of zero, while asymmetric inversions take on large values.

Incidentally, the symmetry statistic is agnostic to the choice of

which replichore is the left or right.

We would like to know whether the observed inversions are

more symmetric than expected by chance. To do so, we use

permutation to generate a distribution of symmetry statistics that

represent the null hypothesis of lack of symmetry. We compute the

symmetry statistic on arbitrary pairs of left and right inversion

endpoints from inter-replichore inversions, according to the

following equation:

Sx,y~ OL vxð Þ{OR vy

� �� �2 ð2Þ

More formally, we compute a null distribution by sampling x

and y uniformly without replacement from the set of possible inter-

Figure 4. Historic replichore balance in Yersinia. Historic position of terminus dif site relative to origin (A) and historic degree of imbalance (B)
observed in all sampled ancestral genome arrangements of the eight Yersinia listed in Table 1. The histogram in (A) shows the replichore balance of
all sampled ancestral and extant genome arrangements of the Yersinia. In (A) an arrangement with equal replichore size will have a terminus at
position 0.5, indicating perfect replichore balance. The diagram shows that .88% of sampled genome arrangements have replichores within 30% of
perfect balance. (B): Histograms showing the degree of imbalance for arrangements sampled on branches leading to modern genomes. Each
histogram is labeled with the corresponding strain’s name. Genomes with perfectly balanced replichores have 0% imbalance while a genome with
the origin and terminus at the same locus would have 100% imbalance. Many, but not all, parsimonious inversion histories have imbalanced genome
arrangements at common ancestors of Y. pseudotuberculosis and Y. pestis Pestoides F that contribute toward the observed imbalance in the posterior
distribution for those taxa.
doi:10.1371/journal.pgen.1000128.g004

Table 2. Degree of imbalance as a function of total number
of inversions.

# inv 79 80 81 82 83 84 85 86 87

B. mean 0.128 0.133 0.135 0.137 0.139 0.144 0.143 0.149 0.156

B. sd 0.115 0.122 0.125 0.128 0.131 0.139 0.133 0.142 0.135

KS p ,2e-16 ,2e-16 2e-5 0.02 0.008 0.18 0.22 0.27 -

KS D 0.016 0.010 0.007 0.008 0.017 0.020 0.037 0.105 -

N 11492 11395 4775 1661 498 130 38 10 1

Bpp 0.383 0.379 0.159 0.055 0.017 0.004 0.001 ,0.001 ,0.001

The posterior estimate of the mean degree of imbalance (B. mean) and
associated standard deviations (B. sd) are given for inversion histories of length
ranging from 79 to 87 (# inv). For each successive pair of inversion counts, the
distribution of balance values for genomic arrangements was compared using a
Kolmogorov-Smirnov (KS) test, with p-values and D-values reported as KS p and
KS D. N gives the number of samples and Bpp gives the total amount of
Bayesian posterior probability for each inversion history length. From the data
we conclude that parsimonious histories (79 events) have better-balanced
genome arrangements, but the difference is small (KS D) even though it is
statistically significant.
doi:10.1371/journal.pgen.1000128.t002

Dynamics of Genome Rearrangement in Bacteria
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replichore inversions. OL(vx) represents the distance from the origin

to the left-side of inversion x, and OR(vy) is the distance from the

origin to the right-side of inversion y. If the inversion endpoints on

the two replichores were independent from each other, then we

would not see a significant deviation from the null distribution.

Deviation towards larger values would imply fewer symmetric

inversions than expected, whereas deviation towards smaller

values implies more symmetric inversions than expected.

Comparison of symmetry statistics generated by Equations 1 and

2 demonstrates that within-replichore inversions are more likely to

be symmetric than expected by chance (KS test, median p = 0.0001,

mean D = 0.47). The observed symmetry statistic distribution and

the corresponding null distribution are shown in Figure 5.

Episodes of Imbalance
Our inference method does not estimate event times but only

relative event ordering, thus we are unable to directly infer the

actual amount of time ancestral genomes have spent in a balanced

state. However, if we define a state of imbalance as a percentage

deviation from perfect balance, say a 20% deviation, then we can

quantify the number of imbalance episodes that the organisms

have undergone. The posterior estimate of the number of

imbalance episodes the eight Yersinia have undergone is 3.26

(s = 1.82), not counting episodes which span a bifurcation event in

the tree. The posterior distribution is shown at left in Figure 6.

Similarly, we can define the duration of an imbalance episode as

the number of mutation events (inversions) experienced before the

chromosome returns to a balanced state. The length of imbalance

episodes observed in our posterior sampling is shown at right in

Figure 6.

If imbalance is strongly selected against, we might expect

episodes of imbalance to be very short and more frequent than

expected by chance given the total number of imbalanced

arrangements. To determine whether the number and duration

of imbalance episodes was unusual, we designed a permutation test

in which the balance states along branches of reconstructed trees

were randomly permuted (see the Methods section for details). The

permutation gives a null model of an organism which freely

transitions to and from balance, spending the same total amount of

time in each state as the Yersinia genomes.

Surprisingly, we find the exact opposite of our initial

expectation. There are fewer imbalance episodes than expected

under the null model, and episodes of imbalance are longer than

expected given the null model. The pattern is robust to choice of a

particular balance threshold, as other thresholds up to 40% give

similar results. Explanations might be that imbalance is only

mildly detrimental, or that transmission bottlenecks periodically fix

suboptimal genome arrangements in lineages of Y. pestis, despite

their fitness disadvantage. Once imbalanced, several inversions

typically occur before balance is restored. Given that the Y. pestis

chromosome is littered with repetitive DNA, the observation is

consistent with the notion that picking an arbitrary pair of

oppositely oriented repeats is unlikely to yield an inversion that

restores balance. Under such a hypothesis, the number of
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Figure 5. Inter-replichore inversions exhibit symmetry. Inter-
replichore inversions exhibit greater symmetry about the origin and
terminus than expected under a null model. Symmetry for inter-
replichore inversions has been quantified by Equation 1 and compared
to a null distribution. The null distribution is created by applying the
permutation statistic in Eqn 2 to each of the 30,000 sampled
rearrangement histories. The pooled posterior samples and permuta-
tions are plotted here, statistical tests are done on a per sample basis.
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inversions occurring before restoration of balance should rise with

the frequency of oppositely oriented repetitive DNA.

Inversion Length
Assuming that no selection or recombination bias acts on

inversion length, the distribution of inversion lengths could be

modeled as the distance between two uniformly chosen points on a

circle with circumference 1. However, 46.3% of sampled

inversions act within a single replichore and we might expect

such inversions to be short relative to inter-replichore inversions.

Although they do not affect balance, inversions within a replichore

act to reverse the polarity of x sites [29], KOPS/AIMS [30,31],

and they also change leading/lagging strand A/T and G/C biases

[48], relative gene density [27], and gene expression levels. As

shown in Figure 7, the observed length distribution for within-

replichore inversions does indeed indicate that they are shorter

than inter-replichore inversions. However, we expect inter-

replichore inversions to be longer than within-replichore by

definition, because inter-replichore inversions must have one

endpoint in each replichore.

To determine whether within-replichore inversions are signif-

icantly shorter than inter-replichore inversions, we develop a null

model of inversion length that accounts for replichores. Replichore

sizes change as the position of the terminus dif site changes over

the course of evolution, thus the expected length of within-

replichore and inter-replichore inversions changes. We assume

that inversion endpoints are uniformly distributed and that no

inversion acts on more than half the chromosome, otherwise a

shorter complementary inversion operates on the other side of the

circular chromosome. We can then define the expected length of a

within-replichore inversion as:

a~
1{b if bƒ0:5

b otherwise

�
ð3Þ

within bð Þ~ 5{18az24a2{8a3

12 b2z 1{bð Þ2
� � ð4Þ

where 0,b,1 is the position of the terminus dif site relative to the

origin of replication. We define a similar measure of expected

length for inter-replichore inversions:

inter bð Þ~{2az18a{24a2z8a3

24b 1{bð Þ ð5Þ

We provide a detailed derivation of these equations in the

Methods section, and the values given by each equation for

0,b,1 are shown at left in Figure 8.

Knowing the expected length for each inversion, we compute

the ratio of observed length to expected length for each inversion

in the posterior sampling. The distribution of ratios for within- and

inter-replichore inversions is given at right in Figure 8. Both classes

of inversion are shorter than would be expected under the null

model. Comparison among within- and inter-replichore inversions
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which span the origin) and within-replichore. The observed within-
replichore inversions have a strong tendency to be short, whereas the
inter-replichore inversions have a more uniform length distribution.
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reveals that within-replichore inversions are much more so than

inter-replichore inversions (KS test, median p = 0.002, mean

D = 0.41).

Selection on the Orientation of ori and dif
Previous study of Salmonella isolates has demonstrated that

inversion of the origin relative to the terminus does not have a

noticeable fitness impact, so long as balance is maintained [32].

Despite that, eight of the nine Yersinia genomes have the origin and

terminus in identical relative orientation, which we term the

canonical OriDif configuration (see Table 1). The configuration

can be readily observed in Figure 1 by noticing that blocks

containing the dif site (purple) are shifted upwards in every genome

except Y. pseudotuberculosis IP31758, as are blocks containing the

origin (extreme left and right in Figure 1). If the canonical OriDif

offers no selective advantage over the non-canonical configuration,

then observation of the canonical OriDif can be modeled with a

binomial distribution. Under the binomial, the probability of

observing eight of nine genomes with the canonical OriDif is

0.018, suggesting that a preference for the canonical OriDif

configuration must exist. The genomes of Y. pestis Angola and Y.

pseudotuberculosis YPIII were finished while this manuscript was

under review and they too exhibit the canonical OriDif

configuration, bringing the tally to 10/11 and p,0.01. Of note,

studies of mutation patterns in diverse bacteria suggest that

replication terminates near the dif site itself, despite the presence of

many additional ter sites [19]. Although it is tempting to generalize

the canonical OriDif idea to other bacterial genomes, a cursory

examination of related heavily rearranged Shigella genomes did not

reveal a preference for a canonical OriDif configuration.

That modern isolates favor the canonical OriDif configuration

suggests that ancestral Yersinia would favor it as well, and probably

also spend a noticeably greater amount of time in such a

configuration. Most genome rearrangements in Yersinia (53.7%)

are inter-replichore inversions which swap canonical and non-

canonical OriDif configurations. As such, the number of

arrangements with the canonical OriDif is not substantially

different from those which have the non-canonical arrangement.

Given that modern genomes tend towards balance and a

canonical OriDif, we might expect an association between balance

and OriDif because an inversion that disrupts balance must also

change the relative orientation of the origin and terminus. The left

panel of Figure 9 shows overall balance of arrangements as a

function of OriDif configuration. A significant association between

balance and canonical OriDif can be seen (KS test, median

p = 0.0015, mean D = 0.4). Interestingly, when arrangements at

internal nodes of the phylogeny are compared to branch

arrangements, the association between canonical OriDif and

balance appears to be more pronounced (Figure 9 right). However,

a comparison of balance at internal node arrangements with

canonical OriDif versus branch arrangements with canonical

OriDif fails to demonstrate a significant difference (KS test, median

p = 0.67, mean D = 0.33). Failure to find a significant difference may

be due to lack of inferential power, since each inversion history

sample has only six internal node arrangements from which to

estimate the balance distribution. Additional finished Yersinia

genome sequences would provide greater statistical power.

Hotspots of Rearrangement
The most-parsimonious inversion histories inferred by BAD-

GER contain 79 inversion events, yet only 78 gene-order

breakpoints exist in the Yersinia genomes. Clearly, some break-

points must be used repeatedly. Previous breakpoint re-use studies

[49,50] have typically relied on inferring the mere existence of

reuse rather than identifying rearrangement hotspots. To do so,

we must shift focus from breakpoints to inversion endpoints. Every

inversion event acts to reverse one or more consecutive LCBs. The

left side of the left-most and right side of the right-most reversed

LCBs constitute the inversion endpoints. As such, we can count

the number of times a given LCB boundary is used in an inversion

history. By definition, every LCB boundary must be the endpoint

of at least one inversion, however some LCB boundaries may be

used more than once.

Figure 10 shows the posterior estimate of usage for individual

LCB boundaries, mapped according to their occurrence in the

Yersinia pestis KIM genome. A striking pattern emerges in which

inversion endpoints lie proximal to the origin of replication much

more frequently than to the terminus. While inversions with

endpoints near the terminus of replication do occur, they are

comparatively rare.

Experimental studies of genome rearrangement in E. coli and

Salmonella have pointed towards the existence of chromosomal
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domains near the terminus that can not tolerate inversion

endpoints [38], termed the ‘‘impermissible zones’’, or ‘‘non-

divisible zones’’. Yersinia appear to have a similar constraint, visible

as the region immediately surrounding dif having 0 or 1 inversion

endpoints. An alternative and very plausible explanation is the

presence of AIMS proximal to the terminus of replication [31].

AIMS are polarized motifs that direct chromosomal segregation

during cell division, and the density of such motifs increases with

proximity to the terminus dif site. Reversal of a large AIMS-rich

segment could severely disrupt chromosome segregation.

In other Enterobacteriacae, frequent chromosomal inversion

has been attributed to the presence of rRNA operons proximal to

the origin [51]; as they are conserved in sequence, these operons

provide a large substrate for homologous recombination. To

investigate whether ribosomal RNA operons were involved in the

large number of observed rearrangements we assessed the

presence of rRNA operons in modern isolates. In Figure 10,

inversion endpoints which have an annotated ribosomal RNA

gene within 1500 bp of the endpoint have been highlighted red

and marked with R. Although the most commonly used inversion

endpoint does border a ribosomal operon, the majority of heavily

used endpoints do not. Instead, all but one of the remaining

inversion endpoints have an annotated transposase or IS element

ORF within 1500 bp. Thus the difference in observed inversion

rate among ribosomal operons and transposable elements is not

appreciable.

If inversions with endpoints near the terminus are forbidden,

then the relative terminus position has limited range with respect

to the origin. Thus, we might revisit the question of whether the

observed replichore balance distribution can be explained by a

neutral model of inversion. As with the unconstrained model,

simulations of replichore balance evolution which restrict the

relative terminus position to the range of [0.25,0.75] fail to explain

the observed distribution of replichore balance (KS test, median p-

value = 0.0001).

Inversion Reversions
The Bayesian posterior distribution of the terminus position

(Fig. 4A) shows that replichore balance has been largely

maintained during the evolution of Yersinia genomes. To

demonstrate that the observed pattern does not result from

inversion followed by an immediate reversion with approximately

the same endpoints, we introduce the following statistics. As above,

let V be the ordered set of inversions for all edges in the tree and let

vi refer to the ith inversion. We refer to the left endpoint of

inversion vi as L(vi) and the right endpoint as R(vi). Note that

genome coordinates range from 0 to 1, so that 0#L(vi)#R(vi)#1.

We compute the following statistic for consecutive pairs of

inversions vi and vi+1:

L við Þ{L viz1ð Þj jz1ð Þ R við Þ{R viz1ð Þj jz1ð Þ ð6Þ

The value in Equation 6 is smallest when consecutive inversions

have identical endpoints, in which case the second inversion

effectively reverts the first inversion. However, since our Bayesian

model of genome rearrangement favors histories with fewer overall

inversions, it will only very rarely sample histories that contain

consecutive inversions that perfectly cancel each other out. It will,

1
3

5
7

9
11

13
2

4
6

8
10

12

Inversion endpoints mapped onto Y. pestis KIM

N
u

m
b

er
 o

f b
re

ak
p

o
in

t 
u

sa
g

es Bayesian posterior distribution of re−use at individual breakpoints

dif
Ori Ori

−

−

−

−

−

−

−

−

−

−−−

−−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−−

−

−−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−−

−

−−

−

−

−

−

−

−

−

−

−

−−

−−

−

−−

−

−

−

−−

−−

−

−−

−

−

−

−

−−−

−

−−−

−

−−

−

−

−

−−

−

−

−

−

−

−−

−

−

−

−0
1

2
3

4
5

6

IS
 e

le
m

en
t 

O
RF

s
 in

 a
 4

0K
b

p
 w

in
d

o
w

IS Element density in Y. pestis KIM

R R R RR ?

Figure 10. Hotspots of breakpoint re-use in Yersinia exist near the origin. Top: Number of annotated IS element ORFs in non-overlapping
40 Kbp windows of the Y. pestis KIM genome. Bottom: Hotspots of breakpoint re-use in Yersinia. The 78 blocks have 156 endpoints. Posterior
estimates of the number of times each endpoint has been used are plotted here, with block endpoints positioned according their location in the Y.
pestis KIM genome. Endpoints within 1500 bp of a ribosomal operon in at least one of the eight genomes are colored red and marked by ‘R’, while
endpoint regions containing an annotated IS element are colored black. Only one breakpoint region is free from IS elements and ribosomal genes in
all genomes, as marked by ‘?’. Together, the top and bottom panels demonstrate that we rarely observe inversions with endpoints proximal to the
terminus in Yersinia, despite the presence of numerous IS elements in that region.
doi:10.1371/journal.pgen.1000128.g010

Dynamics of Genome Rearrangement in Bacteria

PLoS Genetics | www.plosgenetics.org 10 July 2008 | Volume 4 | Issue 7 | e1000128



however, sample consecutive inversions with nearby endpoints in

an unbiased manner. Such a pattern of inversion could be caused

by an unknown mutational or selective force that favors immediate

reversion of inversions, such as a rebalancing inversion.

Figure 11 compares the observed distribution for Equation 6 to

a permuted distribution generated by pairing L(vi)2L(vi+1) values

with R(vj)2R(ji+1) for i, j sampled uniformly without replacement.

The observed distribution appears to be very similar to the

permuted distribution. The difference is not significant (KS test,

median p = 0.86, mean D = 0.1), indicating that consecutive

inversions with nearly equal endpoints are not observed more

frequently than would be expected by chance alone.

Discussion

Genome rearrangement is a universal process in prokaryotes

[20,22], many of which exhibit patterns of rearrangement similar

to that observed in Yersinia. Whereas previous studies have

identified patterns of rearrangement in a laboratory setting, ours

is the first detailed statistical study of such pressures in a naturally

occurring population. Yersinia genomes provide an ideal platform

for such a study, as they have recently diverged and have

undergone little gene flux.

Natural Selection versus Recombination Bias
We have identified several inversion patterns which deviate

substantially from null expectation that all inversions are equally

likely. Do our observations result from selection against some

inversions, or is there a recombination bias which causes some

inversions to occur more frequently than others? Our statistics can

not directly quantify the relative contributions of these two

evolutionary forces.

We might argue that balanced replichores result from weak-to-

moderate positive selection. Our observation that episodes of

imbalance are less-common than expected and last longer than

expected could indicate that in general, imbalance is selected

against, but when it occurs it is only mildly deleterious because

balance is usually not immediately restored. Occasional relaxed

selection on balance could be a function of pathogen population

dynamics. On the other hand, a similar pattern could be induced

by a recombination bias which usually preferred inversions with

endpoints equidistant from the origin. Imbalance would be

occasionally introduced by an inversion with endpoints of unequal

distance from the origin, and because rebalancing requires a

second inversion with endpoints of unequal distance from the

origin, it may take many inversions to restore balance.

Our observation that Yersinia has a canonical OriDif configu-

ration seems most easily explained by natural selection. A

recombination bias introducing such a pattern would have to

cause inter-replichore inversions to occur almost exclusively in

pairs, and to our knowledge, no plausible molecular mechanism

has been described which could achieve such a feat. Incidentally, if

the canonical OriDif results from selection it implies that some

symmetric inversions may be mildly deleterious in Yersinia.

Our observation that inversions with endpoints near the

terminus are much less frequent than inversions with endpoints

near the origin could be explained by selection against such

inversions. If Yersinia is under reduced selection for growth rate, it

may be more tolerant of inversions near the origin. Closely related

organisms such as E. coli are known to have several ter binding sites

throughout the half of the chromosome surrounding the terminus

dif site. The ter sites are polarized motifs, such that they halt

replisome procession only in one direction [16]. As such, a within-

replichore inversion involving a ter site may result in a lethal

disruption of DNA replication. A similar deleterious effect could

be envisioned when inverting AIMS-rich segments.

We might also entertain recombination bias as an explanation

for the excess of inversions with endpoints near the origin. Fast-

growing bacteria are known to have multiple replication forks

[52]. If the regions near the origin of replication exist in higher

copy number they may be more prone to rearrangement, but

higher copy number would also result in higher effective

population size (Ne) which might be expected to counteract the

effect of a higher mutation rate. In any case, Figure 10 exhibits a

precipitous shift from high inversion rate to low rate moving away

from the origin. Although a plausible mechanism exists for

selection against within-replichore inversions proximal to the

terminus, the reasoning does not apply to inter-replichore

inversions, which account for over half of all inversions. Given

that the rate of inversion is about three times higher near the

origin, it seems likely that additional unknown forces of

recombination bias or selection play a role in reducing the

inversion rate near the terminus.

Arrangements as Phylogenetic Characters
Accurate genome arrangement phylogenies have the potential to

provide a reference phylogenetic tree topology against which

hypotheses of recombination, gene conversion, and lateral gene

transfer can be tested. Chaisson et al [53] demonstrated that

carefully filtered mammalian microinversion markers could be used

as binary characters that form a perfect phylogeny, and a similar

approach could be envisioned for microbes. Although Chaisson et al

claim that rearrangements are low-homoplasy characters based on

the ability of their (carefully filtered) data to pass the four-gamete

test, three confounding factors stymie such simple approaches to

rearrangement phylogeny when studying complete genome ar-

rangements. First, rearrangement mutations frequently overlap

each other, creating inter-dependence and thus precluding a clear
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Figure 11. Testing whether inversions are immediately revert-
ed by a second inversion with approximately identical end-
points. Shown is the distribution of statistics described in Equation 6
for consecutive inversions in the posterior distribution of inversion
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distances (light gray). If selection or a recombination bias favoring
immediate reversion of imbalanced replichores explains the tendency
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representation of mutations as binary characters. Second, popula-

tion-level variability in genome arrangement has been reported in

both microbes [54] and mammals [55], implying that lineage-

sorting effects may yield genome arrangement trees that do not

match the species tree. Finally, programmatic rearrangement

[56,57] not only introduces population-level variability, but can

repeatedly invert the same chromosomal segment, potentially

resulting in frequent homoplasy.

It should be emphasized that PCR-based assays have identified

mixtures of genome arrangements in laboratory cultures of Y. pestis

[54]. If genome rearrangements such as symmetric inversions are

nearly-neutral mutations, we would expect their frequency in the

population to approximately follow a Wright-Fisher model. Thus,

populations with a high rearrangement rate are likely to have

more than one genome arrangement present. To our knowledge,

no evidence of programmatic rearrangement mutations in Y. pestis

has been reported that would be likely to cause frequent reversion

and homoplasy in large-scale rearrangement mutations. Such

effects have been observed as part of phase variation in other

microbes [56].

Related Work
Whilst rich stochastic models of nucleotide sequence evolution

have been developed, comparatively little effort has gone into

development of stochastic models of genome arrangement evolu-

tion. Inversions are known to affect a variety of genomes, including

mitochondria [58], plastids [59,60] and bacteria. However,

mutational processes such as transposition or segmental duplication

and loss [61] can also result in genomic rearrangement, and can

have an especially profound effect on eukaryotic and mitochondrial

gene order. Future efforts to model genome arrangement evolution

should undoubtedly address duplication/loss.

Although bacteria are usually unichromosomal, they also have

plasmids and other short circular chromosomes that might play an

important role in rearranging the genetic material. Therefore a

Bayesian MCMC method for multichromosomal genome ar-

rangement phylogeny would also be desirable. Pairwise models of

multi-chromosomal rearrangement via circular intermediates have

recently been derived, although not in a Bayesian context

[62,63,64].

The rearrangement patterns inferred by our study should prove

valuable as a guide for phylogenetic inference when the inversion

history signal has become saturated. The Yersinia genomes studied

here appear to lie precisely on the verge of saturation, as seven

parsimonious topologies were discovered. Just as codon models

and gamma-distributed rate heterogeneity have aided phyloge-

netic inference on nucleotides, models of rearrangement which

explicitly acknowledge that not all genome arrangements are

equally likely may be useful to disambiguate phylogenetic signal in

saturated inversion histories. Pairwise study of eukaryotic genome

arrangement has demonstrated preference for particular types of

rearrangement events [65], and methods similar to ours could

conceivably be extended to identify selection on arrangement from

phylogenies of multi-chromosomal eukaryotic genomes.

A non-phylogenetic, pairwise model of rearrangement by

inversion has previously been used to investigate the preference

for historic replichore balance in bacteria [66]. Using randomly

simulated genome arrangements as a baseline, the authors

conclude that historical replichore balance has been significantly

maintained in a variety of bacteria, but not all. Our Bayesian

method improves on their model by allowing us to gauge more

rigorously the degree of statistical confidence and uncertainty in

reconstructions of inversion history. Moreover, our method avoids

a systematic bias when exploring possible inversion histories. The

distribution sampled by the Ajana et al method is not uniform over

equally parsimonious inversion scenarios, but is skewed to favor

particular mutation events. The difference between their sampling

distribution and the uniform distribution can grow exponentially

in some cases ([67], section 5.2).

Methods

Computing Genome Alignments
We used the Progressive Mauve algorithm [68] to compute an

alignment of the nine genomes listed in Table 1. Analysis of the

resulting alignment indicated that Y. enterocolitica 8081 contains

substantial gene content differences with respect to the other Yersinia

genomes, with only 81.5% of an average Yersinia genome conserved

among all nine taxa. Current Bayesian models of genome

arrangement do not model gain and loss of genetic material, thus

we removed Y. enterocolitica 8081 from further analysis.

An alignment of the eight Y. pestis and Y. pseudotuberculosis

genomes was constructed using the default mauveAligner

parameters. The resulting LCBs were inspected using the Mauve

alignment viewer and the minimum LCB weight was adjusted to a

value which eliminates LCBs consisting of only repetitive elements

(LCB Weight 600).

We then computed a full alignment with minimum LCB weight

600, and processed the resulting XMFA alignment file into a

permutation matrix in BADGER format (Dataset S1).

Bayesian Modeling of Genome Rearrangements
We apply the Bayesian model of genome rearrangement by

inversion implemented in the BADGER software [69]. BADGER

models genomic inversions as a continuous-time Markov process

occurring along branches of an unrooted phylogenetic tree which

relates organisms. All inversion events are modeled to be equally

likely a priori. This enables us to calculate the likelihood of a

genome rearrangement history mapped onto a tree given the tree

and mutation rates, see e.g. [70].

Branch lengths are measured as the number of mutations on a

branch, with lengths modeled using an exponential distribution.

The mean value of the exponential distribution is given a hyper-

prior which creates a strong preference for shorter overall branch

lengths and thus assigns higher posterior probabilities to

parsimonious inversion histories.

BADGER samples from the joint posterior distribution of tree

topologies, inversion histories, and mutation rates using Metrop-

olis-coupled Markov-chain Monte Carlo, also known as MCMC

with Parallel Tempering [71]. Accurate inference using MCMC

methods requires Markov-chain convergence and adequate

mixing. In general, MCMC samplers for genome rearrangement

appear to mix very slowly because the likelihood surface can be

rugged, and good proposal mechanisms for transitioning between

peaks may not exist. The use of heated parallel chains (Metropolis

coupling) can alleviate the problem to some extent [72]. The

Parallel Tempering method first considers the Bayesian posterior

distribution as a Boltzmann distribution at unit temperature. The

probability of a particular state X in a Boltzmann distribution is

defined as

P Xð Þ!e
{DG Xð Þ

T ð7Þ

where DG(X) is the free energy, e is the natural number and T is

the temperature. Since we are talking about hypothetical energies

and temperatures, we omit the Boltzmann- or gas-constant (k or R)

in the formula. Setting T = 1 leads to defining the free energy of a
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state as

DG Xð Þ~{ln P Xð Þð Þ: ð8Þ

After defining the free energy for each state, the Parallel

Tempering runs several chains with different temperatures, the

unheated chain has temperature 1, the heated chains have higher

temperatures. All chains converge to their own prescribed

Boltzmann distribution, but sometimes they swap states. The

swapping is governed by the Metropolis rule ([43]; hence the name,

Metropolis-coupled MCMC), which guarantees that swapping does

not change the convergence to the prescribed distributions. The

probability surface is flat at high temperatures, which provides fast

mixing in the state space, while the swappings between the unheated

and heated chains allow the possibility that the unheated chain can

jump from one local minimum into another one.

In our application to the Yersinia LCBs, we used a Metropolis-

coupling scheme with temperatures ranging from 1 to 1.18 to

ensure adequate mixing. A comparison of runs with 3, 5, 19, and

49 heated chains revealed that only runs with 19 or 49 heated

chains discovered all seven parsimonious topologies within

500,000 MCMC steps. Monitoring the log-likelihood plot and

comparison among the runs suggests that the chains have

converged and mixed sufficiently to support the inferences

described in the present work.

To make inference on ancestral genome arrangements, we

modified the BADGER C++ code to record inversion histories at

each subsample point. Additional software was implemented to

summarize the resulting posterior samples of genome arrange-

ment. All software is available from http://bioinformatics.org.au/

barphlye.

Rooting the Tree
Despite exclusion of Y. enterocolitica from the genome rearrange-

ment phylogeny, it remains a potentially useful outgroup for

rooting the tree using a molecular character such as nucleotide

substitutions. Debate rages over the proper method to infer

phylogenies using large multi-gene or whole-genome datasets.

Recombination, lateral exchange, lineage sorting, and other

natural processes can result in a phylogenetic signal that varies

widely from gene to gene. One attempt to acknowledge and

mitigate the impact of such effects is the recently proposed

concordance factor approach, which provides a method to infer

the fraction of a genome supporting a given hypothesis of vertical

inheritance [73].

We apply Bayesian tree concordance statistics to estimate

support for alternative rootings of the phylogenetic network shown

in Figure 3. An analysis of 30 randomly selected genes gives an a

posteriori concordance factor of 19.4 (out of 30, 90% confidence

interval [10,28]) supporting a root on the branch leading to Y.

pseudotuberculosis IP31758. An alternative rooting on the branch

leading to Y. pseudotuberculosis IP32768 garners a concordance

factor of only 7.5, with a 90% confidence interval of [0,17]. The

concordance factor analysis suggests that recombination and

lineage sorting in Yersinia has caused inconsistent phylogenetic

signal throughout the genome, but that a greater fraction of

sampled genes support a rooting on Y. pseudotuberculosis IP31758.

Such frequent large-scale homologous recombination has recently

been reported as a common feature in other Enterobacteriacae

[74,75]. Interestingly, the concordance tree splits weakly support

placement of Y. pestis Pestoides F as a sister taxa to Y. pestis KIM,

whereas the inversion phylogeny places the Pestoides F lineage as

ancestral to the remaining Y. pestis with high confidence.

LCB Lengths and Replichore Balance
Although we discarded Y. enterocolitica due to presence of

differential gene content, the eight remaining genomes contain

some lineage-specific content as well. Differences in gene content

imply that observed LCB lengths are different in each modern

genome. Moreover, breakpoint regions may contain lineage

specific content. To perform inference on ancestral replichore

balance with a model that lacks gene gain and loss, it was

necessary to assign a length to each LCB and to account for the

portion of each chromosome in breakpoint regions. We took a

reference-genome approach based on Y. pestis KIM, which

represents a median in terms of genome size among the eight

Yersinia genomes studied. We assigned half of each breakpoint

region to its neighboring LCB in Y. pestis KIM, and took the

resulting LCB lengths as representative of all genomes. An average

of 6.7% of each modern genome lies in breakpoint regions, and

genome size deviates from Y. pestis KIM by +/2 3%. Thus, our

use of a reference genome introduces some error into estimates of

ancestral replichore sizes. In the worst case, the error could be as

large as 10%, but the average error is small enough that it does not

affect the main conclusions described here.

Identifying the Origin and Terminus dif Site
The origin and terminus of replication in Y. pestis KIM was

previously identified as occurring at approximately 1 bp and

2.324 Mbp, respectively [25]. Here, the terminus refers to a point

on the chromosome where strand-specific oligomer skew shifts

abruptly to the opposite strand. Others have reported that the

change in oligomer skew typically occurs near the terminus dif site

[19], and so we use the site of strand bias change as a proxy for the

true dif site. The ori and dif sites were assigned in other genomes on

the basis of homology to Y. pestis KIM. The predicted dif site lies in

the middle of a large 140 Kbp segment conserved among all

Yersinia genomes at .95% sequence identity (see Figure 1).

Similarly, the predicted origin lies in the middle of a 53 Kbp

segment conserved among all Yersinia at .95% sequence identity.

Comparison of our origin and terminus predictions to those

made by an automated prediction system [76] reveals that our

predictions agree with those made by the automated system within

1 kbp in nearly all cases. Discrepancy occurs in the terminus

prediction for Y. pestis 91001. The discrepancy seemingly results

from numerous recent rearrangements having disrupted the signal

of strand-specific oligomer skew and in turn confusing the

automated system.

Estimating Significance in Kolmogorov-Smirnov Tests
We report analysis on 30,000 samples from the posterior

distribution of inversion histories. We assume that Yersinia has one

true evolutionary history, and that at most one of the inferred

histories represents the true history. As such, when comparing the

distributions of quantities of interest, we do so on a per-sample

basis using the Kolmogorov-Smirnov test. We take the median p-

value over the 30,000 tests to be an estimator of the p-value which

would be obtained had the test been applied to the one true

history. We report mean D values as average estimates of the

difference between target distributions.

Permutation Testing for Episodes of Imbalance
We use random permutation to generate a null distribution of

the number and duration of episodes of imbalance. A tree sample

with inversions mapped onto its branches has one genome

arrangement for each leaf (8 in total), one arrangement for each

internal node (6 in total), and some number of intermediate
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arrangements along each branch of the tree. For each sample in

the posterior distribution of trees and inversion histories, we assign

imbalance values the intermediate genome arrangements in the

sample. For each branch of a given tree sample, we generate a

permuted distribution by randomly shuffling the imbalance values

of intermediate genome arrangements on that branch. We then

count the number of transitions to and from imbalance along the

original branch and along the branch with permuted values. Thus,

the randomly permuted data have the same total number of

balanced and imbalanced states with the same balance values, but

any clusters of imbalanced states will be uniformly random.

Our permutation approach disregards the actual inversion

events, but generates random permutations with the same overall

balance values. It is not possible to construct a random

permutation of imbalance values by shuffling the inversion events

themselves, since overlapping inversion events have strong

ordering constraints and violation of these constraints would often

change the imbalance values. Moreover, a strategy which samples

inversion events uniformly at random would not yield a set of

balance values consistent with the set we desire to permute.

Expected Length of Within- and Inter-Replichore
Inversions

Assume the endpoints of an inversion are in positions x and y,

with x, yM[0,1]. The inversion length can be expressed as the

function min{|x2y|,12|x2y|}, since the inversion occurs on a

circular chromosme of length 1 and for any inversion longer than

0.5, a complementary inversion with shorter length exists. If we

assume that the inversion endpoints are uniformly distributed,

then the expected length is the integral average of the function

min{|x2y|,12|x2y|} over the appropriate area A:

1

Aj j

ð
A

min x{yj j,1{ x{yj jf gdxdy ð9Þ

where |A| denotes the size of the area. In the case of within-

replichore inversions, area A is the union of the two squares as

delineated by the dashed line of Fig. 12, in case of inter-replichore

inversions, A is the union of the two rectangles. For simplicity we

suppress the full details of integration, and the resulting equations

for within- and inter-replichore inversions are given in Equations 4

and 5, respectively.

Supporting Information

Dataset S1 Genome alignment and genome arrangement data.

File - 8way_600from400.badger: A signed gene-order permutation

matrix describing the order and orientation of locally collinear

blocks (LCBs) as they occur in each of the eight genomes. File -

mavvers_8way_600_from_400_perms.600.lcbs: contains the left-

end and right-end coordinate of each LCB in the main

chromosome of each genome. File - mavvers_8way_600_fro-

m_400_aligned.xmfa: contains an XMFA format genome align-

ment of the eight yersinia that can be viewed in the Mauve viewer.

Ensure that the source genbank files (also included in the zip) are

located in the same directory to load annotation data. Remaining

files: source genome sequence and annotation data.

Found at: doi:10.1371/journal.pgen.1000128.s001 (39.59 MB

ZIP)

Video S1 Evolution of Y. pestis KIM. The maximum a posteriori

estimate of inversion events on the branch leading to Y. pestis KIM.

The main circular chromosome is shown as a torus, with the origin

and terminus marked. The ancestral left and right replichores are

colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s002 (5.28 MB

MOV)

Video S2 Evolution of Y. pestis Antiqua. The maximum a

posteriori estimate of inversion events on the branch leading to

Y. pestis Antiqua. The main circular chromosome is shown as a

torus, with the origin and terminus marked. The ancestral left and

right replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s003 (10.53 MB

MOV)

Video S3 Evolution of Y. pestis 91001. The maximum a

posteriori estimate of inversion events on the branch leading to

Y. pestis 91001. The main circular chromosome is shown as a torus,

with the origin and terminus marked. The ancestral left and right

replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s004 (8.79 MB

MOV)

Video S4 Evolution of Y. pestis CO92. The maximum a

posteriori estimate of inversion events on the branch leading to

Y. pestis CO92. The main circular chromosome is shown as a torus,

with the origin and terminus marked. The ancestral left and right

replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s005 (2.22 MB

MOV)

Video S5 Evolution of Y. pestis Nepal516. The maximum a

posteriori estimate of inversions on the branch leading to Y. pestis

Nepal516. The main circular chromosome is shown as a torus,

with the origin and terminus marked. The ancestral left and right

replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s006 (5.23 MB

MOV)

Video S6 Evolution of Y. pestis 15–70 Pestoides F. The maximum

a posteriori estimate of inversion events on the branch leading to Y.

pestis 15–70 Pestoides F. The main circular chromosome is shown

as a torus, with the origin and terminus marked. The ancestral left

and right replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s007 (7.29 MB

MOV)

Video S7 Evolution of Y. psuedotuberculosis IP31758. The estimate

of inversion events on the branch leading to Y. psuedotuberculosis

IP31758. The main circular chromosome is shown as a torus, with

| x - y |

b

b

1 - | x - y |

1 - | x - y |

Figure 12. Calculating expected inversion length. The expected
length of within- and inter-replichore inversions can be calculated as
integral averages of the function min{|x2y|,12|x2y|} over the
appropriate areas. Here, 0,b,1 is the terminus dif site. See the text
for more details.
doi:10.1371/journal.pgen.1000128.g012
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the origin and terminus marked. The ancestral left and right

replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s008 (3.11 MB

MOV)

Video S8 Evolution of Y. psuedotuberculosis IP32953. The estimate

of inversion events on the branch leading to Y. psuedotuberculosis

IP32953. The main circular chromosome is shown as a torus, with

the origin and terminus marked. The ancestral left and right

replichores are colored blue and green.

Found at: doi:10.1371/journal.pgen.1000128.s009 (1.77 MB

MOV)
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