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Abstract: 

Operators handling abnormal situations in safety-critical environments need to be supported from a cognitive 

perspective to reduce their workload, stress, and consequent error rate. Of the various cognitive activities, a 

correct understanding of the situation, i.e. situation awareness (SA), is a crucial factor in improving performance 

and reducing error. However, existing system safety researches focus mainly on technical issues and often 

neglect SA. This study presents an innovative cognition-driven decision support system called the situation 

awareness support system (SASS) to manage abnormal situations in safety-critical environments in which the 

effect of situational complexity on human decision-makers is a concern. To achieve this objective, a situational 

network modeling process and a situation assessment model that exploits the specific capabilities of dynamic 

Bayesian networks and risk indicators are first proposed. The SASS is then developed and consists of four major 

elements: 1) a situation data collection component that provides the current state of the observable variables 

based on online conditions and monitoring systems, 2) a situation assessment component based on dynamic 

Bayesian networks (DBN) to model the hazardous situations in a situational network and a fuzzy risk estimation 

method to generate the assessment result, 3) a situation recovery component that provides a basis for decision-

making to reduce the risk level of situations to an acceptable level, and 4) a human-computer interface. The 

SASS is partially evaluated by a sensitivity analysis, which is carried out to validate DBN-based situational 

networks, and SA measurements are suggested for a full evaluation of the proposed system. The performance of 

the SASS is demonstrated by a case taken from US Chemical Safety Board reports, and the results demonstrate 

that the SASS provides a useful graphical, mathematically consistent system for dealing with incomplete and 

uncertain information to help operators maintain the risk of dynamic situations at an acceptable level. 

Keywords: Decision support systems, Cognition-driven decision support, Situation awareness, Situation 

assessment, Risk assessment, Bayesian networks. 

1. Introduction 

Safety-critical environments are those domains in which hardware failure or poor or late decision-

making by operators could result in loss of life, significant property damage, or environmental 

pollution. In many safety-critical environments today, the role of the operator shifts from a person who 

controls a process manually to a supervisor or decision-maker, and includes extensive cognitive tasks 

[15] including information gathering, planning, decision–making, demonstrating that the facility is fit 

for its intended purpose, and ensuring that the risks associated with its operation are sufficiently low 
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[34]. In abnormal situations, a well-trained operator should comprehend a malfunction in real time by 

analyzing alarms, assessing values, and recognizing unusual trends associated with multiple 

instruments. When confronted with a complex abnormal situation, many alarms from different 

systems may sound at the same time, making it difficult for operators to judge within a short period of 

time which situation should be given priority. To return operational units to normal conditions, 

operators must respond quickly and make rapid decisions, but the mental workload of operators under 

these circumstances rises sharply, and a mental workload that is too high may increase the rate of error 

[17]. Paradoxically, several researches show that the focus of most human-system studies is on the 

technical elements, and human factors are often neglected [39]. This is due to well understood 

hardware reliability techniques, whereas the handling of human factors, by contrast, is difficult. These 

problems highlight the urgent need to discover cognitive decision support systems to manage 

abnormal situations that will lower operator workload and stress and consequently reduce the rate of 

errors made by operators.  

Decision support systems (DSSs) are envisioned as “executive mind-support systems” that are 

expected to support decision-making from a human cognition perspective [4]. Over the years, some 

types of DSS, such as model-driven and data-driven DSSs, have achieved increased popularity in 

various domains. Model-driven DSSs emphasize the creation and manipulation of statistical, financial, 

optimization, or simulation models that require decision makers to specify model parameters 

according to their decision problems. The functionality of data-driven DSSs results from access to, and 

manipulation of, a large database of structured data, and their outputs are based on perceiving and 

comprehending the integrated information [41]. Unlike model-driven and data-driven DSSs, cognitive 

DSSs have not been researched, albeit they have long been recognized as being worthy of 

consideration [4]. Just as a cognitive process refers to an act of human information processing, so a 

cognition-driven decision support system refers to assisting operators in their decision–making from a 

human cognition perspective, using such attributes as sensing, comprehending and projecting [39]. Of 

these cognitive aspects, an operator‟s situation awareness (SA) is considered to be the most important 

prerequisite for decision–making. Situation awareness comprises the perception of elements in the 

environment, the understanding of their meaning, and the projection of the status of that environment 

in the near future [10]. Situation awareness is likely to be at the root of many accidents in safety-



critical environments where multiple goals must be pursued simultaneously, multiple tasks require the 

operator‟s attention, operator performance is under high time stress, and negative consequences 

associated with poor performance are anticipated [22]. To give an example: On 14 June 2006 in an 

explosion at a chemical plant, one person was killed and two employees were injured when the 

operator could not maintain accurate SA and the vapor overflowed from the tank [5]. This case will be 

investigated in this paper as an example of poor operator SA which led to a severe accident. 

Based on these issues, the main objective of this study is to develop a cognition-driven DSS, called 

the situation awareness support system (SASS), with the purpose of developing a comprehensive and 

practical operator support system for use in abnormal situations. The proposed SASS consists of four 

major components: 1) situation data collection (e.g. observable variables such as sensors), 2) situation 

assessment, which includes a dynamic Bayesian network-based situational network to model situations 

of interest and a risk estimation method to generate the assessment result, 3) situation recovery, and 4) 

a human-computer interface. The proposed system has the following advantages:  

1) In most human-system studies, safety has been considered from a technical perspective. Only 

hazards that arise through hardware failure have been considered, despite the fact that human 

failure is a more common factor in safety-critical systems. To develop the system in this study, 

two important aspects, namely addressing hazards that result from hardware failure and 

reducing human error through decision–making, have been considered. A situation modeling 

process based on hardware and human failure is proposed to model hazardous situations, and a 

situation assessment model is developed to support operators to achieve and maintain SA, and 

to make correct decisions. 

2) The proposed SASS does not control the manner of implementing actions and allows individual 

discretion in the choice of human action for the specific context. It has been shown that 

increased automation does not necessarily result in improved capability, because approaches 

that focus solely on automated features disconnect the operator from the system and alienate 

them from the production process [2]. Therefore, the SASS keeps operators in the loop of 

decision–making and action–taking. 



3) The proposed SASS assists operators to avoid unforeseen risks in the operation system and to 

determine appropriate ways to eliminate or control hazards until their risk level falls As Low as 

Reasonably Practicable (ALARP), thus ensuring that the proposed system conforms to ALARP. 

4) The proposed SASS includes a situation assessment component that uses dynamic Bayesian 

networks, which has certain advantages over other situation assessment methods that use 

artificial intelligence tools such as expert systems [36] and neural networks [37]. First, it 

includes nodes and directed arcs to express the knowledge, and new information can be 

transmitted by directed arcs between nodes. Second, knowledge in the component can be 

updated, whereas updating knowledge in expert systems is difficult. Third, it already has expert 

knowledge encoded in its construction, while neural networks must learn knowledge via 

datasets, assuming training data are available. Lastly, the cumulative effect of situations based 

on new evidence is very suitable for SA continuity, whereas this feature does not exist in other 

artificial intelligence tools [46]. 

This study makes three important contributions. First, it proposes a situational network modeling 

process which is used to model abnormal situations in one or more networks. Second, it presents a 

situation assessment model that exploits the specific capabilities of dynamic Bayesian networks and 

fuzzy risk analysis. The proposed situation assessment model can be applied to other related domains 

if the risk indicators for any measurement are appropriate. Third, it develops, for the first time, a SASS 

for managing abnormal situations in safety-critical environments in which the degree of automation 

and complexity continues to increase and the number of operators decreases, and where each operator 

must be able to comprehend and respond to a growing amount of risky status and alert information. 

The paper is organized as follows. Section 2 presents the background of this study. A literature 

review of SA and related areas is given in Section 3. The methodology for this study is provided in 

Section 4, and the requirements, model, and components of the SASS are explained in Section 5. A 

case from US Chemical Safety Board investigation reports (www.csb.gov) is presented in Section 6 to 

demonstrate the performance of the SASS. Section 7 compares our model with an existing situation 

assessment model and discusses the limitations of this study. The conclusion and future work are 

summarized in Section 8. 

 



2. Background 

This section describes the background to this study, including situation awareness, Bayesian 

network theory and the preliminary concepts of fuzzy sets and fuzzy logic systems. 

2.1. Situation Awareness 

A situation is a set of circumstances in which a number of objects may have relationships with one 

another and the environment. Situation awareness can be described as “the perception of the elements 

in the environment within a volume of time and space, the comprehension of their meaning and the 

projection of their status in the near future” [10]. This SA model follows an information processing 

chain from perception, through comprehension, to projection. Figure 1 enables a clear understanding 

of the definition of both „situation‟ and „SA‟. It shows four planes, each of which refers to a different 

level of abstraction. The bottom layer shows the World, which includes physical or conceptual things, 

or both. To the right of the World plane, a human head depicts the fact that SA is a state of knowledge 

which takes place in the human brain. The human is unable to observe all aspects of the World, and 

therefore has to obtain inputs from the computer for better appreciation (i.e. the arrow between the 

computer and the human head). The dots on the next layer (i.e. Perception) represent the objects from 

the World that are observed through sensors and represented in computer memory. The arrow pointing 

from the World plane to the radar icon represents the sensory process, which then feeds the computer. 

The emphasis in situation definition is on relationships which are described from the point of view of a 

thing (i.e. focal object), and how other things in the surroundings are related to it. This plane 

represents Comprehension. The top layer illustrates the Projection, and this layer is defined as the 

ability to anticipate future events and their implications [28]. 

Projection 

Comprehension (Situation) 

World 

Perception 

Situation Awareness: Computer Support 

Figure 1: The situation and SA [28]. 

 



2.2. Bayesian Networks  

A Bayesian network (BN) is a mathematical graphical representation method that provides an 

opportunity to model a causal process with uncertainty. Each node represents a variable and the arcs 

show direct probabilistic relations between the connected nodes. Dynamic BNs (DBNs) allow time to 

be taken into account by defining different variables at different time slices.   

2.2.1. The Bayesian Network Notations 

A BN usually involves a directed acyclic graph (DAG) that represents the network structure, and a 

set of conditional probability tables (CPTs), which are the network parameters [18]. Three common 

ways to construct a BN are to: (1) manually specify the DAG and CPTs by expert opinion; (2) 

automatically learn the DAG and CPTs using various algorithms based on observational data; and (3) 

manually construct the DAG by expert opinion or automatically learn the DAG using expert opinions 

as structural constraints/restrictions, and then to learn the CPTs from observational data [18]. In this 

paper, a conventional BN can be considered as a representation of static cause–effect relations 

between objects in a situation. Based on the conditional independence resulting from the d-separation 

concept, and the chain rule, BN represents the joint probability distribution  ( ) of variables   

*       +, included in the network as [23]: 

 ( )  ∏ (     (  ))
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where   (  ) is the parent set of    for any        . If   (  ) is an empty set, then    is a root 

node and  (  |  (  ))   (  ) denotes its prior probability. Bayesian networks use Bayes‟ theorem 

to update the prior occurrence probability of objects given new information. This new information, 

called evidence E, is usually obtained during system operation, including the occurrence or non-

occurrence of the objects: 
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This equation will be used for probability prediction or probability updating in a given network. In 

predictive analysis, the conditional probabilities of the form P(situation|object) are calculated which 

show the occurrence probability of a particular situation given the occurrence or non-occurrence of a 

certain primary object. In updating analysis, the conditional probabilities of the form 



P(object|situation) are assessed, indicating the occurrence probability of a particular object given the 

occurrence of a certain situation. 

2.2.2. Dynamic Bayesian Network 

A DBN model can be obtained from a static BN by introducing relevant temporal dependencies 

among variables to describe the behavior of a particular system at different times. A DBN usually has 

two types of dependency: non-contemporaneous and contemporaneous. Non-contemporaneous 

dependencies are arcs between nodes that represent variables at different times. Contemporaneous 

dependencies are arcs between nodes that represent variables within the same time period [35]. A 

DBN is defined as a pair (       ) where B1 is a BN that defines the prior distribution P(X1) and 

2TBN is a two-slice temporal BN with 
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where   
  is a node at time slice t and   (  

 ) is the set of parent nodes that can be in time slice t or in 

time slice t-1. In the first slice of a 2TBN, the nodes have no parameters, but in the second slice each 

node has an associated CPT for discrete variables or conditional probability distribution (CPD) for 

continuous variables, which defines  .  
    (  

 )/ for all    . The arcs between slices reflect the 

causal flow of time. The node   
  is called persistent if there is an arc from     

  to   
 . The arcs within 

a slice are arbitrary, and directed arcs represent “instantaneous” causation. The semantics of a DBN 

can be defined by “unrolling” the 2TBN until there are T time-slices. The resulting joint distribution is 

then given by [35]: 
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As exact inference is NP-hard, approximation algorithms can be used, such as clustering, unrolled 

junction tree, and the forward-backward algorithm. 

2.3. Fuzzy Sets and Fuzzy Logic Systems 

Fuzzy logic is a concept for dealing with uncertainty, vagueness, or imprecise problems that uses 

membership functions with values between 0 and 1. Unlike conventional set theory based on Boolean 

logic, a particular object or variable in fuzzy set theory based on fuzzy logic has a degree of 



membership in a given set that may be anywhere in the range of 0 (completely not in the set) to 1 

(completely in the set). 

Definition 1 (Fuzzy set) [44]: Fuzzy set   is defined in terms of a universal set   by a membership 

function that assigns to each element     a value   ( ) in the interval [0,1], i.e.      ,   -. 

Definition 2 (α-cut) [44]: Let A be a fuzzy set in the universe X,   (   -. The α-cut or α-level set of 

the fuzzy set A is the crisp set    defined by: 

   *       ( )   +                                                                 (5) 

Definition 3 (Fuzzy number) [44]: A fuzzy set   in   satisfies the following conditions:  

   is normal, 

    is a closed interval for every   (   -, 

 the support of   is bounded. 

Definition 4 (Fuzzy logic system) [33]: A fuzzy logic system (FLS) as shown in Figure 2 includes 

three parts: fuzzification, fuzzy inference engine and defuzzification. In the fuzzification process, the 

fuzzy sets are formed for all input variables. The fuzzy inference engine takes into account the input 

variables and the logic relations between them, and uses fuzzy logic operations to generate the output. 

In the defuzzification process, the output fuzzy set is converted into a crisp value. 

3. Literature Review 

There is a rich literature on SA, ranging from SA system modeling to cognitive workload 

assessment and support. The majority of researches to date have focused on the development of 

situation assessment models which underlie the achievement of SA, rather than the implementation of 

SA systems. In the literature review in this paper, the related concepts of situation assessment methods 

and SA systems modeling are considered. 

3.1. Situation Assessment Methods 

Figure 2: A fuzzy logic system [33]. 

Crisp input 

Fuzzification 

Crisp output 

Defuzzification 

Knowledge base 

“IF-THEN” Rules 

Inference process 

Fuzzy logic operations 

Inference Engine 



Situation assessment models explain the main features and general principles of how people 

process information and interact with the environment to maintain their SA; indeed, awareness of a 

situation is achieved as a result of situation assessment [10]. Since SA is a dynamic and collaborative 

process, assessing a situation requires data integration with the support of computer-based intelligent 

techniques. Because SA aims to predict the status of a situation in the near future, which is the third 

level of the SA model, effective situation assessment approaches and the right tools are needed to 

conduct the prediction.  

Many studies have reported that machine learning techniques can provide an effective method of 

intelligent prediction by extracting rules from previous data to generate new assessment results. For 

instance, Lu et al. developed a support vector machine-based assessment approach which has the 

ability to learn the rules from previous assessment results and generate the necessary warnings for a 

situation. They used a synthesized, artificially generated dataset to illustrate the effectiveness of their 

proposed situation assessment approach [30]. In another study, Lu et al. proposed a fuzzy least squares 

support vector machine technique for situation assessment using the integration of information 

obtained from related data sources. Again, they used an artificially generated dataset to show the 

accuracy of their technique [31]. A neural network-based situation assessment module was developed 

by Brannon et al. to provide a high level of SA for decision makers in force protection [2]. Despite the 

usefulness of machine learning techniques for situation assessment, their use in real environments is 

very limited because of the lack of appropriate SA training data [2].  

Kim and Seong developed an analytic mathematical model for situation assessment based on BNs 

for the operators of a nuclear power plant (NPP). In their proposed model, operator knowledge (i.e. 

mental models) is elicited to assign to the CPTs of a network, and when operators receive information 

from indicators, the probabilities of the states of the environment (i.e. multiple accidents) are updated 

[24]. They extended their proposed approach by considering the interdependency of instrumentation 

and control systems and the operators in the NPP [25]. Other than in NPPs, Bayesian theory has been 

widely considered in the situation assessment configuration of command and control domains. For 

instance, a hierarchical BN-based situation assessment model developed in [3] includes two layers: the 

top layer, which serves as a fusion center, and the bottom layer, which provides the discretization of 

continuous data. A distributed approach to battlefield situation assessment based on level 2 of JDL 



fusion processing was presented by [8] to enhance inference efficiency and allow computation at 

various levels of abstraction suitable for hierarchical military organizations. In the field of process 

safety, Naderpour and Lu developed an expert system-based situation assessment method for a 

chemical plant [36] and extended it to incorporate the ability of neural networks to project the state of 

the environment in the near future [37]; however, because of the lack of appropriate data for abnormal 

situations, it could not be implemented in the real world.  

3.2. Situation Awareness Support Systems 

The three-level model of SA has been used in a number of studies as the justification for 

structuring a computer-supported SA process in different domains. Two SASSs for maritime security 

have been developed. In the first, a system was developed to improve maritime threat detection 

capability by combining sensor-based information, context information, and intelligence from various 

sources based on domain ontologies. The system has the ability to recognize any deviance from 

normal behavior [47]. In the second, a model-driven situation analysis decision support system was 

developed based on abstract state machine modeling and CoreASM tool support for the purpose of 

infrastructure protection and emergency response [12]. In military services, there are several SA 

systems, such as [13] and [45], that are able to collect, filter and present different sources of data, and 

also support some form of low-level data fusion and analysis. However, these systems are not able to 

provide a deep, semantic modeling of the domain and are consequently unable to generate 

conclusions. Their users therefore have to integrate information by themselves to assess and predict a 

future situations, so a system architecture has been developed in [1] that focuses on using formal logic 

and an automated theorem to build a SA system in a more useful way. A SA system for force 

protection that combines humans and neural networks was proposed in [2] and includes a calculation 

engine for operation in three learning modes: supervised for initial training and known updating, 

reinforcement for online operational improvement, and unsupervised in the absence of all external 

signaling. The system can switch between the three learning types using an architecture based on 

adaptive resonance theory. In the aviation domain, a SA system called the tactile situation awareness 

system (TSAS) has been developed in [26] to improve the SA of pilots in simulated rotorcraft under 

high-load working conditions. Rather than presenting visual or aural information for the efficient 



delivery of SA, this system relies on a wearable suit equipped with a tactile device that provides an 

intuitive human computer interface with three-dimensional space [26]. 

Although the majority of SA systems modeling studies are related to command and control fields, 

they are not limited to them. In business intelligence systems, for instance, a cognitive decision 

support system called FACETS was developed and evaluated based on a situation retrieval model 

[39]. The goal of FACETS is to assist managers in ill-structured decision situations to develop and 

enrich their SA for decision-making. The system allows managers to describe their SA in the form of 

English; it parses a manager‟s SA and constructs data warehouse queries that allow the retrieved 

situation information to be presented according to the navigation knowledge extracted from the 

manager‟s experience.  

Although the application of SASSs is not limited to the above domains, its application in safety-

critical environments is very rare. Most prior system safety studies in these environments focus on the 

deviation of the process from an acceptable range of operation. Therefore, in the development of 

operator DSSs, the use of quantitative knowledge and hardware failures has been relied on 

significantly. Most of these research studies focus on the identification of operation faults [42] or the 

prediction of process variables [21] that will violate an emergency limit in the future; however, some 

research shows that when faults occur, human operators have to rely on their experience under 

working pressure to understand what is going on and to contribute a solution. Designing and 

integrating appropriate approaches to develop DSSs for complex domains is therefore highly 

recommended [27].  

4. Methodology 

The methodology of this study is planned according to the practice of design research [38], which 

has been proposed and applied in information systems, and is based on an SA-oriented design process 

[11], which has been established to guide the development of systems that support SA. The SA-

oriented design process (Figure 3) incorporates SA considerations, including the determination of SA 

requirements, design principles for SA enhancement, and the measurement of SA in design evaluation. 

This methodology consists of the following steps: 

Step 1: Determine SA requirements: To identify the aspects of a situation that are important for an 

operator‟s SA, Goal-Directed Task Analysis (GDTA) methodology, which is a form of 



cognitive task analysis, is used. GDTA focuses on determining the operator‟s data and 

information needs (Level 1), combining the information to provide understanding (Level 2) and 

projecting future events (Level 3) [20]. In this analysis, the major goals and sub-goals of a 

particular job are initially identified, after which important decisions that need to be made are 

determined. The SA requirements for making these decisions and achieving each sub-goal are 

then identified. GDTA is not task-based analysis because in many environments the goals, not 

the tasks, form the basis for decision-making [11].  

Step 2: Develop the SASS model: Situation awareness as a product of situation assessment provides 

input to the decision-making process, and situation assessment is therefore an important part of 

the SASS model. The SASS also requires a knowledge base that includes situation models 

which, in this paper, consist of DBN-based situation models. In addition, the related data of a 

situation (e.g. sensors) must be collected from the operation area, so the SASS needs a 

component that provides updated values of observable variables. If the risk level of a situation 

is not acceptable (i.e. the situation is abnormal), appropriate actions will be suggested to the 

operator through a recovery component. Ultimately, following appropriate decision-making by 

the operator, the abnormal situation will be rectified and the system will be updated in line with 

the new data collected from the environment. Useful information related to situations, objects, 

and observable variables will be presented in a human-computer interface, and all these issues 

will be taken into consideration in the development of the SASS model. 

Step 3: Design and implement the proposed SASS: The SASS prototype system will be designed and 

implemented in this step according to the proposed model and SA-oriented design principles. 

The latter include several guidelines to address automation, complexity, and information 

uncertainty, and also incorporate general guidelines for the design of alarm systems and SA 

support in team operations [11]. This step includes the following sub-steps to create the 

prototype [38]: a) planning, b) analysis, c) design, d) development, e) testing, f) 

implementation, and g) maintenance. 

Step 4: Evaluate the proposed SASS: This step considers the evaluation of the implemented prototype 

according to several criteria. The evaluation results, which might or might not meet 

expectations, will be fed back to the two previous steps to revise and improve the system. SA 



measurement or sensitivity analysis are the criteria for evaluation of the SASS. DBNs are 

utilized to develop the situation models, and sensitivity analysis can therefore be used for the 

partial evaluation of SASS performance. The full validation of the proposed system will be 

carried out by evaluation of the prototype based on an appropriate SA measurement method. 

Step 5: Demonstrate the performance of the proposed SASS through a case study: The literature 

provides many examples of incidents and accidents that could have been avoided if operators 

had recognized the situation in time. Therefore, an investigated case related to SA is chosen to 

demonstrate the performance of the SASS.  

5. An Intelligent Situation Awareness Support System 

Maintaining a complex and dynamic system in safe conditions, i.e. keeping the risks below 

accepted criteria, is a critical challenge because situations change dynamically and every decision has 

a significant social, economic and environmental impact. According to the methodology of this study, 

a situation awareness support system (SASS) is developed. The requirements, the proposed model, and 

the components of SASS are presented in the following sections. 

5.1. The SASS Requirements 

The SASS requirements are determined by GDTA. According to ALARP, it is necessary for 

operators of a potentially hazardous facility to demonstrate that: a) the facility is fit for its intended 

purpose, b) the risks associated with its functioning are sufficiently low, and c) sufficient safety and 

emergency measures have been instituted (or are proposed) [34]. The main goal of the system is to 

eliminate the risk or reduce it to an acceptable level. The other elements of GDTA are as shown in 

Table 1. The main goal is supported by two sub-goals: risk determination and risk reduction. The 

major decisions that need to be made in association with each sub-goal are identified, and the SA 

requirements for making these decisions and fulfilling each sub-goal are determined. 

 

Figure 3: SA-oriented design process [11]. 
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Table 1: Safety goals, decisions and SA requirement 

Goal: Eliminate or reduce the risks to a level that is as low as reasonably practicable 

Subgoal 1: Determine the risks 

Decision 1-1: Hazardous situation identification 

 L1: Objects and relationships which contribute to creating a hazardous situation  

 L1: Situations and relationships which contribute to creating a hazardous situation 

 L2: Hazardous situations that threaten the system 

Decision 1-2: Probability determination 

 L1: Objects which are relevant to contributors to the hazardous situation  

 L1: Observable variables which are relevant to the hazardous situation 

 L2: Prior probability of the hazardous situation 

 L3: Posterior probability of the hazardous situation 

Decision 1-3: Severity determination 

 L2: Possible consequences of the hazardous situation 

 L3: Degree of loss 

 
Decision 1-4: Risk level estimation  

 L2: Probability of the hazardous situation (Decision 1-2) 

 L2: Severity of the hazardous situation (Decision 1-3) 

 L3: Current level of risk  

Subgoal 2: Reduce the risks 

Decision 2-1: Choosing practical options  

 L2: Available reduction and containment options 

Decision 2-2: Options impact prediction 

 L2: The severity of the hazardous situation 

 L3: Projecting the new probability of the hazardous situation  

 L3: New level of risk 

 L3= Projection of SA; L2= Comprehension of SA; L1= Perception of SA. 
 

5.2. The Proposed SASS Model 

Based on the SA requirements, the proposed SASS considers how situations and objects interact 

with one another based on BN models, how to update the states of a situation based on the SCADA
1
 

monitoring system, and how the risk of situations can be reduced to an acceptable level. The system‟s 

proposed model is shown in Figure 4. In the following sections, the components will be explained in 

detail and the means of addressing the identified decisions to achieve the sub-goals, and subsequently 

the main goal based on identified requirements, will be clarified. 
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Figure 4: The proposed model of the situation awareness support system. 



5.2.1. The Situation Data Collection Component 

The situation data collection component provides the current state of the observable variables, 

which are related to BN models according to the online condition and monitoring system. The 

component stores the data in a database, conducts a discretization process for continuous variables and 

transfers the result to the next component. The observable variables will be used as evidence in the 

situation assessment component. According to the condition and process monitoring, each observable 

variable value may be obtained from field sensors based on SCADA systems. As the observable 

variables extracted from sensors are continuous, a discretization process is required to use them in 

BNs. In general, mapping a continuous variable to a discrete variable can be achieved with a crisp set 

or a fuzzy set. 

Consider a variable such as outside temperature defined on the frame [-10,39] °C, which is 

inherently continuous but has to be represented as discrete when included in a discrete BN. It can be 

discrete to a scheme of three states: Cold, Normal, and Warm corresponding to the intervals [-10,10) 

°C, [10,25) °C, and [25,39] °C, respectively. A thermometer reading of 9.9 °C would fall under the 

discrete state „cold‟, whereas 10 °C would be labeled as „normal‟. As can be seen, determining a crisp 

boundary between these states is not meaningful, hence the concept of fuzzy sets provides a more 

structured and smoother way. Figure 5 shows a fuzzy partition, but non-symmetric fuzzy sets or sets 

with a different shape can be used.  

Figure 5: A fuzzy partition. 

If x is a value of a variable X occurring on a domain partitioned as in Figure 5, then point semantic 

unification is applied to evaluate the probabilities P(q1|x),…,P(q5|x) that constitute the distribution 

corresponding to the value x on the sets q1, q2,…,q5. 

Definition 5 (Fuzzy partition): A fuzzy partition on the universe   is a set of fuzzy sets *          + 

such that: 

     ∑    ( )   
 
                                                                        (6)  

   
  

    

  

            

  
  



where    ( ) is the membership function of    , i.e.        ,   -  

Definition 6 (Fuzzy state): Let *          + be a fuzzy partition on the universe  , then every fuzzy 

set   ,         is defined as a fuzzy state such that: 

   *   ( )    +                                                                         (7) 

For a particular BN, there are two types of evidence for every node: hard and soft. If a node is 

observed as one of its states, it is called hard evidence, and if the evidence is observed with 

uncertainty, it is called soft evidence. If a node does not have any parents, soft evidence is equivalent 

to modifying its prior probability; otherwise, soft evidence on a variable Xi is represented by a 

conditional probability vector P(Xi=x|Hi) for i=1,2,...,n, where Hi denotes the hypothesis that the true 

state is the i-th state. To simplify the inference process for a continuous variable Xi, consider the fuzzy 

partition *          +. Define Hj (j=1,2,…,m) as hypotheses that Xi is in fuzzy state qj. The results of 

membership functions    ( )  j=1,2,…,m form the soft evidence vector: 

  *   ( )    ( )      ( )+                                                            (8) 

The    ( ) is considered to be approximately equivalent to the condition probability  (       ). 

5.2.2. The Situation Assessment Component 

This section describes how situations are defined and how they can be modeled by BNs. A DBN-

based situational network is developed to model the situations of interest in a network, while every 

situation is modeled by a simple BN based on constitutive objects. Every environment may have one 

or more situational networks. In addition to generating the assessment result, the component enjoys a 

fuzzy risk estimation method. 

5.2.2.1. Situations of Interest 

Two types of hazardous situation are considered: 1) first level situations: the objects of a situation 

and their interactions may create a hazard; 2) higher level situations: relationships between situations 

may produce a hazard. To find the situations of interest, hazard identification methods and expert 

knowledge should be used. In many areas, hazardous situations have been found during the design and 

implementation phases, and various models have been developed to identify them. For example, 

HAZOP is a powerful method that has been well described in the literature; fault tree, event tree, and 

bow-tie can be adopted as the knowledge acquisition techniques [36]. The results form a model-base 



which provides the requirements for making the first decision, i.e. hazardous situation identification 

(Decision 1-1 in Table 1).  

5.2.2.2. DBN-Based Situational Network 

A situation is a collection of physical or conceptual objects, or both, that have relationships with 

one another and the environment. Suppose the configuration space   is defined by all possible 

physical and conceptual objects. Mathematically, a situation at time t can be modeled using a subset  ̃ 

of the configuration space as a statement, which is either hazardous or safe: 

   {
                       (  )               

                              (  )               
                                                       (9) 

where the  (  ) is the current risk level of the situation and is defined as: 

 (  )   (  )   (  )                                                                   (10) 

where  (  ) is the probability of the situation at a time t and depends on the objects of the subset 

space  ̃: 

 (  )   (             )                  ̃                                      (11) 

and  (  ) is the severity of the situation. As a result of this modeling, the existence of a situation is 

inferred on the basis of information in the world, i.e. the observable variables and objects of 

configuration space.  

The first level situation can be illustrated by a BN, based on its objects. The BN usually begins 

with root nodes that include the basic objects, which are followed by intermediate nodes, then a pivot 

node and leaf nodes. The pivot node is the focal object that delegates the situation, and relations 

between the root nodes and the pivot node define the relationships between the objects. The leaf nodes 

are safety barriers that are physical objects of the situation and will connect to each other if there is a 

relation between their performances. Also, one of the leaf nodes may be a consequence node that has 

multiple states, and highlights potential accidents in this situation. Figure 6(a) shows a situation A in 

which node A is the focal object to which all other nodes relate. It may be that a number of situations 

can only be inferred by observing the operational life of a system over a period of time. Although all 

situations are characterized by information collected over a time-period, they only exist at a specific 

point in time, and their existence in the next time-point has to be verified again.  



Higher level situations are inferred from other situations. Several higher level situations can exist in 

parallel, or the existence of one situation can preclude the existence of another situation. Figure 6(b) 

shows an example of a network of situations. As can be seen, there are four situations of interest, 

namely A, B, C and D, where A and B belong to the first level situations category. They can be 

inferred directly from objects O1, O2 and O3, while situations C and D are higher level situations 

whose existence is dependent on the existence of lower level situations. The temporal dependencies 

are illustrated by dashed lines. 

The probability of the existence of the first level situation is inferred directly from the values of the 

configuration space, and the probability of a higher level situation is calculated based on the existence 

probability of other situations. This also includes temporal dependencies, i.e. where the existence 

probability of a future inferred situation is supported by the earlier existence of the situation itself. The 

complete modeling of the dependencies results in a network of situations. 

The states of the system at time t depend only on the states at the previous time slice (t-1) and the 

current time instance. Furthermore, the situational network is a probability distribution function on the 

sequence of T variables X={x1,x2,…,xT} and T observables Y={y1,y2,…,yT} that satisfies the 

requirements for DBNs with the following factorization, where the state xt depends only on state xt-1: 

 (   )  ∏ (       ) 

 

   

∏ (     ) 

 

   

 (  )                                 (  ) 

The DBN parameters include the state transition pdf  (       ), the observation pdf  (     ) and pdf 

 (  ) using historical data, and prior knowledge or CPTs according to an expert‟s judgment should be 

defined. 
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Figure 6: A simple BN and a dynamic BN. 

 



 

5.2.2.3. The Risk Estimation Method 

While the DBN-based situational network provides the prior and posterior probabilities of 

situations and their objects, the situation assessment should generate an assessment level of risk for 

every situation and show whether or not the current risk level is acceptable. Well-trained operators are 

usually able to form rules for every situation to assess risk, and those rules are an important part of 

their mental model. For instance, if an operator has the rule, „when the probability of the situation of 

accumulated vapor in the production unit is likely, and this situation has a catastrophic severity, 

therefore the risk level of this situation is not acceptable‟, this rule helps the operator to understand 

that „when the risk level of the situation of accumulated vapor increases, the occurrence of an 

explosion is possible‟. It is assumed that the operator‟s mental model can be tailored using the rules 

for the hazardous situations of the environment. The results of this assessment are necessary for the 

subsequent component, i.e. situation recovery, in which new actions will be conducted to reduce 

situational risk to a level as low as reasonably practicable. 

Situational risk estimation is highly subjective and is related to inexact and vague information, so 

the application of fuzzy logic is appropriate. Fuzzy logic, which mathematically emulates human 

reasoning, provides an intuitive way of designing function blocks for intelligent systems. Fuzzy logic 

allows an operator to express his/her knowledge in the form of related imprecise inputs and outputs in 

terms of linguistic variables, which simplifies knowledge acquisition and representation, and the 

knowledge obtained is easy to understand and modify. Therefore, to estimate the situational risk level, 

a fuzzy logic system (FLS) is utilized in the following steps:  

 Estimation of the situation probability  

 Estimation of the situation severity  

 Estimation of the situation risk 

A. The Situation Probability Estimation 

The DBN-based situational network provides the prior and posterior probabilities (Decision 1-2 in 

Table 1). The quantitative analysis can be achieved by two methods: the forward method (or predictive 

analysis) and the backward method (or diagnostic analysis). In the forward method, the probability of 

occurrence of any situation in the situational network is calculated on the basis of the prior 



probabilities of the objects and the conditional dependence of each situation. The backward method 

computes the posterior probability distribution of any situation and object, given the observation of a 

set of evidence. It can also be conducted to find the most probable explanation (MPE) of the states of 

the objects leading to hazardous situations or specific consequences. 

B. The Situation Severity Estimation 

The consequence states of a hazardous situation are usually determined by consequence analysis, 

which concerns what may follow the occurrence of a hazardous situation. Such an occurrence may 

lead to a wide range of consequences, some of which will probably be undesirable events. To project 

the degree of loss, the adverse outcomes associated with accidents identified through consequence 

analysis are investigated. Consequences can essentially be grouped into three categories; human loss, 

asset loss, and environmental loss.  

Human loss is measured in „fatalities‟, „injuries with disabilities‟, „major injuries‟, and „minor 

injuries‟. These measurements help experts to aggregate various degrees of harm to a given group of 

people into an equivalent fatality figure. The convention ratio might be 1: 0.5: 0.1: 0.005 to 

respectively aggregate fatality, injury with disability, serious injury and minor injury for the estimation 

of human loss in equivalent fatalities. The degree of loss to enterprises can be estimated by 

considering several potential events such as damage to infrastructure and equipment, loss of materials 

and products, delay in services, loss of customers and goodwill, and possible legal fines. To generate 

an estimate for asset loss, all the potentials for a specific circumstance predicted by consequence 

analysis are converted to money. Environmental loss mainly focuses on the release and dispersion of 

harmful substances in the environment, and these harmful substances typically consist of any 

combination of oils, liquefied gases, flammable substances, reactive or radio-active materials, and bio-

toxins. As the dispersion of these substances into the atmosphere may contaminate the water table, 

land, or rivers over time, both the immediate effects and potential future damage must be investigated. 

The cost of clean-up operations and emergency services, claims by affected parties, and fines by 

government are considered in estimating environmental loss [16].  

To provide a coherent view of the totality of loss associated with a hazardous situation, all 

categories must be converted to a common currency. Although asset and environmental losses are 

generally expressed in monetary terms, the human loss forecast in the form of equivalent fatalities is 



converted to an equivalent monetary value by employing the concept of Value of Preventing a Fatality 

[16].  

The above loss analysis is usually conducted through a systemic investigation process by a group 

of experts who are familiar with loss estimation and prevention. In addition, the consequence of a 

hazardous situation is considered to remain constant throughout the lifetime of the system. Table 2 

shows the proposed severity matrix of this study, which includes an estimated dollar value of damage 

for each consequence category (Decision 1-3 in Table 1).  

Table 2: Consequence severity matrix. 

Severity class Monetary Value Human Loss Asset Loss Environmental Loss 

Negligible <10k One minor injury 
Minor repairs that can be done 

immediately by own crew 
Around the area, easy 

recovery 

Minor 10-100k 
One or two minor 

injuries 

Repairs that take several days to 

carry out 

Within the plant, short term 

remediation effort 

Medium 100k-1million Multiple major injuries 

Damage that takes months to 

repair and causes serious 

consequences 

Minor offsite impact, 

remediation cost will be less 

than 1 million 

Major 1-10 million 
One fatality or multiple 
injuries with disabilities 

Very large material damage 

Community advisory issued, 

remediation cost remains 

below 10 million 

Catastrophic >10 million Multiple fatalities 
Significant parts of the system 

destroyed 

Community evacuation for 

longer period, remediation 

cost in excess of 10 million 

C. The Situation Risk Estimation 

To estimate the risk level of every situation, an FLS is used. The selection of a membership 

function for variables essentially depends on the variable characteristics, available information and 

expert knowledge. The shapes of the membership functions are defined as a combination of 

trapezoidal and triangular numbers to simplify the operation and increase the sensitivity in a number 

of bounds. The α level cuts “1” and “0” are used to describe the fuzzy sets for each variable. Tables 3-

5 present the fuzzification of variables and Figure 7 illustrates the proposed fuzzy sets. The logic 

relations between variables, including the 25 rules (e.g. IF probability is E AND severity is MA THEN 

risk is NA) are shown in Table 6. To generate the output, Mamdani‟s fuzzy inference method 

described in Table 7 is used to implicate each single rule and aggregate the outcome from all rules into 

a single output fuzzy set. In the defuzzification process, the output fuzzy set of risk is converted into a 

crisp value, which is used for the risk evaluation category (Decision 1-4 in Table 1). 

Table 3: Fuzzification of probability. 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

VL Very likely 1e-007, 1 3e-007 
L Likely 3e-007 5e-007, 1e-007 

E Even 5e-007 7e-007, 3e-007 

U Unlikely 7e-007 9e-007, 5e-007 
VU Very Unlikely 1e-006, 9e-007  7e-007 

Universe of discourse: (10-6-100)   
 



Table 4: Fuzzification of severity. 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

N Negligible 0, 6.25E+05 2.5E+06 
MI Minor 2.5E+06 6.25E+05, 5E+06 

M Medium 5E+06 2.5E+06, 7.5E+06 

MA Major 7.5E+06 5E+06, 9.375E+06 
C Catastrophic 9.375E+06, 1E+07 7.5E+06 

Universe of discourse: (0-107)   

 

Table 5: Fuzzification of risk. 

Set Linguistic term 
α level cuts  

1-level cut 0-level cut 

A Acceptable 1 2 

TA Tolerable acceptable 2 1, 3 
TNA Tolerable not acceptable 3 2, 3.85 

NA Not acceptable 3.85, 4 3 

Universe of discourse: (1-4)   

 

 

Table 6: Risk matrix. 

 Severity 

N MI M MA C 

P
ro

b
a

b
il

it
y
 VL TNA TNA NA NA NA 

L TA TNA TNA NA NA 

E A TA TNA NA NA 

U A A TA TNA NA 

VU A A TA TNA TNA 

 

Table 7: Characteristics of the Mamdani model [32]. 

Operation Operator Formula 

Union (OR) MAX   ( )     (  ( )   ( ))    ( )    ( ) 
Intersection (AND) MIN   ( )     (  ( )   ( ))    ( )    ( ) 
Implication  MIN 

   (   (  ( )   ( ))) Aggregation MAX 

Defuzzification CENTROID (center of gravity)        
∫    ( )   

∫  ( )   
 

  ( )   value of the resultant membership function.   ( ) = value of the membership function where the input belongs to the fuzzy 

set A. z = abscissa value, (  ( ) is the ordinate). 

 

5.2.3. The Situation Recovery Component 

If the estimated risk of the situation is unacceptable, it is necessary to recover the situation. 

Identifying the risk-reducing measures therefore contributes to decisions about risk control, mitigation, 

(a) Probability (b) Severity (c) Risk 

Figure 7: Membership functions of probability, severity and risk variables. 

 



transfer, elimination, or an appropriate combination thereof. However, the DBN does not provide the 

risk reduction measures; it helps to simulate the impact of risk recovery decisions on a situation. A list 

of available reduction and containment options can be presented as decision rules (i.e. IF Antecedent; 

THEN Consequent) where „antecedent‟ is a situation, while „consequent‟ is a suggested action to 

remove or eliminate the risk and recover the situation (Decision 2-1 in Table 1). Based on the 

operator‟s response to choosing practical options, the situation assessment component has the ability 

to simulate the situation and estimate the new risk level (Decision 2-2 in Table 1). The aim is to 

eliminate or reduce the risk level of situations to an acceptable level.  

5.2.4. The Human-Computer Interface 

A graphical user interface (GUI) for the proposed system is developed based on SA-oriented design 

principles and using SMILE (Structural Modeling, Inference, and Learning Engine), which is a library 

of C++ classes for implementing BNs in intelligent systems [29]. The proposed system does not 

control the manner of actions and maintains the operator‟s involvement in the decision-making 

process. The development of human-computer interactions indicates that, with insufficient automation, 

operators will have an excessive workload, whereas too much automation may disconnect operators 

from the system and alienate them from the production process [2]. Therefore, keeping operators in 

the loop of decision-making, taking action, and updating the related information are critical issues in 

designing support systems. 

5.3. The Proposed SASS Evaluation 

Evaluation is an important aspect of every methodology because it provides a reasonable amount of 

confidence in the results of the model. The SASS is based on DBNs, therefore the evaluation can be 

conducted in two ways: by SA measurement, or by sensitivity analysis. The SA measurement can be 

used for full validation of the human-computer interface and the sensitivity analysis is appropriate for 

the partial evaluation of BN models. The validation of the proposed system in this paper is 

demonstrated by sensitivity analysis through the case study, and a full evaluation will be conducted in 

a future study based on the SA measurement. 

5.3.1. Situation Awareness Measurement 



The enhancement of SA is a major goal in the design and development of human-computer 

interfaces, training programs, and automation concepts in a variety of systems. To evaluate the degree 

to which new technologies and design concepts improve an operator‟s SA, it is necessary to analyze 

these concepts systematically based on a measure of SA that can determine which ideas have merit 

and which may have negative effects [9]. A recent review identified several different SA measurement 

approaches, categorized into the following types: 1) Self-rating techniques, 2) Freeze probe 

techniques, 3) Observer rating techniques, 4) Real-time probe techniques, 5) Process indices, and 6) 

Performance measures. 

The literature shows that the SAGAT
1
, which is a freeze probe technique, and the SART

2
, which is 

a self-rating approach, are the most common SA measurement techniques to be applied during 

individual and team SA assessments. However, many researchers argue that further investigation to 

develop the measurement of SA in complex and dynamic systems is required [14, 43].  

5.3.2. Sensitivity Analysis 

To develop the proposed system, this study relies on DBNs, permitting the investigation of a partial 

validation by sensitivity analysis, according to the following three axioms [19]: 

1) A slight decrease/increase in the prior probabilities of each parent node should result in the 

effect of a relative decrease/increase of the posterior probabilities of the child node. 

2) Given the variation of subjective probability distributions of each parent node, the magnitude 

of influence of the parent node on the child node values should remain consistent. 

3) The magnitude of the total influence of the combination of probability variations from x 

attributes (evidence) on the values should be always greater than the probability variations 

from the set of x-y (   ) attributes (sub-evidence). 

To validate the proposed DBNs, the parameters used need to be closely monitored for a long period 

of time. Therefore the above axioms are useful for partial validation. 

6. A Case Study  

To demonstrate and test the performance of the SASS, three case studies were used: a tank 

equipped with steam coils at a chemical plant [5], an ink vehicle insulated mix tank at a paint 

                                                           
1
 Situation Awareness Global Assessment Technique 

2
 Situation Awareness Rating Technique 



manufacturing company [6], and a residue treater at a methomyl production unit [7]. In this paper, the 

first case study is chosen because it is easier to understand than the other two; it also adds a sense of 

urgency or reality to the proposed system, and shows how the system works. In addition, it provides a 

real application of the proposed system and helps to validate its performance. 

6.1. The Case Description 

The case concerns the ignition of a vapor cloud in a 2,200-gallon open-top tank used for mixing a 

flammable liquid in the manufacture of a product called “Super Clean and Tilt”, a proprietary mixture 

that is applied to cured concrete surfaces to prevent bonding with wet concrete. According to the US 

Chemical Safety Board (CSB), an operator who was mixing and heating a flammable mixture of 

heptane and mineral spirits in the tank failed to maintain accurate SA and the vapor overflowed from 

the tank, resulting in the ignition of the vapor cloud. One person was killed and two employees were 

injured, causing significant business interruption [5]. 

The tank in this case is equipped with steam coils (Figure 8) that supply the heat required for the 

mixing process, a temperature controller that includes a temperature sensor and a pneumatic control 

unit, and steam valves, which are operated on the basis of the temperature of the mixture. Safety 

systems include a sprinkler system, an ignition barrier and an alarm system. The environment has local 

and area heating, and exhaust ventilation systems that are assumed to have sufficient capacity to 

collect a huge volume of vapor. The sprinkler system and fire alarm system have been designed to 

reduce damage if a fire occurs or vapor accumulates. An operator checks the temperature using an 

infrared thermometer, monitors the environment and conducts appropriate actions when necessary.  

Steam Out 

Steam In 

Temperature Controller 

Control Valve 

Steam Coils 

Vent Duct 

Figure 8: Mixing tank environment [5]. 



6.2. Situations of Interest 

There are several possible hazardous situations in the environment that threaten the system. As the 

report shows, these hazardous situations are as follows: 

 S
AV

= Accumulated vapor in the production building 

 S
HT

= High temperature inside the tank 

 S
IV

= Inadequate building ventilation 

The first situation is not directly inferrable from the objects, i.e. it is a “higher level situation” and 

has to be defined by the dependencies on first level situations. Table 8 shows the safety barriers and 

consequence node affected by S
AV

. The second and third situations can be inferred from their 

contributor objects and observable variables, i.e. they are “first level situations”, and to assess them, a 

number of physical and conceptual objects are determined, as shown in Tables 9 and 10. The failure 

probabilities are determined based on data recorded by the Offshore Reliability Data Handbook [40]. 

Table 8: SAV objects and symbols. 

Objects Symbol Failure Probability 

Ignition Barrier I 0.1000 

Alarm System A 0.0013, 0.2250 

Sprinkler System P 0.04000 

Consequences C NA 

Note: the failure probability of the alarm system is affected by the ignition barrier or accumulated vapor. 

 

Table 9: SHT objects and symbols. 

Objects Symbol Failure Probability 

Operator O 0.0200 

Infrared Thermometer T 0.0468 
Sensor S 0.0400 

Pneumatic Unit PU 0.2015 

Temperature Measurement System TMS 0.0658 (OR gate) 
Manual Steam Valve MSV 0.0243 

Automatic Steam Valve ASV 0.0276 

Temperature Control System TCS 0.2334 (OR gate) 
Manual Temperature Control MTC 0.0885 (OR gate) 

Automatic Temperature Control ATC 0.2549 (OR gate) 

 

Table 10: SIV objects and symbols. 

Objects Symbol Failure Probability 

Belt B 0.0500 
Fan F 0.0100 

Duct Plugging D 0.0010 

 

6.3. The Situation Data Collection Component 

A sensor reports the tank temperature every minute, as noted above. There is also an environment 

temperature sensor that shows the temperature of the production unit. The monitoring system provides 

update information about these observable variables to the situation data collection component, and 



this information is stored in a database and fuzzily prepared as inference evidence for use in the 

situation assessment component. 

The process for making Super Clean and Tilt involves several hours of mixing and heating, with 

the temperature controller being adjusted to maintain the temperature at 73 ºC. The environmental 

temperature in normal operation is about 25 ºC. The value ranges of temperature variables based on 

expert knowledge and considering the limits for the six-sigma quality are divided into two fuzzy 

states, Normal and High, and their membership functions are illustrated in Figure 9 and determined as 

follows: 

 Inside tank temperature (ToI): {Normal, High} 

    ( )( )  {
                                                    
(    )  ⁄                        

                                             (13) 

    ( )( )  {
(    )  ⁄                        
                                                

                                             (14) 

 Temperature of the production building (ToB): {Normal, High} 

    ( )( )  {
                                                    
(    )  ⁄                        

                                              (15) 

    ( )( )  {
(    )  ⁄                        
                                                

                                              (16) 

 

6.4. The Situation Assessment Component 

A situational network for the case study is developed and illustrated in Figure 10. The figure shows 

three situations of interest in which the higher level situation is colored red, the first level situations 

are colored blue, and objects are shown in yellow. The time difference of one time step is set to one 

minute. The temporal arc points to the S
AV

 situation, as it is assumed that the situation is formed after a 

time interval that is longer than one minute. The interpretation is that the vapor accumulates when the 

Figure 9: The membership functions of observable variables. 
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high temperature persists for a few minutes inside the tank and the ventilation system is unable to 

disperse it. 

The prior probability of the higher level situation, i.e. S
AV

, is set to 1 for safe state and 0 for 

hazardous state, and it is assumed that the environment is initially safe. To establish other parameters, 

namely the conditional probabilities of the network, historical data and expert judgment are used. The 

CPTs of S
AV

, S
IV

 and S
HT

 are shown in Tables 11-13, and other CPTs are omitted because they are set 

in a similar way.  

Table 11: CPT of P(SAV| SAV, SHT, SIV). 

SAV SHT SIV SAV=Hazardous SAV=Safe 

Hazardous Hazardous Hazardous 0.95 0.05 

Hazardous Hazardous Safe 0.6 0.4 
Hazardous Safe Hazardous 0.4 0.6 

Hazardous Safe Safe 0.05 0.95 

Safe Hazardous Hazardous 0.95 0.05 
Safe Hazardous Safe 0.05 0.95 

Safe Safe Hazardous 0.05 0.95 

Safe Safe Safe 0.05 0.95 

 

Table 12: CPT of P(SHT| MTC, ATC). 

MTC ATC SHT=Hazardous SHT=Safe 

Failure Failure 1 0 
Failure Success 0 1 

Success Failure 0 1 

Success Success 0 1 

 

Situation Data Collection Component 

SCADA Monitoring System 
ToI 

 
ToB 

DBN-Based Situational Network 

 

Figure 10: The situational network for three situations of interest. 

 



Table 13: CPT of P(SIV| D, F, B). 

D F B SIV=Hazardous SIV=Safe 

Failure Failure Failure 1 0 

Failure Failure Success 1 0 
Failure Success Failure 1 0 

Failure Success Success 1 0 

Success Failure Failure 1 0 
Success Failure Success 1 0 

Success Success Failure 1 0 

Success Success Success 0 1 

6.5. Evaluation of the Proposed System 

On the morning of 14 June 2006, the temperature of the mixing tank and the production unit started 

to increase, with the former deviating from normal value at 9:10 AM and the latter deviating from 

normal value at 9:14 AM. The trend of observable variables for 60 minutes is illustrated in Figure 11 

together with the fuzzy partitioning values of the variables. This information can be interpreted as 

ground truth data to evaluate the proposed system‟s performance. A sensitivity analysis based on the 

conditions of Section 5.3.2 is also presented. 

6.5.1. System Performance 

By assigning the primary probabilities to the situation assessment component one minute after the 

start of the period, i.e. 9:01 AM, the probability of S
AV

 is 0.05 and the probabilities of the consequence 

states are calculated as shown in Table 14. As can be seen, the safe state is the most probable 

consequence of S
AV

. The total loss of S
AV

, i.e. its severity, can be calculated by multiplication of the 

Figure 11: The observable variables and their fuzzy partitioning values. 

 



probabilities and losses of consequences, which is about $2.56E+04. Therefore, the estimated risk 

level is 1.3, which means that the current risk level of S
AV

 is acceptable. It is worth noting that, for 

situations S
HT

 and S
IV

, the accumulated vapor can be considered as their consequence in which the 

degree of loss is about $1E+06. 

Table 14: The consequences of SAV. 

Consequence Symbol Loss ($) Probability 

Explosion C1 5E+06 2.60E-06 
Fire with low death and high property damage  C2 3E+06 0.0020 

Fire with high death and moderate property damage C3 4E+06 3.90E-06 
Fire with low death and moderate property damage C4 2E+06 0.0030 

Vapor cloud with possibility of ignition C5 1E+06 0.0100 

Safe evacuation (near miss) C6 1E+05 0.0349 

Safe state  C7 0 0.9500 

By assigning the fuzzy soft evidence that the situation data collection component provides for the 

situation assessment component, the posterior probabilities of the situations are updated during the 

period, as shown in Figure 12. As can be seen, the S
HT

 situation is hazardous from minutes 16 to 31 

and situation S
IV

 becomes hazardous from minutes 24 to 28, as is expected as a result of the 

observable variables. In parallel, the risk level of S
HT

 is 2.95, i.e. TNA from minutes 16 to 31, and the 

risk level of S
IV

 is TNA during minutes 24 to 28, as shown in Figure 12. It is assumed that the local 

and area ventilation systems have the ability to evacuate the vapor, thus the risk level of S
AV

 is A from 

minutes 17 to 25, immediately before ventilation system malfunction; its risk level rises from minutes 

25 and reaches a peak at 3.1, which means it is NA. 

Figure 12: The posterior probabilities and risk levels of situations. 

 



6.5.2. Sensitivity Analysis  

Sensitivity analysis has been conducted to present a partial validation of the model. Examination of 

the model at time t reveals that, when the failure probability of “sensor” is set to 1 (i.e. Failure), this 

results in a revised failure probability of 1 from 0.23 and 0.25 for TCS and ATC respectively because 

of OR gate definition, and increases the failure probability of S
HT

 from 0.02 to 0.08. Likewise, at time 

t, when the failure probability of “infrared thermometer” is set to 1 (i.e. Failure), the failure probability 

of TMS and MTC is raised to 1 from 0.06 and 0.08, respectively, and the failure probability of S
HT

 is 

increased to 1 from 0.08. The evidence increases the failure probability 0.1 for S
AV

 from 0.05 at time 

t+1 (temporal dependency). Similarly, when at time t the failure probability of “fan” is set to 1 (i.e. 

Failure), this results in a revised failure probability of 1 from 0.06 for S
IV

 because of OR gate 

definition, and failure probability of 0.9 from 0.1 for S
AV

 at time t+1. 

6.6. Situation Recovery Component 

The system is set to trigger an alarm for every situation that has a risk level of more than 2.5 (i.e. 

tolerable not acceptable). At 9:16 AM when the risk level of S
HT

 rose, the system showed that the most 

probable explanation was the failure of the pneumatic unit (PU), but an inspection at 9:18 AM 

determined the valid performance of the temperature controller, i.e. the PU and the sensor (S). This 

evidence (success of PU and S) indicates that the failure of the automatic steam valve (ASV) was the 

most likely factor. Considering the result of the situation assessment, maintenance decisions to recover 

the situation were suggested in the situation recovery component. This demonstrates the system‟s 

ability to support the operator in finding the most probable explanation for an abnormal situation and 

consequently assist in reducing the risk to an acceptable level. Additionally, the proposed system 

presents the factors that contribute to the creation of an accident or a specific consequence. For 

instance, if at 9:26 AM a fire with low death and moderate property damage (C4) is reported, the 

posterior probability of other nodes as a result of this evidence will show that failure of the ASV and 

belt caused the accumulated vapor, and failure of the ignition barrier caused the fire. 

7. Discussion 

This section compares the proposed situation assessment method in this paper and another existing 

BN-based model, and explains the limitations of this study. 



7.1. Comparison with another Situation Assessment Model 

To illustrate the key differences between different types of model, a BN-based situation 

assessment model proposed by Kim and Seong [24] is compared with this study‟s method in this 

section. The differences between the two models can be summarized as follows:  

 The study by Kim and Seong (KS) does not provide a definition for the situation and assumes 

that the situation is equal to the nuclear power plant (NPP) environment in their study. In 

addition, the authors assume that the occurrences of various situations are mutually exclusive. 

Based on these assumptions, they provided very finite states, including four accidents for the 

environment, to avoid a large BN in which the need for essential data increases exponentially 

or proportionally. The situation in our study is clearly defined, and a situation modeling 

process proposed in which the situations might be inclusive. 

 The KS model does not provide a situation model; it assumes that the situation model is the 

operator‟s understanding of the state of the plant. It also assumes that the situation can be 

modeled using the representative states of the plant, meaning that the operator only considers 

those representative states. The KS network therefore only includes indicators and sensors, 

based on which the KS model is unable to determine the cause of abnormal situations, nor can 

it support operators‟ understanding of such situations. In the KS model, therefore, operators 

have to rely on their knowledge to understand situations. In the study presented in this paper, 

the most probable causes of any abnormal situation can be obtained from the situation models 

that help operators to understand the situation. 

 Learning, education, training, and other experiences enable operators to form mental models 

of plant dynamics in their long-term memory. The KS model uses deterministic rules to 

describe operators‟ mental models for the representative states of the environment. The 

authors incorporate the operators‟ mental models into the situation assessment model through 

the CPTs of the BN. In our paper‟s study, CPTs aside, the knowledge is used to encode the 

objects, relationships and observable variables that represent information sources and 

situations.  



 The KS model only provides a set of probabilities for representative states that correspond to 

accidents or transitions, unlike the proposed system which is able to generate risk levels for 

every hazardous situation to show whether a situation is abnormal (i.e. its risk level is 

unacceptable), and to help operators to understand the hierarchy of investigations (i.e. a 

situation with a higher risk has priority over other situations to be investigated). 

 The authors provide no evaluation method for the KS method. The study in this paper suggests 

two evaluation methods for the partial and full validation of the SASS. The partial evaluation 

is conducted by sensitivity analysis to validate the situation models and situational network, 

and SA measurement is suggested for the full evaluation of the SASS. 

7.2. Limitations 

The proposed SASS provides superior support for operators in safety-critical domains; however, 

there are several limitations and other important features related to human operators that should be 

taken into account: 

 Human thinking is so complex that no computer program, however sophisticated, can ever 

replace it. This study makes two assumptions to simulate the situation assessment process 

conducted by human operators. First, it is assumed that operators use Bayesian inference to 

process incoming information. As operators do not perform mathematical calculations while 

performing a situation assessment, the proposed situation assessment model provides only 

approximations of operator behavior in the situation assessment process. The proposed model 

is expected to provide the most logical results and therefore can be considered to be 

optimistic. In the real world, the conclusions of a human operator will tend to be more 

conservative than the results of mathematical calculations based on Bayesian inference [24]. 

Second, this study assumes that the proposed FLS used to generate the assessment result for 

every situation is specially structured to resemble the human thinking process. Although well-

skilled operators who have learned or acquired this knowledge by education and experience 

over a prolonged period of time are able to determine the risk level of situations, unskilled or 

semi-skilled operators need to consult the FLS.  



 Since SASS is a dynamic system, it needs to have the ability to generate warnings when 

awareness is diminished due to uncertainty or lack of data. Operators may be confronted with 

an abnormal situation in which incorrect information is provided by failed sensors, or in which 

information is simply not available. Experienced operators are usually able to correctly 

recognize an abnormal situation, identify the failed sensors, and extract or deduce the correct 

information, but less experienced operators need to be supported by the proposed system to 

achieve SA.  

 To develop the situation models, data are collected from domain experts. As the probability 

cannot be elicited perfectly, some uncertainty associated with the probability distributions will 

be unavoidable; therefore the data problem is also an important issue for the proposed system. 

8. Conclusion and Future Work 

This paper has presented a set of requirements based on GDTA methodology for the development 

of a SA support system to help operators in abnormal situations. A situational network modeling 

process was developed by exploiting the specific capabilities of DBNs, and a situation assessment 

method based on risk indicators proposed. The SASS was developed according to the identified 

requirements, the situation assessment method, and the receipt of online real information from the 

environment. As has been shown, the DBN-based situation assessment component provides a 

framework that is mathematically consistent for dealing with uncertain and incomplete information. Its 

reasoning is carried out using a probabilistic technique that generates consistent answers derived from 

a single multi-dimensional distribution. In addition, the Bayesian theorem facilitates the inclusion and 

updating of prior background knowledge when new information is available from the SCADA 

monitoring system. The proposed system also includes a situation recovery component that helps 

operators to reduce the risk of a situation to an acceptable level. The performance and effectiveness of 

the proposed system has been demonstrated through a real case study and evaluated through sensitivity 

analysis. 

The first direction for future study is to develop a system prototype based on the proposed 

theoretical material, and to conduct an evaluation of the prototype based on SA measurement. In many 

safety-critical systems, the safety of the system is supervised by operators and engineers from a range 



of departments who are members of a team. These team members have a common goal and perform 

specific roles in their interaction with elements in the task environment. The second future direction of 

the research, therefore, is to extend the proposed system to a distributed system that applies a team 

situation awareness concept.   
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