Quality of Service (QoS) in 4G Wireless Networks

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

ARN laboratory, iNext research centre

University of Technology Sydney

by

Fatima Furqan

Supervised by

Professor Doan B. Hoang

2015
DEDICATION

To my Husband, Furqan Naeem and Kids, Ayaan Furqan and Abdul Hadi Furqan

To my Parents, Muhammad Yousaf Shah (late) and Maimoona Yousaf

Thank you for your love and support
ACKNOWLEDGEMENTS

I am very thankful to Allah SWT who is the most merciful and beneficent. I sincerely express my deepest gratitude to my principal supervisor, Professor Doan B. Hoang, for his supervision and continuous encouragement throughout my whole PhD study. His guidance, wisdom, and enthusiasm have made me both more mature as a person and more confident to be a good researcher. He has been outstanding in providing insightful feedback and creating the perfect balance of my research engagement and my casual teaching work. From the beginning of determining the research direction to publishing fruitful research outcome, he always commits to foster my research skills. Without his guidance, I would still be in the marsh of research career. I feel so fortunate to have him as my supervisor for the past four and half years.

I thank Higher Education Commission (HEC) of Pakistan for offering me the Human Resource Development Scholarship (HRD). I thank the University of Technology Sydney for offering me an IRS scholarship. I also thank the iNext research centre for providing valuable resources, including funding for attending conferences. Special thanks go to the School of Computing and Communication at the University of Technology Sydney for offering me the tutorship that has significantly increased my teaching experience in academia. I thank Dr. Ian Collings, Deputy Chief CSIRO, to co-supervise me. I am very thankful to him for his valuable feedback into the thesis and also offering the top up scholarship. Thanks to these funding and support, this enabled me to concentrate on my research work without the burden of living. I also thank Dr. Priyadarsi Nanda for his support in getting the license of LTE module of OPNET.

My special thanks to my department in charge in Fatima Jinnah Women University, Nadeem Fakhar. My thanks also go to the staff members and research students in the ARN lab for their help, suggestions, friendship and encouragement: special thanks to Eryani Tjondrowalujo, Najmeh Kamyabpour, Lingfeng Chen, Noor Faizah Ahmad, and Dang Thanh Dat. My special thanks to my parents-in-law, Khawaja Muhammad Naeem and Saeeda Naeem. I also thank to my siblings and friends, Sehr Saood, Naveed Ahmed, Asma Naveed, Usman Naeem, Noman Naeem, Sehrish Noman, Ali Shah, Fatima Ali, Ali
Chaudhary, Fiza Ali, Ahsan Naeem, Maryam Naeem, Tasneem Memon and Muneera Bano Sahibzada, for their support.

Furthermore, I thank my parents for their upbringing and encouragement to succeed in my study. Then, I express my gratitude and appreciation to my husband for his love and support. His selfless sacrifices and commitment to the family, made it possible for me to finish my PhD studies. Finally, I would like to thank my family, my parents and parents-in-law for their encouragement, and thank all the people who helped me and contributed to this study.
CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

[Signature]

Signature of Student:

Date: 22nd May 2015
THE AUTHOR’S PUBLICATIONS

International Conference Publications and Proceedings

International Journals

ABSTRACT

Quality of Service (QoS) of 4th Generation Broadband Wireless Access (BWA) networks is directly affected by two factors: congestion in the network caused by changes in population density and application demand distribution; and varied attributes of network traffic such as minimum rate and delay requirements.

The current 4G BWA specifications define QoS parameters for each type of traffic, but do not provide QoS mechanisms including Radio Admission Control (RAC), scheduler and congestion prevention mechanism to ensure the QoS to existing and new connections within the network. Significant amount of research is dedicated to provide QoS and control congestion using RAC and scheduler. Current QoS mechanisms are inadequate to deal with network congestions and provide fairness among the traffic flows.

In this thesis, we have proposed a QoS framework and control algorithms for 4G BWA networks, Mobile WiMAX and Long Term Evolution (LTE). The framework includes a new load control mechanism, the Fair Intelligent Congestion Control (4G-FICC) and an intelligent admission control, the Fair Intelligent Admission Control (4G-FIAC), based on the QoS architecture of 4G BWA networks.

4G-FICC avoids and controls congestion at the base station of WiMAX and LTE networks, respectively. It avoids congestion through traffic balancing, while handles congestion when unavoidable, allocates resources fairly and minimizes resource underutilization. It estimates fair share of bandwidth for each type of service based on its current resource utilization, QoS constraints and load at the network. It ensures that the traffic is scheduled in a way that fairness is guaranteed among the traffic flows, without violating the QoS requirements of connections.

We have identified critical parameters of 4G-FICC and discuss the impact of various settings of these parameters on the network performance. Detailed and comprehensive simulations are performed in ns-2 and OPNET. The results show that 4G-FICC is always active in the network, whether the network is overloaded or underutilized. It performs extremely well in allocating resources fairly among different type of services, yet preserving
their QoS requirements in terms of throughput, delay and jitter. Furthermore, 4G-FICC is simple to implement, robust and relatively insensitive to parameter settings.

To ensure end-to-end delay and QoS, we propose a predictive RAC, the Fair Intelligent Admission Control for 4G networks (4G-FIAC). It admits or rejects an incoming connection based on the resource availability and the current load in the network. The key idea is to utilise feedback from the load control module to determine load in the network. The proposed RAC is based on the bandwidth borrowing and degradation of over provisioned connections in order to minimise blocking probability and maximise resource utilisation in the network.

Therefore, 4G-FIAC along with 4G-FICC avoids congestion in the network to guarantee QoS to end-users. Detailed and comprehensive simulations are performed in ns-2 and OPNET to show the efficiency of the proposed RAC scheme. Extensive simulations demonstrate that 4G-FIAC outperforms existing schemes in terms of blocking probability of different service classes and fair resource allocation.

In this thesis, we have performed a comprehensive study of parameters that affect both the capacity and coverage of 4G networks. It serves as a basis for designing effective QoS schemes for dynamic and mixed distribution of services. With thorough investigation of the impact of QoS schemes on the capacity and dimensioning of 4G networks, we have presented a general and efficient approach for the network operators to determine the extent to which current network configurations can effectively manage the dynamic variations in the access and core side of the network.

Different scenarios are presented in the thesis to evaluate the effects of QoS schemes on the capacity of the network. The results are valuable in assisting the network operators to determine the optimum point for re-dimensioning the network to minimise cost and ensure the QoS of connections in terms of throughput and delay.

The research results are not limited to 4G networks in particular, but can be applied to other next generation wireless technologies, to ensure QoS to users in the covered area.
Table of Contents

ACKNOWLEDGEMENTS... I

THE AUTHOR’S PUBLICATIONS... IV

ABSTRACT... VI

LIST OF FIGURES ... XIII

Chapter 1 Introduction ... 1

1.1 Defining Broadband Wireless Access Networks (BWA) and QoS 3

1.2 Motivation and Research Issues... 6

1.3 Research Aims and Objectives ... 8

1.4 Research Contribution ... 10

1.5 Research Model and Methodology ... 11

1.6 Structure of the Thesis .. 16

Chapter 2 Literature Review and Related Work .. 18

2.1 System Level Architecture of LTE and WiMAX .. 18

2.2 LTE Protocol Architecture.. 21

2.2.1 User Plane Protocol layered Architecture ... 21

2.2.2 Control Plane Protocol layered Architecture ... 25

2.2.3 Control Channels Overhead ... 26

2.2.4 Protocol Overhead ... 27

2.3 QoS in LTE Networks .. 28

2.3.1 QoS Parameters of EPS bearers... 28

2.4 Layered Protocol Architecture in WiMAX Networks .. 31

2.4.1 MAC Layer.. 31

2.4.2 Physical Layer ... 32

2.4.3 MAC and Physical layers Overhead .. 34

2.5 QoS in WiMAX Networks... 37
2.6 Current Approaches for QoS Provisioning ... 39
 2.6.1 Load Balancing Schemes .. 39
 2.6.2 RAC Approaches ... 43
 2.6.3 Scheduling Approaches .. 52
 2.6.4 Combined Load Control, RAC and scheduling approaches 52
2.7 Summary .. 54

Chapter 3 Proposed QoS framework and Control Algorithms for 4th Generation Networks 55
3.1 Proposed QoS Framework ... 55
3.2 Fair Intelligent CC for 4G Networks (4G-FICC) ... 57
 3.2.1 Description of FICC ... 57
 3.2.2 Design Goals of FICC for 4G Networks (4G-FICC) .. 58
 3.2.3 Estimation of Expected Rate of Each QoS Class (ERQoC): 60
 3.2.4 Restriction on Expected Rate (ER) of each QoS Class 60
 3.2.5 Queue Control Function (f(Q)) ... 61
 3.2.6 Step-Wise Degradation and Upgradation ... 62
 3.2.7 Fair Resource Allocation among Flows of Different QoS Classes 62
 3.2.8 Fair Resource Allocation among Flows of the Same QoS Class 63
 3.2.9 Parameters of 4G-FICC .. 64
3.3 Fair Intelligent Admission Control for 4G Networks (4G-FIAC) 66
 3.3.1 Load Estimation .. 67
 3.3.2 Bandwidth Borrowing .. 69
3.4 Scheduler .. 74
3.5 Summary .. 76

Chapter 4 WiMAX Fair Intelligent Congestion Control- (WFICC) 77
4.1 Congestion Control Algorithm for WiMAX Networks .. 77
 4.1.1 WiMAX Fair Intelligent Congestion Control (WFICC) 78
4.2 Simulation Setup ... 84
4.3 Simulation Results .. 86
4.3.1 Queue Length (Qlen) ... 87
4.3.2 Fair resource allocation among CoSs and within a CoS ... 88
4.3.3 Average Delay ... 90
4.4 Parameter Settings .. 91
4.4.1 Impact of Target Operating Point (Q0) .. 93
4.4.2 Impact of Over Sell Factor (α) ... 100
4.4.3 Impact of Exponential Average Factor (β) .. 102
4.5 Discussion on Results ... 104
4.6 Summary ... 106

Chapter 5 Fair Intelligent Congestion Control for LTE Networks (LTE-FICC) 107
5.1 Overall System architecture .. 107
5.2 Modified Round Robin (MRR) ... 108
5.3 Congestion Control Algorithm for LTE ... 110
5.3.1 Queue Control function (f (Q)) .. 111
5.3.2 Mean Allowed Class Rate of Each Class of Bearer (MACRCoB) 111
5.3.3 Degradation Procedure ... 113
5.3.4 Upgradation Procedure ... 115
5.4 Simulation Model .. 119
5.4.1 LTE eNodeB Node Model ... 121
5.4.2 LTE eNodeB Process Models .. 122
5.5 Simulation Setup ... 125
5.6 Simulation Results .. 126
5.6.1 Queue Length (Qlen) and Traffic Dropped ... 126
5.6.2 Average Queuing Delay ... 128
5.6.3 Throughput of GBR Bearers .. 129
5.6.4 Fair Resource Allocation ... 130
Chapter 6 Fair Intelligent Admission Control - WiMAX ... 136

5.7 Discussion on Results .. 133
5.8 Summary ... 135

6.1 Fair Intelligent Admission Control for WiMAX Networks 136
6.2 Description of WFIAC ... 141
 6.2.1 UGS connection .. 142
 6.2.2 rtPS connection .. 143
 6.2.3 nrtPS connection ... 144
 6.2.4 BE connection .. 145

6.3 Simulation Setup .. 145
6.4 Simulation Results .. 146
 6.4.1 Blocking Probability (BP) ... 147
 6.4.2 Effect of Load Estimation on QoS .. 149

6.5 Discussion on Results .. 154
6.6 Summary ... 155

Chapter 7 Radio Admission Control for LTE ... 156

7.1 eNodeB Scheduler ... 157
7.2 Description of LTE-FIAC .. 159
 7.2.1 Congestion Control Module (CCM) .. 160
 7.2.2 Extra Resource Reservation Module (ERRM) .. 161
 7.2.3 Connection Arrival Procedure (CAP) ... 164
 7.2.4 Connection Departure Procedure (CDP) ... 174

7.3 Performance Evaluation of LTE-FIAC ... 178
 7.3.1 Simulation Setup .. 180
 7.3.2 Simulation Results ... 180

7.4 Summary ... 193

Chapter 8 Impact of QoS Schemes on Capacity and Coverage Analysis 194
8.1 Factors effecting Coverage and Capacity ... 194

8.2 Coverage Analysis .. 196
 8.2.1 Coverage Analysis of Mobile WiMAX ... 197
 8.2.2 Coverage Analysis of LTE Networks ... 198

8.3 Parameters of Capacity Analysis ... 200
 8.3.1 Parameters for Capacity Analysis of Mobile WiMAX 201
 8.3.2 Parameters for Capacity Analysis of LTE Networks 203

8.4 Analysis of Capacity Estimation .. 206
 8.4.1 Impact of Frequency ... 208
 8.4.2 Impact of Bandwidth ... 208
 8.4.3 Impact of Repetition Factor (R) ... 209
 8.4.4 Impact of Application Distribution (AD) .. 210
 8.4.5 Impact of QoS Schemes .. 212

8.5 Summary ... 216

Chapter 9 Conclusion and Future Work .. 218
 9.1 Summary and Contribution of This Thesis .. 218
 9.2 Future Work .. 221

References .. 224

Appendices .. 232

Appendix A ... 232

Appendix B ... 233
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Proposed QoS Framework</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Methodology</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Steps of Designing and Implementation Phase</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>QoS Framework Evaluation Strategy</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>System architecture of (a) LTE Networks (b) WiMAX Networks</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>User Plane Protocol Stack (UE - P-GW) of LTE Networks</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>OFDMA and SC-FDMA</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Frame Structure Type 1, Reproduced from (3GPP 36.211)</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Control plane protocol Stack (UE – MME) of LTE Networks</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>EPS Bearer Service Architecture (3GPP TS 36.300)</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Frame Structure of Time Division Duplex (TDD) in WiMAX Networks</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>MAC PDU Format</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>WiMAX QoS Architecture</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Proposed QoS Framework</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Calculation of Mean Allowed Class Rate per QoS Class (MACR_QoC)</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Queue Control Function (f(Q))</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Algorithms of Degradation and Upgradation Procedures of 4G-FICC</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Algorithm of Load Estimation of 4G-FIAC</td>
<td>69</td>
</tr>
<tr>
<td>3.6</td>
<td>Algorithm of Degradation Procedure of 4G-FIAC</td>
<td>73</td>
</tr>
<tr>
<td>3.7</td>
<td>Algorithm of Connection Arrival Procedure of 4G-FIAC</td>
<td>74</td>
</tr>
</tbody>
</table>
Figure 5.20 Throughput (kbps) of non-GBR flows without LTE-FICC .. 132

Figure 5.21 Throughput (kbps) of non-GBR flows with LTE-FICC .. 132

Figure 6.1 Algorithm of WFIAC .. 140

Figure 6.2 Degradation Procedure of WFIAC .. 141

Figure 6.3 BP of UGS connections .. 147

Figure 6.4 BP of non-UGS connections ... 148

Figure 6.5 Queue length (Bytes) without load estimation .. 150

Figure 6.6 Average Delay (sec) without load estimation .. 150

Figure 6.7 Average Free Slots without load estimation ... 151

Figure 6.8 Average Throughput (kbps) without load estimation .. 151

Figure 6.9 Queue Length (Bytes) with load estimation ... 152

Figure 6.10 Average Delay (sec) with load estimation ... 152

Figure 6.11 Average Free Slots with load estimation .. 153

Figure 6.12 Average Throughput (kbps) with load estimation ... 154

Figure 7.1 LTE-FIAC at an eNodeB ... 159

Figure 7.2 Procedure of Extra Resource Reservation Module of LTE-FIAC 163

Figure 7.3 Procedure of Load Estimation of LTE-FIAC .. 168

Figure 7.4 Connection Arrival Procedure of LTE-FIAC ... 174

Figure 7.5 Connection Departure Procedure of LTE-FIAC ... 178

Figure 7.6 Blocking Probability for different service types (a). Voice (b). Video (c). Web 181

Figure 7.7 Blocking Probability of connections at the eNodeB with Ref Scheme 182

Figure 7.8 Blocking Probability of connections at the eNodeB with Ref –Deg Scheme 182
Figure 7.9 Blocking Probability of connections at an eNodeB with LTE-FIAC 183

Figure 7.10 Throughput (kbps) of video bearers (a) with Ref-Deg scheme (b) With LTE-FIAC 184

Figure 7.11 (a) Queue length (Bytes) (b) Traffic Dropped (kbps), without Load Estimation...... 186

Figure 7.12 Queue length (Bytes) with Load Estimation ... 186

Figure 7.13 Average Queuing Delay (sec) without Load Estimation 187

Figure 7.14 Average Queuing Delay (sec) with Load Estimation .. 188

Figure 7.15 Average Throughput (kbps) of the network with and without Load Estimation 188

Figure 7.16 Average Throughput (kbps) of Voice and non-Voice traffics with Load Estimation 189

Figure 7.17 Blocking Probability of new calls with and without ERRM and CDP 191

Figure 7.18 QoS Degradation Probability of ongoing calls with and without ERRM and CDP. 192

Figure 8.1 Factors Contributing to Coverage and Capacity of Wireless Networks 196

Figure 8.2 Cell Radius of Rural Area with Various frequencies for WiMAX networks 197

Figure 8.3 Cell Radius of Rural Area with various bandwidths for LTE networks 199

Figure 8.4 Groups of different Modulation and Coding Scheme (MCS) 202

Figure 8.5 Number of Supported Users and Applications Data-Usage (Mbps), with AD-1 LTE Networks ... 207

Figure 8.6 Number of Supported Users and Applications Data-Usage (Mbps), with AD-2 LTE Networks ... 211

Figure 8.7 Number of Supported Users and Applications Data-Usage (Mbps), Increase in Only VoIP Service Demand – (Case-1) ... 213
LIST OF TABLES

Table 1.1. Comparison between Mobile WiMAX and LTE ... 4

Table 2.1. Available Resource Blocks per Subframe for Different channel Bandwidths 24

Table 2.2. Transport Blocks (TBs) per second and Resource Elements (REs) per TB 26

Table 2.3. Characteristics of LTE Standardized QCIs ... 29

Table 4.1. System Parameters ... 86

Table 4.2. Throughput (kbps) of Two-Flows of rtPS with various values of BUR 97

Table 4.3. Average Delay (sec) of rtPS and nrtPS Service Flows with various values of BUR ... 98

Table 4.4. Throughput (Kbps) with Various Levels of α ... 102

Table 5.1. EPS bearer Configuration ... 125

Table 6.1. QoS Parameters of each Class of Service ... 146

Table 7.1. QoS Requirements of Applications .. 180

Table 8.1. Probability of MCS at 2300 MHz and 700 MHz- WiMAX networks 201

Table 8.2. Probability of Each Group of MCS for MAP Transmission 202

Table 8.3. Application Distributions- WiMAX Networks .. 203

Table 8.4. Parameters of Web Traffic ... 204

Table 8.5. Application Distributions- LTE Networks ... 204

Table 8.6. Protocol Overhead with Proportional Fair Scheduler and 20 MHz bandwidth- LTE Networks ... 205

Table 8.7. Number of Supported Users with 700 MHz and 2300 MHz frequencies and Slot Utilization with 700 MHz, with AD-1 – WiMAX Networks ... 207

Table 8.8. Effect of Change in frame Duration- WiMAX Networks ... 209
Table 8.9. Number of Supported Users and the Slot Utilization with 700 MHz frequency, with AD-2 –WiMAX Networks

Table 8.10. Number of Supported Users and Applications Data-Usage (kbps) – LTE-Networks
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Admission Control</td>
</tr>
<tr>
<td>ACR</td>
<td>Allowed Class Rate</td>
</tr>
<tr>
<td>ARP</td>
<td>Allocation and Retention Priority</td>
</tr>
<tr>
<td>ASN-GW</td>
<td>Access Service Network-Gateway</td>
</tr>
<tr>
<td>BE</td>
<td>Best Effort</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BP</td>
<td>Blocking Probability</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>BUR</td>
<td>Buffer Utilization Ratio</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>BWA</td>
<td>Broadband Wireless Access</td>
</tr>
<tr>
<td>CAP</td>
<td>Connection Arrival Procedure</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant bit Rate</td>
</tr>
<tr>
<td>CC</td>
<td>Congestion Control</td>
</tr>
<tr>
<td>CCCH</td>
<td>Common Control Channel</td>
</tr>
<tr>
<td>CCM</td>
<td>Congestion Control Module</td>
</tr>
<tr>
<td>CDP</td>
<td>Connection Departure Procedure</td>
</tr>
<tr>
<td>CoB</td>
<td>Class of Bearers</td>
</tr>
<tr>
<td>CoS</td>
<td>Class of Service</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>CPS</td>
<td>Common Part Sublayer</td>
</tr>
<tr>
<td>CS</td>
<td>Complete Sharing</td>
</tr>
<tr>
<td>CSN</td>
<td>Connectivity Service Network</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>eNodeB</td>
<td>Enhanced NodeB</td>
</tr>
<tr>
<td>EPC</td>
<td>Evolved Packet Core</td>
</tr>
</tbody>
</table>
EPS Evolved Packet System
ER Expected Rate
ERRM Extra Resource Reservation Module
ertPS Extended Real time Polling Service
E-UTRAN Evolved -Universal Terrestrial Radio Access Network
f(Q) Queue control Function
FDD Frequency Division Duplex
FIAC Fair Intelligent Admission Control
FICC Fair Intelligent Congestion Control
FTP File Transfer Protocol
FTTH Fiber To The Home
GBR Guaranteed Bit Rate
GPC Grant Per Connection
GPRS General Packet Radio Service
GPSS Grant per Subscriber Station
GSM Global System for Mobile
HSDPA High Speed Downlink Packet Access
HSPA High Speed Packet Access
HSUPA High Speed Uplink Packet Access
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IMT-Advanced Internal Mobile Telecommunication- Advanced
IP Internet Protocol
ITU International Telecommunication Union
LE Load Estimation
LTE Long Term Evolution
MAC Medium Access Control
MACR Mean Allowed Class Rate
MBR Maximum Bit Rate
MCS Modulation and Coding Scheme
MME Mobility Management Entity
MRTR Minimum Reserved Traffic Rate
MSTR Maximum Sustained Traffic Rate
NBN National Broadband Network
NIST National Institute of Standards and Technology
Non- GBR Non Guaranteed Bit Rate
nrtPS Non Real Time Polling Services
ns-2 Network Simulator-2
OFDMA Orthogonal Frequency Division Multiple Access
OH Overheads
PAPR Peak-to-Average Power Ratio
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDN Packet Data Network
PER Packet Error Rate
PF Proportional Fair
P-GW PDN GW
PRACH Physical Random Access Channel
PRB Physical Resource Block
PUCCH Physical Uplink Control Channel
Q0 Target Operating Point
QCI QoS Class Indicator
Qlen Queue Length
QoC QoS Class
QoS Quality of Service
RAC Radio Admission Control
RB Resource Block
RE Resource Element
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC</td>
<td>Radio Link Control</td>
</tr>
<tr>
<td>ROHC</td>
<td>Robust Header Compression</td>
</tr>
<tr>
<td>RR</td>
<td>Round Robin</td>
</tr>
<tr>
<td>RRM</td>
<td>Radio Resource Management</td>
</tr>
<tr>
<td>rtPS</td>
<td>Real Time Polling Services</td>
</tr>
<tr>
<td>SAE</td>
<td>System Architecture Evolution</td>
</tr>
<tr>
<td>SC-FDMA</td>
<td>Single Carrier-Frequency Division Multiple Access</td>
</tr>
<tr>
<td>SDF</td>
<td>Service Data Flow</td>
</tr>
<tr>
<td>S-GW</td>
<td>Serving Gateway</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal-to-Interference-to- Nose Ratio</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SS</td>
<td>Subscriber Station</td>
</tr>
<tr>
<td>TB</td>
<td>Transport Block</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TFT</td>
<td>Traffic Flow Template</td>
</tr>
<tr>
<td>ToS</td>
<td>Type of Service</td>
</tr>
<tr>
<td>TTI</td>
<td>Transmission Time Interval</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>UGS</td>
<td>Unsolicited Grant Services</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable bit Rate</td>
</tr>
<tr>
<td>VNI</td>
<td>Visual Networking Index</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over IP</td>
</tr>
<tr>
<td>VP</td>
<td>Virtual Partitioning</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WFIAC</td>
<td>WiMAX Fair Intelligent Admission Control</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>WFICC</td>
<td>WiMAX Fair Intelligent Congestion Control</td>
</tr>
<tr>
<td>WiMAX</td>
<td>World Wide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>WRR</td>
<td>Weighted Round Robin</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
</tbody>
</table>