

Interaction Design in Multidimensional

Visualization

Techniques for multidimensional data visualization,

exploration and visual analytics

Tze-Haw Huang

A thesis submitted for the degree of

Doctor of Philosophy in Computing Sciences

at the

University of Technology, Sydney

Faculty of Information Technology

University of Technology, Sydney

Sydney, Australia

2015

i

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

Date June, 2015

Author Tze-Haw Huang

Title Interaction Design in Multidimensional Visualization

Degree Doctor of Philosophy in Computing Sciences

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate:

Date:

ii

Acknowledgement

During the pursuit of higher education, I have taken on a number of roles, these being a

part time Ph.D. candidate, a full time software engineer, a father and a husband. Without

the support of many people it would have been very difficult for me to complete this

dissertation.

First of all, a special thanks to my supervisor Associate Professor Dr. Mao Lin

Huang, who contributed invaluable suggestions and knowledge to my work. I would

never have been able to finish my Ph.D. without his exemplary and much appreciated

guidance.

Secondly, I want to give my utmost thanks to my wife Yi Lau for her understanding,

patience, care and continuous support throughout my PhD candidature. My sincere thanks

is also extended to my parents for their consistent and very welcome encouragement over

the duration of my doctoral studies.

Finally, I want to express my thanks to all of the people that I encountered who

provided direct and indirect support while I worked on my dissertation.

Tze-Haw Huang

Sydney, September, 2014

iii

Table of Contents

Acknowledgement ... ii

Table of Contents ... iii

List of Figures .. vii

List of Algorithms .. xiii

Abstract ... xiv

Chapter 1 Introduction .. 1

1.1 From InfoVis to Visual Analytics ... 1

1.1.1 Problem Statement .. 4

1.2 Challenges and Goals .. 5

1.3 Contributions ... 6

1.4 Outline ... 6

Chapter 2 Background .. 8

2.1 Terminology .. 8

2.1.1 Curse of Dimensionality ... 9

2.2 Multidimensional Visualizations .. 11

2.2.1 Parallel Coordinates .. 11

2.2.2 Scatterplot Matrix .. 17

2.2.3 TableLens .. 18

2.2.4 Space Filling Curve ... 19

2.2.5 Star Coordinates .. 21

2.2.6 TreeMap .. 21

2.3 Interaction in Multidimensional Visualization ... 24

2.3.1 Data Retrieval .. 24

2.3.2 Interaction for View Change ... 26

2.3.3 Interaction for Analytical Reasoning .. 29

2.3.3.1 Clustering .. 29

2.3.3.2 Dimensionality Reduction ... 31

2.4 Discussion ... 34

Chapter 3 A New Framework of Visual Interaction ... 36

iv

3.1 Introduction ... 36

3.2 3-Layers Framework of Visual Interaction ... 38

3.2.1 Tasks by Dynamic Selection ... 39

3.2.2 Tasks by Dynamic Viewing .. 39

3.2.3 Tasks by Dynamic Scoping ... 40

3.2.4 Discussion ... 40

Chapter 4 Hierarchical Virtual Node ... 41

4.1 Interaction or Selection? ... 41

4.2 Revisiting the Data Selection Models ... 42

4.2.1 Rectangular Selection Model .. 43

4.2.2 Value Range Model... 48

4.2.3 Point Selection Model ... 52

4.2.4 Discussion ... 54

4.3 Implementing the HVN ... 57

4.3.1 System Overview .. 57

4.3.2 Data Classification .. 59

4.3.3 Non-parametric Partitioning by Hierarchical Clustering 59

4.3.4 Mapping Virtual Nodes into Visual Space.. 64

4.3.5 Building a Dendrogram ... 68

4.3.6 Constructing Parallel Coordinates ... 70

4.3.6.1 Polyline .. 70

4.3.6.2 Bezier Curve .. 72

4.3.6.3 Bezier Virtual Nodes ... 76

4.3.7 Overview Presentation by Virtual Nodes Density 82

4.4 Performance .. 85

4.5 Discussion ... 86

Chapter 5 Interactive Techniques for Visual Analytics ... 87

5.1 Task by Dynamic Selection .. 87

5.1.1 Interact with Data by the HVN ... 88

5.1.2 Dynamic Brushing via HVN ... 93

5.1.3 Highlighting Detail on Demand .. 97

5.1.4 Discussion ... 98

v

5.2 Task by Dynamic Viewing ... 98

5.2.1 Hierarchical Local Drill-Down ... 98

5.2.2 Hierarchical Global Drill-Down ... 101

5.2.3 Probability Density Estimation ... 101

5.2.4 Variable Overview of Big Dataset .. 106

5.2.4.1 Divide-and-Conquer Model .. 108

5.2.4.2 Overview by Correlation Matrix ... 110

5.2.5 Discussion ... 115

5.3 Task by Dynamic Scoping .. 115

5.3.1 Dimensionality Reduction by RST ... 115

5.3.2 Discussion ... 119

Chapter 6 Technical Evaluations .. 120

6.1 Visual Clutter of Overview ... 120

6.2 Data Selection ... 122

6.2.1 Continuous Neighbour Selection .. 123

6.2.2 Non-Continuous Selection .. 124

6.3 Drill-Down .. 127

Chapter 7 Case Studies .. 132

7.1 Case Study 1 .. 132

7.2 Case Study 2 .. 136

7.3 Case Study 3 .. 139

Chapter 8 Extended Works ... 144

8.1 Flow based Scatterplot Matrix .. 144

8.1.1 Interaction by Point-to-Region .. 145

8.2 Space Filling Multidimensional Visualization .. 148

8.2.1 Properties and Definitions ... 149

8.2.2 SFMDVis .. 150

8.2.3 Color Models ... 153

8.2.3.1 RGB Color Ramping ... 153

8.2.3.2 Single-Hue Ramping ... 154

8.2.4 Interaction Techniques in SFMDVis .. 156

8.2.4.1 Zooming .. 156

vi

8.2.4.2 AND and OR Operator for Data Selection 157

8.3 Discussion ... 159

Chapter 9 Conclusion .. 160

9.1 Summary ... 160

9.2 Final Conclusion ... 161

Appendix A Publications .. 162

vii

List of Figures

Figure 1.1. A botanic visualization of a hard disk, practical or art? 2

Figure 1.2. A simple model of visualization. .. 3

Figure 1.3 Visual analytics is an integration of interdisciplinary theories. 4

Figure 2.1. Illustration of visual and data complexities. ... 10

Figure 2.2. A comparison of the Google search results. ... 12

Figure 2.3. Mapping a data point to a vertical axis. .. 13

Figure 2.4. A parallel coordinates visualization.. 15

Figure 2.5. A parallel coordinates visualization in default variable ordering. 15

Figure 2.6. The perception of linear correlations between parallel coordinates and

scatterplot matrix. ... 17

Figure 2.7. A visualization of the scatterplot matrix. .. 18

Figure 2.8. The TableLens visualization. .. 19

Figure 2.9. Building block of Hilbert curve. ... 20

Figure 2.10. Visualizations of Hilbert space filling curve. ... 21

Figure 2.11. Star coordinates visualization. .. 21

Figure 2.12. Map of the market. .. 22

Figure 2.13. Hierarchical data mapping. ... 23

Figure 2.14. Widget based data selection.. 25

Figure 2.15. An example of scatterplot. .. 26

viii

Figure 2.16 Direct data selection by a 2D rectangle. .. 26

Figure 2.17 An illustration of zooming technique. ... 28

Figure 2.18 Reordering of variables in parallel coordinates. .. 29

Figure 2.19. A K-means clustering. .. 30

Figure 2.20. Hierarchical clustering categories. .. 31

Figure 2.21 A plot of eigenvalues for the Scree test. .. 33

Figure 3.1 A cognitive model of gaining data insight. .. 37

Figure 3.2. An example of dynamic selection operation. ... 39

Figure 3.3. An example of dynamic viewing operation. ... 40

Figure 3.4. An example of dynamic scoping operation. ... 40

Figure 4.1 Rectangular selection model. ... 44

Figure 4.2 Properties of the Liang-Barsky algorithm. .. 45

Figure 4.3. Rectangular selection model within a crowded visualization. 48

Figure 4.4 The value range model with AND and OR operators in parallel

coordinates. .. 50

Figure 4.5 An application of the value range model in 2D. .. 51

Figure 4.6. Point selection with a tolerance. ... 52

Figure 4.7 A web application with a node-link based navigation. The u........................ 53

Figure 4.8. A tile-based parallel coordinates. ... 53

Figure 4.9. An application of the indirect point selection in parallel coordinates. 54

Figure 4.10. Illustration of the hierarchical virtual node design. 55

ix

Figure 4.11. System flowchart of the HVN based parallel coordinates. 58

Figure 4.12 An illustration of the single, complete and average linkages. 62

Figure 4.13. Logical groups partitioned by the hierarchical clustering. 63

Figure 4.14. Virtual node depth in the hierarchy. ... 64

Figure 4.15. Virtual node layout definitions. .. 67

Figure 4.16. Illustration of the virtual node layout. .. 68

Figure 4.17 Connection of virtual nodes. .. 68

Figure 4.18 Types of virtual node. .. 70

Figure 4.19. Severities of the overlapped polylines. ... 71

Figure 4.20. A snapshot of polyline primitive in our system. ... 71

Figure 4.21. Bezier curve with control points. .. 72

Figure 4.22. Evaluation of points in a Bezier curve. ... 73

Figure 4.23. Bezier curve segments. ... 74

Figure 4.24. Bezier curves with various intervals of 75ݐ

Figure 4.25 Geometric drawing of the selected data... 76

Figure 4.26. Bezier virtual nodes style drawing. .. 77

Figure 4.27 Redefinition of a data matrix. .. 78

Figure 4.28 An illustration of geometric mapping of data and virtual node to parallel

coordinates. .. 79

Figure 4.29. A snapshot of the Bezier virtue nodes drawing in our system. 79

Figure 4.30. Comparison of the overplot severity between geometric primitives. 81

x

Figure 4.31. Overview presentation of the HVN in parallel coordinates. 82

Figure 4.32. An illustration of ordinary histograms. ... 83

Figure 4.33. A parallel coordinates with histograms embedded. 84

Figure 4.34. Hardware environment for benchmarking. ... 85

Figure 5.1. Data query in the HVN. .. 89

Figure 5.2. Notations used for query the global data matrix. .. 90

Figure 5.3. Direct data selection via a virtual node... 92

Figure 5.4. Brushing task via the HVN. .. 94

Figure 5.5. Alpha blending for uncovering a major pattern. ... 95

Figure 5.6. Comparison of alpha blending with various alpha values. 96

Figure 5.7. An application of detail on demand. ... 97

Figure 5.8. Hierarchical local-drill-down. ... 99

Figure 5.9. Remapping maximal and minimal values in local drill-down. 100

Figure 5.10. Comparison of different bandwidth selection in KDE. 103

Figure 5.11. Gaussian kernel with various bandwidths. ... 106

Figure 5.12. Visualization of NYTS 2009 dataset in parallel coordinates. 107

Figure 5.13. Circle segments visualization. .. 108

Figure 5.14. An interactive divide-and-conquer model. ... 109

Figure 5.15. Multivariate correlation matrix view of a car dataset. 111

Figure 5.16. Correlation matrix view for the NYTS 2009 dataset. 112

xi

Figure 5.17. Performance of building the multivariate correlation matrix. 113

Figure 5.18. Application of MDS map for variable overview. 115

Figure 5.19. Applications of RST. .. 118

Figure 6.1. Subband entropy measure of visual cutter. ... 121

Figure 6.2. Feature congestion measure of visual clutter. ... 122

Figure 6.3. 2D rectangular data selection in GGobi.. 123

Figure 6.4. 2D rectangular data selection in Mondrian. .. 124

Figure 6.5. Non-continuous data selection in the HVN. ... 125

Figure 6.6. Coerce data selection in GGobi. ... 125

Figure 6.7. An application of parallel coordinates visualization in d3.js. 127

Figure 6.8. Evaluation of drill down feature in GGobi. .. 128

Figure 6.9. Convoluted result of data alignment in Mondrian. 129

Figure 6.10. Evaluation of the drill down feature in Mondrian. 129

Figure 6.11. Evaluation of the local drill down feature in our HVN. 130

Figure 7.1. Local drill-down scenario 1. ... 133

Figure 7.2. Local drill-down scenario 2. ... 134

Figure 7.3. Local drill-down scenario 3. ... 134

Figure 7.4. Local drill-down scenario 4. ... 135

Figure 7.5. Local drill-down scenario 5. ... 135

Figure 7.6. Global drill-down scenario 1. ... 136

xii

Figure 7.7. Global drill-down scenario 2. ... 137

Figure 7.8. Global drill-down scenario 3. ... 138

Figure 7.9. Global drill-down scenario 4. ... 138

Figure 7.10. Initial view of the multivariate correlation matrix. 140

Figure 7.11. Case study step 1. ... 141

Figure 7.12. Case study step 2. ... 142

Figure 7.13. Case study step 3. ... 143

Figure 8.1 An example of the cross product. .. 146

Figure 8.2 An example of point-to-region interaction. ... 147

Figure 8.3 From scatterplot to flow based scatterplot. .. 147

Figure 8.4 A visualization of the flow based scatterplot matrix. 148

Figure 8.5. The properties of SFMDVis. .. 149

Figure 8.6. A visualization of SFMDVis. ... 153

Figure 8.7. An illustration of using RGB color remapping to denote the value

magnitude. .. 154

Figure 8.8. An example of single-hue progression in the purple color. 155

Figure 8.9. Single-hue color ramping in blue and green colors. 155

Figure 8.10. Zooming in SFMDVis. ... 157

Figure 8.11. Interactive AND and OR data selection in SFMDVis. 159

xiii

List of Algorithms

Algorithm 2.1 An implementation of the parallel coordinates visualization. 14

Algorithm 4.1 An implementation of the Liang-Barsky. .. 47

Algorithm 4.2 An implementation of the hierarchical clustering using average

linkage. ... 63

Algorithm 4.3 An algorithm that computes the depth of a virtual node in the

hierarchy. .. 65

Algorithm 4.4. Algorithms of mapping a virtual node to the screen coordinate. 67

Algorithm 4.5. An implementation of drawing a dendrogram. 69

Algorithm 5.1. An algorithm for hit test. .. 90

Algorithm 5.2. Local drill-down algorithm. .. 100

Algorithm 5.3. Implementation of KDE. .. 106

Algorithm 5.4. An implementation of the multivariate correlation matrix. 111

Algorithm 8.1. The core algorithm of SFMDVis. ... 152

xiv

Abstract

Interaction is an overloaded term in information visualization. Basically, every software

tool is interactive but mostly through the manipulation of a widget. Broadly speaking, a

visualization is just a software application. What makes the interactive component of a

visualization really distinctive is how well it supports an arbitrary selection of data

directly in the interface in order to facilitate subsequent analytic tasks. This is challenging

due to over-plotting and visual clutter in the multidimensional space and such

phenomenon is commonly known as the curse of dimensionality.

Data selection is a frontier of a visualization and too many multidimensional

visualizations claiming to be interactive mostly address the change of view without

explicitly specifying the core technique of how to materialize such operations. Perhaps,

the interactive component is achieved through the traditional widget.

To overcome the complexity of truly interacting with multidimensional data for

effective visual analytics, we first propose an interactive framework for better

understanding of the problem domains. Dynamic data selection is materialized by a novel

and sophisticated technique called the Hierarchical Virtual Node which opens an

application to interact with data directly in parallel coordinates that would otherwise have

been impossible or difficult to achieve by existing methods. It works well even under the

circumstance of the curse of dimensionality and offers several advantages over others.

For example, the use case only requires a mouse click to select a set of data item(s). To

achieve an efficient visual analytics, a set of analytic tasks are also developed in each

layer of the proposed framework.

1

Chapter 1 Introduction

Information visualization is a broad field of study. The main area of interest primarily

focuses on the optimal organization of abstract data into a visual representation with

interactivity for knowledge discovery. The term knowledge discovery [1] refers to

previously unknown and potentially useful information from the given data.

Multidimensional visualization [2] is an important subfield of information visualization

with primary interest in the study of multidimensional dataset, organized in a ݊ ൈ ݌

matrix for ݊ observations on ݌ variables.

Thanks to Moore’s law [3]. The rapid development of communication and storage

technologies have enabled data to be ubiquitously collected at an unprecedented rate over

the past few decades. The growing complexity of information space has posed many

challenges to visualization especially for these application domains require decision

making from a high dimensionality of data. These challenges urge a trend of moving

towards the integration of analytic tasks with a higher degree of interactivity.

1.1 From InfoVis to Visual Analytics

In the book “Graphics of large datasets: visualizing a million” authored by Unwin et al.

[4] with many techniques to present massive volumes of data were put forward.

Successful mapping of data into a graphic representation, however, does not always imply

the gaining of data insight. Kosara [5] asserted that if a visualization significantly

increases the cognitive process of a learning then it is merely expressed in a form of visual

art (see Figure 1.1). Mayer et al. [6] also pointed out that effective visualization must

focus on reasoning. The key point is that visualization shall be practical and the

information it reveals must be meaningful.

2

Figure 1.1. A botanic visualization of a hard disk, practical or art? The image is

sourced from [7].

In 2005, van Wijk [8] gave a work titled “The value of visualization” where he used

the study of his student [7] as an example (see Figure 1.1) to question that if a visualization

failed to convey knowledge from its visual representation then it is merely functioned as

an art. However, one of the key concepts in his study is the formulation of a simple model

of visualization as depicted in Figure 1.2. It shows that the knowledge is derived from

perception via an interactive exploration to produce a useful image. Keim et al. [9] further

developed a sense-making loop based on it and the relevant phrase is quoted as follow:

…… The solution offered by Visual Analytics is then to let the user enter into a loop

where data can be interactively manipulated to help gain insight both on the data and the

representation itself.

Manifestly, both tried to emphasize that the iterative interaction (main loop) with

visualization is the key element in the lifecycle of a visual analytics.

3

Figure 1.2. A simple model of visualization. The image is reproduced based on [8]

where D, V, S, P, K, E, and I denote data, visualization, specification, perception,

knowledge, exploration and image. ݀ݐ݀/ܭ is the amount of knowledge gained and

 .means the interactive exploration by adapting a specification to a visualization ݐ݀/ܵ݀

In the taxonomy of visualization techniques contributed by Keim [10], many

techniques developed to be efficient are finding themselves no longer adequate to meet

the analytical needs without further integrating data mining, statistics, machine learning

or other reasoning. This inadequacy has resulted in the demand for an effective

framework by covering relevant theories collectively to deal with data complexity. Visual

analytics [11] emerges as an important field by introducing interdisciplinary

dependencies across scientific fields as illustrated in Figure 1.3. Thomas [12] defines the

term visual analytics in his book “Illuminating the Path” as the science of analytical

reasoning facilitated by interactive visual interfaces. Overall, the objective of

interdisciplinary integration is to provide an effective framework for gaining the

perception and knowledge and eventually making a decision from a complex structure of

data that would otherwise have been impossible to achieve by a standalone field.

Visual Encoding

Dimensionality
Reduction

Big Data

Interaction

Machine Learning

Data MiningStatistics

Visualization

Visual Analytics

4

Figure 1.3 Visual analytics is an integration of interdisciplinary theories. The

image is reproduced based on [11].

1.1.1 Problem Statement

The term “interaction” is becoming overloaded (a.k.a a buzzword) in information

visualization. In almost all the cases, every software tool is interactive through a widget

(such as a data grid, list box and etc.) which is cumbersome. Strictly speaking, a

visualization is just one software application. There is no difference whatsoever to other

software applications. What makes a visualization really special is how well its interactive

component can help the user to carry out visual analytics in an intuitive, efficient and user

friendly manner. This is indeed a significant problem if one further considers overplot

and visual clutter in multidimensional space. Mathematically, if one models visualization

as a super function then the problems can be classified into inputs and output. For

example, a visualization deals with data (input parameters) and applies analytical

reasoning (input command) to generate an image (output). Too many visualizations

claiming to be interactive have skipped inputs and only focused on output. The details of

how to accept inputs in an efficient, accurate and direct (not via widget) manner to an

application have often been neglected. Perhaps, this is because they assume the traditional

interaction of a widget style.

The aim of this research is how to improve the interaction mechanism in

multidimensional visualization such as in parallel coordinates visualization. The existing

interaction approaches that are currently used in the parallel coordinates [13] visualization

cannot perform the ‘Select’ operation in Yi’s [14] seven-layer interaction model. Unlike

graph visualization in which a ‘Select’ operation can be easily achieved through a mouse-

click (or mouse-rollover) on a shaped geometric region (a node), there is no geometric

region allocated to polylines in parallel coordinates geometry. Therefore, a mouse-click

(and mouse-rollover) operation over a particular polyline (visual object) is impossible.

Consequently, the ‘Select’ interaction in parallel coordinates visualization is also

theoretically impossible.

5

However, in visual analytics, data selections and data retrievals are very common

operations. Without these operations, a multidimensional visualization can only be used

as a data viewing tool. It cannot be deeply involved in the data analytics process.

1.2 Challenges and Goals

For challenges in visual interaction, Thomas [12], in his book “Illuminating the Path”

claimed that:

Visual representations alone cannot satisfy analytics needs. Interaction techniques

are required to support the dialogue between the analyst and the data. … more

sophisticated interactions are also needed to support the analytics reasoning process. …

The key phrase here is the sophisticated interaction which implies novel and non-

trivial. While the point based interaction design is successfully applied in graph

visualization for supporting analytics reasoning, it is still in its very preliminary stage in

terms of applying in multidimensional visualization. This is because most of

multidimensional visualization techniques are based on polyline data representation,

which does not occupy a geometrical region for supporting point based interactions.

Therefore, some analytics reasoning processes are difficult to be implemented in

multidimensional visualizations. Overall, the goals of this dissertation are:

 investigate new interaction techniques that can support analytics reasoning

directly in multidimensional visualizations,

 investigate new visual data selection and data retrieval techniques through direct

point based interactions on polyline based data visual representations,

 apply a set of analytic reasoning algorithms into our proposed interactive

visualization to evaluate the effectiveness and efficiency of new approaches in

terms of how well our approaches can support analytics reasoning processes, and

 materialize a multidimensional visualization system that tightly integrates

developed data selection and a set of analytics reasoning tasks.

6

1.3 Contributions

In summary, the contributions of this dissertation include but are not limited to:

1. A new framework of visual interaction in multidimensional visualization (Chapter

3).

2. A novel and interactive data retrieval (or data selection) technique called the

Hierarchical Virtual Node (HVN) approach in parallel coordinates visualization

(Chapter 4).

Other additional contributions are:

3. A divide-and-conquer model developed on the basis of our new framework of

visual interaction for dealing with a big dataset (Section 5.2.4).

4. A successful application of Rough Set Theory (RST) for dimensionality reduction

in multidimensional visualization for visual data analytics (Section 5.3.1).

5. An enhanced scatterplot matrix method for visual data analytics (Section 8.1).

6. A new space filling multidimensional visualization (SPMDVis) (Section 8.2).

1.4 Outline

This dissertation is structured as follows:

 Chapter 2 Background: Covers an overview of existing visualizations and

interactive techniques.

 Chapter 3 A New Framework of Visual Interaction: Proposes a new model of

visual interaction based on existing frameworks.

 Chapter 4 Hierarchical Virtual Node: A complete chapter is dedicated to

describing the technique and the implementation of the hierarchical virtual node.

7

 Chapter 5 Interactive Techniques for Visual Analytics: This chapter introduces a

set of analytic tasks for visual analytics by further expanding the model described

in Chapter 3. The core technique of interaction for the tasks is based on the

hierarchical virtual node described in Chapter 4.

 Chapter 6 Technical Evaluations: Presents the technical evaluations of our

developed system based on the HVN against other publicly available visualization

systems.

 Chapter 7 Case Studies: This chapter presents three case studies for the

applications of the techniques described.

 Chapter 8 Extended Works: This chapter introduces two extended works about

the scatterplot matrix and a new space filling multidimensional visualization.

 Chapter 9 Conclusion: This chapter concludes the dissertation.

8

Chapter 2 Background

In this chapter, we provide an overview of the multidimensional visualizations and

interactive techniques related to this dissertation. The concept of the curse of

dimensionality is also explained under subsection of terminology which describes the

problem domain that is commonly encountered when dealing with multidimensional data.

2.1 Terminology

We The author will kindly refer to himself and the contributing parties collectively as we.

This is to sincerely acknowledge the contributions of that others have made towards the

completion of this dissertation.

Dimension A dimension holds a data vector and is commonly referred to as variable or

attribute in many scientific disciplines so these terms will be used interchangeably

throughout this dissertation.

Multidimensional Data A dataset with arbitrary number of dimensions ܰ and ܯ

observations. For simplicity, it is usually organized in a form of matrix ܺ ൌ ܯ ൈ ܰ.

ܺ ൌ ൭
ଵܺଵ ⋯ ܺ୑ଵ
⋮ ⋱ ⋮
ଵܺ୒ ⋯ ܺெே

൱

We will use ܦ and ܲ to denote the column vector and row vector respectively. A

data vector ܦ contains ܯ observations for a variable ௜ܺ and a data row ܲ holds only one

observation for ܰ dimensions. In other words, the notation of ܦ௜ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∀݀ ∈

௜ܺ and ௜ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∃! ݀௜௝ ∈ ௝ܺ refer to a column and row major vector

respectively.

Data Element A data sample denotes as ݀௜ in an univariate data vector ܦ. The term data

element is frequently referred to as data item or data point so these terms will be used

interchangeably throughout this dissertation.

9

Object-oriented In the description of an algorithm, we often use ݀ݐ݋ notation to imply

the access to a field or method of an object ܱܾ݆ for simplicity. For example,

ܱܾ݆. .݆ܾܱ or ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ ሻ means the access to an object’s	ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ

field and method respectively.

2.1.1 Curse of Dimensionality

The study conducted by Lyman et al. [15] in 2003, estimated the information digitally

stored had grown nearly 30 percent between 1999 and 2002. A decade later, of course,

the trend is still continuing at a rate faster than ever in the age of big data. Information

collected with multiple attributes such that ܺ ൌ ሼܽଵ, ܽଶ, … , ܽ௡ሽ is known as

multidimensional data. High dimensionality creates extra complexities upon existing

challenges by orders of magnitude. To name a few, it needs more space for storing the

data and more time for searching the spare feature as well as more training data for

learning in classification. These phenomena are broadly known as the curse of

dimensionality which is the term first coined by Bellman [16] to describe the growing

complexity of the problem in terms of solving nonlinear optimization in dynamic

programming with high dimensionality.

Multidimensional visualizations inherit the curse of dimensionality as more

dimensions bring more challenges. The growing complexity of the visualization depends

on the increase in dimensionality, scale of data and non-linearity of the dimensions. An

example is illustrated in Figure 2.1 showing that the application of bar chart, line chart

and parallel coordinates to visualize one, two and multi-dimensional data respectively.

Obviously, the complications start to rise gradually from low to multi-dimensional

visualizations, making it more difficult to understand the meaning and more time

consuming to interpret the result from the visualization.

10

Figure 2.1. Illustration of visual and data complexities.

In summary, the curse of dimensionality will reflect in a visualization as follows:

1. Decline in visual perception because the phenomena of interest are often sparse

in multidimensional space. For example, it is easy to perceive the data distribution

and its linearity in a scatterplot rather than in parallel coordinate.

2. Create visual clutter and over-plotting.

3. Decline in learning accuracy due to data noise because not necessarily all the

variables ought to be analyzed. For example, in multiple regression, it is often a

time consuming task to analyzed all the variables first and then remove those

variables with less contribution (in terms of statistical significance) from the

model.

4. Increase prediction error and as a result, adds to the cost of interpretation. For

example, when classifying more variables would more training data in order to

improve the classification rate.

The understanding of the curse of dimensionality is important because in its attempt

to deal data with the high dimensionality of data it preempts problem domains that

commonly exist for all sciences.

11

2.2 Multidimensional Visualizations

In this section, we will review multidimensional visualizations on the basis of the

taxonomies of visualization techniques presented by Keim [10] [17] and Kerigel [17].

Basically, they have classified the techniques into:

 Pixel oriented.

 Geometric projection.

 Icon based.

 Hierarchical based, and

 Graph based.

In particular, we will focus on the categories of pixel oriented, geometric projection

and hierarchically based visualizations. The visualizations reviewed will be technical and

comprehensive especially, for parallel coordinates because our interactive framework has

been developed on the basis of it.

2.2.1 Parallel Coordinates

The origin of parallel coordinates is vague. It is often believed that it was proposed by

Maurice d’Ocagne [18] in the 19th century. Strangely, the book written by d’Ocagne is

mathematical and has no connection with the parallel coordinates visualization. However,

in the mid-20th century, Inselberg [13] brought it back into awareness. Nowadays, it is

probably the most well-known and extensively used multidimensional visualization. This

is evident in a Google search with an illustration in Figure 2.2 where the results returned

for the keyword “parallel coordinates” is about 26.63 times more than the keyword

“scatteplot matrix”.

12

Figure 2.2. A comparison of the Google search results. Google returned

27,700,000 and 1,040,000 results for the keywords “parallel coordinates” and

“scatterplot matrix” respectively.

Parallel coordinates is considered to be a geometric projection based technique.

Given a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ in which each ௜ܺ is drawn as a vertical axis

across a horizontal plane. The vertical axes serve the end knots of a polyline denoted as

௜ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ேሽ and every data point in ௜ܲ is associated with one and only one

variable such that ∃! ݀௜: ௜ܺ. We assume that the origin of the screen coordinate starts from

the bottom-left corner1 on the target platform. It is trivial to compute the ݕ-coordinate of

a data point ݀௜ with respect to its variable ௜ܺ by the equation below.

ௗ೔ݕ ൌ ௑ܻ೔ ൅ ൭ቆ
݀௜ െ ݉݅݊௑೔

௑೔ݔܽ݉ െ ݉݅݊௑೔
ቇ ൈ ௑೔൱ݐ݄݄݃݅݁

Equation 2.1

Where ௑ܻ೔ ௑೔ݐ݄݄݃݅݁ , , ݉݅݊௑೔ and ݉ܽݔ௑೔ are the ݕ-coordinate of a vertical axis,

height of the vertical axis, minimal value and maximal data value with respect to ௜ܺ. The

output ݕௗ೔ is a transformed value of ݀௜ in screen coordinate. These notations are

straightforward. Please refer to Figure 2.3 for clarity.

1 Typically, the 2D GUI coordinate system starts from the top-left corner and the origin of 3D starts from

the bottom-left.

13

Figure 2.3. Mapping a data point to a vertical axis. The diagram describes the

notations and how a data point is mapped to the screen coordinate.

The key property of a polyline is that it establishes the integrity of a

multidimensional data item geometrically. To perceive the data pattern, one needs to

discern a set of polylines with similar undulation.

Algorithm 2.1 provides an implementation of parallel coordinates where the details

of ݁݊݅ܮݕ݈݋ܲݓܽݎܦ and ݈݁ܿݎ݅ܥݓܽݎܦ have been skipped because they are simply the

wrapper functions of the software API. For example, GDI in the Windows platform.

1. procedure DrawParallelCoordinateሺܺ, ߱, ,ߥ ሻݕ

2. ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ

3. ߱ /* Constant line width of a vertical axis. */

 /* .Constant height of a vertical axis */ ߥ .4

ܻݐݎܽݐݏ .5 ൌ /* .Starting y-coordinate of a vertical axis */ ݕ

6. Initialization:

7. ܲ ൌ ∅

ܺݐݎܽݐݏ .8 ൌ 0

	ݐ݁ݏ݂݂݋				 .9 ൌ ݄ݐܹ݀݅݊݁݁ݎܿݏ ോ ሺܰ െ 1ሻ

10 	

11. /* Draw the vertical axis here. */

12. for ݅ ≔ 0 to ܰ

14

13. ܻ݁݊݀ ൌ ܻݐݎܽݐݏ ൅ ߥ

,ܺݐݎܽݐݏሺ݁݊݅ܮݓܽݎܦ .14 ,ܻݐݎܽݐݏ ,ܺݐݎܽݐݏ ܻ݁݊݀ሻ

ܺݐݎܽݐݏ .15 ൌ ሺܺݐݎܽݐݏ ൅ ݐ݁ݏ݂݂݋ ሻ

16. end for

17.

18. /* Draw the geometric primitives here. */

19. for each ௜ܺ in ܺ

20. for each ݀௜ in ܦ௑೔

௜ݕ .21 ൌ ൫݀௜݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ ,௑೔,݉݅݊௑೔ݔܽ݉, ൯ߥ

௜ݔ .22 ൌ ܺ௑೔ /* A data point always attaches to a vertical axis, i.e. variable. */

23. ܲ ← ሺݔ௜, /* .௜ሻ /* Add the coordinate to the listݕ

,௜ݔሺ݈݁ܿݎ݅ܥݓܽݎܦ .24 ௜ሻݕ

25. end for

 ሺܲሻ݁݊݅ܮݕ݈݋ܲݓܽݎܦ .26

27. end for

28. end procedure

Algorithm 2.1 An implementation of the parallel coordinates visualization.

In Algorithm 2.1 where ܦ௑೔ holds a column vector with respect to ௜ܺ and

 coordinate of-ݔ is a wrapper function of Equation 2.1. ܺ௑೔ denotes the ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ

a vertical axis ௜ܺ. Note that, there is no need to map a data point to the ݔ-coordinate which

is constant and always equal to its respective ܺ௑೔ so only the computation of the ݕ-

coordinate is necessary.

Figure 2.4 shows the implementation result of Algorithm 2.1 with an application of

car dataset2. The view has been optimized to promote the location proximity of correlated

variables while maximizing patterns.

2 Car dataset has obtained from StatLib, Carnegie Mellon University, see http://lib.stat.cmu.edu/datasets/.

15

Figure 2.4. A parallel coordinates visualization. Car dataset is used and the

geometric primitive is based on Bezier curve. The techniques applied here are brushing

and dimensional reordering.

Parallel coordinates is extensively used to discover data patterns but its visual

effectiveness is greatly dependent on the spatial arrangement of the variables. For

example, a subtle change in permutation can lead to a totally disparate pattern (polyline

undulation) than the others. One can compare Figure 2.4 with Figure 2.5 which used the

default ordering. Even though, a brushing technique has been applied in Figure 2.5 but

the view overall is more disorganized than the one produced in Figure 2.4.

Figure 2.5. A parallel coordinates visualization in default variable ordering. The

dataset used in this example is the same as per Figure 2.4.

16

Misinterpretation of Linear Correlation The most confusing part of parallel

coordinates is the interpretation of the polyline slope. From the perspective of human

cognition, the slope intuitively suggests a linear relationship but this is not entirely true.

The coordinate system of parallel coordinates is not based on the Cartesian system which

uses the perpendicular line ٣ ܻܺ to divide a plane into four quadrants. Instead, parallel

coordinates projects data only in one direction so the concept of slope ݕ ൌ ݔ݉ ൅

ܿ,where	݉ ൌ ∆௒

∆௑
 is really not applicable. This explanation aims to clarify that parallel

coordinates is not suitable to be used to discern a linear correlation in the way that

scatterplot is capable of.

A visual perception of the linear correlations between the parallel coordinates and

scatterplot matrix is provided in Figure 2.6. Here, one can easily perceive that there might

exist a linear dependency for a data pattern (data subset between pairwise variables) in

parallel coordinates but the overall correlation revealed in scatterplot suggests a different

interpretation. For example, it is hard to imagine that a) has no correlation, b) is negative

correlated and c) is less correlated or nonlinear. Especially, the patterns between b) and

c) are subtle in parallel coordinates, but scatterplot suggests a totally different trend.

17

Figure 2.6. The perception of linear correlations between parallel coordinates

and scatterplot matrix. Car dataset is used again. (Top) Snippet of the parallel

coordinates. Pairwise variables areሼ݈݁݀݋݉,݊݅݃݅ݎ݋ሽ, ሼ݉ݐ݄݃݅݁ݓ,݃݌ሽand

ሼݐ݄݃݅݁ݓ, ሽ from left to right. (Bottom) Scatterplot for the corresponding݊݋݅ݐܽݎ݈݁݁ܿܿܽ

variables above.

2.2.2 Scatterplot Matrix

Scatterplot matrix [19] is widely used in statistics for multivariate exploratory data

analysis. It is conceptually simple and should be considered as an extension of the classic

scatterplot [20] rather than an independent subject. It is classified as a geometric

projection technique by Keim and Kerigel [17].

Given a set of variables ଵܺ, ܺଶ, … , ௜ܺ , a pairwise variables ௜ܺ , ௝ܺ , ݅ ് ݆ is plotted

where ௜ܺ and ௝ܺ are also known as independent (horizontal axis) or dependent (vertical

axis) variable respectively. Since ሼܺ௝, ௜ܺሽ is a transposed plot of ሼ ௜ܺ, ௝ܺሽ் and an identity

plot ሼ ௜ܺ, ௜ܺሽ is essentially a 45° line for a continuous or 180° line for discrete variable.

Therefore, it is widely acceptable to display either full or tri-diagonal matrix. The

implementation of the scatterplot matrix is trivial and Equation 2.1 can be reused by

invoking it twice, one for the ݕ-coordinate and another call for the ݔ-coordinate. Figure

2.7 shows the visualization of the full scatterplot matrix where the lower triangular matrix

is essentially a transposed view of the upper triangular matrix and vice versa.

The scatterplot matrix presents multidimensional data in such a way that it enables

the perception of linear correlations over an entire dataset simultaneously. On the other

hand, the major disadvantage is the linear reduction of screen space allocated to each

scatterplot. For example, let M, P, K denote scatterplot size, entire display size and

number of variables respectively. The size of a scatterplot can be trivially computed as

ܯ ൌ ܲ
ൗܭ where ܯ declines rapidly when ܭ increases and eventually, the visualization

will become a point cloud. In general, parallel coordinates is more space efficient than

the scatterplot matrix.

18

Figure 2.7. A visualization of the scatterplot matrix.

2.2.3 TableLens

TableLens [21] is a visualization for exploring a large amount of tabular information by

merging graphical and symbolic representations into an interactive view. The

visualization is tightly integrated with focus+context and zooming techniques. An

important feature of TableLens is that the scaling of a view is independent of each other

in either the horizontal or vertical order. Figure 2.8 provides an illustration of the

TableLens visualization. According to the taxonomy by Keim and Kerigel [17],

TableLens is considered as a geometric projection based technique.

19

Figure 2.8. The TableLens visualization. The image is sourced from

http://www.ramanarao.com/articles/2001-12-online-info/cviz.html.

2.2.4 Space Filling Curve

The Hilbert curve [22] was first described by David Hilbert [23] in the 19th century. It is

a continuous and self-similar space filling curve with many useful applications such as

spatial database indexing or mapping of high dimensional data into lower dimensional

space such as multidimensional indexing. It is considered as a mixture of geometric and

pixel oriented techniques.

The basic building block of a Hilbert curve is a one side opened rectangle which we

call it a Hilbert curve element. Conceptually, the drawing process of the Hilbert curve is

simple, one can imagine the entire plane is logically divided into a ܰ ൈ ܰ grid and a grid

cell is further partitioned into 4 quadrants. Each quadrant can be visited at most once. The

points in the grid cells are connected to form an element as shown in Figure 2.9 (Left).

20

Finally, self-similar neighboring elements are connected together to form a continuous

Hilbert curve in Figure 2.9 (Right).

Figure 2.9. Building block of Hilbert curve. (Left) A single element of a Hilbert

curve. (Right) A space filling curve in a 8 ൈ 8 cells. An orange dotted line indicates the

join with the other element.

The guiding operations can be encoded by three symbols [24] ሼܨ, ൅, െሽ, interpreted

as “move forward”, “turn 90° to the left” and “turn 90° to the right”. Therefore, the

representation ൅ܨ െ instructs the algorithm to move forward after turning 90° to the ܨ

left and then move forward after turning 90° to the right.

Figure 2.10 provides the visualizations of the Hilbert curve in different orders. For

a more advanced application, elements are usually coded by various colors to denote the

spatial separation.

21

Figure 2.10. Visualizations of Hilbert space filling curve. The depth of recursion is

4 and 8 for left and right diagrams respectively.

2.2.5 Star Coordinates

Star coordinates (SC) [25] is a geometric projection based multidimensional visualization

that arranges axes on a circle in such a way that every axis starts at the same origin. The

coordinate system of SC is curvilinear where the data can be transformed into a Cartesian

coordinate by summing all the unit vectors in each coordinate and multiplying by the data

value that is similar to Equation 2.1 as defined for parallel coordinates.

Star coordinates visualization presents multidimensional data in a way similar to

the scatterplot matrix. For example, both were designed on the basis of scatterplot with

the main difference being the coordinate system but the overall approach of perceiving

data is similar. Figure 2.11 illustrates a star coordinates visualization.

Figure 2.11. Star coordinates visualization. The image is sourced from [25].

2.2.6 TreeMap

TreeMap mainly deals with hierarchical data. Normally, the discussion of TreeMap shall

not be mixed with multidimensional visualization but Cao et al. [26] has successfully

22

designed a TreeMap-like interface to visualize multidimensional clusters so it will be

briefly introduced here.

TreeMap is a hierarchical based visualization that was first introduced by

Shneiderman [27] to tackle the problem of visualizing hierarchical data such as a file

system structure. The TreeMap visualization has been successfully commercialized and

a renowned application in the real world is probably the Map of the Market that was

developed by SmartMoney3 [28].

Figure 2.12. Map of the market. The tool shows the live market data in TreeMap. The

diagram is sourced from the MarketWatch website (http://www.marketwatch.com).

3 Dow Jones ceased SmartMoney magazine. The September 2012 issue of SmartMoney was the

magazine’s last edition. All the contents and tools from SmartMoney are available on MarketWatch.com

23

The key feature of the TreeMap is the ability to fully utilize display space. Given a

hierarchical dataset, the layout algorithm starts off with one rectangle that occupies the

entire display initially and is latter divided into nested rectangles recursively while the

algorithm traverses down along hierarchical data paths. This process continues until the

bottom of the hierarchy has been reached. Figure 2.13 illustrates the conceptual mapping

of the hierarchical data to the rectangles in the TreeMap.

Figure 2.13. Hierarchical data mapping.

There are variety of TreeMaps [27] [29] [30] but the layout principally remains

similar and in general, an optimal layout algorithm tries to produce rectangles with the

aspect ratio as close to one as possible.

The slice and dice TreeMap [27] is the first and simplest TreeMap layout algorithm

as it recursively divides a rectangle into rectangles using parallel lines. Sub-rectangles

represent children to its parent rectangle.

The squarified TreeMap [29] is another variation of the TreeMap that works by

dividing rectangles in horizontal and vertical rows. A rectangle is either added to the

current row or the current row is fixed and a new row is started. The decision to determine

whether a rectangle shall be fixed or continue its subdivision is given by the following

function:

,ሺܴݐݏݎ݋ݓ ߱ሻ ൌ max
௥∈ோ

ሼmaxሺ߱ଶ ାݎ ⁄ଶݏ ሻ, ଶݏ ሺ߱ଶିݎሻ⁄ ሽ

Where ݎା and ିݎ denote the maximum and minimum value of ܴ and the width is

given by ߱.

24

2.3 Interaction in Multidimensional Visualization

This section will review the common tasks of interaction with multidimensional

visualization. Usually in a visual analytics, one interacts with visualization for data

retrieval, and views change or analytic reasoning so they can be grouped for easy

understanding.

2.3.1 Data Retrieval

Data retrieval (a.k.a data selection) refers to the process of expressing the interested subset

of data for application by a subsequent task.

Widget based data selection This approach allows users to interact with data indirectly

through the traditional user interface such as tabular display as illustrated in Figure 2.14.

Data are usually presented in their raw form with no (or little) information to describe

their characteristics. Thus, the user needs to be familiar with the underlying dataset for

meaningful data selection in such a raw format.

The greatest advantage is its simplicity because very little effort needs to be

expanded to bring about rapid prototyping. However, the disadvantages include the lack

of visual indication and also the fact that data are usually organized in a natural order so

the effort to locate interested items can be quite significant.

25

Figure 2.14. Widget based data selection. The user interacts with raw data rather

than the visualized data. It is difficult to select data subset without understanding the

nature of the dataset.

Direct point selection This technique is often seen in graph or nodal based visualizations

such as a scatterplot in Figure 2.15. A node occupies a concrete region in the display with

the duality of representing coordinates and data points simultaneously. Therefore, the

common use case of data selection in such visualization allows users to select data directly

in the display. In general, point based selection is intuitive but its availability is limited

to nodal based visualizations.

26

Figure 2.15. An example of scatterplot. The scatterplot typically uses point selection

technique by allowing user to interact with a data point by a mouse clicking.

Direct 2D data selection It allows users to select a set of data on a 2D plane. This

technique will be reviewed again comprehensively in Section 4.2. For such an application

in multidimensional visualization, Siirtola et al. [31] has applied a similar technique in

parallel coordinates. Basically, it selects a collection of polylines passing through the

rectangular area which is drawn by a sequence of mouse click, drag and release

operations. Obviously, it does not work well over a visualization with intensively

overlapping elements. Indeed, Siirtola has commented that it is more appropriate to use

2D selection for highlighting outliers.

Figure 2.16 Direct data selection by a 2D rectangle. This method is used to select

a set of data but its accuracy tends to decline in a crowded visualization.

2.3.2 Interaction for View Change

Brushing By using a brushing interaction, a subset of data items can be highlighted (or

focused) for viewing the detail of these data patterns. This technique is widely used in

parallel coordinates. In 2002, Hauser et al. [32] proposed the concept of angular brushing

as an extension to the standard brushing to facilitate the data subsets grouping and

highlighting the rational data properties of the date items. They also integrated the

composite brushing and focus+context technique to further improve the visual

exploration in parallel coordinates.

27

In addition, Zhou et al. [33] discussed the visual clustering technique which allows

users to specify transfer functions in order to control the density value of the lines using

alpha blending. We consider the visual clustering as a variation of brushing. One

significant drawback of applying alpha blending in brushing is that the low density

patterns tend to become illegible due to high transparency. This is certainly not desirable

if the low density pattern is statistically significant. Overall, brushing remains a

rudimentary technique which is popular mostly due to its simplicity.

Filtering It is a fundamental technique of data manipulation that attempts to minimize

data noise for uncovering interested data in a crowded visualization. In a visual analytics,

a noise typically refers to unwanted data with respect to a current task. In parallel

coordinates visualization, a good example of filtering is probably the system implemented

by Artero et al. [34]. They introduced an interactive filtering method by first computing

the frequency and density information. Such information is subsequently used to filter out

the data for greater visual perception for clutter reduction. Filtering requires better

familiarity with the analyzed dataset otherwise users can potentially filter out some

meaningful patterns or even create a poor view.

The major difference between filtering and brushing is the output strategy of

highlighting and grouping of user expected (interested) data items. The former hides or

dims the less important (or less interested) data items and the latter displays the complete

dataset and sets the unique color to the selected data item in order to differentiate a

selection from the rest.

Zooming It is generally concerned with the level of abstraction. A conceptual illustration

of zooming technique is provided in Figure 2.17. Basically, we consider zooming as a

general term that covers classic zooming, focus+context and detail-on-demand. In

multidimensional visualizations, TableLens and a system implemented by Fua et al. [35]

are good examples. Fua [35] discussed the applications of using drill-down, roll-up and

dimension zooming techniques for navigating the level of detail in parallel coordinates

28

and the techniques developed have been further integrated into XmdvTool4 [36] since

version 3.1.

Figure 2.17 An illustration of zooming technique. The diagram illustrates the

applications of zooming to abstract a dataset into different levels of perspective.

For focus+context, Novotny and Hauser [37] discussed an interesting work for

outlier detection. The basic idea is to put the detail into focus while preserving the

relations to other data that is also known as the context. In other words, this idea is similar

to independent dimension scaling by varying the scale of one or few variables while fixing

others simultaneously.

Dimensional Reordering The technique is widely used in parallel coordinates

visualization. Recall that parallel coordinates is mainly used to explore data patterns but

that does not necessary imply patterns will be divulged naturally. The overall geometric

structures presented by parallel coordinates are susceptible to the ordering of variables

and inappropriate ordering tends to create visual clutter due to tangled line crossing. This

technique aims to promote the location proximity of correlated variables for uniform

undulation.

There are numerous studies about the technique of variable reordering in parallel

coordinates. For example, Ankerst et al. [38] developed a technique to arrange dimensions

based on the similarity measurement. Peng et al. [39] used dimension reordering to

rearrange variable axes based on their visual neighbouring similarity for clutter reduction.

4 Current version of XmdvTool is 8.0 released on October 20, 2010.

29

Yang et al. [40] further contributed a technique based on optimal and heuristic ordering.

Furthermore, Huang et al. [41] presented a classification based method to maximize the

uniform undulation of geometric primitives and the result is shown in Figure 2.18.

Figure 2.18 Reordering of variables in parallel coordinates. (Left) Parallel

coordinates visualization before dimension reordering. (Right) Parallel coordinates

visualization after dimension reordering.

2.3.3 Interaction for Analytical Reasoning

2.3.3.1 Clustering

Clustering techniques are often used in visual analytics to cluster data into groups on the

basis of a statistics principle rather than an arbitrary selection.

K-means [42] [43] is a simple method that aims to partition data into ܭ clusters. The

algorithm first initializes a set of ܭ clusters ܥ ൌ ሼܥଵ, ,ଶܥ … , ேሽ by the random selectionܥ

of ܭ data points to be the centroids accordingly. Each data point is assigned to a nearest

cluster ܥ௜ with the following equation.

෍ ෍ ‖݀ െ ௜‖ଶߤ

∀ௗ∈஼ೕ

௄

௜ୀ଴

Equation 2.2

Where ߤ௜ and ݀ denote the centroid and a data point in ܥ௜ respectively. The centroid

is updated in each iteration and the process continues until there is a convergence. That

30

is, there is no change or the change can be tolerated. The efficiency of K-means is largely

determined by the speed of convergence and a heuristic is often used to select a good

initial data point for quick convergence. The drawback of K-means is the likelihood of a

convergence to a local optimum so it cannot guarantee that the outcome is always globally

optimum.

Figure 2.19 demonstrates our application of K-means where each cluster has been

color brushed for the visual separation of clusters and the convex hull algorithm is used

for plotting the boundary.

Figure 2.19. A K-means clustering. The randomly generated data have been

partitioned into 20 clusters where the yellow dot indicates the centroid of a cluster.

Hierarchical Clustering [44] It is a non-parametric technique and probably one of the

most widely used clustering methods in many scientific applications. Given a set of data,

the method partitions them into a set of hierarchically disjointed clusters in the following

form.

31

ܩ ൌ ሼ ଵ݃ ∪ ݃ଶ, …∪ ݃ேሽଵ, … , ൛ሼ ଵ݃ ∪ ݃ଶሽ ∪ ሼ… ሽ, …∪ ሼ݃ேሽൟ
ఋ
∶ ݃௜ ∩ ݃௝ ൌ ∅, ݅ ് ݆

Where ߜ denotes the depth of the hierarchy. The hierarchy of the clusters are built

iteratively by merging two clusters with an objective function to form a new cluster in

each iteration. Generally, there are two categories of hierarchical clustering namely,

agglomerative and divisive. They are bottom up and top down for the former and the latter

respectively. A conceptual illustration is provided in Figure 2.20

Unlike K-means, it does not require ܭ clusters to be known in advance but it needs

a stopping rule to terminate the process when an optimal number of clusters have been

found. Hierarchical clustering is used in our proposed technique of interactive data

selection and will be reviewed comprehensively in Chapter 4.

Figure 2.20. Hierarchical clustering categories. (Top) Agglomerative. (Bottom)

Divisive.

2.3.3.2 Dimensionality Reduction

Dimensionality reduction is an advanced analytic task and is commonly used in many

sciences to attenuate the curse of dimensionality. The basic principle is to map a high

dimensional dataset ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ into a lower information subspace ܺ ൌ ܣ ∪

,ܤ ܣ ∩ ܤ ൌ ∅ while preserving the original interestingness. The terms interestingness is

subjective and is therefore dependent on the objective of an algorithm. Let ܣ and ܤ

denote the reduced and excluded subset respectively such that ∀ܣ ∈ ܺ, ܤ∀ ∈ ܺ . The

32

reduced subset ܣ shall be sufficient to describe the original superset ܺ. There are two

classes of dimensionality reduction namely, supervised and unsupervised. In short,

supervised methods allow users to influence the outcome by a set of parameters and vice

versa.

Visual Hierarchical Dimensional Reduction Yang et al. [45] contributed an automatic

and manual brushing mechanism to parallel coordinates in their work called Visual

Hierarchical Dimensionality Reduction (VHDR). VHDR has been integrated into

XmdvTool [36] since version 6.0. The interaction technique offered by Yang is capable

of exploring a large dataset in a more interactive manner with greater flexibility to

dynamically change the view. VHDR first constructs a hierarchy of a dimensional tree

grouped by similarity and further allows users to interactively select an interested

dimensional cluster for analysis.

User-Defined Combinations of Quality Metrics Johansson et al. [46] introduced a

supervised method of dimensionality reduction in the field of visualization called the

User-Defined combinations of Quality Metrics (UD-QM). They used a set of metrics such

as Pearson correlation, outlier and cluster detection to rank variables. In UD-QM, the

prerequisite knowledge required to quantify the quality metric parameters might need

greater user expertise. For example, users need to define the correlation, outlier and

cluster values in such a way as to avoid insignificant correlations, outliers and clusters

adding up to a sum that appears to be significant.

The techniques described above were proposed primarily in the field of information

visualization. In addition, there are many well-known methods of dimensionality

reduction proposed in statistics and for a good taxonomy, one can refer to [47].

Principal Component Analysis It is often abbreviated by the acronym PCA.

Mathematically, it performs an orthogonal linear transformation by mapping data to a

lower dimensional space with non-trivial computation of covariance matrix and eigen-

problems. There are two commonly used selection criterions to select principal

components namely, the Kaiser criterion and the Scree test. For adopting PCA in the

33

dimensionality reduction, the Kaiser criterion [48] is perhaps the widely acceptable

criterion by ignoring the components with eigenvalues less than one. The Scree test is

another popular criterion which was proposed by Cattell [49] who suggested plotting the

eigenvalues on the graph to find a smooth decrease then cutting off the line to retain those

components appearing on the left hand side of the cut point. For example, Figure 2.21

illustrates the use of Scree test to reduce a dataset from 8 to 2 variables. The disadvantage

of using PCA or other unsupervised methods is the unexpected outcome because the

operation was carried out without any consideration of user inputs and hence the

unexpectedness is often criticized as an information loss.

Figure 2.21 A plot of eigenvalues for the Scree test.

Projection Pursuit (PP) [50] is a linear method to pursue the choices of possible

projections that can reveal the interested structure defined by a projection index. To

pursue the possible projections globally involves a task of non-trivial computation, as

described in Huber’s [51] study. XGobi [52] had already integrated PP for viewing high

dimensional data. The main problem of PP is the difficulty to quantize the value of the

projection index since it is possible to present interested structures spuriously given an

inappropriate projection index.

Rough Set Theory (RST) The rough set theory was first introduced by Pawlak [53] in

the field of approximation to classify objects in a set and in general it is applicable to any

problems that require classification tasks. Given a dataset, let ܷ be a finite set of objects

5.3758

0.9436 0.8116
0.4861

0.1828 0.1143 0.0535 0.03190

1

2

3

4

5

6

origin model accel. weight horsepower displacement mpg cylinders

Ei
ge
n
va
lu
e
s

34

called the universe and ܣ be the superset of all attributes ܣ ൌ ሼܽଵ, ܽଶ, ܽଷ, … . . ܽேሽ, ∃! ܽ௜ ∈

:ܽ such that ܣ ܷ → ௔ܸ, ∀ܽ ∈ is further classified ܣ .ܽ where ܸܽ is called the domain of ܣ

into two disjoint attribute subsets ܦ called the decision attribute and rest the condition

attributes ܥ such that ܣ ൌ ሺܥ, ܣ ∪ ሼܦሽሻ, ܥ ∩ ܦ ൌ ∅. For any objects ܺ ∈ ܷ with non-

empty subset ܲ ⊆ ܥ ∪ are said to be discernible with respect to ܲ if and only if the ܦ

following equivalence relation is true.

݂ܲ൫ܺ݅,݆ܺ൯ ൌ ቊ
1, ݂݅	ܸܽሺܺ݅ሻ ൌ ܸܽ൫݆ܺ൯, ∀ܸܽ ∈ ݅	ݎ݋݂,ܲ ് ݆

0, ݁ݏ݅ݓݎ݄݁ݐ݋

Equation 2.3

Clearly, given the equivalence relation defined in Equation 2.3, one can construct

equivalence classes denoted as ܷ/ܦܰܫሺܲሻ ൌ ሼܧଵ, ,ଶܧ … , ௡ሽܧ by partitioning ܷ into

disjoint subsets with the following indiscernibility relation.

ሺܲሻܦܰܫ ൌ ൛൫ ௜ܺ, ௝ܺ൯ ∈ ܷ ∶ ௉݂൫ ௜ܺ, ௝ܺ൯ ൌ 1ൟ

RST further defines three regions of approximation called the lower approximation

ܲܺ, upper approximation ܲܺ and boundary region to approximate subsets ܺ ⊆ ܷ. The

lower approximation and upper approximation are also called the positive and negative

region respectively. The lower approximation contains objects that are securely in ܺ and

the upper approximation consists of objects that cannot be classified to ܺ whereas the

boundary region contains objects that possibly belong to ܺ.

The RST is chosen in our system for the task of dimensionality reduction. The most

distinct advantage of applying RST as a supervised method is the concept of condition

and decision. Users simply specify a variable as decision and the rest become conditions

so the variables are reduced in such a way that they fully respects user specified decision.

2.4 Discussion

Widget based style is the simplest way to interact with visualization and remains the most

frequently used method. This can be understood because direct interaction in

multidimensional visualization is very challenging due to the curse of the dimensionality.

Furthermore, in an empirical evaluation of various multidimensional visualizations,

we use parallel coordinates as the main metaphor for our framework and interactive

35

techniques. There are many reasons for this. First, it is space efficient when compared

with the scatterplot matrix. Second, it is relatively easy to understand and interpret

multidimensional data as oppose to others such the space filling curve, TreeMap or

TableLens. The overview of the multidimensional dataset can be completely visualized

in single view whereas the scatterplot matrix uses multiple scatterplots to puzzle the

overview of the multidimensional dataset.

36

Chapter 3 A New Framework of Visual

Interaction

In this chapter, we present a new framework of visual interaction based on 7 layers

framework proposed by Yi et al. [14] earlier. The proposed framework simplifies 7 layers

into 3 layers for better understanding of the interactive tasks in multidimensional

visualization.

3.1 Introduction

Interaction mechanism extends the capability of a visualization beyond a static image.

From the perspective of cognitive science, Norman [54] pointed out that human beings

are social organisms so it is natural for us to interact with others for knowledge (or

message) transmission and interaction forms a fundamental aspect of our behaviour. In a

more recent study, Liu and Stasko [55] presented a work explaining the relationship

between mental model, visual reason and interaction from the view point of information

visualization. Although, they came from different fields they coincided on the point that

interaction plays a key role in human cognition. Figure 3.1 shows a conceptual model for

the progressive development of knowledge discovery. The interaction with visualization

to derive insight is an iterative process and each iteration refines a hypothesis while

improving one’s understanding towards the underlying data.

Cognitive development

It
er
at
iv
e
in
te
ra
ct
io
ns

37

Figure 3.1 A cognitive model of gaining data insight.

There are diversities of interactive techniques already proposed in information

visualization and the easiest way to gain a good understanding is to review the relevant

works of taxonomy. In 1996, Shneiderman [56] provided a great taxonomy of interactive

techniques classified by task types. There are seven abstract tasks defined as follows:

 Overview: Global view of the entire dataset.

 Zooming: Zoom in or out on the interested data.

 Filter: Remove the data noise.

 Details-on-demand: Present the details when needed.

 Relate: View relationship between two selections.

 History: Keep a history of operations for undo, redo and etc.

 Extract: Allow extraction of sub-collections.

In addition to the taxonomy contributed by Shneiderman. Yi et al. [14] argued that

there exist many taxonomies but the discussions are often made from a low level

operation’s point of view. Hence, they proposed a taxonomy from the perspective of

user’s intent. That is, the tasks are classified from a user’s intention rather than the nature

of a task itself. Yi’s model of visual interaction consists of 7 layers as follows:

 Select: Make something as interesting.

 Explore: Show me something else.

 Reconfigure: Show me a different arrangement.

 Encode: Show me a different representation.

 Abstract/Elaborate: Show me more or less detail.

 Filter: Show me something conditionally.

 Connect: Show me related items.

The ‘select’ operation is used for highlighting or subset selection via the user

interface. On the other hand, the ‘explore’ operation is intended for finding out user-

38

interested data items through the visual navigation of a data source. The layers 3 to 5

concern the strategies of view change for better understanding and highlighting one (or

more) portion(s) (or patterns) of the visualization that are currently perceived as

interesting by the user. The last two layers use the ‘filtering’ mechanism to display (or

visualize) only the interested or related data items in the visualization and remove other

less interested and related data items from the visualization. Certainly, there are still many

excellent taxonomies such as [57] [58] not being covered here, but we believe that these

two are particularly representative.

3.2 3-Layers Framework of Visual Interaction

Overall, there are many layers that overlap to some extent in Yi’s model. To make easy

understanding and better interpretation of the layered structure of visual interactions, we

further propose a new model by refining Yi et al.’s [14] 7 layers into 3 layers, broadly

based on the nature of the operations as follow:

 Dynamic selection (or locating) of data items

 Dynamic viewing of data (visual structure)

 Dynamic scoping of data (data structure)

The following table provides a best effort of mapping between our model in Table

3.1 (Left) and the models described by Yi [14] and Shneiderman [56] in Table 3.1

(Middle) and Table 3.1 (Right) respectively.

Refined Model User intention Task based

Dynamic selection Select Extract

Dynamic viewing Reconfigure Zooming

 Encode Overview

 Abstract/Elaborate Details-on-demand

 Connect Relate

 Explore History

39

Dynamic scoping Filter Filter

Table 3.1. A mapping of taxonomies of interactive techniques.

3.2.1 Tasks by Dynamic Selection

Tasks in this layer are concerned with data subset retrieval that is similar to the Select;

layer 1, defined by Yi et.al [14]. The layer of dynamic selection is the frontier of a

visualization for providing a user with a mean to select or look up particular data item(s)

of interest. Therefore, its practicability greatly influences the efficiency and quality of the

subsequent task. Usually, the immediate task after a data selection is to apply a visual or

data analytic technique on the data subset. Technically speaking, a data selection bi-

divides the dataset logically into selected and unselected sets. A conceptual example is

illustrated in Figure 3.2.

Figure 3.2. An example of dynamic selection operation.

3.2.2 Tasks by Dynamic Viewing

Dynamic viewing (DV) interaction, that merges layers 3, 4 and 5: Reconfigure, Encode

and Abstract/Elaborate of the interaction defined in J. S. Yi’s model, allows users to

change data representations for achieving better readability or understanding of the data

and its relational structures. Examples include the reordering of axes in parallel

coordinates and navigation in the graph visualization by using a Hyperbolic Tree or a Fish

Eye Browser. DV interaction also includes the change of visual encoding; that is using an

alternative visualization method to present the same complete set of data.

In this layer, the primary concern is the interactive configuration of the visual

aspect. A conceptual example is illustrated in Figure 3.3.

40

Figure 3.3. An example of dynamic viewing operation.

3.2.3 Tasks by Dynamic Scoping

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and

Connect of the interaction defined in J. S. Yi’s model, allows users to visualize a subset

of the data through the filtering of less important and relevant data items with respect to

an analysis. Examples include the navigation method used in DA-TU [59]: an On-Line

Visualization system and other dimensionality reduction techniques.

The effectiveness of data exploration has typically declined by a large number of

dimensions. One of the motivations of dynamic scoping aims to shape the data to a

smaller subset suitable for analysis while minimizing the visual clutter and information

overloading. A conceptual example is illustrated in Figure 3.4.

Figure 3.4. An example of dynamic scoping operation.

3.2.4 Discussion

Overall, the proposed framework of visual interaction tries to avoid the fine-grained

classification because it is easier to understand an operation will result in a selection,

visual change or data change. Overall, the proposed framework will serve as a design

guideline for our interactive tasks to be discussed in the following chapters.

41

Chapter 4 Hierarchical Virtual Node

Data selection is the frontier of a visualization. The design goal is to translate a user’s

intention into a selection query via the designated interface. In the overall trend, data

selection has received less attention in the development of interactive techniques since

the term interaction is becoming overloaded. Basically, every software tool is interactive

but mostly through the manipulation of a widget. Broadly speaking, a visualization is just

one of the available software applications. What makes the interactive component of a

visualization really distinctive is how well it supports arbitrary selection of data directly

in the interface both intuitively and efficiently in order to facilitate subsequent analytic

tasks. This is challenging especially in terms of interacting directly in multidimensional

space due to the curse of dimensionality such as over-plotting, visual clutter etc.

In this chapter, a novel technique of Hierarchical Virtual Node (HVN) will be

introduced which is revolutionary in such a way that it allows users to interact with data

hierarchically, directly in parallel coordinates and even under the circumstances of over-

plotting and visual clutter. However, the application of HVN does not limit itself only to

parallel coordinates and is applicable to any visualizations with geometric primitives

based on the polyline or polycurve.

4.1 Interaction or Selection?

Modern information visualization techniques, at their core, appear to have two main

components: representation and interaction. The representation component is concerned

with mapping from data to advanced computer graphics and how to draw or render them

on the display. The interaction component on the other hand concerns the dialog between

the user and the data stored on the system as the user explores the data set to uncover

insights. The interaction component’s roots lie in the area of Computer-Human

Interaction (CHI). Although discussed as two separate components, representation and

interaction clearly are not mutually exclusive.

42

While an information visualization system is taking the role of providing advanced

GUIs for supporting Computer-Human Interaction (CHI), it is supposed to facilitate CHI

in both directions; that is 1) the input from human to computer (or data), and 2) the output

from computer (or data) to human. However, in the past decades, researchers in the

InfoVis community have paid more attention to the output part; that is they are concerned

more with the visual representation of output data, such as the output analysis results, for

users to better understand its contents, attributes and relational structures. They have not

paid enough attention to the human input part that is the human instructing, monitoring

and guidance in the whole circle of visual data manipulation and visual analytical

reasoning. The existing research work that has been done in the visual human input part

has mainly focused on low-level zooming and navigation operations and has not

addressed the benefit that human involvement provides in visual data manipulation and

visual analytical reasoning processes.

4.2 Revisiting the Data Selection Models

First of all, we would like to revisit the models of data selection before going into the

details of the HVN. In this section, numerous models, technical aspects and their awkward

use cases of data selection will be thoroughly discussed. The technical provisions help

one to understand that the complexity of the proposed HVN (see Figure 4.3) considerably

surpasses others. Here, we aim to provide a comprehensive background about the current

techniques and also help one to understand the significant contribution that the HVN has

made and the problems that it aims to solve.

The following table presents a classification of the data selection models applied in

parallel coordinates. The provision is on the basis of a courteous scan of the existing

literature. Note that, the table is discretionary and by no means an exhaustive list since

some authors did not explicit clarify the way to select data and also some systems are

interactive only for zooming and, viewing rather than data selection. Therefore, we have

decided to exclude them from the list.

Models References

43

Rectangle Inclusion [31]

Value Range [60], [61], [62], [63]

Point Selection [64]5, [65], [66]

Table 4.1. A taxonomy of data selection technique.

4.2.1 Rectangular Selection Model

The operations require one to draw a bounding region by the sequence of mouse down,

drag and release operations. The bounding region defines the coordinates for searching

the embraced data items. It has been widely used in graph visualization since a node has

a duality of representing the data and coordinate simultaneously. For implementing this

model in graph visualization, one has to test a point ሺܺ, ܻሻ with the following conditions:

ቊ
௑ݐܿ݁ݎ ൑ ܺ ൑ ሺݐܿ݁ݎ௑ ൅ ௪௜ௗ௧௛ሻݐܿ݁ݎ
௒ݐܿ݁ݎ ൑ ܻ ൑ ൫ݐܿ݁ݎ௒ ൅ ௛௘௜௚௛௧൯ݐܿ݁ݎ

 Please note that, these conditions presume the screen coordinate starts from

bottom-left corner.

In the parallel coordinates, a geometric polyline or curve is technically drawn by

passing multiple end points to a software API. Strictly speaking, a line other than both

ends does not occupy a bounding region nor does it represent any data points. Thus, a

practical implementation will need to test a slope-intercept between four sides of the

rectangle against a given line. Figure 4.1 illustrates the operation of the rectangular

selection model in parallel coordinates and scatterplot.

5 Authors did not actually implement a point based selection model in their work. However, we have

classified it here since its geometric primitive possibly allows a point based selection.

44

Figure 4.1 Rectangular selection model. (Left) A direct data selection in parallel

coordinate, one has to find the intercept between line and rectangle. (Right) A direct

data selection in scatterplot which is more accurate and intuitive.

For searching the line-rectangle interception efficiently the Liang-Barsky algorithm

[67] is a desirable choice because it can return the occurrence an inception and also the

coordinates of interception. Although, the interest here is to determine a line and rectangle

interception one can further use the information of intercepted coordinates for

focus+context operation within the rectangular area. The algorithm developed by Liang-

Barsky was originally used to determine the interceptions between a line and its clipping

window. It formalizes a line segment into parametric representations described below.

Please refer to the diagram in Figure 4.2 for clarity.

ݔ ൌ ଴ݔ ൅ᇞ ݔ ൈ ݐ

ݕ ൌ ଴ݕ ൅ᇞ ݕ ൈ ݐ

Where ᇞ denotes a distance between two end points in one direction such that ᇞ

ݔ ൌ ଵݔ െ ଴ and ᇞݔ ݕ ൌ ଵݕ െ ,is a parametric value which is 0 at the point ሺܺ ݐ ଴ andݕ ܻሻ

and 1 at the point ሺܺ ൅ᇞ ܺ, ܻ ൅ᇞ ܻሻ.

45

0

1

t

Figure 4.2 Properties of the Liang-Barsky algorithm. The diagram describes the

notations and concept of the algorithm.

By substituting the parametric representations (see [67]), one can lead to the

following notations.

൞

ଵ݌ ൌ െ ᇞ ݔ
ଶ݌ ൌᇞ ݔ

ଷ݌ ൌ െ ᇞ ݕ
ସ݌ ൌᇞ ݕ

൞

ଵݍ ൌ ଴ݔ െ ௟௘௙௧ݐܿ݁ݎ
ଶݍ ൌ ௥௜௚௛௧ݐܿ݁ݎ െ ଴ݔ
ଷݍ ൌ ଴ݕ െ ௕௢௧௧௢௠ݐܿ݁ݎ
ସݍ ൌ ௧௢௣ݐܿ݁ݎ െ ଴ݕ

The values ሼ݌ଵ, ,ଶ݌ ,ଷ݌ ,ଵݍସሽ and ሼ݌ ,ଶݍ ,ଷݍ ସሽ will be passed to the algorithm forݍ

testing the condition against the parametric value ݐ . A versatile implementation is

described in Algorithm 4.1 where |∗|, ܺ and ܦ denote the cardinality, dimensions and

data points. There are two inputs required namely ܲ for a set of polylines and ݐܿ݁ݎ which

describes the attributes of the bounding rectangle.

1. input

2. ܲ ൌ ሼ݌ଵ, ,ଶ݌ … , ேሽ݌

 /* .Bounding rectangle */ ݐܿ݁ݎ .3

4. initialization

46

଴ݐ .5 ← 0

ଵݐ .6 ← 1

7. ܲ ← ∅

8. begin algorithm

9. for ݅ ≔ 0 to ‖ܺ‖

10. ݆ ൌ ሺ݅ ൅ 1ሻ

11. for ݇ ≔ 0 to ‖ܦ‖

଴ݔ .12 ൌ ܺ௑೔ /* ܺ is the x-coordinate of ௜ܺ in here. */

ଵݔ .13 ൌ ܺ௑ೕ /* ܺ is the x-coordinate of ௝ܺ in here. */

14. /* convert to screen coordinate with respect to ௜ܺ and ௝ܺ. */

଴ݕ .15 ൌ ௜ሺ݇ሻ൯ܦ൫݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ

ଵݕ .16 ൌ ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ ቀܦ௝ሺ݇ሻቁ

17. if ݕ݇ݏݎܽܤ݃݊ܽ݅ܮሺെ∆ݔ, ሺݔ଴ െ ,௥௘௖௧ሻݐ݂݈݁ ,଴ݐ ଵሻ is true andݐ

,ݔ∆ሺݕ݇ݏݎܽܤ݃݊ܽ݅ܮ .18 ሺݐ݄݃݅ݎ௥௘௖௧ െ ,଴ሻݔ ,଴ݐ ଵሻ is true andݐ

,ݕ∆ሺെݕ݇ݏݎܽܤ݃݊ܽ݅ܮ .19 ሺݕ଴ െ ,௥௘௖௧ሻ݉݋ݐݐ݋ܾ ,଴ݐ ଵሻ is true andݐ

,ݕ∆ሺെݕ݇ݏݎܽܤ݃݊ܽ݅ܮ .20 ሺ݌݋ݐ௥௘௖௧ െ ,଴ሻݕ ,଴ݐ ଵሻ is true thenݐ

21. ܲ ← ௜ሺ݇ሻܦ

22. ܲ ← ௝ሺ݇ሻܦ

23. end if

24. end for

25. end for

26. return ܲ

27. end algorithm

28.

29. procedure ݕ݇ݏݎܽܤ݃݊ܽ݅ܮሺ݌, ,ݍ ,଴ݐ ଵሻݐ

30. if ݌ ൌ 0 and ݍ ൏ 0 then

31. return false /* parallel line found. */

32. else

ݎ .33 ൌ ݌
ൗݍ

34. if ݌ ൏ 0 then

47

35. if ݎ ൐ ଵ thenݐ

36. return false

37. else if ݎ ൐ ଴ thenݐ

଴ݐ .38 ← ݎ

39. end if

40. else if ݌ ൐ 0 then

41. if ݎ ൏ ଴ thenݐ

42. return false

43. else if ݎ ൏ ଵ thenݐ

ଵݐ .44 ← ݎ

45. end if

46. end if

47. end if

48. return true

49. end procedure

Algorithm 4.1 An implementation of the Liang-Barsky. The algorithm consists of

two functions where the top function iterates through the lines in parallel coordinates

and calls the function LiangBarsky which returns a Boolean to indicate whether the

intercepted condition is true or not.

The main drawback is the noise within selected data tends to increase rapidly when

parallel coordinates becomes cluttered. Under those circumstances, it is difficult to apply

serious analytic techniques due to an unacceptable amount of unwanted data being

included, as illustrated in Figure 4.3.

48

Figure 4.3. Rectangular selection model within a crowded visualization. It shows

the challenge to select the intended data accurately when a visualization is overcrowded.

In summary, this model provides a rapid and agile data selection for a moderate

amount of data but the user’s frustration will soon arise when dealing with a crowded

visualization due to inevitable inclusion of unwanted data. For example, the parallel

coordinates system implemented by Siirtola [31] can select a collection of polylines

which pass through the rectangular area but the use case does not work well over a display

with intensively overlapping elements as Siirtola had further made a comment that it is

more appropriate to harness rectangular inclusion for highlighting outliers.

4.2.2 Value Range Model

According to Table 4.1, in which this model appears to be the most popular in parallel

coordinates probably due to its simplicity, there are numerous implementations but in

general, users do not interact with geometric primitive directly. For example, they interact

with widgets (i.e. a slider bar) attached to a vertical axis by adjusting its upper and lower

value range. Let ݈௜ and ݑ௜ be the inputs of upper and lower bound with respect to a target

variable ௜ܺ, one can easily use a conditional function to accept or reject the selection of a

data point ݀ ∈ ௜ܺ expressed as follows:

݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ ൌ ൜
,݁ݑݎݐ ݈௜ ൑ ݀௜ ൑ ݉݅݊ሺ	⋀	௜ݑ ௜ܺሻ ൑ ݈௜ ൏ ௜ݑ ൑ ሺݔܽ݉ ௜ܺሻ
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݁ݓ݄ݐ݋

Equation 4.1

49

AND (∧) operator Given a set of bounding values ܮ ൌ ሼ݈ଵ, ݈ଶ, … ݈ேሽ and ܷ ൌ

ሼݑଵ, ,ଶݑ be a polyline with a set of data ݌ ேሽ with respect to a target variable ௜ܺ. Letݑ…

points ݌ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ேሽ ∈ in ܰ dimensions. We can use Equation 4.1 to determine ݌

whether ݌ is in the selection set if all of its containing points ܦ must satisfy the test

condition against its target variable ௜ܺ ∈ ܺ as expressed below:

෍ ෍ ݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ
௟೔∈௅,௨೔∈௎

∧ …∧ ݂ሺ݀ேିଵ, ݈௜, ,௜ݑ ௜ܺሻ, ∃! ݀௜ ∈ ௜ܺ, ݅ ൏ ܰ
ௗ೔∈௣

Equation 4.2

In addition, it is equivalent to ignore the AND operator for a variable by relaxing ݈௜

and ݑ௜ with the following settings:

݈௜ ൌ ݉݅݊ሺ ௜ܺሻ

௜ݑ ൌ ሺݔܽ݉ ௜ܺሻ

Where ݉݅݊ and ݉ܽݔ return the minimal and maximal values so essentially all the

data in ௜ܺ are selected. Usually, this is the initial state when the dataset is first loaded.

The counterpart of AND is the OR operator.

OR (∨) operator The test condition of OR operator is more generous than the AND

operator. We consider a polyline is in the selection set if one of its containing point ܦ has

satisfied the test condition against its target variable.

෍ ෍ ݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ
௟೔∈௅,௨೔∈௎

∨ …∨ ݂ሺ݀ேିଵ, ݈௜, ,௜ݑ ௜ܺሻ, ݅ ൏ ܰ
ௗ೔∈௣

Equation 4.3

Thus, if any of variables in ܺ has set its bounding range to ݈௜ ൌ ݉݅݊ሺ ௜ܺሻ and ݑ௜ ൌ

ሺݔܽ݉ ௜ܺሻ will result in a global data selection.

These operators are useful for restricting or relaxing the selection set but such

features come at the cost of intuitiveness. A polyline has no visual continuity so it is very

difficult to trace the direction of next line segment at a junction under the circumstance

of over-plotting. For example, a polyline appears to be included but may have been

filtered out by another AND operator which is far apart. This is illustrated in Figure 4.4

for clarity.

50

Figure 4.4 The value range model with AND and OR operators in parallel

coordinates. The arrows define the upper and lower bound of the value range and the

polylines brushed with gold colors indicate the selection. (Top) A demonstration of OR

operator, the difference has brushed with green color for easy comparison with the

image below. (Bottom) A demonstration of AND operator.

2D AND/OR operator Both ݈ and ݑ need to carry an additional dimension of

information denoted as ݈௜,௝ and ݑ௜,௝ with respect to ௜ܺ and ௝ܺ . It is trivial to rewrite

equations Equation 4.1 and Equation 4.2 for extending 2D operation. Please note that, for

1D data selection, these equations test the condition based on the data value of a given

data point rather than its coordinated location on the display.

51

For visualizing the data selection on a 2D plane, we can apply a rectangular

selection technique as we have described previously. Let ݈ሺݔ, ሻݕ and ݑሺݔ, ሻݕ be the

coordinate for intercepted points of ݈௜,௝ and ݑ௜,௝ respectively. For each intercepted point,

we can draw two ⊾90° infinite perpendicular lines ሾെ∞,∞ሿ past the point. The line must

be parallel to the axis such that ݈௫ ∥ ௫ and ݈௬ݑ ∥ ௬. One can find four intercepted pointsݑ

൫݈௫, ݈௬൯, ൫ݑ௫, ݈௬൯, ൫ݑ௫, ,௬൯ݑ ൫݈௫, ௬൯ that consist of a rectangular bound. The AND operatorݑ

in two dimensional space is only interested in a point ݀௫,௬ which satisfies the following

condition:

݈௫ ൑ ݀௫ ൑ ௫ݑ ∧ ݈௬ ൑ ݀௬ ൑ ௬ݑ

Similarly, the condition for the OR operator can be rewritten as:

݈௫ ൑ ݀௫ ൑ ݈௬	௫⋁ݑ ൑ ݀௬ ൑ ௬ݑ

The rectangle enclosure easily reveals the selected data as illustrated in Figure 4.5.

Figure 4.5 An application of the value range model in 2D. The arrows define the

upper and lower bound of the value range. (Left) A demonstration of the 2D AND

operator. (Right) A demonstration of the 2D OR operator in scatterplot.

This method has a higher degree of accuracy but there are also many shortcomings.

The most serious one is the physical cost incurred with the high dimensionality of data if

the interaction cost framework studied by Lam [68] is taken into consideration. For

example, the physical motions spent will be non-trivial to adjust the value range for 20 or

even greater 100 variables. It is extremely time consuming and error prone so for practical

52

purpose it will deteriorate and eventually become unusable. One can imagine that this

kind of situation could occur if one tried to fiddle with more than 100 slider bar widgets.

4.2.3 Point Selection Model

The standard case only needs a mouse click and this is by far the most intuitive behaviour

for humans. The minimum drawing unit on the screen is per pixel so the user needs to

position the mouse cursor just over the pixels occupied by a geometric primitive for

triggering a successful selection. Sometimes, a geometric primitive is misaligned due to

antialiasing so the common remedy is to use a tolerance for compensating the

misalignment. The basic concept is illustrated in Figure 4.6.

Figure 4.6. Point selection with a tolerance.

Let ݐ, ሺܺ, ܻሻ and ሺ ଵܺ, ଵܻሻ denote a tolerance, location of a data point, and location

of a mouse cursor respectively. According to the Euclidean distance, if we treat ݐ as a

radius then a given data point is considered as selected if the hypotenuse between ሺܺ, ܻሻ

and ሺ ଵܺ, ଵܻሻ is less than ݐ. Thus, the test function of a point selection can be trivially

written as follow:

݂൫ሺܺ, ܻሻ, ሺ ଵܺ, ଵܻሻ, ൯ݐ ൌ ቊ݁ݑݎݐ									ඥሺ ଵܺ െ ܺሻଶ ൅ ሺ ଵܻ െ ܻሻଶ ൑ ݐ
݁ݏ݅ݓݎ݄݁ݐ݋																																							,݁ݏ݈݂ܽ

The point selection is the most intuitive model but unfortunately, the application in

information visualization is generally limited to node-link alike visualizations. The

selective accuracy may be fine-grained but it cannot achieve a substantial selection.

Figure 4.7 provides an example of a web application with node-link based navigation.

53

Figure 4.7 A web application with a node-link based navigation. The uUser can

select a node on the left view which is a hyperlink and it will reflect to the browser on

the right view. This example demonstrates both select and viewing operations.

Currently, there is no application of point selection in parallel coordinates and this

is becomes apparent if we scan the relevant literature. However, we have noted from the

existing literature that there is a tile-based parallel coordinates contributed by Alsakran

et. al. [64] as shown in Figure 4.8. A tile is similar to a node strucutre and the principle

of applying a point selection on a tile and a node are alike. Theorically, we see a potential

application for point selection on the tile-based parallel coordinates but in practice, it will

be chellenging because there is not enough information provided by the author about the

association of a tile and the data it represents.

Figure 4.8. A tile-based parallel coordinates. The image is sourced from [64].

There is also an interesting implementation discussed by Shannon et. al. [65] as

shown in Figure 4.9 where they partition data into a graph network and expose it by a

separate view for the user to interact with them in a point selection fashion. Unfortunately,

54

the user is only allowed to interact with data indirectly on a separate view and this makes

it difficult to understand the selection context.

Figure 4.9. An application of the indirect point selection in parallel coordinates.

The image is sourced from [65].

4.2.4 Discussion

The models introduced above generally do not provide an excellent user experience in

relation to parallel coordinates. In general, overplot and visual clutter are the main

barricades of interacting with data in a multidimensional space. The value range model is

able to deal with it but it also poses other problems. The following table summarizes the

advantages and disadvantages of the models as described previously.

Models Advantages Disadvantages

Rectangle Inclusion Substantial selection. Poor accuracy and not intuitive.

Value Range
Fine selection granularity.

High interaction cost and not

intuitive.

Point Selection Accuracy, simple and

intuitive.

Quantity (Usually, select one data

item at a time).

55

Table 4.2. A summary of the data selection models.

In order to address the issues, we propose a novel technique of hierarchical virtual

node (HVN) for data selection directly in parallel coordinates with no assumption about

the given data. The basic idea behind it is depicted in Figure 4.10. In HVN, data are

partitioned hierarchically for variable selection on the basis of location proximity and the

display space is filled with virtual nodes for user interaction. Let ݒ௜ and ݀௜ be a virtual

node and data item respectively where ݅ denotes the hierarchical level and ݒ௜ ൌ

ሼ݀௜, ݀௜ିଵ, … , ݀௜ିேሽ subjects to ሺ݅ െ ܰሻ ൐ 0. When a node ݒ௜ is mouse clicked, all the data

items beneath ݒ௜ are included as part of the selection set. The approach offers better

flexibility and accuracy with lower physical cost of motion to interact with data in parallel

coordinates.

Figure 4.10. Illustration of the hierarchical virtual node design. Space is filled

with virtual nodes (circles with broken lines) for user interaction since they are placed

hierarchically so it allows the user to perform variable data selection.

The HVN combines the advantages of others with a careful design to minimize the

inherited shortcomings. The following table summarizes the features of HVN. The middle

and last column describe the operation about how to achieve it in HVN and which model

also offers similar features respectively.

Features How Similar Model(s)

Substantial selection Click on the top node (global node) of

the hierarchy.

Rectangle inclusion,

value range.

Accuracy Click on the bottom node (data node) or

the child node of the hierarchy.

Point selection.

56

Intuitiveness Requires only a mouse click on a node. Point selection.

Lower motion cost Requires only a mouse click on a node. Point selection.

Neighboring selection Data are partitioning into clusters by

hierarchical clustering.

Value range (without

clustering)

Repeatability of a data

selection (Go back)

Click on the node again which was

clicked previously.

Point selection.

Global and Local Drill

Down

Click on any node for interactive data

exploration.

N/A

Hierarchical selection Click on any node and its child nodes

are selected.

N/A

Data Density Observation through the distribution of

the virtual nodes.

N/A

Table 4.3. Features of the hierarchical virtual node.

The repeatability of a data selection listed in the table is also known as the go back

feature. In visual analytics, one frequently needs to reproduce the previous view again for

gaining recollection. To achieve this, one has to redo the previous steps that were carried

out. In the rectangular selection model, it is difficult to exactly redraw the same rectangle

again but such a task is trivial in the HVN.

There are several advantages of the HVN over other techniques. First, there is no

need to specify a value range. Quantization is always difficult which usually requires the

user to understand the data characteristics. Second, it provides the granularity of multi-

level selection of data with greater flexibility to quickly explore the patterns between the

nearest neighbors. Third, virtual nodes provide the visual distribution of the data. The

distribution of the nodes also suggests the distribution of the continuous variable. Finally,

it has a minimal interaction cost because the entire operation can be activated by a single

mouse click rather than interpreting a sequence of mouse operations. Overall, the

compliexity of the HVN is greater than others and the technical details will be discussed

in the following section.

57

4.3 Implementing the HVN

This section is dedicated to the technical discussion of the HVN. The basic idea of the

HVN was born in a discussion with Dr. Mao Lin Huang. The key points are briefly

extracted below to the best of our remembrance where ܳ and ܣ mean the question asked

by me and the answer provided by Dr. Mao Lin Huang respectively.

Q: … existing techniques claiming to be fully interactive did not really

mention how they deal with the situation where the display is

overplotted and cluttered …, … also poly based geometric primitives

are very difficult to interact with ….

A: … clutter is caused by the polylines…, why don’t we use a node to

represent the data for direct data selection? …

Q: … point selection is good, but it is not efficient to select data in the

multidimensional data space…, there are too many data to select one

by one …

A: … why not partition the data hierarchically?…

Q: … OK, the idea is feasible but how do we use a node to represent

the polyline? …

A: … how about we use a virtual node? …

 The above interaction serves to reveal the originality of the HVN.

4.3.1 System Overview

An interactive parallel coordinates system with the tight integration of HVN has been

successfully implemented. A simplified version of the system flowchart is outlined in

Figure 4.11. The simplification is in a form where some minor steps have been skipped

but they will not affect the overall integrity of the flow chart. In the figure, a diagram is

also attached to a step for visually explaining the state of the corresponding process.

Overall, the whole implementation of the HVN can be condensed into Figure 4.11. In the

following sections each section will be dedicated to each process in the figure.

58

Figure 4.11. System flowchart of the HVN based parallel coordinates.

59

4.3.2 Data Classification

The goal of applying classification is to remove data redundancy. This step enhances the

computational efficiency for the next stage of hierarchical clustering. Given a variable ௜ܺ

which contains a set of data points ܦ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∀݀ ∈ ௜ܺ . Let ܳܧ: ܣ → be a ܤ

function that defines the equivalence relation. Any two arbitrary elements ݀௜ and ௝݀ in ௜ܺ

are said to be equivalent if and only if they meet the condition ܳܧ൫݀௜, ௝݀൯ ൌ ൫ܳܧ ௝݀, ݀௜൯.

The expression of ܳܧ can be written as:

,൫݀௜ܳܧ ௝݀൯ ൌ ൜
1											݀௜ ൌ ௝݀ ⇔ ݀௜ ∩ ௝݀ ് ∅
݁ݏ݅ݓݎ݄݁ݐ݋																																	,0

Equation 4.4

Given the equivalence relation defined in Equation 4.4, we can obtain the

equivalence classes denoted as ܦ ሺܦܰܫ ௜ܺሻ ൌ ሼܧଵ, ,ଶܧ … , ⁄ேሽܧ by partitioning ܦ into a

disjoint subset using the following indiscernibility relation written as:

ሺܦܰܫ ௜ܺሻ ൌ ൛൫݀௜, ௝݀൯ ∈ :ܦ ,൫݀௜ܳܧ ௝݀൯ ൌ 1ൟ

Equation 4.5

These equivalence classes will be passed to the next stage of the system pipeline.

In summary, the purpose of this step is to ensure data uniqueness and they are only

logically removed from the dataset in order to avoid redundant computation.

4.3.3 Non-parametric Partitioning by Hierarchical Clustering

The core task of data partitioning involves a clustering technique. Michaud [69] provided

a great work that covers the well-known methods. As the name suggests, the HVN uses

hierarchical clustering. Although, K-means [43] is another alternative, it requires an input

parameter of ܭ clusters to be known in advance which is not desirable in our case.

Hierarchical clustering [44] is a non-parametric technique and probably one of the

most widely used methods in data mining. Given a set of items, the method partitions

them into a set of disjoint clusters hierarchically in the following form.

ܩ ൌ ሼ ଵ݃ ∪ ݃ଶ, …∪ ݃ேሽଵ, … , ൛ሼ ଵ݃ ∪ ݃ଶሽ ∪ ሼ… ሽ, …∪ ሼ݃ேሽൟ
ఋ
∶ ݃௜ ∩ ݃௝ ൌ ∅, ݅ ് ݆

60

Where ߜ denotes the depth of the hierarchy. The hierarchy of the clusters are built

iteratively by merging two clusters with greatest similarity to form a new cluster in each

iteration. The similarity is determined by the choice of an agglomerative algorithm which

will be described latter.

The first step in hierarchical clustering transforms the data items in each variable

into a distance matrix. Univariately, this is straightforward and one simply computes the

Euclidean distance on a pairwise data items as:

,൫݀௜ݐݏ݅݀ ௝݀൯ ൌ ห݀௜ െ ௝݀ห	݁ݎ݄݁ݓ	݀௜ ് ݀ௗ

Equation 4.6

The result of ݀݅ݐݏ൫݀௜, ௝݀൯ is carried forward in the corresponding ሾ݅, ݆ሿ element

within a matrix as:

ܦ ൌ ൭
,ሺ݀ଵݐݏ݅݀ ݀ଵሻ ⋯ ,ሺ݀ଵݐݏ݅݀ ݀ேሻ

⋮ ⋱ ⋮
,ሺ݀ேݐݏ݅݀ ݀ଵሻ ⋯ ,ሺ݀ேݐݏ݅݀ ݀ேሻ

൱

Where ܦ denotes the distance matrix rather than data value matrix. The diagonal

elements ݀݅ݐݏሺ݀୧, ݀୧ሻ are always 0. Hierarchical clustering is nonparametric with no

assumption about the target ܭ cluster known in advance. Instead, it requires a stopping

rule to break the process prematurely when the optimal number of clusters have been

determined within the range 1 ൑ ݇ ൑ 	 |ሼܦሽ|. Fortunately, we build an entire hierarchy so

finding a suitable stopping rule is not a concern in this step. The strategy of hierarchical

clustering applied here is agglomerative which builds up the hierarchy from the bottom-

up.

Initially, hierarchical clustering initializes each data point in ܦ into a singleton

cluster that is ݂: ሼܦሽ → ሼܩሽ and the cardinality is one such that ∀௚∈ீ|ሼ݃ሽ| ൌ 1. Recall

that, ܦ has already been preprocessed by the classification mentioned in Section 4.3.2. In

the next iteration, it recursively merges a pairwise cluster to form a new cluster ܩ௜.௝ ൌ

൛ܩ௜ ∪ ሬሬሬሬሬሬሬሬሬԦ is updated byܩప,ఫܩ ௝ൟ based on an objective function. The inter-cluster distanceܩ

the linkage criterion. At the end of each iteration, ܩ is subtracted by 1 such that ܩ ൌ ܩ െ

1 and the process continues until |ሼܩሽ| ൌ 1 which represents a global set situated at the

top of the hierarchy.

61

In many sciences, the homogeneous requirement is commonly quantized by the

distance measure. Thus, the objective function can be simplified to be a minimization

problem. Alternatively, one might be interested in maximizing the measure but it really

depends on the problem domain. Give a set of clusters ܩ, the aim is to find a nearest

pairwise ݃௜ and ݃௝ with the minimum path by the following equation.

෍ܽ݊݅݉݃ݎ
௚∈ீ

ห݃௜ െ ݃௝ห ∶ 	 ห݃௜ െ ݃௝ห ൌ ට൫݃௜ െ ݃௝൯൫݃௜ െ ݃௝൯

Equation 4.7

Obviously, the objective function in Equation 4.7 is essentially a Euclidean distance

which measures the length between ݃௜ and ݃௝ in one direction. This is the most desirable

distance measure in our case since we expect the merge of clusters to fully respect to their

location proximity in the following order.

ሼ݀ଵ, ݀ଶ, ݀ଷ, ݀ସሽ ⇒ ൛ሼ݀ଵ, ݀ଶሽ, ݀ଷ, ݀ସൟ ⇒ ቊ
൛ሼ݀ଵ, ݀ଶሽ, ሼ݀ଷ, ݀ସሽൟ

൛ሼ݀ଵ, ݀ଶ, ݀ଷሽ, ݀ସൟ
⇒ ൛ሼ݀ଵ, ݀ଶ, ݀ଷ, ݀ସሽൟ

In other words, we want neighboring clusters to be merged progressively without

jumping since we cannot reorder6 the data in the screen space. In visualization, the

distance of ܻܺሬሬሬሬሬԦ in the screen space typically implies their relative distance in data space

|ܺ െ ܻ| proportionally.

There are three well-known linkage criterions to update the inter-cluster distance

for the newly formed cluster ܩ௜,௝. They are single link, complete link and average link

and these concepts have been well explained by Day and Edelsbrunner [70]. In short,

single linkage searches the shortest inter-cluster distance between ݃௜ and ݃௝ from the

adjacency matrix and Equation 4.6 can perfectly be reused in this case. Complete linkage

finds the maximum inter-cluster distance and is given by:

෍ܽݔܽ݉݃ݎ
௚∈ீ

ห݃௜ െ ݃௝ห

6 The concept of reordering only applies to variables rather than data items since doing so cannot guarantee

a data item will respect its origin in the coordinate system.

62

In other words, single link and complete links aim to minimize and maximize the

inter-cluster separation respectively whereas, average linkage is a hybrid approach

between the two. The conceptual explanation of cluster separation is illustrated in Figure

4.12.

Figure 4.12 An illustration of the single, complete and average linkages. The

diagram shows how the distances between clusters are computed.

In updating the inter-cluster distance, we have applied the average linkage. The

average linkage algorithm is also known as Unweighted Pair Group Mean Arithmetic

(UPGMA). As the name suggests, it computes the distance of a new cluster ܩ௜,௝ from the

average values of pairwise ܩ௜ and ܩ௝. The equation is defined as follows:

,௜ܩ൫ܣܯܩܷܲ ௝൯ܩ ൌ
1

|௜ܩ| ൈ หܩ௝ห
෍ ෍ ,൫݀௜ݐݏ݅݀ ௝݀൯

ௗೕ∈ீೕௗ೔∈ீ೔

, ݅ ് ݆

Equation 4.8

Given a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ, Algorithm 4.2 provides a versatile

function for constructing the hierarchical clustering.

1. procedure ݃݊݅ݎ݁ݐݏݑ݈ܥ݈݄ܽܿ݅ܿݎܽݎ݁݅ܪሺܺ ൌ ሼ ଵܺ, … , ܺேሽሻ

2. ܸ ൌ ∅

3. for each ௜ܺ in ܺ

ܩ .4 ൌ ∑ ∑ ,൫݀௜ݐݏ݅݀ ௝݀൯ௗೕ∈஽ௗ೔∈஽ ∶ ݅ ് ݆

5. while |ሼܩሽ| ൐ 0 do

௜,௝݌ .6 ൌ ∑ ீ∋௚݊݅݉݃ݎܽ ห݃௜ െ ݃௝ห ∶ ݅ ് ݆ /* Find the clusters to merge. */

௜,௝ܩ .7 ൌ ቄܩ௣೔ ൅ /* .௣ೕቅ /* Merged two clustersܩ

63

ܩ .8 ൌ ܩ െ /* .௜ /* Remove clusterܩ

ܩ .9 ൌ ܩ െ /* .௝ /* Remove clusterܩ

10. for ݅ ← 0 to |ሼܩሽ|

௜ܩ .11 ൌ ,௜ܩ൫ܣܯܩܷܲ ௜,௝൯ܩ

12. end for

ܩ .13 ← ܩ ൅ /* .௜,௝ /* Add the merged clusterܩ

14. end while

15. ܸ ൌ ܩ

16. end for

17. return ܸ

18. end procedure

Algorithm 4.2 An implementation of the hierarchical clustering using average

linkage.

Where ݌௜,௝ denotes a temporary variable which holds the indices for ܩ௜ and ܩ௝ .

Given the example of a multidimensional data, our approach of hierarchical clustering is

univariate and this is also evident in Algorithm 4.2.

In our system pipeline, this process partitions data into logical groups hierarchically

as illustrated in Figure 4.13. The data hierarchy remains logical and the task of the next

process will map the virtual nodes into the visual space for visualization.

Figure 4.13. Logical groups partitioned by the hierarchical clustering.

64

4.3.4 Mapping Virtual Nodes into Visual Space

Let ܸ be an output produced from the previous process which holds the hierarchical

clustering result for the whole variable set ܺ with the following properties:

ܸ ൌ ሼݒଵ, ,ଶݒ … , ேሽݒ ∶ ݒ∀ ൌ ሼ݃ଵ, ݃ଶ, … , ݃ேሽ, ݒ → ܩ → .ݓ	ܦ .ݎ 	ݐ ௜ܺ

It is important to classify here for avoiding confusion with the notations used. We

have used ܩ ,ܦ and ܸ to imply data points, data groups and vertices in Section 4.3.2 for

data classification, Section 4.3.3 for hierarchical clustering and for visual space mapping

respectively. It is just a convention adopted and they ultimately refer to the same raw data.

Technically, ݒ simply describes a logical grouping ܩ of input data ܦ with respect to a

given variable ௜ܺ and it remains abstract at this stage. Hence, we need to allocate the

physical region for ݒ in the visual space before they can do any useful work.

Cluster level ℓ provides important information for positioning a virtual node

correctly in the hierarchy and it was skipped in the previous section just to simplify the

notation of ܩ. Given a ݒ, it is critical to explore its deepest level ℓ otherwise, its screen

coordinate will be misplaced. Considering the example depicted in Figure 4.14, if we only

explore the right branch of the topmost node then ℓ is 1 which is clearly wrong and its

coordinate will be mapped to a lower location than it is supposed to be.

Figure 4.14. Virtual node depth in the hierarchy. Nodes are annotated with levels.

One can determine the deepest cluster level ℓ for any given node ݒ by traversing its

children recursively. Since our implementation is recursive, the precaution has been taken

65

to persist with the local maximum found at each branch. The technique is also known as

depth first search [71] as implemented in Algorithm 4.3.

1. procedure ܵܨܦሺݒ, ሻ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

݄ݐ݌݁݀ .2 ൌ /* .Keep track the local maximum */ ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

3. while ݒ. ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ ሻ do

݄ݐ݌݁݀ .4 ൌ ݄ݐ݌݁݀ ൅ 1

5. for ݆ ← 0 to ݒ. then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

6. ݀ ൌ /* .Save children’s state */ ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

݄ݐ݌݁݀ .7 ൌ .ݒሺܵܨܦሺݔܽ݉ ,ሺ݆ሻݐܣ݈݄݀݅ܥ ݀ሻ, ሻ݄ݐ݌݁݀

8. end for

9. end while

10 return ݄݀݁ݐ݌

11. end procedure

Algorithm 4.3 An algorithm that computes the depth of a virtual node in the

hierarchy.

Each cluster has been assigned a value called the centroid denoted as ߬ which is a

value which represents the center of a cluster and does not necessarily serve as part of a

data member of that cluster. A centroid is always a middle point between its left and right

children. Recall that, centroid is a data value so it can be perfectly mapped to the ݕ

coordinate with respect to a target variable ௜ܺ for a given virtual node ݒ . Let ߚ be a

constant representing the interval (aka width) between levels, the ݔ coordinate can be

obtained by:

ܺ௩ ൌ ܺ௑೔ ൅ ሺߚ ൈ ℓ௩ሻ

Where ܺ௑೔ denotes the ܺ coordinate of a vertical axis for ௜ܺ in parallel coordinates

(the implementation that was already provided in Algorithm 2.1) and ℓ௩ denotes the level

(or depth) with respect to a given node. Accordingly, the ܻ coordinate is obtained by:

௩ܻ ൌ ሺ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲ ௜ܺ, ߬௩ሻ

66

Where ܲ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ is a wrapper function of Equation 2.1 as provided earlier

and ߬௩ denotes a centroid of ݒ which was worked out from Equation 4.8. The algorithms

are completely provided in Algorithm 4.4. Virtual nodes are always laid out from the top

node so the usage is ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮሺ ଵܸ, ௜ܺሻ where ଵܸ and ௜ܺ are the top node and

the target variable respectively.

1. procedure ݏ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮሺݒ, ௜ܺሻ

݊݋݅ݐܽݐ݊݁݅ݎܱ .2 ൌ ݁݊݋ܰ

3. if ሺ݅ ൅ 1ሻ ൏ |ܺ| then

݊݋݅ݐܽݐ݊݁݅ݎܱ .4 ≔ ݐ݄ܴ݃݅

5. else

݊݋݅ݐܽݐ݊݁݅ݎܱ .6 ≔ ݐ݂݁ܮ

7. end if

݄ݐ݀݅ݓ .8 ൌ 0

9. if ܱ݊݋݅ݐܽݐ݊݁݅ݎ is ݐ݂݁ܮ then

݄ݐ݀݅ݓ .10 ൌ ቀܺ௑ሺ೔షభሻ െ ܺ௑೔ቁ 2.0⁄

11. else

݄ݐ݀݅ݓ ,12 ൌ ቀܺ௑೔ െ ܺ௑ሺ೔శభሻቁ 2.0⁄

13. end if

14. ℓ௩ ൌ ,ݒሺܵܨܦ 0ሻ

ߚ .15 ൌ ݄ݐ݀݅ݓ ሺℓ௩ ൅ 1ሻ⁄ /* Work out the width of the interval */

16. LayoutVirtualNodesሺݒ, ௜ܺ , ,݈ܽݒݎ݁ݐ݊݅ ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

17. end procedure

18.

19. procedure LayoutVirtualNodesRecursiveሺݒ, ௜ܺ , ,ߚ ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

ݐ݁ݏ݂݂݋ .20 ൌ 0

21. if ܱ݊݋݅ݐܽݐ݊݁݅ݎ is ܴ݄݅݃ݐ then

ݐ݁ݏ݂݂݋ .22 ൌ ሺߚ ൈ ℓ௩ሻ

23. else

ݐ݁ݏ݂݂݋ .24 ൌ െሺߚ ൈ ℓ௩ሻ

67

25. end if

26. ௩ܻ ൌ ሺ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲ ௜ܺ, ߬௩ሻ /* Work out the y coordinate here */

27. ܺ௩ ൌ ܺ௑೔ ൅ /* Work out the x coordinate here */ ݐ݁ݏ݂݂݋

28. for ݆ ← 0 to ݒ. then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

29. LayoutVirtualNodesRecursive ሺݒ. ,ሺ݆ሻݐܣ݈݄݀݅ܥ ,ߚ ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

30. end for

31. end procedure

Algorithm 4.4. Algorithms of mapping a virtual node to the screen coordinate.

The width defined in the algorithm is a maximal height and it is half way to the

adjacent variable. Please refer to Figure 4.15 for clarity.

Figure 4.15. Virtual node layout definitions.

In addition, one should also note that the orientation is taken into consideration

while transforming a virtual node into the screen coordinate. This is because the

orientation for positioning virtual nodes for the last vertical axis shall face toward left

rather than right as depicted in Figure 4.16.

68

Figure 4.16. Illustration of the virtual node layout.

At this stage, the basic skeleton of the HVN has emerged. In the next section, a

dendrogram will be constructed. Actually, the interactive part of the HVN is fully

functioning without dendrogram but the sole purpose is to visualize a hierarchy for visual

association of a virtual node with its parent and child nodes.

4.3.5 Building a Dendrogram

A dendrogram is a tree-like structure which is used to visualize the hierarchy of the

clustering arrangement. The skeleton of a dendrogram can be materialized by connecting

all the virtual nodes and the purpose is to provide a visual association between parent and

child nodes. Let ݈ଵ݈ଶሬሬሬሬሬሬԦ denote a connection from a child to its parent node, there are two

lines ݈ଵ and ݈ଶ required as shown in Figure 4.17.

Figure 4.17 Connection of virtual nodes.

69

Given ݒ௖௛௜௟ௗ and ݒ௣௔௥௘௡௧ , the start ߩଵ and end point ߩଶ of ݈ଵ can be derived as

follow:

ఘܺభ ൌ ܺ௩೎೓೔೗೏

ఘܻభ ൌ ௩ܻ೎೓೔೗೏

ఘܺమ ൌ ܺ௩೛ೌೝ೐೙೟

ఘܻమ ൌ ܺ௩೎೓೔೗೏

Similarly, the start ߩଵ and end point ߩଶ of ݈ଶ can be written as follow:

ఘܺభ ൌ ܺ௩೛ೌೝ೐೙೟

ఘܻభ ൌ ௩ܻ೎೓೔೗೏

ఘܺమ ൌ ܺ௩೛ೌೝ೐೙೟

ఘܻమ ൌ ܺ௩೛ೌೝ೐೙೟

A complete implementation of drawing a dendrogram is provided in Algorithm 4.5

and again, we start the drawing from a topmost node.

1. procedure ݉ܽݎ݃݋ݎ݀݊݁ܦݓܽݎܦሺݒሻ

2. while ݒ. ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ ሻ do

3. for ݆ ← 0 to ݒ. then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

௖௛௜௟ௗݒ .4 ൌ .ݒ ሺ݆ሻݐܣ݈݄݀݅ܥ

5. DrawLine൫ܺ௩೎೓೔೗೏, ௩ܻ೎೓೔೗೏, ܺ௩, ௩ܻ೎೓೔೗೏൯

6. DrawLineቀܺ௩೛ೌೝ೐೙೟, ௩ܻ೎೓೔೗೏, ܺ௩೛ೌೝ೐೙೟, ௩ܻ೛ೌೝ೐೙೟ቁ

7. DrawDendrogramሺݒሻ

8. end for

9. end while

10. end procedure

Algorithm 4.5. An implementation of drawing a dendrogram.

There are three types of nodes namely, global, data and virtual nodes. Figure 4.18

provides a diagram describing their locations. The lowest cluster level is called a data

node since it is a singleton cluster containing only a data point. The global node sits at

70

the root level that holds the hierarchical topology entirely. The rest are called the virtual

nodes meaning that they are interpolated for interaction. Strictly speaking, a global node

is implicitly a virtual node.

Figure 4.18 Types of virtual node.

4.3.6 Constructing Parallel Coordinates

In this section, we will be discussing the geometric drawings and the integration of HVN

into parallel coordinates. There are three geometric primitives currently provided in our

parallel coordinates system namely, polyline, Bezier curve and Bezier virtual nodes.

4.3.6.1 Polyline

Polyline is a classic primitive adopted by Inselberg [13] as well as many parallel

coordinates systems. A complete implementation of classic parallel coordinates has

already been provided in Algorithm 2.1 so we will not repeat it here.

A polyline is a simple way to model the path of a multidimensional data but it is

often criticized in terms of its geometric discontinuity where user can only observe partial

paths if they overlap. This problem is visualized in Figure 4.19.

71

Figure 4.19. Severities of the overlapped polylines. (Top Left) No overlapping,

(Top Right) Unable to observe ݌ଵ݌ଶ݌ଷሬሬሬሬሬሬሬሬሬሬሬሬሬԦ of the pink polyline. (Bottom Left) Unable to

observe ݌ଶ݌ଷ݌ସ݌ହሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ of the pink polyline. (Bottom Right) Unable to observe others except

the brown polyline.

The implementation of polyline primitive is conceptually trivial and a snapshot of

our system implementation is provided in Figure 4.20

Figure 4.20. A snapshot of polyline primitive in our system.

72

4.3.6.2 Bezier Curve

A Bezier curve [72] is a parametric curve with the mathematical basis based on the

Bernstein polynomial [73]. Bezier curve is known as parametric in the sense that the path

is controlled by a set of control points ܥ ൌ ሼ ଴ܲ, ଵܲ, … , ேܲିଵሽ and a parameter ݐ. Graham

[74] has discussed an application of curve in parallel coordinates and the advantage is the

dynamic path of oscillation which can be controlled by adjusting control points. By

contrast, the path of a classic polyline is always static and there is no way to change it to

avoid the overplot.

The properties of a Bezier curve are listed as follows:

 ଴ܲ and ேܲିଵ are the end points and lie on a curve.

 Middle control points from ଵܲ to ேܲିଶ do not either pass through or lie on the

curve as shown in Figure 4.21. However, the linear Bezier curve is an exception.

 ଴ܲ ଵܲሬሬሬሬሬሬሬሬԦ is a tangent line ٣ at the point ଴ܲ. Similarily, ଶܲ ଷܲሬሬሬሬሬሬሬሬԦ is a tangent line ٣ at the

point ଷܲ.

 Invariance with affine transformation.

Figure 4.21. Bezier curve with control points.

Mathematically, a Bezier curve of degree ݊ is generally written as:

ܲሺݐሻ ൌ ෍ ௜ܲ

௡ିଵ

௜ୀ଴

ൈ ௜ܤ
௡ሺݐሻ

Equation 4.9

Where ݐ specifies a ratio along a line such that ݐ ∈ ሾ0,1ሿ and ܤ௜
௡ is a Bernstein

polynomial expressed as:

73

௜ܤ
௡ሺݐሻ ൌ ௜ܥ

௡ሺ1 െ ௜ݐሻ௡ିଵݐ

Where ܥ௜
௡ is a binomial coefficient given as:

௜ܥ
௡ ൌ

݊!
݅! ሺ݊ െ 1ሻ

These theorems have been exhaustively discussed in the existing literature and

widely accessible but we suggest, in particular, an excellent note written by Sederberg

[75]. Equation 4.9 is a generalized expression and for a Bezier curve with a degree of 3,

we can expand the polynomial to the following form:

ሻݐሺܤ ൌ ሺ1 െ ሻଷݐ ଴ܲ ൅ 3ሺ1 െ ݐሻଶݐ ଴ܲ ൅ 3ሺ1 െ ଶݐሻݐ ଵܲ ൅ ଷݐ ଵܲ, ∀ ௜ܲ ∈ ሼ ௢ܲ, ଵܲ, … , ேܲିଵሽ

Equation 4.10

Recall that the nonlinear problem is often approximated linearly. The output of ܤሺݐሻ

evaluates to a point which lies on a Bezier curve, as shown in Figure 4.22 for ݐ ∈ ሾ0,1ሿ.

In general, a smaller step of ݐ generates a more smooth curve and vice versa. However,

from a practical point of view, ݐ shall be chosen as just enough for smoothing a Bezier

curve otherwise it will impact the memory usage and performance of the system. In our

implementation, ݐ increments at an interval of 0.05 so ܤሺݐሻ is actually invoked 21 times

to approximate just one Bezier curve segment. In Figure 4.24 provides an experiment

with various interval values where 0.5 and 0.1 have produced a ିܥଵ continuous curve

since one can easily observe the discontinuities.

Figure 4.22. Evaluation of points in a Bezier curve.

In our approach, we construct a Bezier curve segment with 4 points where the start

and end points are data points with respect to their target variables. For example, given a

74

multidimensional data row ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ , there are ܯ െ 1 Bezier curves

constructed as ܾଵ ൌ ݀ଵ݀ଶሬሬሬሬሬሬሬሬሬԦ, ܾଶ ൌ ݀ଶ݀ଷሬሬሬሬሬሬሬሬሬԦ, … , ܾெିଵ ൌ ݀ெିଵ݀ெሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ . These Bezier curves are

connected together to form a single ܥ଴ continuous curve, as illustrated in Figure 4.23.

Alternative, there is another approach called B-spline curve, but it is more complex and

will not be implemented here.

Figure 4.23. Bezier curve segments.

75

Figure 4.24. Bezier curves with various intervals of ݐ. The value of ݐ increments at

an interval of 0.5, 0.2, 0.1 and 0.05 from the top to the bottom image.

76

4.3.6.3 Bezier Virtual Nodes

Bezier virtual nodes is not a new geometric primitive. It is considered to be an extension

of the Bezier curve by drawing non-uniform curve segments that must pass through

virtual nodes to form a single curve.

Definition 4.1 Knots are end points of a curve, the start and the end point. We say a

curve is uniform if the knots are equally spaced and vice versa.

The goal of the Bezier virtual nodes aims to prevent the overplot of the virtual

nodes. One feasible way is to interpolate them as knots in a curve. Figure 4.25 illustrates

the idea.

Figure 4.25 Geometric drawing of the selected data. (Left) A geometric drawing

with overplot of the virtual nodes. (Right) A geometric drawing by treating virtual

nodes as end points.

The geometric basis is based on the previous section. Considering virtual nodes as

knots, there are more Bezier curve segments generated by inserting knots and a Bezier

virtual nodes curve is formed by connecting them all together, as illustrated in Figure

4.26.

77

Figure 4.26. Bezier virtual nodes style drawing.

The challenge of this drawing comes from the mapping for a mixture of virtual and

data nodes to form a complete curve. Please refer to Figure 4.18 again for the definition

of the node types. For example, suppose there are 10 data rows selected by a mouse click

over a virtual node before the system can draw them, then it needs to work out a complete

path that it must pass through (which consist of ܰ virtual and data nodes just for a data

row) and such task is far from trivial.

This challenge is not an issue in the polyline and Bezier curve because their paths

are formed without any consideration of the virtual nodes. In the following, we will

describe how the system responds to a virtual node click and also how we have optimized

our data structures to achieve high system performance.

Tracing nodes in virtual space In our initial implementation, there were two separate

data structures maintained, one for storing the data values in a data matrix ܦ and another

one for virtual nodes which persisted in a tree structure denoted as ܶ. Given a virtual node

at location ݒ௜ , the system had to cross reference ܦ and ܶ multiple times. The time

consuming nature of this implementation was approximately ܱሺ݊ଷሻ which is

computationally expensive if a given dataset is considered large ܰ → ∞ . As a

consequence, the system performance was poor. A better optimization is given in the

following.

Optimization by tracing the virtual node in data space One feasible performance

improvement can be made by mapping a virtual node and its hierarchical level to a

78

corresponding data point and virtual dimension respectively. In other words, the

additional data of ℓ ൈ dimensions are added to the dataset with respect to ௜ܺ where the ܯ

size of ℓ is equal to the number of levels. Thus, the data matrix ܦ needs to be redefined

with respect to each variable ௜ܺ as:

ܦ ൌ ሼܦଵ,… , ெሽܦ ∪ ሾℓ ൈ ሿܯ

The greatest advantage of this implementation is the ability to treat virtual nodes

and real data points consistently but it comes at the cost of space complexity. However,

we are mainly concerned with reduction of the time complexity to achieve a reasonable

response time for better user experience.

The data table in Figure 4.27 illustrates the conceptual implementation which

contains one data dimension and three visual dimensions shaded in black and blue colors

respectively. Recall that, a virtual dimension is inserted to represent each level in the

hierarchical clustering. The ܰܽܰ means a null node and does not represent any end point

in a geometry. For example, there are two null nodes in the fourth row of the data table

so the algorithm will draw only one line segment. Note that, if a ܰܽܰ appears in a normal

dataset it is called missing data. Dealing with missing data is outside the scope of this

thesis hence they will be removed in the preprocessing step for simplicity.

Figure 4.27 Redefinition of a data matrix. The data matrix is redefined to support the

storage of the virtual node and virtual dimension.

Suppose, if D1 (P2 with a value of 18.25) and D2 (P1 with a value of 2) in Figure

4.28 are clicked then the top three rows and bottom two rows are selected. Thus, we only

need to translate the data points to the screen coordinates since the virtual nodes have

79

already been stored in the matrix ܦ. One can see that such optimization greatly simplifies

the overall problem by completely removing the cross references between separate data

structures.

Figure 4.28 An illustration of geometric mapping of data and virtual node to

parallel coordinates.

Following the procedures described above, we can obtain the result as illustrated in

a snapshot from our system in Figure 4.29.

Figure 4.29. A snapshot of the Bezier virtue nodes drawing in our system.

80

Interestingly, by comparing these 3 drawings with a dataset which contains 58776

(12 ൈ 4898) data points, we were surprised that the Bezier virtual node incurs less visual

clutter due to its hierarchical arrangement of the curves and the result is also shown in

Figure 4.30 where the geometric primitives are polyline, Bezier curve and Bezier virtual

nodes for the top, middle and bottom image respectively. It is obvious that the rendering

by the Bezier virtual nodes can reduce the overplot of the visualization.

81

Figure 4.30. Comparison of the overplot severity between geometric primitives.

82

4.3.7 Overview Presentation by Virtual Nodes Density

All the technical implementations of the HVV have been fully described above and a real

snapshot of the system is illustrated in Figure 4.31. By default, our overview hides all the

geometric objects except the virtual nodes. Thanks to the virtual nodes, we are able to

modify the Visual Information Seeking mantra proposed by Shneiderman [56] from

overview first to overview first by virtual nodes. This allows the user to perceive the

distribution of the data density through the distribution of the virtual nodes in an elegant

way.

Figure 4.31. Overview presentation of the HVN in parallel coordinates.

Alternatively, the observation of the density distribution can be achieved by

embedding histogram to parallel coordinates and it was actually our initial consideration.

However, we have soon realized that the virtual nodes provide a better way of perceiving

the data density in reality. Nonetheless, an analysis of the histogram will be provided

below.

Histogram [76] is the simplest nonparametric method for estimation of the data

distribution of a random variable. Figure 4.32 provides an example of the histogram for

visualizing data distribution.

83

Figure 4.32. An illustration of ordinary histograms. The bin size and width are the

most crucial factors that determine the shape of the histogram. For example, the shape

of the data distribution has changed from 8 (left) to 4 bins (right). The discontinuities

are the artifact of the chosen bin size.

The procedure of the histogram begins by classifying data univariately into bins and

then counting the occurrence of each disjoint bin ܤ ൌ ሼܾଵ ∪ ܾଶ ∪ …ܾேሽ ∶ ܾ௜ ∩ ௝ܾ ൌ

∅, ݅ ് ݆. The following equation is used to find the number of bins.

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ

݄

Equation 4.11

Where h denotes the bin width. The choice of proper width h is difficult since the

variance is not unity. To address this problem, one can alternatively work out the optimal

k first by Sturges’s [77] formula as follows:

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ
ଶܰ݃݋݈ ൅ 1

Equation 4.12

By substituting k obtained in Equation 4.12 back to Equation 4.11 to work out the

bin width h. It defines the cut point for counting the data occurrence fall within a bin

range expressed as follows:

൫ܺ௠௜௡ ൅ ሺ݄ ൈ ݅ሻ൯ ൏ ݀ ൑ ቀܺ௠௜௡ ൅ ൫݄ ൈ ሺ݅ ൅ 1ሻ൯ቁ

Equation 4.13

84

Where i denotes the bin index and ܺ௠௜௡ is the minimum value of a target variable

௝ܺ. If the range condition specified in Equation 4.13 has met for a given data point d then

we simply increment the cardinality as ݊௜ ← |ܾ௜| ൅ 1 where ݊௜ holds the number of

samples in bin ܾ௜. The histogram density function for estimating a data point is therefore

given as:

መ݂ሺ݀ሻ ൌ
݊௜
݄݊

Where the width of ܾ௜ must straddle the data point d and it can be easily determined

by using Equation 4.13 and n and h denotes the total samples and bin width respectively.

The probability of a data point which falls within the width of a bin is given as 	

௜݌ ൌ න ݂ሺ݀ሻ
௕೔

 ݔ݀

The parallel coordinates system implemented by Hauser el al. [32] embeds the

histogram as shown in Figure 4.33. However, such as approach significantly increases

the visual loading of overall visualization by displaying a mixture of geometric objects

and histograms simultaneously. In contrast, our overview first by virtual nodes approach

presents an uninterrupted way of perceiving the data density.

Figure 4.33. A parallel coordinates with histograms embedded. The image is

collected from [32].

85

4.4 Performance

A system has been successfully implemented which was written in C# and OpenGL

Shader Language (GLSL) in order to gain GPU hardware acceleration. The Open Tookkit

library (OpenTK) [78] is used for OpenGL binding by exposing C functions to C#. The

technology is also called Interop in .NET. The performance benchmarking is based on

the hardware platform depicted in Figure 4.34.

Figure 4.34. Hardware environment for benchmarking.

There are 4 datasets used in benchmarking and the performance metric has been

provided in Table 4.4. The frame per second (FPS) is an important counter since it affects

the responsiveness of the visualization when responding to a user request. In most cases,

the FPS can satisfy the request except the NYTS dataset where all the geometric

primitives are set to visible and then the FPS will suddenly drop to 9. Note that, FPS

(Geometric primitives invisible) means visualization is in an initial state as shown in

Figure 4.31.

86

Dataset Size

ሺࡹ ൈ ሻࡺ

FPS (Geometric

primitives invisible)

FPS (Geometric

primitives visible)

Car 8 ൈ 392 477 334

Wage 11 ൈ 534 730 476

Wine 12 ൈ 4898 113 65

NYTS 116 ൈ 14776 81 9

Table 4.4. Performance measurements of the system. Car and Wage datasets

were obtained from http://lib.stat.cmu.edu/datasets/, the source of the Wine dataset is

https://archive.ics.uci.edu/ml/datasets/Wine and NYTS dataset was obtained from

http://www.cdc.gov/tobacco/data_statistics/surveys/nyts/.

4.5 Discussion

In summary, this chapter presents a novel technique to interact with data in parallel

coordinates. We described several data selection models but they generally do not work

well in multidimensional space. The basic idea behind HVN is to interpolate virtual nodes

directly in parallel coordinates for hierarchical data selection. A node structure is an

intuitive interface of interaction because it has a duality of data and coordinates. Overall,

the HVN is a revolutionary way of data selection which provides a truly direct interaction

with data and is also effective under the circumstances of overplotting and visual clutter.

It is also a core technique in our interactive framework in which all the interactive tasks

are built on the basis of it. To recall the advantages and features of the HVN, please refer

to Table 4.2 and Table 4.3.

87

Chapter 5 Interactive Techniques for Visual

Analytics

In this chapter, we will focus on the HVN-oriented interactions in visual analytics. With

the advent of the visual analytics, we have noted the Visual Analytics mantra described

by Keim [11] as:

Analyze first, show the important, zoom, filter and analyze further, details on

demand.

Obviously, it is based on the Visual Information Seeking mantra proposed by

Shneiderman [56]. Keim [79] which also describes the process of visual analytics as:

The visual analytics process is a combination of automatic and visual analysis

methods with a tight coupling through human interaction in order to gain knowledge from

data.

This mantra reinforces the importance of iterative analysis and interaction in

connection with attempts to explore a dataset because a fully automatic data analysis can

only be accomplished if the problems are well-defined and this is usually not possible in

most real world cases. Therefore, the user remains the final decision maker to drive the

direction of the whole process through the iterative interactions with a visualization.

Recall that we have merged Yi et al.’s [14] seven layers model into three so the following

sections will focus on our three layers model.

5.1 Task by Dynamic Selection

Interactive data selection is an indispensable component of an effective visualization. It

improves the usability by accurately translating the intention of mouse operations into a

selection query for data manipulation. Many parallel coordinates visualizations claiming

88

to be interactive did not really focus on the Select interaction; layer 1, defined by J. S. Yi

el al. [14]. Overall, there are so far none of the existing techniques that could well achieve

the functions covered by the Select layer of J. S. Yi’s [14] seven-layer interaction model

or the Highlighting (or Selection) layer defined. Perhaps, it is too difficult to have mouse

click (or selection) on the data item which is virtually represented by a polyline (or curve)

in strongly overlapped parallel coordinates.

The HVN is the core technique of data selection in our model. It helps users to

perform subsequent analytics tasks in an efficient and practical manner. In the following

sections, we will describe some tasks in the dynamic selection layer based on the HVN.

5.1.1 Interact with Data by the HVN

Materializing a point selection model in parallel coordinates is one of contributions that

the HVN has made. The use case of HVN simply requires a mouse click on a target node

of interest. Recall that again, virtual nodes storage has been optimized in Section 4.3.6.3

for tracing a complete end-to-end path of a virtual node efficiently. Given a random

mouse click captured at the location ሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ. We know that a virtual node is

strictly placed on an interval boundary ߚ such that ߚ ൌ ݄ݐ݀݅ݓ ሺℓ௩ ൅ 1ሻ⁄ and this

equation was already defined in Algorithm 4.4. With this information, we can apply the

function below for querying which variable and level ℓ to search for in the data matrix ܦ.

݂ሺ ௜ܺ, ܺ௠௢௨௦௘ሻ ൌ ቐ
݅												෍ܺ௑೔ ൅ ൫݅ ൈ ௑೔൯ߚ ൌ ܺ௠௢௨௦௘

௜ୀ଴

: ܺ௑೔൫݅ ൈ ௑೔൯ߚ ൏ ܺ௑೔శభ

െ1																																																																																			݁ݏ݅ݓݎ݄݁ݐ݋

Equation 5.1

Where ݅ denotes a relative offset with respect to its base ௜ܺ and െ1 indicates an

invalid index because the negative value cannot be used to index a matrix column.

Suppose ௜ܺ, ܺ௑೔, ܺ௠௢௨௦௘ are Dimension1, 200 and 210 respectively and let ߚ௑೔ be 5. The

above function returns ℓ ൌ 2 which translates to an offset starting from ௜ܺ for looking up

 The next step involves building a range query by transforming ௠ܻ௢௨௦௘ to a data value .ܦ

denotes as ݀௠௢௨௦௘ . The value transformation can be easily achieved by rewriting

Equation 2.1 as:

89

݀௠௢௨௦௘ ൌ ቆ
൫ ௠ܻ௢௨௦௘ െ ௑ܻ೔൯ ൈ ൫݉ܽݔ௑೔ െ ݉݅݊௑೔൯

௑೔ݐ݄݄݃݅݁
ቇ ൅ ݉݅݊௑೔

Equation 5.2

Suppose ௠ܻ௢௨௦௘ , ௑ܻ೔ ௑೔ݔܽ݉ , , ݉݅݊௑೔ and ݄݄݁݅݃ݐ௑೔ are 90.8, 0, 20, 1 and 100

respectively. The above equation returns ൎ 18.25. Now, we are able to query the data

matrix ܦ with the following pseudo query expressed as:

SELECT ROWS FROM Dimension1 WHERE ℓ ൌ 2 AND ݀ ൌ 18.25

Of course, the query above is used for illustration purpose and is not an actual case.

We shall obtain 3 data rows as illustrated in Figure 5.1. Please note that ℓ ൌ 0 returns a

real data value rather than a virtual data (which represents a virtual node).

Figure 5.1. Data query in the HVN. It shows the mapping of the real data and virtual

data to the parallel coordinates.

The implementation for the procedure of querying selected data is provided in

Algorithm 5.1.

1. procedure ݐݏ݁ܶݐ݅ܪሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ

2. Υ ൌ ∅ /* A list of selected row indices, initialize to empty. */

3. for each ௜ܺ in ܺ

4. ℓ ൌ ሺܺݐݏ݁ܶݐ݅ܪ ௜ܺ, ܺ௠௢௨௦௘ሻ

90

5. if ℓ ൒ 0 then

6. ݀௠௢௨௦௘ ൌ ሺܻݐݏ݁ܶݐ݅ܪ ௜ܺ, ௠ܻ௢௨௦௘ሻ

7. for ݅ ൌ 0 to |ܦ|

8. if ܦሾ݅, ℓሿ ൌ ݀௠௢௨௦௘ then

9. Υ ⟵ ݅

10. end for

11. end if

12. end for

13. return 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉

14. end procedure

Algorithm 5.1. An algorithm for hit test.

Where ܦ , ሾ∗ሿ ܺݐݏ݁ܶݐ݅ܪ , and ܻݐݏ݁ܶݐ݅ܪ denote a global data matrix, indexing

operation and the wrapper functions for Equation 5.1 and Equation 5.2 respectively. The

output is a tuple 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 which holds a target variable, selected row indices, base

column index for ௜ܺ , and relative offset from its base ℓ௑೔ for indexing a virtual node.

Please refer the notations in Figure 5.2 for clarity.

Figure 5.2. Notations used for query the global data matrix.

91

Where ℓ௑೔ is a static value associated with ௜ܺ and ℓ is obtained by translating the

 coordinate of a mouse click to an index relative to ℓ௑೔ in the runtime. The tuple answers-ݕ

enough technical questions below for us to look up ܦ.

1. What is the target variable ௜ܺ?

2. How many row are selected as well as their indices?

3. If a selected node is a data node such that ℓ ൌ 0, we use ℓ௑೔, otherwise it is a

relative offset from ℓ௑೔ such that ℓ௑೔ ൅ ℓ (see Figure 5.1).

Since we are equipped with all the information provided by the tuple, the next step

is to look up the data values and transform them into the screen coordinates connected by

a geometric primitive. In Figure 5.3, we have demonstrated the operation of direct data

selection by clicking on a virtual node as indicated in the top image and the middle and

bottom diagrams show the selected data in polyline and Bezier virtual nodes styles. Note

that, we only need to transform virtual data into screen coordinates if the specified

geometric primitive are Bezier virtual nodes otherwise we skip them.

In general, the HVN completely changes the way that user interacts with data

directly in parallel coordinates which is more simple, intuitive and accurate than any

existing techniques.

92

Figure 5.3. Direct data selection via a virtual node.

93

5.1.2 Dynamic Brushing via HVN

Brushing is commonly used to discern multidimensional data patterns by visual

differentiation. In 1994, Ward [36] first proposed a concept of ܰ dimensional brushing

that can be used to highlight ܰ dimensional data items which fall within a user-specified

subspace (or sub-region) in either scatterplots or parallel-coordinates. By using brushing,

a subset of data items (polylines) within specified value ranges of one or more dimensions

can be highlighted (or focused) for viewing the structure of data patterns. This allows

users to gain insights into the spatial relationships of ܰ dimension. Lately, several

alternative brushing methods have been proposed in the parallel coordinates visualization.

For example, Hauser et al. [32] in 2002 presented a concept of angular brushing as an

extension of Ward’s standard brushing to facilitate data subsets grouping and highlighting

by a technique called angular constraint. Both techniques integrated the composite

brushing and focus+context technique to further improve the visual exploration in parallel

coordinates. In 2003, Yang et al. [45] contributed an automatic and manual brushing

mechanism to the parallel coordinate geometry called Visual Hierarchical Dimensionality

Reduction (VHDR).

Nowadays, brushing has become an integral component in parallel coordinates. Our

system equipped with the HVN has provided an excelling interface for users to carry out

such tasks with the simple steps as follows:

1. Observe the data density through the distribution of the virtual nodes,

2. Apply the color,

3. Click on a target node of interest, and

4. Go to step 1 if the task is not yet finished.

One can see that the contribution of the HVN greatly enhanced the interactivity and

usability of the parallel coordinates. In other models, this can be cumbersome. For

example, one gets to first figure out the maximal and minimal values of a data group for

value range filtering in value range model before brushing.

94

Figure 5.4 shows the outcome of brushing from the procedures described above

which only took approximately ൎ16 seconds to brush 5 data groups and the time was

mostly spent on choosing the next color. Of course, the timing can be considerably

reduced by random coloring. That is, a distinctive color is generated after every brushing

operation.

Figure 5.4. Brushing task via the HVN.

The overplot issue is always challenging especially when attempting to brush a

large dataset in parallel coordinates. For example, a rendered geometric primitive can be

drawn again with a different color in a subsequent rendering and then it eventually ceases

to exist. However, such problems exist in almost all visualizations and not just parallel

coordinates. Alternatively, alpha blending is often employed to reveal the density.

Alpha blending [80] is an image compositing technique and the process involves mixing

a source and background color together with a “blending ratio” (a.k.a alpha channel) to a

destination pixel. The color component of a pixel can be represented by a 32-bit integers

ሺܴ, ,ܩ ,ܤ ܣ ሻ whereܣ ∈ ሾ0,1ሿ holds an alpha channel. Let ܴܤܩ௦ and ܣ௦ denote the source

color and alpha respectively. The resulting color can be obtained by:

ߙ ൌ ௦ܣ ൅ ௗܣ ൈ ሺ1 െ ௦ሻܣ

ܤܩܴ ൌ ሺܴܤܩ௦ ൈ ௦ሻܣ ൅ ൫ܴܤܩௗ ൈ ௗሺ1ܣ െ ௦ሻ൯ܣ ⁄ߙ

Equation 5.3

95

Where ߙ must be greater than zero, if not, simply output the black color (ܴܤܩ ൌ 0)

in the destination pixel. Figure 5.5 demonstrates an application of alpha blending in our

system where it is obvious that the top diagram reveals a heavily over-plotted view but

the bottom one has uncovered a major pattern after applying an alpha value of 0.01.

Basically, that means some geometric objects are invisible due to insufficient density.

Figure 5.5. Alpha blending for uncovering a major pattern.

One significant drawback of alpha blending is the configuration of the ߙ value is

really empirical and more specifically, the data density is relative to the dataset size. For

example, Figure 5.6 shows results for ߙ values of 0.7, 0.1, and 0.01 for the top, middle

and bottom diagrams respectively. A lower ߙ value eases the overplotting issue but low

density patterns tend to be illegible due to high transparency. This may not be desirable

if the low density pattern is really statistically significant.

96

Figure 5.6. Comparison of alpha blending with various alpha values.

97

5.1.3 Highlighting Detail on Demand

In a typical visual analytics, the user’s interest over a subset of data is constantly changing

so the rest implies the data noise. Details on demands is a feature in our system that allows

users to indicate an area of interest to be stand out from the noise.

Details on demands is the last step in the Visual Information Seeking mantra

because details implies the quality (interested data to highlight) and not the quantity

(number of data to highlight). Let ሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ and ݐ denote the location of a mouse

click and a threshold for the number of data that can be highlighted at a time. Furthermore,

let ܶ ൌ 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 be a tuple that holds 4 elements returned from the ݐݏ݁ܶݐ݅ܪ function

defined in Algorithm 5.1. The conditional function defined below returns a Boolean to

indicate whether a highlighting operation can proceed or not, by our system.

,ሺܺ௠௢௨௦௘ݐ݄݈݄݃݅݃݅ܪ݊ܽܥ ௠ܻ௢௨௦௘ሻ ൜
|ሾ1ሿܶ|															݁ݑݎݐ ൑ ݐ
 ݁ݏ݅ݓݎ݄݁ݐ݋												݁ݏ݈݂ܽ

Equation 5.4

Where |∗| means a cardinality and ܶሾ1ሿ is an indexing operation for the second

element in tuple ܶ. The activation of the details on demand task slightly differs from data

selection. The user needs to hover a mouse cursor over an interested virtual node for

activating this task. Figure 5.7 provides a screenshot for the task taken from our system.

Figure 5.7. An application of detail on demand.

98

5.1.4 Discussion

A key point that we keep highlighting throughout this work is that, the HVN changes the

way to interact with data in parallel coordinates. All the tasks described in this section

only require a mouse click or hovering directly over a virtual node. In summary, the HVN

is really an efficient and intuitive way to select data in our empirical study that would

otherwise have been cumbersome by manipulating through a separate widget.

5.2 Task by Dynamic Viewing

The dynamic viewing layer that merges layers 3, 4 and 5 of Yi’s model, allows users to

change the way of data representations for achieving better readability or understanding

of the data and its relational structures. In the following sections, we will discuss the local

and global drill-down to achieve the details on demand with case studies. In addition, an

analytics task of probability density estimation for the visual analytic will also be

introduced.

5.2.1 Hierarchical Local Drill-Down

To the best of our knowledge, the term drill-down was first referenced in parallel

coordinates by Fua et al. [35] in 1999, and is described as:

 A process of viewing data at a level of increased detail.

Zooming is one aspect of drill-down and probably the simplest zooming is classic

zooming which scales all the graphic objects proportionally with respect to a zooming

factor. For advanced zooming, Stolte et al. [81] described a technique of multiscale which

is capable of displaying multiple zooming paths for both data and visual abstraction.

Multiscale is particularly useful for exploring multiple hierarchies simultaneously. For a

great taxonomy of zooming techniques, one can refer to a study conducted by Cockburn

et al. [82].

99

Local drill-down enables users to scrutinize interested subsets of data and our

technique is similar to multiscaling by changing the context of a target variable while

rests remain fixed. The local drill-down operation is again tightly integrated with the

HVN. A conceptual illustration of local drill-down is provided in Figure 5.8 where a

brown node indicates a selected virtual node.

Figure 5.8. Hierarchical local-drill-down. Local drill-down is achieved by changing

the maximal and minimal range of a target variable and rests are fixed.

Technically, local drill-down is achieved by triggering the view change for a

variable ௜ܺ through the adjustment of its maximal and minimal range because all the

geometric objects are always positioned relatively to that scale. Recall that a data

selection (see Section 5.1.1) returns Υ which holds a list of selected row indices. In

addition, the global data matrix ܦ contains a mixture of real and virtual data (see Section

4.3.6.3), so for simplicity, we skip offset computation here and assume ݅ can index a

column vector for ௜ܺ in ܦ. The procedure of a local drill down is therefore given in

Algorithm 5.2.

1. procedure ݊ݓ݋ܦ݈݈݅ݎܦ݈ܽܿ݋ܮሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ

2. 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 ൌ ,ሺܺ௠௢௨௦௘ݐݏ݁ܶݐ݅ܪ ௠ܻ௢௨௦௘ሻ

3. if |Υ| ൐ 0 then

4. if ℓ ൌ 0 then

100

5. /* Data node is selected so set max and min to the data value. */

௑೔ݔܽ݉ .6 ൌ ,Υ଴ൣܦ ℓ௑೔൧

7. ݉݅݊௑೔ ൌ ,Υ଴ൣܦ ℓ௑೔൧

8. else

௑೔ݔܽ݉ .9 ൌ max
௝∈஌

൛ൣܦΥ௝, ݅൧ൟ /* Compute the new maximum. */

10. ݉݅݊௑೔ ൌ min
௝∈஌

൛ൣܦΥ௝, ݅൧ൟ /* Compute the new minimum. */

11. end if

12. end if

,ݒሺݏ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮ .13 ௜ܺሻ

14. end procedure

Algorithm 5.2. Local drill-down algorithm.

Where LayoutVirtualNodes was defined in Algorithm 4.4 and the virtual node can

simply be repositioned relative to the new range as depicted in Figure 5.9 where we have

reproduced Equation 2.1 for clarity. The logics in our system have been divided into data

and visual operations, so we only have to adjust the data values and the drawing

procedures defined in Section 4.3.6 will perform the rests such as screen coordinate

transformation.

Figure 5.9. Remapping maximal and minimal values in local drill-down.

101

Local drill-down facilitates the exploration of a multidimensional dataset by

allowing users to focus on the details of a variable while other remain fixed. A case study

that specifically demonstrates the usefulness of the local drill-down will be presented in

Section 7.1.

5.2.2 Hierarchical Global Drill-Down

Global drill-down is similar to local drill-down but instead of adjusting the numerical

span for a variable, global drill-down adjusts the ranges for all the variables. It can be

easily extended based on the detail described in Section 5.2.1. Global drill-down is

suitable for rapid pattern discovery where the user just wants to focus on a view with full

respect to numerical ranges from the selected data subset. A case study that specifically

demonstrates the usefulness of the global drill-down will be presented in Section 7.2.

5.2.3 Probability Density Estimation

Probability density estimation is an advanced task exposed in our dynamic viewing layer

which also corresponds to Encode layer in Yi’s [14] seven-layer of visual interaction. In

visual analytics, many problem domains involve the visualization of density estimation

given a random variable. The term estimation is used in such a way that datasets were

often collected on the basis of finite observations, that is, they are a small subsets of an

entire population. Recall that, even though virtual nodes provide the density distribution

they do not give smoothing nor estimation.

Histogram (see Section 4.3.7) is the simplest method of plotting data density but

the artifact is largely dependent on the bin width and therefore the distribution can be

artificially distorted due to a poor bin width chosen. Alternatively, kernel density

estimation is often adopted.

Kernel Density Estimation (KDE) [83] [84] is probably the most popular nonparametric

method for probability density estimation in many scientific applications. Let ௜ܺ be a

random variable, its probability density can be estimated by the kernel density estimator

introduced by Rosenblatt [83] as:

102

መ݂ሺ݀ሻ ൌ
1
݄ܰ

෍ܭ൬
݀ െ ௜ܦ
݄

൰

ே

௜ୀଵ

, ܦ∀ ∈ ௜ܺ

Equation 5.5

In a more generalized form, it is often expressed as:

መ݂ሺ݀ሻ ൌ
1
ܰ
෍ܭ௛ሺ݀ െ ௜ሻܦ
ே

௜ୀଵ

Where ܭሺݔሻ is a univariate kernel function and d denotes the data value to be

estimated. h is the smooth parameter or also known as bandwidth that controls the

smoothing. For multivariate kernel density estimation, Equation 5.5 can be rewritten as

መ݂ሺ݀ሻ ൌ
1
ܰ
෍ෑ ௝݄

ିଵ

ெ

௝ୀଵ

ܭ ቆ
݀ െ ௜௝ܦ

௝݄
ቇ

ே

௜ୀଵ

Where ݆ refers to the subscript of the target variable in the multidimensional dataset.

A kernel is a weighted function and the choosing of bandwidth h is crucial to the shape

of the function. In general, the properties of a kernel function should be symmetric around

zero and integrating to one as described by Hardle and Linton [85]:

ሻݔሺܭ ൌ ሻݔሺܭሻ;නݔሺെܭ ݔ݀ ൌ 1

Where ܭሺݔሻ ൒ 0 . Therefore, any functions satisfying these properties can be

regarded as kernel functions in KDE. In general, there are six common kernels [85] and

we have reproduced them in Table 5.1.

Kernel ࡷሺࢊሻ

Epanechnikov 3
4ൗ ሺ1 െ ݀ଶሻ for |݀| ൑ 1

Quartic 15
16ൗ ሺ1 െ ݀ଶሻ for |݀| ൑ 1

Triangular ሺ1 െ |݀|ሻ for |݀| ൑ 1

Gauss 2ିߨଵ ଶ⁄ ݌ݔ݁ ቀെ݀
ଶ

2ൗ ቁ

Uniform 1
2ൗ for |݀| ൑ 1

Table 5.1. Six common kernel functions. The table content is based on [85].

103

The Gaussian kernel with zero mean and unit variance is the most popular kernel

and it gives more weight to these data ܦ ∈ ௜ܺ close to d than those away from it. Gaussian

is also the kernel that we have applied in the algorithm.

Bandwidth selection The choice of bandwidth h is crucial to the shape of the density

estimation. The study conducted by Silverman [86] had also shown that the choice of a

kernel does not significantly influence the degree of smoothing but instead it is largely

controlled by the bandwidth. The smaller bandwidth produces smaller bin width which

implies acute variance with reduced bias and vice versa. Let ݄௢௣௧ denote the optimal

bandwidth, Figure 5.10 shows the comparison of smoothing produced by various

bandwidths as ݄௢௣௧ (blue), ݄௢௣௧ 4⁄ (red) and 4 ൈ ݄௢௣௧ (green).

Figure 5.10. Comparison of different bandwidth selection in KDE. The settings of

bandwidth are ݄௢௣௧ (blue), ݄௢௣௧ 4⁄ (red) and 4 ൈ ݄௢௣௧ (green). The MATLAB function

ksdensity was used with the bandwidths above to produce the result where ݄௢௣௧ is

computed by ksdensity.

If we choose ݄ ൌ ݄ሺܰሻ as a function of N which denotes the number of samples.

Parzen [84] has shown us that the expected value of ௛݂
෡ ሺݔሻ is:

ܧ ቀ ௛݂
෡ ሺݔሻቁ ൌ

1
݄ܰ

෍
1
݄
ܧ ቆܭ ൬

ݔ െ ௜ܺ

݄
൰ቇ

ே

௜ୀଵ

ൌ
1
݄
නܭ ቀ

ݔ െ ݕ
݄

ቁ ݂ሺݕሻ ݕ݀

104

Equation 5.6

As we know that KDE is always biased, the common way of choosing a bandwidth

is to minimize the Mean Integrated Square Error (MISE) [83] that is given as:

ܧܵܫܯ ቀ ௛݂
෡ ሺݔሻቁ ൌ නቀܧ ௛݂

෡ ሺݔሻ െ ݂ሺݔሻቁ
ଶ
 ݔ݀

Where ௛݂
෡ denotes the kernel estimate. By introducing integrated bias and variance

terms, the above MISE can be rewritten as:

൫ܧܵܫܯ ௛݂
෡ ൯ ൌ නܸܴܣ ቀ ௛݂

෡ ሺݔሻቁ ݔ݀ ൅ නݏܽ݅ܤ ቀ ௛݂
෡ ሺݔሻቁ

ଶ
 ݔ݀

Equation 5.7

Where Bias is a Taylor series expansion of density estimation expressed as:

ݏܽ݅ܤ ቀ ௛݂
෡ ሺݔሻቁ ൌ

݄ଶߤଶሺܭሻ݂ᇱᇱሺݔሻ
2

൅ ሺ݄ଶሻ݋

Equation 5.8

Where K is a kernel function. Similarly, VAR is given as:

ܴܣܸ ቀ ௛݂
෡ ሺݔሻቁ ൌ

ܴሺܭሻ݂ሺݔሻ
݄ܰ

൅ ݋ ൬
1
݄ܰ

൰

Equation 5.9

Where

ܴሺܭሻ ൌ නܭଶ ሺݔሻ ݔ݀

Equation 5.10

Equation 5.10 is the kernel variance as noted by Wand and Jones [87] . Obviously,

one should expect smaller variance when h increases from Equation 5.9 which also

corresponds to our observation in Equation 5.6 above.

By substituting Equation 5.8 and Equation 5.9 back to Equation 5.7, Parzen [84]

has shown that the bandwidth h that minimizes MISE can be written as:

݄ெூௌா ൌ ቆ
ܴሺܭሻ

ܴሺ݂ᇱᇱሻߤଶሺܭሻଶ
ቇ
ଵ ହ⁄

ܰିଵ ହ⁄

105

Equation 5.11

Where ݄ெூௌா holds the optimal bandwidth. One problem of Equation 5.11 is that it

cannot be used directly because it contains an unknown term ܴሺ݂ᇱᇱሻ which measures the

speed of the curvature. To address this issue, there are many methods that have already

been developed such as plug-in [88] and cross-validation [89]. The rules of thumb [86] is

one of the pug-in techniques and we have applied as the bandwidth selector since our

kernel is Gaussian.

In the rules of thumb, the unknown term ܴሺ݂ᇱᇱሻ of ݄ெூௌா is replaced by a reference

known as the normal distribution for the Gaussian kernel and by substituting it into

Equation 2.1. Silverman [86] had also shown that it is reduced to:

݄ெூௌா ൌ ቌ

1
ߨ√2
ൗ

3
8ൗ ଵିߨ ଶ⁄ ହିߪ

ቍ

ଵ ହ⁄

ൌ ଵିܰߪ1.06 ହ⁄

Equation 5.12

The implementation of KDE with optimal bandwidth is provided in Algorithm 5.3.

1. function ܧܦܭሺܭ, ݀, ௜ܺሻ

2. // K – kernel function pointer.

3. // d – the data point to be estimated.

4. // ௜ܺ – the univariate variable.

5. begin

6. ݄ ൌ 1.06 ൈ ௑೔ߪ ൈ | ௜ܺ|ି଴.ଶ

݉ݑݏ݇ .7 ൌ 0

8. /* Iterate through each data point. */

9. foreach ܦ ∈ ௜ܺ do

݉ݑݏ݇ .10 ൌ ݉ݑݏ݇ ൅ ቀ݀ܭ െ ݀
݄ൗ ቁ

11. end

12. return ቀ݇݉ݑݏ | ௜ܺ| ൈ ݄ൗ ቁ

13. end

106

Algorithm 5.3. Implementation of KDE. ܺఙ and |ܺ| denote the standard deviation

and cardinality with respect to the target variable ܺ. The bandwidth is chosen based on

the optimal bandwidth.

Figure 5.11 is composed of the screenshots for various bandwidth studies taken in

our system. It shows the comparison of smoothing using multiple bandwidths where one

can observe the strong variance from the left-most variable which has the smallest

bandwidth setting.

Figure 5.11. Gaussian kernel with various bandwidths. The bandwidth settings are

0.01, 0.1, 0.5 and Gaussian ݄ெூௌா from left to right.

5.2.4 Variable Overview of Big Dataset

This section is added due to the growing attention on big datasets in information

visualization. Visualizing a multidimensional dataset is challenging, visualizing a big

dataset is much more challenging. In 1996, the internet was starting to thrive when

Shneiderman [56] proposed the Visual Information Seeking mantra. The overview first

107

guideline as part of the mantra profoundly influenced the visualization design. Nowadays,

data are produced exponentially so it is not uncommon to deal with a dataset with more

than 100 variables. Researchers who deal with big datasets which simply follow the

classic overview first will soon fail to align with user experience.

To illustrate the complexity, we have visualized the National Youth Tobacco

Survey 2009 (NYTS) dataset in classic parallel coordinates. The dataset surveyed high

school youths about their attitudes, beliefs, behaviors and influences in relation to the

tobacco. It contains 116 dimensions (including metadata) and 22,679 data rows with

approximately 2,630,764 data points. Unfortunately, the result was frustrated which

presents no useful pattern other than visual clutter as shown in Figure 5.12.

Figure 5.12. Visualization of NYTS 2009 dataset in parallel coordinates. The

dataset contains 116 dimensions and 22,679 data rows with approximately 2,630,764

data points. Please refer to Table 4.4 for the dataset source.

The consequences are the cluttered view with struggling system performance that

could merely achieve less than 1 FPS approximately. Please note that, we have not yet

found a case study of a similar scale through a courtesy scan of relevant literatures.

However, we noted a technique called Circle Segments [90] which provided an overview

of 50 dimensions with 265,000 data items as shown in Figure 5.13, but it was not designed

for an interactive visualization. The scale of the dataset applied in Figure 5.13 is still far

less than the one applied in Figure 5.12.

108

Figure 5.13. Circle segments visualization. The image is sourced from [90].

5.2.4.1 Divide-and-Conquer Model

In this section, we will discuss the divide-and-conquer model for dealing with big datasets

in visual analytics. The idea is not new and a similar model in distributed data engineering

is called MapReduce which aggregates a massive amount of distributed data into a smaller

set for analysis. They are conceptually similar in such a way that they attempt to tackle a

problem by breaking down complexities. The basic idea behind the approach of divide-

and-conquer is based on several prior works which will be described below.

Liu et al. [55] presented a study about the mental model, visual reasoning and

interaction in visualization. The key point learnt with the relevant phrases is quoted

below:

When asked about the relative location of San Diego with respect to Reno, people

incorrectly responded that San Diego was west of Reno. ……… People do not remember

the locations of cities. Instead they remember the relative locations of the states and infer

the locations of the cities from the state superset.

109

Liu reminds us that people are not concerned with detailed aspects of data when

information space is large and instead, they tend to learn from its superset. Inspired by

Liu’s study, the overview first is further amended as the variable overview first by the use

of a correlation matrix as the information superset.

In 2005, van Wijk [8] gave a simple model of visualization in his work titled “The

value of visualization”. In 2008, Keim et al. [9] proposed a sense-making loop based on

it. For interactive visual analytics of big datasets, we further develop a divide-and-

conquer model based on our framework discussed in Chapter 3 (based on Yi’s [14]

framework), a simple model of visualization [8], a sense-making loop [9] and also the

study contributed by Liu [55].

The model is illustrated in Figure 5.14 which is similar to the simple model of

visualization as shown in Figure 1.2 and sense-making loop conceptually with the main

difference being, a divide-and-conquer approach. Variables are “divided“ by their

correlations with color coding for guiding the user to “conquer” them. Dealing with

hundreds or even thousands of variables, user is often challenged by the question of “how

to start dealing with it”. Therefore, the correlation matrix is designed to shield the user

from information overload while providing a sufficient visual hint for the user to start

with an interactive visual analytics.

Figure 5.14. An interactive divide-and-conquer model. The model is designed for

the interactive visual analytics of big datasets.

110

5.2.4.2 Overview by Correlation Matrix

The multivariate correlation matrix view is designed to gain the variable insight. It is an

auxiliary view and not an integral part of parallel coordinates. The view provides an inter-

correlation between variables so the user can interactively add an interested variable to

parallel coordinates progressively since it is impractical to place a large quantity of

variables simultaneously.

There many ways to measure the correlation and one of the most commonly used

methods is Pearson’s [91] product moment correlation written as:

,ሺܺݎ݋ܿ ܻሻ ൌ
∑ ሺ ௜ܺ െ തܺሻே
௜ ሺܻ െ തܻሻ

ට∑ ሺ ௜ܺ െ തܺሻଶே
௜ ට∑ ሺܻ െ തܻሻଶே

௜

Equation 5.13

The output of ܿݎ݋ሺܺ, ܻሻ is in the range between ሾെ1,1ሿ where a positive value

means a positive correlation and vice versa. The multivariate distance matrix can be

constructed by passing a pairwise variables ௜ܺ and ௝ܺ to Equation 5.13 at element ሾ݅, ݆ሿ

as:

ேܦ ൌ ൭
ሺݎ݋ܿ ଵܺ, ଵܺሻ ⋯ ሺݎ݋ܿ ଵܺ, ܺேሻ

⋮ ⋱ ⋮
,ሺܺேݎ݋ܿ ଵܺሻ ⋯ ,ሺܺேݎ݋ܿ ܺேሻ

൱

From the properties of covariance, we know that the operation ܿݎ݋ሺܺ, ܻሻ ൌ

,ሺܻݎ݋ܿ ܺሻ் is symmetric. For diagonal elements, ܿݎ݋ሺܺ, ܺሻ is equivalent to ܸܴܣሺܺሻ.

Therefore, the computation of the covariance matrix can be reduced to the tri-diagonal

matrix for efficiency. Given a set of variables ܺ ൌ ሼ ଵܺ, … , ܺேሽ, the correlation matrix can

be obtained by passing ܺ to Algorithm 5.4 as below.

1. procedure CorrelationMatrixሺܺ ൌ ሼ ଵܺ, … , ܺேሽሻ

2. for each ௜ܺ ∈ ܺ

3. for each ܦ௜ ∈ ௜ܺ

4. /* We need to first normalize the values here. */

ప෡ܦ .5 ൌ ൫݀௜ െ ௜ܺ൯ ௑೔ൗߪ

6. end if

111

7. end if

8. for ݅ ≔ 0 to ݅ ൏ |ܺ|

9. for ݆ ≔ 0 to ݆ ൏ ݅

10. if ݅ ് ݆ then

ݎ .11 ൌ ൫ݎ݋ܿ ௜ܺ, ௝ܺ൯

ݎ݋݈݋ܿ .12 ൌ ሻݎሺݎ݋݈݋ܥݐ݁ܩ

13. /* Fill the cell for ݅௧௛ row and ݆௧௛ column. */

,ݎ݋݈݋ሺ݈݈ܿ݁ܥ݈݈݅ܨ .14 ݅, ݆ሻ

15. end if

16. end if

17. end if

Algorithm 5.4. An implementation of the multivariate correlation matrix.

The user interface is a grid layout. It divides the space into grid cells where each

cell is color brushed to convey the linear dependency between pairwise variables. The

color model applied for denoting the correlation is RGB ramping with hot-cold colors in

a sequence of red, red-yellow, green, blue-green and blue where red and blue represent

highly positive and highly negative respectively.

An application of Algorithm 5.4 is provided in Figure 5.15 where the user can

interactively add interested pairwise variables to the visualization by clicking on a cell.

Figure 5.15. Multivariate correlation matrix view of a car dataset.

The scale of the dataset used in Figure 5.15 is probably trivial and not

representative. In order to demonstrate the effectiveness of the technique for guiding a

112

user to explore a big dataset, Figure 5.16 presents a multivariate correlation view of the

NYTS 2009 dataset with more than 100 variables. There is no space to fit all the text

labels but a dynamic label will show up if one hovers the mouse cursor over a cell.

Figure 5.16. Correlation matrix view for the NYTS 2009 dataset.

The novelty of this technique is that, it adds an additional step of the variable

overview in the Visual Information Seeking mantra to shield a user from cognitive

overload. There are some advantages offered by this design. 1) Features are sparse in the

high dimensional dataset so it is not necessary to study all the dimensions. The color

coding provides a visual hint of understanding the inter-correlation. 2) It allows the user

to add or remove a pairwise variables arbitrarily in a divide-and-conquer approach.

The performance is an important consideration in our implementation and the

ability to parallelize the computation of correlation coefficient is a primary reason to use

a matrix. It decouples the data dependency so elements can be updated concurrently.

Figure 5.17 provides a performance measure based on Intel Core i7-3930 with 12 logical

processors and 32 GB RAM. It took approximately 2 seconds to build a multivariate

correlation matrix for 116 dimensions.

113

Figure 5.17. Performance of building the multivariate correlation matrix.

Overview by Multidimensional Scaling (MDS) First of all, MDS is not implemented in

our system but the primary purpose to describe it here is to document a potential

application in the variable overview. MDS is probably well-known for its application in

dimensionality reduction. It was first introduced by Torgerson7 [92] for mapping the

distance of dimensional correlation and such capability inspires us to extend its

application in guiding a user over the overview presentation of a large multidimensional

dataset. The basic idea is similar to the multivariate correlation matrix view discussed in

the previous section. For a complete introduction of class MDS procedures, one should

refer to [93]. Let ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ be a multidimensional dataset which needs to be

converted into a proximity matrix by the following distance measure as:

൫ܦ ௜ܺ, ௝ܺ൯ ൌ ෍ ෍ ට൫݀௜ െ ௝݀൯
ଶ

ௗೕ∈௑ೕௗ೔∈௑೔

Equation 5.14

Equation 5.14 is essentially a two dimensional Euclidean function. Alternatively,

one can use the Pearson correlation in Equation 5.13 to construct the proximity matrix if

7 There are many variants of MDS but the method originally introduced by Torgerson is known as classic

MDS.

114

the concept of distance is not applicable on the given dataset. The first step in classic

MDS is to square the proximity matrix by:

ܺଶ ൌ ൭
ሺܦ ଵܺ, ଵܺሻଶ ⋯ ሺܦ ଵܺ, ܺேሻଶ

⋮ ⋱ ⋮
,ሺܺேܦ ଵܺሻଶ ⋯ ,ሺܺேܦ ܺேሻଶ

൱

 Next, apply the double centering as:

ܤ ൌ െ
1
2
 ܬଶܺܬ

Equation 5.15

Where J is given as

ܬ ൌ ܫ െ ܰିଵሾ1ሿ

Where N is the cardinality of X. [1] and ܫ denotes the unit matrix of ones and the

identity matrix respectively. They are trivially expressed as follows:

ሾ1ሿ ൌ ൭
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

൱ , ܫ ൌ ൭
1 0 0
0 1 0
0 0 1

൱

The Singular Value Decomposition (SVD) is applied on B to obtain the first two

largest positive eigenvalues ሼߣଵ, ଶܧ ଶሽ and corresponding eigenvectorsߣ ൌ ሼ݁ଵ, ݁ଶሽ. We

are only interested in the first two largest eigenvalues because the final representation is

a projection of the two dimensional scatterplot of N variables. To work out the two

dimensional coordinate matrix ܯଶ, eigenvectors need to be multiplied with the diagonal

matrix of eigenvalues.

ଶܯ ൌ ଶܣଶܧ
ଵ ଶ⁄

Where ܣଶ holds the diagonal matrix of two eigenvalues. ܧଶ is the union of two

eigenvectors in matrix. The final procedure negates the sign of the coordinate matrix as

െܯଶ. The MDS map is obtained by projecting ܯଶ in a scatterplot. Figure 5.18 provides

an example of using MDS for variable overview.

115

Figure 5.18. Application of MDS map for variable overview. The image was

produced in MATLAB.

5.2.5 Discussion

In summary, this section describes several techniques in the layer of dynamic viewing.

Local and global drill-down were developed on the basis of the HVN that provide an

effortless way of navigating data. We also introduced the use of KDE to study the

probability density distribution. Even though, virtual nodes offer the information of data

distribution but they do not give smoothing and estimation. Finally, a model and

technique have been presented for interacting with big datasets. A case study that

demonstrates the effectiveness of the divide-and-conquer model to tackle a big dataset

will be presented in Section 7.3.

5.3 Task by Dynamic Scoping

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and

Connect of the interaction are defined in J. S. Yi’s model, allowing users to visualize a

subset of the data through techniques such as filtering or dimensionality reduction. The

technique of filtering is trivial so we will not discuss it here.

5.3.1 Dimensionality Reduction by RST

Dimensionality reduction is considered as an advanced task in visual analytics. A dataset

is reduced to a smaller subset while being sufficient to describe a whole set of variables.

To approach the dimensionality reduction, the technique adopted here is the Rough Set

116

Theory (RST) (see Section 2.3.3.2). It offers a distinct advantage over others because of

the concepts of condition and decision. Users simply specify a dimension as a decision

and rest become conditions so the dimensions are reduced in such a way that they fully

respect to the user specified decision.

Variable Precision Rough Set RST was initially designed to deal with a consistent

dataset by its strict definition of approximation regions. It assumes the underlying dataset

is consistent and possesses complete certainty in terms of classifying objects into correct

approximation regions. For example, if ܾܽ → ܦ then ܿ݀ → ܦ is considered to be

conflicting. This assumption of the error-free classification of the consistent dataset is

unrealistic in relation to most real world datasets. Although, a dataset can be partitioned

into consistent and inconsistent data space and operates RST on the consistent one, we

considered this to be meaningless and impractical for use in this case. To deal with the

inconsistent dataset, Ziarko [94] argued that partially incorrect classification should be

taken into account and accordingly proposed the Variable Precision Rough Set (VPRS)

model as an inconsistent dataset extension to RST. VPRS model allows for probability

classification by introducing a precision value ߚ to relax the strict classification in

original RST. It introduces the concept of major inclusion to tolerate the inconsistent

dataset and the definition of majority implies no more than 50% of classification error so

the admissible range of ߚ is ሺ0.5, 1.0ሿ. The ߚ positive in the VPRS model is defined as:

ܱܲܵܲ
ߚ
ሺܦሻ ൌ ራ 	ሼܺ݅ ∈ ሺܲሻሽܦܰܫ

Pr൫ܦܰܫሺܦሻ∗|ܺ݅൯൒ߚ

Where ܦܰܫሺܦሻ∗ and ܺ݅ denotes a set of the equivalent classes for ܦ and ܲ ⊆ ܥ

respectively. Clearly, a portion of objects with specified value ߚ in the equivalence

classes need to be classified into the decision class for it to be included in the ߚ positive

region. Ziarko also formulated the definition for quality of classification that is used to

extract the ߚ reducts and we will explain the definition of reduct in the next section.

ሻܦ,ሺܲߚߛ ൌ
ቚ⋃ 	ሼܺ݅ ∈ ߚሻ∗|ܺ݅൯൒ܦሺܦܰܫሺܲሻሽPr൫ܦܰܫ ቚ

|ܷ| 	݁ݎ݄݁ݓ	 Prሺܲ|ܦሻ ൌ
|ܲ∩ܦ|
|ܲ|

Where |	∗	| denotes the cardinality for the union of all the equivalence classes in the

 with respect to ߚ positive region where classification is possible at specified the value ߚ

relation ܦܰܫሺܦሻ∗ and |ܷ| denotes the cardinality of the universe. Obviously, the quality

117

of classification provides the measure for the degree of attribute dependency in such a

way that if ߚߛሺܲ,ܦሻ ൌ 1 means ܦ fully depends on ܲ at specified ߚ value.

There are certain advantages of using RST over other methods such as PCA, 1) it

minimizes the impact of information loss by removing the irrelevant or dispensable

dimensions and 2) the resultant subset of attributes is more intuitive by preserving the

quality of classification. Typically we may find several subsets of attributes that satisfy

the criteria called reduct sets denoted as ܴ ൌ ሼܲ: ܲ ⊆ ሽ. The minimal cardinality in theܥ

reduct sets called the minimal reduct denotes as ܴ݉݅݊ where ܴ݉݅݊ ∈ is the minimum ܥ

subset of the condition attributes that cannot be reduced anymore while preserving the

quality of classification with respect to the decision attribute. In the VPRS model, the

reduct is called ߚ-reduct denoted as ܴߚܦܧሺܦ,ܥሻ and according to Ziarko a subset ܲ ⊆ ܥ

is a reduct of ܥ with respect to ܦ if the following two criteria are satisfied:

൯ܦ,ܥ൫ߚߛ .1 ൌ ߚߛ ൬ܴߚܦܧ൫ܦ,ܥ൯,ܦ൰ and,

2. No attributes can be eliminated from ܴߚܦܧ൫ܦ,ܥ൯ without affecting the

requirement (1).

The requirement (2) can also be mathematically expressed as ܱܲܵܲെሼܽሽ
ߚ

ሺܦሻ ്

ܱܲܵܲ
ߚ
ሺܦሻ, ܽ ∈ ܲ. Obviously, Ziarko has defined a strict satisfaction of the ߚ reduct in

relation to the requirement (1) that some attributes can only be removed if the

qualification of classification ߚߛ for subset ܲ ⊆ for the whole set ߚߛ is the same against ܥ

of original attributes ܥ.

The applications of the RST have been demonstrated in Figure 5.19 where the

decision variables selected were cylinders and experience for car and wage datasets

respectively.

118

Figure 5.19. Applications of RST. a) The car dataset has been reduced from 8 to 4

variables. b) The wage dataset has been reduced from 11 to 6 variables.

119

5.3.2 Discussion

This section introduced the use of RST for dimensionality reduction in the layer of

dynamic scoping. Many methods of dimensionality reduction exist such as principal

component analysis, self-organizing maps or MDS (See Section 5.2.4) but the distinct

advantage of RTS over other methods are the concepts of decision and condition

variables. Such concepts can minimize the perception of information loss which is often

used to criticize the result if it is not intuitive e.g. a variable that is expected to be retained

but has been excluded. To the best of our knowledge, we have produced the first

application of RST in parallel coordinates [41] for dimensionality reduction.

120

Chapter 6 Technical Evaluations

This chapter will present some technical evaluations of our HVN based parallel

coordinates visualization against other publicly available visualization systems.

6.1 Visual Clutter of Overview

The versatile HVN allows us to adopt a different approach of overview presentation in

parallel coordinates, as already discussed in Section 4.3.7. The central idea is that the

organization of virtual nodes already provides the initial data insight of data distribution

so that it is redundant to draw classic polylines which often create clutter in many cases.

The challenge of evaluating the visual performance comes from the quantization of visual

clutter since the term clutter is abstract. However, the study conducted by Rosenholtz

[95] has suggested two approaches to measure it namely, subband entropy and feature

congestion. Subband entropy measures how well the content in an image is organized by

first decomposing an image into subbands of wavelength and sums up the entropies

computed for each subband. Feature congestion measures the degree of the visual search

based on the statistical saliency model. For example, how well an obverse can find a target

amongst other graphics objects in an image.

Our evaluation was conducted with 3 datasets and 3 implementations of parallel

coordinates and their details are described in the following table.

 Name Comment

Dataset Car, Wage and Wine See Table 4.4.

Parallel coordinate

visualization 1

Classic PC This is our implementation of classic

parallel coordinate.

Parallel coordinate

visualization 2

HVN This is our implementation of parallel

coordinate based on HVN.

Parallel coordinate

visualization 3

GGobi A publicly available software. See

[96].

121

Measurement 1 Subband entropy MATLAB code was written by

Rosenholtz [95].

Measurement 2 Feature congestion MATLAB code was written by

Rosenholtz [95].

Table 6.1. The setup of evaluating visual clutter. The MATLAB source code was

obtained from http://dspace.mit.edu/handle/1721.1/37593.

The steps executed in the evaluation are outlined below.

 Produce the images of dataset overview in PNG format for 3 datasets in

each parallel coordinate visualization.

 Execute getClutter_SE function in MATLAB and record the output value.

 Execute getClutter_FC function in MATLAB and record the output value.

Where getClutter_SE and getClutter_FC are the MATLAB functions for subband

entropy and feature congestion respectively. Figure 6.1 and Figure 6.2 show the results

of the visual clutter measurements.

Figure 6.1. Subband entropy measure of visual cutter.

Classic PC HVN GGobi

CAR 3.7582 1.3353 3.4987

WAGE 4.3072 1.3476 3.4749

WINE 3.544 1.5928 2.8687

0

1

2

3

4

5

6

V
is
al
 C
lu
tt
er
 M

ea
s.

Subband Entropy

CAR WAGE WINE

122

Figure 6.2. Feature congestion measure of visual clutter.

According to Figure 6.1, the HVN has incurred less visual clutter. Interestingly,

GGobi outperforms the HVN without the application of automatic brushing in the

measurement of feature congestion but the algorithm considers the image as more

cluttered with the brushing enabled. This probably suggests that the brushing is not

suitable in the overview presentation.

6.2 Data Selection

One of the key innovations that the HVN has made in parallel coordinates is the

materialization of the point selection hierarchically and therefore, it is paramount for us

to compare its efficiency and accuracy with other techniques. The third-party

visualizations that have been chosen in this evaluation are GGobi and Mondrian [60]. The

data selection model coincidently incorporated in both is the 2D rectangle (see 4.2.1) with

activation over points. That is, the drawing of the rectangular bound over polylines will

not activate the data selection mechanism. In this section, we will conduct two common

use cases of continuous and non-continuous selection in order to evaluate how well these

visualizations support the basic interactivity with data.

Classic PC HVN GGobi
GGobi (Auto
Brusing)

CAR 6.6151 4.6296 2.7039 7.6137

WAGE 9.2979 4.8055 2.6501 9.3897

WINE 6.7519 5.9826 2.3085 4.9506

0

2

4

6

8

10

12

V
is
u
al
 C
lu
tt
er
 M

ea
s.

Feature Congestion

CAR WAGE WINE

123

6.2.1 Continuous Neighbour Selection

The continuous neighbour selection is a rudimentary evaluation of the select operation.

Basically, we try to evaluate the accuracy and the error rate when attempting to mark a

continuous range of data as selected directly on the display. Interestingly, GGobi and

Mondrian both adopt the 2D rectangle to include data over points which is an elementary

technique of interaction since a polyline other end points does not occupy a bounding

region from the perspective of a visualization system. Therefore, it is much easier to work

out whether a point is enclosed by a rectangle rather than the expensive computation of a

point-to-line intercept.

In this evaluation, it was started first by loading the car dataset into GGobi,

Mondrian and our HVN. The overview of GGobi and Mondrian is provided in Figure 6.3

and Figure 6.4 respectively. In our experience, we found that the 2D rectangle is

cumbersome in terms of aligning the mouse cursor and this is also evident in the figures.

Specifically, it might lead to much trial and error because the misalignment of few pixels

can lead to unwanted selection if the gap between the continuous data is too small.

Accordingly, we decided to carry out the selection on the variable cylinders for simplicity

because the gaps are apart.

Figure 6.3. 2D rectangular data selection in GGobi.

124

Figure 6.4. 2D rectangular data selection in Mondrian.

The result is recorded in Table 6.2 where all the visualizations were able to achieve

100% accuracy without error.

 Selection Count Unwanted Data Selection Model Error Rate

HVN 388/388 0 Point selection 0%

GGobi 388/388 0 2D rectangle 0%

Mondrian 388/388 0 2D rectangle 0%

Table 6.2. Result of the evaluation of the continuous neighbor selection.

6.2.2 Non-Continuous Selection

In visual analytics, it is a common practice to explore data patterns between groups with

diverse quintiles. For example, Group A with the value range 1~20 and Group B with the

value range 65~90. Therefore, we would like to evaluate the facility catered by the

visualizations to deal with such use cases. In our HVN, the operation was accomplished

by clicking directly on the nodes as indicated in Figure 6.5.

125

Figure 6.5. Non-continuous data selection in the HVN.

However, it is not straightforward to carry out the same task on GGobi and

Mondrian because they only allow a single 2D rectangle so the workaround for us is to

coerce the inclusion of undesired data in between. This creates a poor user experience but

on the other hand, it highlights the practicality of the HVN as we have successfully used

the HVN to achieve the operation that is otherwise impossible to achieve by the others.

Figure 6.6. Coerce data selection in GGobi.

126

The evaluation result is provided in Table 6.3 where the HVN outperforms GGobi

and Mondrain without the error rate penalized by the data coercion.

 Selection Count Unwanted Data Model Error Rate

HVN 302/302 0 Point selection 0%

GGobi 388/302 86 2D rectangle 28.5%

Mondrian 388/302 86 2D rectangle 28.5%

Table 6.3. Result of the evaluation of the non-continuous selection

To further study the technique of data selection materialized in other parallel

coordinates visualizations, we discovered a website [97] that lists approximately 1897

applications of D3.js8 [98] and 10 of them contain the keywords parallel coordinates.

We further explored them and were surprised by the fact that the data selection is all

designed to be similar to the interface which combines both the value range and 2D

rectangle. That is, the 2D rectangle aligns strictly to the vertical axis but this essentially

offers no functional difference to GGobi and Mondrian. Figure 6.7 illustrates one of the

applications of parallel coordinates visualization in d3.js that we explored.

In summary, we ascertained that the HVN is an innovative technique for data

selection in parallel coordinates because it simplifies the cumbersome procedures of

activating a data selection into a straightforward mouse click. The same operation that

could be easily carried out in the HVN with a higher degree of accuracy is difficult in the

others especially, under the circumstance of overplot.

8 D3.js is a popular JavaScript library that can be used to create a powerful visualization in a data-driven

approach.

127

Figure 6.7. An application of parallel coordinates visualization in d3.js. The

image is sourced from http://bl.ocks.org/jasondavies/1341281. The website bl.ocks.org

is run by Mike Bostock.

6.3 Drill-Down

This evaluation is concerned with the usability of the general drill-down facility provided

by the visualization appraised. Drill-down provides a means for the dynamic navigation

of data and a parallel coordinates visualization reveals that such a well-designed feature

can greatly improve the user experience by allowing the user to quickly focus in or out

on the area of interest.

We first proceeded with GGobi but there is no way to materialize such an operation

directly in the user interface. Thus, we needed to open a separate window and manually

entered the values 39 and 46 as the user defined range for the variable mpg as highlighted

in the top image of Figure 6.8. Unfortunately, the result confused us due to the distortion

of the geometric primitives in Figure 6.8. Certainly, from our perspective, the resulting

frustration created a poor user experience.

128

Figure 6.8. Evaluation of drill down feature in GGobi. (Top) Manually enter the

user-defined range via a separate window in GGobi. (Bottom) The view which reflects

the user-defined range.

The next visualization examined is Mondrian where the holistic tasks of interaction

can be accessed by a menu which is activated through the classic approach of the right

mouse-click on the user interface. The first related feature explored is called the data

alignment but the result is really convoluted as there is misalignment with all the rendered

geometric primitives so they are not intuitive for the purpose of interpretation. A

screenshot of such an operation is illustrated in Figure 6.9.

129

Figure 6.9. Convoluted result of data alignment in Mondrian.

In Mondrian, the function that most aligns to our expectations is probably called the

Scale Common as shown in the topmost menu item in Figure 6.9. It seems to scale the

view by setting a uniform range for all the variables at the global maximum and minimum.

This is not very useful when dealing with a multidimensional dataset due to the

discrepancies of the variable measurement.

Figure 6.10. Evaluation of the drill down feature in Mondrian.

130

In our evaluations of GGobi and Mondrian, the dissatisfaction mainly came from

the misalignment of the expectation for the interactivity provided by the visualizations as

well as the result rendered. On the other hand, interactivity is also one of main problems

that we try to address in parallel coordinates. The last visualization evaluated is our

developed parallel coordinates with the tight integration of the HVN. For a local drill-

down, we simply mouse right selection the node as indicated in the top image of Figure

6.11 and select the operation of local drill-down. The bottom image in Figure 6.11 reflects

the rendered result immediately. Our drill-down functions facilitated by the HVN provide

the best form of interactivity that would otherwise have been impossible to achieve in

both GGobi and Mondrain.

Figure 6.11. Evaluation of the local drill down feature in our HVN.

131

Table 6.4 lists the summary of the drill-down (or similar) feature evaluated in

GGobi, Mondrian and our HVN where our approach incurs the lowest interaction cost.

Obviously, we only need a simple mouse click to achieve the task rather than the input of

several values via the widgets.

 Local Drill

Down

Global Drill

Down

Model Interaction Cost

HVN X X Point selection Low

GGobi X Widget input Median

Mondrian X Widget input Median

Table 6.4. A summary of the drill down function evaluated in GGobi, Mondrian

and our HVN.

132

Chapter 7 Case Studies

This chapter will present three case studies to demonstrate the effectiveness of the

techniques described earlier. Case studies 1 and 2 are concerned with the local and global

drill-down respectively. Case study 3 presents the use of the divide-and-conquer model

(See Section 5.2.4) for tackling the visual analytics of a big dataset with more than 100

variables.

7.1 Case Study 1

The dataset used in this case study is Portuguese "Vinho Verde" wine data [99] which

contains approximately 58776 observations (12 ൈ 4898) on 12 variables namely, fixed

acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total

sulfur dioxide, density, pH, sulphates, alcohol and quality. Nowadays, dealing with a

dataset of such scale is not considered to be large but one can see the overview is already

heavily cluttered in Figure 7.1. Interestingly, the nature of the data is not distributed

uniformly and hence it is easy to identify a pattern for the first 8 variables as their values

are mostly aggregated to the lower range.

In this case study, wine quality is the most interested variable which serves as a

decision variable with respect to others. Owing to this, we performed a local drill-down

by clicking on the data node with the highest value for quality variable as indicated by an

arrow in Figure 7.1.

133

Figure 7.1. Local drill-down scenario 1.

The resultant view after a local drill-down from step 1 is presented in Figure 7.2

below. The selection set only includes those data with value 9 for quality (rightmost

variable) value 9. One may question why the overall viewing context did not change, as

we mentioned earlier the maximal and minimal range will be set to the same value when

a data node is selected (see Algorithm 5.2) because the data node sits in the bottom of the

hierarchy so it is a scalar value. That is, if one carefully looks at the maximum and

minimum value labels for the rightmost variable in Figure 7.2 then it is evident that the

value is 9 for both.

According to the result, there is a pattern for wines of the highest quality within the

dataset. We could also visually identify an outlier sample in alcohol as indicated by a blue

arrow because its value differs from the rest but its quality seems to be not affected due

to such a difference. At this stage, we could conclude that the attributes fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide and density shall be lower values in order to produce the highest quality wines.

Next, pH has attracted our attention so we decided to drill down on it locally again starting

from the visual node indicated by a red arrow in Figure 7.2.

134

Figure 7.2. Local drill-down scenario 2.

Figure 7.3 shows the result after two consecutive local drill-down operations. One

can see that the data points for pH have changed but overall the view remains fixed except

for its adjacent variables. The numerical span of pH is between 2.72 ~ 3.82 and data with

highest quality fall within the range of 3.2 ~ 3.41. One can also easily perceive 3 groups

in pH through the visual inspection.

Figure 7.3. Local drill-down scenario 3.

135

In order to segregate data patterns, we applied brushing on a virtual node as

indicated by an arrow in Figure 7.4. The result suggests that total sulfur dioxide tends to

be lower with a relatively higher pH value amongst the highest quality wines.

Figure 7.4. Local drill-down scenario 4.

Finally, we performed a highlighting on a polyline by hovering the mouse cursor

over the data node with label pops on as shown in Figure 7.5. We concluded that wines

of higher quality tended to have relatively higher alcohol but if it had lower alcohol and

pH then the fixed acidity value needed to be higher to compensate.

Figure 7.5. Local drill-down scenario 5.

136

This case study demonstrated the use of the local drill-down to arbitrarily explore

the data subset interactively. In other parallel coordinates visualizations, a similar task

required the user to define a numerical range which involved quantization so it was not

trivial, especially as it did not contain visual hints such as data density or groups. In our

parallel coordinates system, the embedded visual nodes in the display allowed for direct

interaction with visual hints that would otherwise have needed multiple views or separate

widgets to achieve similar functions.

7.2 Case Study 2

The dataset [100] used in this case study was collected in a Current Population Survey

(CPS) 1985. It contains 534 random observations on 11 variables describing an

individual’s education, southern residence, sex, work experience, union membership,

wage level, age, race, occupation, work sector and marital status.

Figure 7.6 presents a dataset overview and one can easily recognize the

visualization brings out a mixture of continuous and discrete variables. Our visual

analytics was first started by intuitively clicking on the virtual node (virtual data with the

value 47) on experience with an operation of the global drill-down as indicated by a red

arrow.

Figure 7.6. Global drill-down scenario 1.

137

The result presents a neat visualization as shown in Figure 7.7. According to the

dataset summary, union members were paid 23% higher than non-union members and

also, northern residents were paid 11% more than southern residents. With this in mind,

one particular pattern attracted our interest where it could be observe that union member

tended to have less wages than those without union membership. It is important to note

that this statement holds true only for the selected data subset. Unfortunately, the polyline

does not adequately support the visual trace of an entire path due to the nature of its

geometric discontinuity at the segment junctions. There are two ways to uncover patterns

under this circumstance such as brushing or highlighting. Brushing is probably not

desirable for the loaded dataset where discrete variables outweigh continuous variables

in quantity thus, we decided to execute a highlighting operation by hovering the mouse

cursor over the virtual node, as indicated by a red arrow in Figure 7.7.

Figure 7.7. Global drill-down scenario 2.

Figure 7.8 shows the visualization of the highlighting task conducted where there

were two patterns which partially overlapped near the tail. It describes observations with

northern residents and non-union members with higher experience but a lesser wage. This

is interesting because northern residents were paid 11% more than southern residents

however, this phenomenon can be explained if we look at their education.

138

Figure 7.8. Global drill-down scenario 3.

Next, we decided to highlight observations with southern residents and the result is

shown in Figure 7.9. It describes a pattern with a less experienced non-union member

with a higher age and relatively higher pay albeit the residency is based on the southern

area. We also noted that the residents in Figure 7.8 and Figure 7.9 were working in the

same industry sector. We were able to conclude that within the selected data subset,

education was the main driving factor for wage rather than sex, residency or work

experience.

Figure 7.9. Global drill-down scenario 4.

139

Through these case studies, we have demonstrated the capabilities of the local and

global drill-down to rapidly discover patterns in visual analytics by the assistance of the

tasks defined in the dynamic selection layer (see Section 5.1).

7.3 Case Study 3

In this case study, we would like to demonstrate the exploration of a big dataset using the

technique of multivariate correlation matrix described above. We have again used the

National Youth Tobacco Survey 2009 (NYTS) dataset which surveyed high school

youths about their attitudes, beliefs, behaviors and influences in terms of the tobacco. It

contains 116 dimensions (including metadata) and 22679 data rows with approximately

2630764 data points. A visualization of the NYTS dataset in classic parallel coordinates

has already been presented in Figure 5.16. The dataset with such a scale is considered

extremely high dimensional and theoretically impossible for meaningful visualization due

to the overplotting of the display space. Furthermore, following a thorough survey of the

relevant literature, to the best of our knowledge there appear to be no case studies which

used datasets of such a scale in visual analytics.

A correlation matrix is shown when the dataset has been loaded initially into the

system. In Figure 7.10, one can see that there is not enough space to draw the text label

but a tooltip will pop up if the user moves the mouse over a colored box which details the

name of the dimensions and their coefficient of correlation. We first selected Qn33, Qn34,

Qn35 and Qn37 by clicking the color boxes because they are highly correlated as hinted

by the red color. The corresponding survey questions are also listed below:

Qn33: In the past 12 months, did you have to go to a stop smoking class because

you were caught smoking?

Qn34: Do you think you would be able to quit smoking cigarettes now if you wanted

to?

Qn35: How long can you go without smoking before you feel like you need a

cigarette?

140

Qn37: How true is this statement for you? When I go without a smoke for a few

hours, I experience craving.

Figure 7.10. Initial view of the multivariate correlation matrix. It consists of two

views where the top view is the parallel coordinates and the bottom view presents the

correlation matrix.

We began the visual exploration by clicking three virtual nodes beloningg to Qn35

and each had been assigned a different color. From Figure 7.11, we found a pattern that

people smoked regardless of whether they attended the stop smoking class or not and

believed they could quit smoking easily if they wanted to. Also, people needing a cigarette

within a 3 to 24 hour timeframe tended to agree on Qn37. Interestingly, people either

answered they have quit smoking or never smoked in Qn35 even if they experienced

cravings for a smoke after a few hours. This suggests that there are some false statements

answered in Qn35 of the survey which further presents an area for the improvement of

our system to support outlier detection visually.

141

Figure 7.11. Case study step 1. The visualization result after adding Qn33, Qn34,

Qn35 and Qn37 from the matrix view where the arrows indicate the mouse click over

the virtual nodes.

In the next step, we clicked on a rectangle with strong correlation which added Qn58

and Qn60 to the parallel coordinates as shown in Figure 7.12 with the survey questions

provided below:

Qn58: Do you think you will smoke a cigarette at any time during the next year?

Qn60: If one of your best friends offered you a cigarette, would you smoke it?

Interesting, we could visually identify a minor pattern for those who answered “I

have never smoked cigarettes” in Qn37 and also responded that they would probably

smoke at any time during the next year (Qn58) and would definitely accept a cigarette

offered by one of their best friends (Qn60). It implies the risk of becoming a first-time

smoker largely results from the influence of best friends. Perhaps the behavior of the

friends explains the result of most first-time trials in real world cases. Unfortunately, there

is no question which specifically asks about the influences leading to their decision to

smoke in the first place such as friends, family, movies, TV etc. otherwise, we could

derive more phenomenon in terms of the interests between the various sources.

142

Figure 7.12. Case study step 2. The visualization result after adding Qn58 and Qn60

from the matrix view.

Next, we decided to add Qn48 and Qn49 to parallel coordinates from the matrix

view with the questions provided below:

Qn48: During the past 30 days, on how many days did you smoke bidis?

Qn49: During the past 30 days, on how many days did you smoke kreteks?

Figure 7.13 has shown the visualization result of the operation where an arrow

indicates a pattern where those people truly experiencing a craving for a smoke after a

few hours tend to use bidis in all the past 30 days. Our interpretation is that bidi is

probably attractive for truly nicotine addicted youth rather than those less addicted.

Peculiarly, there was a pattern which showed that adolescents who believed that they

would definitely not smoke a cigarette at any time during the next year also answered

either 5 (10 ~ 19 days), 6 (20 ~ 29 days) or 7 (All 30 days) in Qn49 which means they are

the frequent smokers of kretek. It is difficult for us to interpret this phenomenon because

we have never ever tried both. However, a possible explanation is that the frequent

smokers of kretek did not really intend to quit smoking. Perhaps, they really meant that

they would not smoke a normal cigarette once they had tried kretek.

143

Figure 7.13. Case study step 3. The visualization result after adding Qn48 and Qn49

from the matrix view where an arrow indicates an interesting pattern.

The process can continue iteratively by adding or removing more dimensions for

the dynamic view change of parallel coordinates. The purpose of this case study is to

demonstrate that our framework is capable of interacting and analyzing a big dataset with

high dimensionality through the guidance of the correlation matrix view. However, we

do not mean to analyze them all simultaneously because human recognition cannot digest

them all at once.

144

Chapter 8 Extended Works

In this chapter, we will introduce two extended works in relation to the interaction in

multidimensional visualization.

8.1 Flow based Scatterplot Matrix

A variant of the scatterplot matrix is introduced in this section. The scatterplot is a

fundamental visualization of the scatterplot matrix but it cannot explain the correlation

beyond two variables. To further enhance the usability of a scatterplot matrix, we have

contributed a flow based scatterplot matrix [101] for multidimensional data exploration

by augmenting a scatter point to approximate its relationship with respect to a third virtual

variable ܼ଴. Please note that, we acknowledge a similar work already contributed by Chan

et al. [102]9 that was discovered prior to us, but we have further extended the idea to the

application of the scatterplot matrix.

A scatter point is positioned by its data value ൫ܺ଴, ଴ܻ,൯ with a line attached to it. The

slope indicates the positive or negative correlation with respect to ሺܺ଴, ܼ଴ሻ or	൫ ଴ܻ,ܼ଴൯. In

global linear approximation, there is one slope so all the points reveal the same trend.

Chan [102] computed the local neighborhood of radius ݓ to smooth the local trend

around a given point. In our case, we compute the local trend from the members in the

class of a given point. To approximate the decision trend, the least squares in the linear

regression model [103] are applied to best fit the line of a given point ሺܺ଴, ଴ܻሻ with respect

to a third variable. In the linear regression model, there are two coefficients ܾଵ and ܾ଴

9 We acknowledge that the idea of the flow based scatterplot was first discussed by Chan et al. [16] prior

to us for studying the sensitivity, but we further extend it to the application of the scatterplot matrix and

add user interaction for class exploration.

145

which need to be solved first, where ܾଵ is the slope that measures the change in ܻ with

respect to ܺ and ܾ଴ is the intercept. They are defined as follow:

ܾଵ ൌ
ܰ∑ ሺ ௜ܺ െ ܺ଴ሻሺ ௜ܻ െ ଴ܻሻ െ ∑ ሺ ௜ܺ െ ܺ଴ሻ

ே
௜ ∑ ሺ ௜ܻ െ ଴ܻሻ

ே
௜

ே
௜

ܰ ∑ ሺ ௜ܺ െ ܺ଴ሻே
௜

ଶ
െ ሺ∑ ሺ ௜ܺ െ ܺ଴ሻே

௜ ሻଶ

Equation 8.1

ܾ଴ ൌ
∑ ሺ ௜ܻ െ ܺ଴ሻ െ ܾଵ ∑ ሺ ௜ܺ െ ܺ଴ሻ

ே
௜

ே
௜

ܰ

Equation 8.2

Where ݔ௜ ∈ ሺܲሻ and ܺ଴ܧ ∈ ሺܲሻ. Substituting ܾ଴and ܾଵܧ into the linear equation

below to interpolate the best fitting line at a point ሺܺ଴, ଴ܻሻ.

௜ܻሺܺ଴ േ ݇ሻ ൌ ଴ܻ ൅ ܾଵሺܺ଴ േ ݇ሻ ൅ ܾ଴

Equation 8.3

Where ݇ is a desired length and please note that, we add the value of ଴ܻ because ௜ܻ

is a local linear approximation from a given point ሺܺ଴, ଴ܻሻ.

8.1.1 Interaction by Point-to-Region

There are many cases where scatter points are partitioned into a number of classes. Given

a set of points P which is further classified into the disjoint set of classes ܲ ൌ

ሼܥଵ, ,ଶܥ … , ௜ܥ ௡ሽ such thatܥ ∩ ௝ܥ ൌ ∅, ݅ ് ݆. The point-to-region technique highlights the

entire geometric region occupied upon the immediate selection of any data within the

class.

Technically, the core problem of point-to-region is to build a convex hull [104] of

ሬሬሬሬሬԦܤܣ ሬሬሬሬሬԦ, the sign of the cross product ofܥܣ ሬሬሬሬሬԦ andܤܣ ௜. Given two vectorsܥ ൈ ሬሬሬሬሬԦ determinesܥܣ

the direction of the triangle ܥܤܣሬሬሬሬሬሬሬሬԦ based on the right-hand-side rule. If the cross product of

ሬሬሬሬሬԦܤܣ ൈ ሬሬሬሬሬԦ is positive it means the triangle is clockwise. For example, in Figure 8.1 if weܥܣ

attempt to find the convex hull from the clockwise direction then the negative cross

product implies that ܥܣሬሬሬሬሬԦ is outmost with respect to ܤܣሬሬሬሬሬԦ otherwise, we need to swap the

order of B and C which constructs a triangle. This process continues until we reach the

146

origin ܣ. Figure 8.1 depicts the concept of using the cross product to find the convex hull

on a 2D plane.

Figure 8.1 An example of the cross product. The diagram shows the application of

using the cross product to find the convex hull of the data points. The direction of Z is

important which determines the triangle is constructed either clockwise or

counterclockwise.

The technique offers the ability of focus+context for analyzing multiple classes over

the highlighted regions. An application of point-to-region has been provided in Figure

8.2. Obviously, the preliminary requirement of class data is certainly a weakness that

limits its application to non-classified data points. However, its applicability can be

extended by embedding the automatic data analysis of the clustering. The basic idea is to

perform the K-means or hierarchical clustering on demand over the selected point in order

to completely eliminate the preliminary requirement of data classification.

147

Figure 8.2 An example of point-to-region interaction. The diagram shows

integrating point-to-region interaction with the flow based scatterplot matrix.

Figure 8.3 (a) and Figure 8.3 (b) provide a visual comparison between the classic

and flow based scatterplot representations. Figure 8.3 (c) shows our point-to-region

interaction technique. In the interaction design, we allow users to use the focus+context

concept to interact with scatter points directly. This interaction method can achieve noise

reduction in class selection process. For example, when visualization detects a point that

has been clicked, the entire convex hull of a corresponding class is highlighted and it

greys out the background of the convex hull in the meantime.

Figure 8.3 From scatterplot to flow based scatterplot. (a) A classic scatter plots

visualization. (b) Adding the decision flow where plots are augmented with respect to

the decision variable. (c) Interaction (mouse click) by using point-to-region concept:

that is, a point click causes an entire convex hull (a class) highlighted.

148

An application of flow based scatterplot matrix is shown in Figure 8.4 where the

upper matrix remains the traditional scatterplot and the lower matrix embeds the flow

based scatterplot.

Figure 8.4 A visualization of the flow based scatterplot matrix. The car dataset is

used in this example where the upper and lower triangular matrix display the classic

scatterplot and flow based scatterplot respectively.

8.2 Space Filling Multidimensional Visualization

Space Filling Multidimensional Visualization (SFMDVis) is a novel technique of

multidimensional visualization that is primarily designed to avoid overplot and visual

clutter. According to the categories defined by Keim and Kerigel [17], it is classified as

a pixel oriented technique. For a similar prior work, a pixel bar chart visualization

developed by Keim [105] will be a good example.

149

8.2.1 Properties and Definitions

Multidimensional dataset consists of a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, ܺଷ, … , ܺேሽ, ∃! ௜ܺ ∈ ܺ

with ܯ observations. For simplicity, we typically organized the dataset in the form of an

ܯ ൈܰ matrix as follows:

X ൌ ቌ
ଵܺ,ଵ ⋯ ଵܺ,ே

⋮ ⋱ ⋮
ܺெ,ଵ ⋯ ܺெ,ே

ቍ

The column vector in the matrix is expressed as ܦ ൌ ሼ݀ଵ, ݀ଶ, ݀ଷ, … , ݀ேሽ. ௜ܲ is used

to denote an observation such that ௜ܲ ൌ ൛݀௑భ, ݀௑మ, … , ݀௑ಿൟ and ௜ܲ ∈ ܲ. ܲ and ܦ describes

the fundamental row and column vectors that we will be working with. Please note that,

the notation of ݀௑೔ will also be used individually for element indexing in ௜ܲ for

convenience. In addition, we expect the drawing surface to be rectangular. ߱ and ݄

denote the width and height respectively in pixels where ሾ߱ ൈ ݄ሿ defines the drawing

bound. Given a set of variables ܺ, we further divide the ߱ into the equal length as

߱௑ ൌ
߱

ሺܰ െ 1ሻ

Where ߱௑ simply defines the width that we allocate to each variable in a horizontal

line for color mapping and ߱௑ഢ߱௑ണതതതതതതതതത refers to the line segment. Please refer to Figure 8.5

for clarity.

Figure 8.5. The properties of SFMDVis.

150

8.2.2 SFMDVis

The basic idea behind the space filling visualization is the representation of a data row ௜ܲ

by a horizontal line which serves as a fundamental geometric primitive. The line is further

segmented by the colors to denote the values with respect to each variable ௜ܺ. The width

of ௜ܲ equals to ߱ and the height occupies a unit size in pixels on the screen multiplied by

the zooming factor ߛ. For example, if the unit size is one pixel and ߛ ൌ 2, then each line

will occupy 2 pixels in height.

In a multidimensional dataset ܺ, variables might scale differently. Therefore, we

need to apply a normalize function in order to remove the discrepancy such that ݂ ∶ ܲ →

෠ܲ.

෠ܲ ൌ ෍ ෍
൫ܦ௑೔ െ ܺ௠௜௡൯
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ஽೉೔ఢ௉೔௉೔ఢ௉

∶ ௑೔ܦ ∈ ௜ܺ

Equation 8.4

Where ෠ܲ௜ ൌ ൛ܦ௑భ෢ ௑మ෢ܦ, ,… , ௑෢ಿܦ ൟ holds the normalized values with respect to each

variable ௜ܺ within the range ሾ0,1ሿ஽ and ܺ௠௜௡ and ܺ௠௔௫ denote the minimal and maximal

values of a target variable such that ሾܺ௠௜௡, ܺ௠௔௫ሿ.

Recall that ෠ܲ௜ will be mapped to a line that further consists of a set of segments

൛	߱௑భ߱௑మതതതതതതതതതത, ߱௑మ߱௑యതതതതതതതതതത, … , ߱௑ಿషభ߱௑ಿതതതതതതതതതതതതതൟ and each segment is coded by two colors. This is

because each segment holds two end points and each point represents a variable ௜ܺ. Let

ܥ denotes the color vectors and ܥ ⇒ ሼܴ, ,ܩ We can map a normalized .ܥ ሽ be a class inܤ

data ܦ௑ഢ෢ to the nearest ܥ௜ and it is given as:

௜ܥ ൌ ቨ
௑ഢ෢ܦ

1.0
ൗ|ܥ|

ቩ ⟼ ܥ

Equation 8.5

Where ۂ∗ہ denotes a floor function. Recall that, the maximal normalized value is 1

so we divide it by the number of colors to work out the normalized cut point. We then

divide the normalized data by the cut point to index a color. Therefore, the color order is

important since the color progression is often perceived as a value magnitude with respect

151

to a variable. Similarly, we can work out the cut point range that ܥ௜ holds in data value

(non normalized) with respect to ௜ܺ by the following equation:

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ

|ܥ|
, ൣܺ௠௜௡ ൅ ሺ݅ ൈ ݇ሻ, ܺ௠௜௡ ൅ ൫ሺ݅ ൅ 1ሻ ൈ ݇൯൧

Equation 8.6

Where ݅ and ݇ refer to the bin index and cut point respectively. Recall that, we have

mentioned earlier that each end point of a segment represents a variable so it is further

divided by 2 as 	߱௑భ߱௑మതതതതതതതതതത 2⁄ for painting the value of each variable. Thus, given the tuple

〈߱௑ഢ߱௑ണതതതതതതതതത, ,௜ܥ ௝〉, there are two DrawLine calls required to paint the sub-segments withܥ

length ቂ߱௑೔, ప߱߱௑ണതതതതതതതത 2⁄ ቃ and ቂ ప߱߱௑ണതതതതതതതത 2⁄ , ௝߱ቃ for ܥ௜ and ܥ௝ respectively.

The core algorithm of SFMDVis has been completely described in Algorithm 8.1

where we pass two arguments P and X that hold the row and column vectors respectively.

1. procedure ܴ݈݈݁݊݀݁݃݊݅݅ܨ݁ܿܽ݌ܵݎሺܲ, ܺሻ

݈݁ݔ݅ܲݎݑܿ .2 ← 0

3. /* Draw the vertical coordinates. */

4. for ݅ ∶ൌ do |ܺ|	݋ݐ	0

൫ሺ݅݁݊݅ܮݓܽݎܦ .5 ൈ ߱௑ሻ, 0, ሺ݅ ൈ ߱௑ሻ, ݄, ൯ݕܽݎܩ

6. end

7. /* Iterate through each data row. */

8. for ௜ܲ ∈ ܲ do

9. పܲ෡ ൌ ሺ݁ݖ݈݅ܽ݉ݎ݋݊ ௜ܲሻ

10. if ݀݁ݐ݈ܿ݁݁ܵݓ݋ܴܽݐܽܦݏܫ൫ పܲ෡൯ then

11. /* Draw the line segment. */

12. for ݆ ∶ൌ ݋ݐ	0 |ܺ| െ 1 do

௝ܥ .13 ← ݎ݋݈݋ܥ݌ܽ݉ ቀܦ௑ണ෢ ቁ

௝ାଵܥ .14 ← ݎ݋݈݋ܥ݌ܽ݉ ቀܦ௑ണశభ෣ቁ

15. ݉݅݀ ← ቀ߱௑ೕ ൅ ߱௑ೕశభቁ 2⁄

16. /* Apply the zooming factor. */

152

17. for ݇ ∶ൌ 0 ݋ݐ ݇ ൏ do ߛ

18. ݈ ← ሺ݈ܿ݁ݔ݅ܲݎݑ ൅ ݇ሻ

݁݊݅ܮݓܽݎܦ .19 ቀ߱௑ೕ, ݈, ݉݅݀, ݈, ௝ቁܥ

݁݊݅ܮݓܽݎܦ .20 ቀ݉݅݀, ݈, ߱௑ೕశభ, ݈, ௝ାଵቁܥ

21. end

22. end

23. end

݈݁ݔ݅ܲݎݑܿ .24 ← ݈݁ݔ݅ܲݎݑܿ ൅ ߛ

25. end

26. end procedure

Algorithm 8.1. The core algorithm of SFMDVis.

Figure 8.6 illustrates a visualization of SFMDVis where one can see that there is no

visual clutter and overplotting in SFMDVis because data items do not overlapped to each

other. There two problems are commonly seen in parallel coordinates due to its spatial

arrangement of data items. Also, every data item is directly selectable that makes

SFMDVis really distinctive from others.

Overall, the interactive techniques developed within SFMDVis have influenced our

framework significantly. For example, the zooming technique developed in SFMDVis

has been extended to interactive drill-down (Section 5.2.1 and 5.2.2) in parallel

coordinates.

153

Figure 8.6. A visualization of SFMDVis. (1) Text labels that describe the variable

names. (2) Color legend. (3) and (4) denote the maximal and minimal value range. (5)

Dynamic values and these refer to the data row pointed to by the mouse cursor.

8.2.3 Color Models

This section describes two supported color schemes in SFMDVis namely, the RGB and

single-hue.

8.2.3.1 RGB Color Ramping

In the RGB color ramping scheme, red, green and blue are commonly chosen to express

the higher, middle and lower magnitude of a value. This is probably because people

naturally tend to associate red and blue with hot and cold respectively. In RGB ramping,

the number of color bins are determined by a ramping factor denoted as ݎ which also

controls the variation of the colors when progressing in between blue ሺ0,0,1ሻ to red

ሺ1,0,0ሻ. Figure 8.7 has demonstrated a color legend of RGB ramping with ݎ ൌ 6.

154

Figure 8.7. An illustration of using RGB color remapping to denote the value

magnitude. The red, blue and green denote the highest, lowest and middle value

magnitude.

The higher ramping factor separates colors in smaller step changes that may

possibly affect the ability of the human eye to interpret the magnitude of the value if the

change is really subtle. For example, if ݎ is too small then the number of color bins might

be insufficient to represent the data distribution. On the other hand, the usability will

decline rapidly when ݎ increases because the human eye might not be able to discern the

subtle change in adjacent colors. When determining the proper ramping factor, we have

noticed a study contributed by Healey [106] for choosing the effective colors in data

visualization. According to the study, the result has suggested the human visual system

can quickly identify up to 5 classes of color in parallel but the response time of target

identification has increased during 7 and 9 color studies. Based on this observation, the

ramping factor is set to 6 by default in our visualization for RGB color ramping.

The algorithm implemented in our visualization is based on the implementation

described by Bourke [107]. Although, we have modified the original work slightly but in

general, the principal is the same so it will not be reproduced here.

8.2.3.2 Single-Hue Ramping

With multiple classes of color in RGB ramping, the user may need to reference the color

legend frequently if they cannot translate the spectrum to the magnitude that it implies

intuitively. For this reason, the single-hue is added as an alternative ramping scheme that

aims to support users who are not comfortable with the RGB style colors. Please note that

we offer the interaction possibilities for the user to switch between the color schemes by

right-clicking the mouse over the color legend which will then display the color scheme

options in a menu widget.

Single-hue is commonly applied in the choropleth map for mapping the magnitude

of the data (often aggregated) with respect to a geographic location. In single-hue

ramping, the appearance of the color is progressed from dark to a light shade of the same

color but with different levels of saturation and lightness, and therefore, the method is

named single-hue. The basic idea of single-hue is illustrated in Figure 8.8 by Hue,

155

Saturation and Lightness (HSL) where the hue value ranges from ሾ0,255ሿ and, saturation

and lightness are both measured in percentage between ሾ0,100ሿ%.

Figure 8.8. An example of single-hue progression in the purple color. The

corresponding HSL values are (270, 100%, 25%), (266, 57%, 36%), (243, 31%, 61%),

(245, 29%, 69%), expressed from left to right.

Our color selection is based on ColorBrewer [108] which is an excellent online tool

that provides prebuilt-in colors for sequential, diverging and qualitative schemes. In the

visualization, we provide the single-hue color options of blue, green, orange, purple and

grey scale for user preference. Figure 8.9 has shown the visualization results of using the

blue and green single-hue.

Figure 8.9. Single-hue color ramping in blue and green colors.

156

8.2.4 Interaction Techniques in SFMDVis

In this section, we will introduce the interactive techniques supported in SFMDVis.

8.2.4.1 Zooming

In SFMDVis, the zooming enlarges a pixel size for scaling a pattern. Sometimes it can be

difficult to notice a weak pattern through the visual inspection since an entire pattern

might occupy just few pixels in height. To address this issue, we have incorporated a

zooming technique which can be activated by pressing the Ctrl-key and scrolling the

mouse wheel in the meantime to control the zooming factor ߛ. The zooming factor is in

the range of ሾ1, 10ሿ. Technically, ߛ can be infinitely large ሾ1,∞ሿ but we believe that a

maximal value of 10 is enough in most cases. For example, if the unit size is one pixel

with	ߛ ൌ 10 then each line will occupy 10 pixels in height which shall be large enough

to perceive a pattern. Figure 8.10 compares two visualizations with the zooming factor

set to 1 and 10. The color pattern for every single line can be observable easily when

zooming factor has set to 10 where each line is 10 times larger than its default size and

that is the maximal value supported.

157

Figure 8.10. Zooming in SFMDVis. (Left) The overview of the car dataset with ߛ ൌ 1

which is the default and that means, there is no scaling at all. (Right) The car dataset

with zooming factor ߛ ൌ 10.

8.2.4.2 AND and OR Operator for Data Selection

In SFMDVis, the technique to interact with data is a point-to-color region. The main

consideration that we do not filter data based on an absolute value is to maintain visual

consistency and expectation. For example, when a mouse clicks on a point with a color

 ௜ for a variable ௜ܺ, the user intuitively expects that for these lines ௜ܲ with color brushingܥ

158

஽೉೔ܥ ് ௜ to be filtered out. Recall that, we deal with data in classes rather than absoluteܥ

value so if we strictly filter data based on their values rather than their classes then the

visual consistency cannot be maintained. When a mouse click within a drawing region

ሾ߱ ൈ ݄ሿ is detected, we pass the ݔ-coordinate to the following equation to determine the

matrix column index ݊ ↦ ܺ such that 0 ൑ ݊ ൏ |ܺ|.

݂ሺݔሻ ൌ ൝ ௜ܺ ,										෍ ߱௑೔ ൑ ݔ ൑ ߱௑ഢ, ߱௑ഢశభതതതതതതതതതതതത 2⁄
௑೔∈௑

		

		݁ݏ݅ݓݎ݄݁ݐ݋																																												,݈݈ݑ݊

Equation 8.7

Where ሺ݅ ൅ 1ሻ ൏ |ܺ| to ensure that we access an element within the vector bound.

For finding the matrix row index ݉ ↦ ܺ such that 0 ൑ ݉ ൏ |ܲ|, we need to divide the

 :that is written as ߛ coordinate by the zooming factor-ݕ

݂ሺݕሻ ൌ ݕ
ൗߛ ൅

݄௢௙௙௦௘௧
ൗߛ

Equation 8.8

Where ݄௢௙௙௦௘௧ denotes the view offset in screen coordinate to the original due to

the scrolling effect. These information are persisted by a tuple 〈݉, ݊〉. In SFMDVis, the

user is able to select data with the AND and OR operator in order to control the visibility

of the interested data for comparison with greater flexibility. Figure 8.11 illustrates the

operation of data selection using the AND and OR operator.

159

Figure 8.11. Interactive AND and OR data selection in SFMDVis. (Left) Data

selection with AND operator. (Right) Data selection with OR operator. The cursor

indicates the mouse clicks. The AND operator is useful in filtering out the data while

OR operator can be used to find the data pattern between groups rapidly.

8.3 Discussion

In this chapter, we have first introduced a flow-based scatterplot matrix with a point-to-

region technique for interacting with a class of data. In addition, we have further

introduced a novel multidimensional visualization called SFMDVis which does not use

traditional coordinated system as well as classic geometric primitive to represent

multidimensional data. Those two works are served as the extended contributions to the

interactive mechanism in multidimensional visualization in addition to the virtual node.

160

Chapter 9 Conclusion

9.1 Summary

In summary, this dissertation presented models and techniques for interactive visual

analytics in multidimensional visualization particularly in parallel coordinates. Overall,

the materialized contributions are summarized as below.

Chapter 3 introduced a new framework of visual interactions by refining Yi’s 7-

layer models. Existing frameworks tend to classify interactive tasks in a fine-grained

manner based on the nature of the operations or the user’s intent. We argue that this is not

necessary and the interactions can be narrowed down to inputs and output if one models

visualization as a function. Therefore, we propose a 3-layer framework based on Yi’s

model. The new model broadly classifies interactive visual analytics into 3 categories as

data selection, visual techniques for view change, and data analytics techniques for

reasoning. Formally, the layers in the new model are dynamic selection, dynamic viewing

and dynamic scoping of data. The advantage of this new model makes it easy to

understand and allows for better interpretation of the layered structure of visual

interactions.

In Chapter 4, a novel and sophisticated technique of data selection has been

contributed, called the hierarchical virtual node (HVN). The chapter also provides

comprehensive technical and implantation details. The basic idea is to interpolate visual

nodes in parallel coordinate hierarchically for data selection. To the best of our

knowledge, it is the first technique that enables users to interact directly with data in

parallel coordinates using a point-selection (mouse click) method. There are many

advantages of HVN. For example, point selection is always more intuitive, efficient and

accurate than other methods. Also, it enables a multi-level of data interaction through the

hierarchical grouping of the data. Another advantage that was not realized before the

implementation is that it enables users to perceive the data distribution through the

distribution of the virtual nodes and such information is often lost due to overplot in

parallel coordinates.

161

Chapter 5 presented the HVN-oriented interactive tasks for visual analytics based

on our model introduced in Chapter 3. These tasks were carried out in the system

developed.

9.2 Final Conclusion

In conclusion, we have taken the research challenges and satisfied the goals defined. The

proposed HVN which is the core technique of interaction has solved the issue to interact

with multidimensional data directly in parallel coordinates. It opens the applications of

many analytic tasks introduced earlier but is not limited to these. Moreover, they can be

easily carried out by a point-selection technique which is the most intuitive model for

human interaction and this would have otherwise been impossible to achieve by other

techniques.

In future work, the concept of the virtual nodes will be extended to other

visualizations where applicable. The theoretical development of virtual interpolation will

also continue. For example, the interpolation of the virtual node is based on the basis of

hierarchical clustering but it is also possible to interpolate nodes based on the density for

interaction though, this needs further study to prove its feasibility.

162

Appendix A Publications

 T. H. Huang, M. L. Huang, Q. V. Nguyen, L. Zhao, Space-Filling

Multidimensional Visualization (SFMDVis) for Exploratory Data Analysis, In

Proc. of the 7th Inter. Sym. On Visual Information Communication and

Interaction, pp. 19-28, 2014.

 T. H. Huang, M. L. Huang, K. Zhang: An Interactive Scatter Plot Metrics

Visualization for Decision Trend Analysis. ICMLA (2), pp. 258-264, 2012.

 T. H. Huang, M. L. Huang, Jesse S. Jin: Parallel Rough Set: Dimensionality

Reduction and Feature Discovery of Multi-Dimensional Data in Visualization.

ICONIP (2), pp. 99-108, 2011.

 M. L. Huang, T. H. Huang, J. Zhang: TreemapBar: Visualizing Additional

Dimensions of Data in Bar Chart. IEEE Intel. Conf. on Information Visualization,

pp. 98-103, 2009.

 T. H. Huang, M. L. Huang: Visualization of Individual's Knowledge by Analyzing

the Citation Networks. CGIV 2007, pp. 465-470, 2007.

 T. H. Huang, M. L. Huang: Analysis and Visualization of Co-authorship

Networks for Understanding Academic Collaboration and Knowledge Domain of

Individual Researchers. CGIV 2006, pp. 18-23, 2006.

Bibliography

[1] W. J. Frawley, G. Piatetsky-Shapiro and C. J. Matheus, "Knowledge discovery in

databases: An overview," AI Magazine (AAAI), vol. 13, no. 3, pp. 57-70, 1992.

[2] P. C. Wong and R. D. Bergeron, "30 Years of multidimensional multivariate

visualization," in Scientific Visualization, p. 3-33, 1997.

[3] G. E. Moore, "Progress in digital integrated electronics," in IEEE International

Electron Devices Meeting, pp. 11-13, 1975.

[4] A. Unwin, M. Theus and H. Hofmann, Graphics of large datasets: visualizing a

million, Springer, 2006.

[5] R. Kosara, "Visualization criticism – The missing link between information

visualization and art," in In Proc. of 11th Conference on Information Visualization

IV’07, p. 631-636, 2007.

[6] J. Meyer, J. Thomas, S. Diehl, B. Fisher, D. Keim, D. Laidlaw, S. Miksch, K.

Mueller, W. Ribarsky, B. Preim and A. Ynnerman, "From visualization to visually

enabled reasoning," in Scientific Visualization: Advanced Concepts, Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010, p. 227–245.

[7] E. Kleiberg, H. van de Wetering and J. J. van Wijk, "Botanical visualization of

huge hierarchies.," in In Proc. of IEEE Symp. on Information, pp. 87-94, 2001.

[8] J. J. van Wijk, "The value of visualization," in IEEE Visualization, pp. 79-86,

2005.

[9] D. Keim, G. Andrienko, J. D. Fekete, C. Gorg, J. Kohlhammer and G. Melancon,

"Visual analytics: definition, process, and challenges," in Information

Visualization in volume 4950 of LNCS, Berlin, Springer, 2008, pp. 154-175.

[10] D. A. Keim, "Information visualization and visual data mining," IEEE Tran.

Visualization and Computer Graphics, vol. 8, no. 1, pp. 1-8, 2002.

164

[11] D. A. Keim, F. Mansmann, J. Schneidewind and H. Ziegler, Visual analytics:

Scope and challenges. Visual Data Mining, Springer, Lecture Notes In Computer

Science (LNCS), 2008.

[12] J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and

Development Agenda for Visual Analytics, IEEE Press, 2005.

[13] A. Inselberg, "The plane with parallel coordinates," The Visual Computer, vol. 1,

no. 2, pp. 69-91, 1985.

[14] J. S. Yi, Y. A. Kang, J. Stasko and J. Jacko, "Toward a deepe understanding of

the role of interaction in information visualization," IEEE Tran. on Visualization

and Computer Graphics , vol. 13, no. 6, pp. 1224-1231, 2007.

[15] P. Lyman, H. R. Varian, P. Charles, N. Good, L. L. Jordan and J. Pal, "How much

information? 2003," University of California at Berkeley, 2003.

[16] R. E. Bellman, Dynamic programming, Princeton University Press, 1957.

[17] D. A. Keim and H. P. Kriegel, "Visualization techniques for mining large

databases: A comparision," IEEE Trans. on Knowledge and Data Engineering,

vol. 8, no. 6, pp. 923-938, 1996.

[18] M. d'Ocagne, Coordonnées parallèles et axiales : Méthode de transformation

géométrique et procédé nouveau de calcul graphique déduits de la considération

des coordonnées parallèles, Paris: Gauthier-Villars, 1885.

[19] D. B. Carr, R. J. Littlefield, W. L. Nicholson and J. S. Littlefield, "Scatterplot

matrix techniques for large N," Journal of the Americal Statistical Association,

vol. 82, no. 398, pp. 424-436, 1987.

[20] M. Friendly and D. Denis, "The early origins and development of the scatterplot,"

Journal of the History of the Behavioral Sciences, vol. 41, no. 2, pp. 103-130,

2005.

165

[21] R. Rao and S. Card, "The table lens: Merging graphical and symbolic

representation in an interactive focus+context visualization for tabular

information," in Proc. of SIGGHI Conference on Human Factors in Computing

Systems, p.318-322, 1994.

[22] H. Sagan, Space-filling curves, New York: Springer-Verlag, 1994.

[23] D. Hilbert, "Über die stetige Abbildung einer Linie auf ein Flächenstück,"

Mathematische Annalen, vol. 38, pp. 459-460, 1891.

[24] N. Boccara, Essentials of Mathematica: with applications to mathematics and

physics, Springer, 2007.

[25] E. Kandogan, "Star coordinates: A multi-dimensional visualization technique

with uniform treatment of dimensions," in In Proc. of IEEE Information

Visualization Symp. (Hot Topics), pp. 9-12, 2001.

[26] N. Cao, D. Gotz, J. Sun and H. Qu, "DICON: interactive visual Aanalysis of

multidimensional clusters," IEEE Trans. on Visualization and Computer

Graphics, vol. 17, no. 12, pp. 2581-2590, 2011.

[27] B. Shneiderman, "Tree visualization with treemaps: A 2-d space-filling

approach," ACM Transaction on Graphics, vol. 11, no. 1, pp. 92-99, 1992.

[28] "SmartMoney," [Online]. Available: http://www.marketwatch.com.

[29] M. Bruls, K. Huizing and J. J. Wijk van, "Squarified treemaps," in In proc. of

Joint Eurographics & IEEE TCVG Symp. on Visualization, pp. 33-42, 2000.

[30] M. Balzer and O. Deussen, "Voronoi treemap," in IEEE Symp. on Information

Visualization, Minneapolis, USA, pp 49-56, 2005.

[31] H. Siirtola and K. J. Raiha, "Interacting with parallel coordinates," Interacting

with Computers, vol. 18, no. 6, pp. 1278-1309, 2006.

166

[32] H. Hauser, F. Ledermann and H. Doleisch, "Angular brushing of extended parallel

coordinates," in IEEE Symp. on Information Visualization, Washington DC, USA,

pp. 127-130, 2002.

[33] H. Zhou, X. Yuan, H. Qu, W. Cui and B. Chen, "Visual clustering in parallel

coordinates," Computer Graphics Forum, vol. 27, no. 3, pp. 1047-1054, 2008.

[34] A. O. Artero, M. C. F. De Oliveira and H. Levkowitz, "Uncovering clusters in

crowded parallel coordinates visualizations," in In proc. of IEEE Symp. on

Information Visualization, pp. 81-88, 2004.

[35] Y. H. Fua, M. O. Ward and E. A. Rundersteiner, "Hierarchical parallel coordinates

for exploration of large datasets," in In Proc. of the conference on Visualization,

pp. 43-50, 1999.

[36] M. Ward, "XmdvTool: integrating multiple methods for visualizing multivariate

data," in In Proc. Visualization, pp. 326-333, 1994.

[37] M. Novotny and H. Hauser, "Outlier-preserving focus+context visualization in

parallel coordinates," IEEE Tran. on Visualization and Computer Graphics, vol.

12, no. 5, pp. 893-900, 2006.

[38] M. Ankerst, S. Berchtold and D. A. Keim, "Similarity clustering of dimensions

for an enhanced visualization of multidimensional data," in In Proc. of IEEE

Symposium on Information Visualization, pp. 52-60, 1998.

[39] W. Peng, M. Ward and . E. Rundersteiner, "Clutter reduction in multi-dimensional

data visualization using dimension reordering," in IEEE Symposium on

Information Visualization, pp. 89–96, 2004.

[40] J. Yang, W. Peng, M. O. Ward and E. A. Rundersteiner, "Interactive hierarchical

dimension ordering, spacing and filtering for exploration of high dimensional

datasets," in IEEE Symp. on Information Visualization, Seattle, WA, USA, p.105-

112, 2003.

167

[41] T. H. Huang, M. L. Huang and J. S. Jin, "Parallel rough set: dimensionality

reduction and feature discovery of multi-dimensional data in visualization," in

International Conference on Neural Information Processing, pp. 99-108, 2011.

[42] J. B. MacQueen, "Some methods for classification and analysis of multivariate

observations," in Berkeley Symposium on Mathematical Statistics and

Probability, (1), pp. 281-297, 1967.

[43] J. A. Hartigan and M. A. Wong, "A K-means clustering algorithm," Journal of

Royal Statistics Society, vol. 28, no. 1, pp. 100-108, 1979.

[44] M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, "Cluster analysis and

display of genome-wide expression patterns," in Proc. Natl. Acad. Sci., 1998.

[45] J. Yang, M. O. Ward, E. A. Rundersteiner and S. Huang, "Visual hierarchical

dimension reduction for exploration of high dimensional datasets," in Joint

Eurographics/IEEE TCVG Symposium on Visualization, p.19-28, 2003.

[46] S. Johansson and J. Johansson, "Interactive dimensionality reduction through

user-defined combinations of quality metrics," IEEE Trans. Visualization and

Computer Graphics, vol. 15, no. 6, pp. 993-1000, 2009.

[47] I. K. Fodor, "A survey of dimensionality reduction techniques," UCRL-ID-

148494, LLNL Technical Report, 2002.

[48] H. F. Kaiser, "The application of electronic computers to factor analysis,"

Educational and Psychological Measurement, vol. 20, pp. 141-151, 1960.

[49] R. B. Cattell, "The scree test for the number of factors," Multivariate Behavioral

Research, vol. 1, no. 2, pp. 245-276, 1966.

[50] J. Friedman and J. tukey, "A projection pursuit algorithm for exploratory data

analysis," IEEE Tran. Computers, vol. 23, no. 9, pp. 881-890, 1974.

[51] P. J. Huber, "Projection pursuit," The annual of Statistics, vol. 13, no. 2, pp. 435-

475, 1985.

168

[52] D. F. Swayne, N. Hubbell and A. Buja, "XGobi meets S: integrating software for

data analysis," in Comp. Sci. and Stat.: Proc. 23 rd Symp. Interface, pp. 430-434,

1991.

[53] Z. Pawlak, Rough Set: Theoretical aspects of reasoning about data, Kluwer.

Netherlands, 1991.

[54] D. Norman, "Twelve issues for cognitive science," Cognitive Science, no. 4, pp.

1-32, 1980.

[55] Z. Liu and J. T. Stasko, "Mental models, visual reasoning and interaction in

information visualization: a top-down perspective," IEEE Tran. on Visualization

and Computer Graphics, vol. 16, no. 6, pp. 999-1008, 2010.

[56] B. Shneiderman, "The eyes have it: a task by data type taxonomy for information

visualizations," in IEEE Symposium on Visual Languages, pp. 336-343, 1996.

[57] E. H. Chi and J. T. Riedl, "An operator interaction framework for visualization

systems," in IEEE Symp. on Information Visualization, pp. 63-70, 1998.

[58] M. C. Chuah and S. F. Roth, "On the semantics of interactive visualizations," in

IEEE Symp. on Information Visualization, pp. 29-36, 1996.

[59] M. L. Huang and P. Eades, "A fully animated interactive system for clustering

and navigating huge graphs," in Graph Drawing. Vol. 1547 of LNCS, Springer

Berlin Heidelberg, 1998, pp. 374-383.

[60] M. Theus, "Interactive data visualization using Mondrian," Journal of Statistical

Software, vol. 7, no. 11, pp. 1-9, 2002.

[61] J. Blaas, C. P. Botha and F. H. Post, "Extensions of parallel coordinates for

interactive exploration of large multi-timepoint data sets," IEEE Tran. on

Visualization and Computer Graphics, vol. 14, no. 6, pp. 1436-1443, 2008.

169

[62] C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, A. N. Yancey and J. E. Swan II,

"An interactive parallel coordinates technique applied to a tropical cyclone

climate analysis," Computers & Geosciences, vol. 35, no. 7, pp. 1529-1539, 2009.

[63] H. Siirtola, "Direct manipulation of parallel coordinates," in IEEE International

Conference on Information Visualization, London, pp. 373-378, 2000.

[64] J. Alsakran, Y. Zhao and X. Zhao, "Tile-based parallel coordinates and its

application in financial visualization," in In Proceedings of Visualization and

Data Analysis 2010, San Jose, California, 2010.

[65] R. Shannon, T. Holland and A. Quigley, "Multivariate graph drawing using

parallel coordinate visualisations," University College Dublin, 2008, Technical

Report UCD-CSI-2008-06.

[66] P. Guo, H. Xiao, Z. Wang and X. Yuan, "Interactive local clustering operations

for high dimensional data in parallel coordinates," in IEEE Pacific Visualization

Symposium, pp. 97-104, 2010.

[67] Y. D. Liang and B. Barsky, "A new concept and method for line clipping," ACM

Transactions on Graphics, vol. 3, no. 1, pp. 1-22, 1984.

[68] H. Lam, "A framework of interaction costs in information visualization," IEEE

Transaction on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1149-

1156, 2008.

[69] P. Michaud, "Clustering technique," Future Generation Computer Systems, vol.

13, no. 2-3, pp. 135-147, 1997.

[70] W. H. E. Day and H. Edelsbrunner, "Efficient algorithms for agglomerative

hierarchical clustering method," Journal of Classification, vol. 1, no. 1, pp. 7-24,

1984.

[71] T. H. Cormen , C. E. Leiserson , R. L. Rivest and C. Stein, "Introduction to

algorithms," in Introduction to algorithms, MIT Press, 2009, pp. 540-549.

170

[72] F. Yamaguchi, Curves and surfaces in computer aided geometric design, Berlin,

Germany: Springer-Verlag, 1988.

[73] G. G. Lorentz, Bernstein polynomials, University of Toronto Press, 1953.

[74] M. Graham and J. Kennedy, "Using curves to enhance parallel coordinate

visualisations," in In Proc. of International Information on Information

Visualization, pp. 10-16, 2003.

[75] T. W. Sederberg, "Computer aided geometric design," CAGD Course Notes,

2007.

[76] D. Freedman and P. Diaconis, "On the histogram as a density estimator:L 2

theory," Probability Theory and Related Fields, vol. 57, no. 4, pp. 453-476, 1981.

[77] H. A. Sturges, "The choice of a class interval," Journal of the American Statistical

Association, vol. 21, no. 153, pp. 65-66, 1926.

[78] "OpenTK," [Online]. Available: http://www.opentk.com/.

[79] D. A. Keim, F. Mansmann, A. Stoffel and H. Ziegler, "Visual Analytics," in

Encyclopedia of Database Systems, Springer, 2009, pp. 3341-3346.

[80] P. Thomas and T. Duff, "Compositing digital images," Computer Graphics, vol.

18, no. 3, pp. 253-259, 1984.

[81] C. Stolte, D. Tang and P. Hanrahan, "Multiscale visualization using data cubes,"

IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 2, pp.

176-187, 2003.

[82] A. Cockburn , A. Karlson and B. B. Bederson , "A review of overview+detail,

zooming, and focus+context interfaces," ACM Computing Surveys (CSUR), vol.

41, no. 1, p. Article No. 2, 2008.

[83] M. Rosenblatt, "Remarks on some nonparametric estimates of a density function,"

Annuals of Mathematical Statistics, vol. 27, no. 3, pp. 832-837, 1956.

171

[84] E. Parzen, "On estimation of a probability density function and mode," The Annals

of Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

[85] W. Hardle and O. Linton, "Applied nonparametric methods," Cowles Foundation

Discussion Papers 1069, Cowles Foundation for Research in Economics, Yale

University, 1994.

[86] B. W. Silverman, Density estimation for statistics and data analysis, London:

Chapman & Hall, 1986.

[87] M. P. Wand and M. C. Jones, Kernel smoothing, London: Chapman and Hall,

1995.

[88] S. J. Sheather and M. C. Jones, "A reliable data-based bandwidth selection method

for kernel density estimation," Journal of the Royal Statistical Society, vol. 53,

no. 3, p. 683–690, 1991.

[89] M. Rudemo, "Empirical choice of histograms and kernel density estimators,"

Scandinavian Journal of Statistics, vol. 9, no. 2, p. 65–78, 1982.

[90] M. Ankerst, D. A. Keim and H. P. Kriegel, "Circle Segments: a technique for

visually exploring large multidimensional data sets," in In IEEE Visualization,

Hot Topic Session, San Francisco, CA, 1996.

[91] K. Pearson, "Mathematical contributions to the theory of evolution. III.

Regression, heredity and panmixia," Phil. Trans. R. Soc. Lond. A, vol. 187, pp.

253-318, 1896.

[92] W. S. Torgerson, "Multidimensional Scaling, I: theory and method,"

Psychometrika, vol. 17, pp. 401-419, 1952.

[93] F. Wickelmaier, "An Introduction to MDS," Sound Quality Research Unit,

Aalborg University, Denmark, 2003.

[94] W. Ziarko, "Variable precision rough set model," Journal of Computer & System

Science, vol. 46, no. 1, pp. 39-59, 1993.

172

[95] R. Rosenholtz, Y. Li and L. Namano, "Measuring visual clutter," Journal of

Vision, vol. 7, no. 2, pp. 1-22, 2007.

[96] D. F. Swayne, A. Buja and D. T. Lang, "Exploratory visual analysis of graphs in

GGobi," in COMPSTAT 2004 - Proceedings in Computational Statistics, pp. 477-

488, 2004.

[97] "The Big List of D3.js Examples," [Online]. Available:

http://christopheviau.com/d3list/. [Accessed 2014].

[98] "D3.js - Data-Driven Documents," [Online]. Available: http://d3js.org/.

[Accessed 2014].

[99] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, "Modeling wine

preferences by data mining from physicochemical properties," Decision Support

Systems, vol. 47, no. 4, pp. 547-553, 2009.

[100] E. R. Berndt, The practice of econometrics, NY: Addison-Wesley, 1991.

[101] T. H. Huang, M. L. Huang and K. Zhang, "An interactive scatter plot metrics

visualization for decision trend analysis," in ICMLA, pp. 258-264, 2012.

[102] Y. H. Chan, C. D. Correa and L. K. Ma, "Flow-based scatterplots for sensitivity

analysis," in In proc. IEEE Symp. on VAST, pp. 43-50, 2010.

[103] S. Chatterjee and A. S. Hadi, Sensitivity analysis in linear regression, Wiley,

1988.

[104] S. G. AKL and G. T. Toussaint, "A fast convex hull algorithm," Information

Processing Letters, vol. 7, no. 5, pp. 219-222, 1978.

[105] D. A. Keim, M. C. Hao, U. Dayal and M. Hsu, "Pixel bar charts: a visualization

technique for very large multi-attribute data sets," Information Visualization, vol.

1, no. 2, pp. 20-34, 2002.

[106] C. G. Healey , "Choosing effective colours for data visualization," in IEEE

Conference on Visualization (VIS'96), pp. 263-271, 1996.

173

[107] P. Bourke, "Colour Spaces," [Online]. Available:

http://paulbourke.net/texture_colour/colourspace/.

[108] M. Harrower and C. A. Brewer, "ColorBrewer.org - an online tool for selecting

colour schemes for maps," The Cartographic Journal, vol. 40, no. 1, pp. 27-37,

2003.

	Title Page
	Acknowledgement
	Table of Contents
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 Introduction
	1.1 From InfoVis to Visual Analytics
	1.1.1 Problem Statement

	1.2 Challenges and Goals
	1.3 Contributions
	1.4 Outline

	Chapter 2 Background
	2.1 Terminology
	2.1.1 Curse of Dimensionality

	2.2 Multidimensional Visualizations
	2.2.1 Parallel Coordinates
	2.2.2 Scatterplot Matrix
	2.2.3 TableLens
	2.2.4 Space Filling Curve
	2.2.5 Star Coordinates
	2.2.6 TreeMap

	2.3 Interaction in Multidimensional Visualization
	2.3.1 Data Retrieval
	2.3.2 Interaction for View Change
	2.3.3 Interaction for Analytical Reasoning
	2.3.3.1 Clustering
	2.3.3.2 Dimensionality Reduction

	2.4 Discussion

	Chapter 3 A New Framework of Visual Interaction
	3.1 Introduction
	3.2 3-Layers Framework of Visual Interaction
	3.2.1 Tasks by Dynamic Selection
	3.2.2 Tasks by Dynamic Viewing
	3.2.3 Tasks by Dynamic Scoping
	3.2.4 Discussion

	Chapter 4 Hierarchical Virtual Node
	4.1 Interaction or Selection?
	4.2 Revisiting the Data Selection Models
	4.2.1 Rectangular Selection Model
	4.2.2 Value Range Model
	4.2.3 Point Selection Model
	4.2.4 Discussion

	4.3 Implementing the HVN
	4.3.1 System Overview
	4.3.2 Data Classification
	4.3.3 Non-parametric Partitioning by Hierarchical Clustering
	4.3.4 Mapping Virtual Nodes into Visual Space
	4.3.5 Building a Dendrogram
	4.3.6 Constructing Parallel Coordinates
	4.3.6.1 Polyline
	4.3.6.2 Bezier Curve
	4.3.6.3 Bezier Virtual Nodes

	4.3.7 Overview Presentation by Virtual Nodes Density

	4.4 Performance
	4.5 Discussion

	Chapter 5 Interactive Techniques for Visual Analytics
	5.1 Task by Dynamic Selection
	5.1.1 Interact with Data by the HVN
	5.1.2 Dynamic Brushing via HVN
	5.1.3 Highlighting Detail on Demand
	5.1.4 Discussion

	5.2 Task by Dynamic Viewing
	5.2.1 Hierarchical Local Drill-Down
	5.2.2 Hierarchical Global Drill-Down
	5.2.3 Probability Density Estimation
	5.2.4 Variable Overview of Big Dataset
	5.2.4.1 Divide-and-Conquer Model
	5.2.4.2 Overview by Correlation Matrix

	5.2.5 Discussion

	5.3 Task by Dynamic Scoping
	5.3.1 Dimensionality Reduction by RST
	5.3.2 Discussion

	Chapter 6 Technical Evaluations
	6.1 Visual Clutter of Overview
	6.2 Data Selection
	6.2.1 Continuous Neighbour Selection
	6.2.2 Non-Continuous Selection

	6.3 Drill-Down

	Chapter 7 Case Studies
	7.1 Case Study 1
	7.2 Case Study 2
	7.3 Case Study 3

	Chapter 8 Extended Works
	8.1 Flow based Scatterplot Matrix
	8.1.1 Interaction by Point-to-Region

	8.2 Space Filling Multidimensional Visualization
	8.2.1 Properties and Definitions
	8.2.2 SFMDVis
	8.2.3 Color Models
	8.2.3.1 RGB Color Ramping
	8.2.3.2 Single-Hue Ramping

	8.2.4 Interaction Techniques in SFMDVis
	8.2.4.1 Zooming
	8.2.4.2 AND and OR Operator for Data Selection

	8.3 Discussion

	Chapter 9 Conclusion
	9.1 Summary
	9.2 Final Conclusion

	Appendix A Publications
	Bibliography

