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Abstract

Interaction is an overloaded term in information visualization. Basically, every software
tool is interactive but mostly through the manipulation of a widget. Broadly speaking, a
visualization is just a software application. What makes the interactive component of a
visualization really distinctive is how well it supports an arbitrary selection of data
directly in the interface in order to facilitate subsequent analytic tasks. This is challenging
due to over-plotting and visual clutter in the multidimensional space and such
phenomenon is commonly known as the curse of dimensionality.

Data selection is a frontier of a visualization and too many multidimensional
visualizations claiming to be interactive mostly address the change of view without
explicitly specifying the core technique of how to materialize such operations. Perhaps,
the interactive component is achieved through the traditional widget.

To overcome the complexity of truly interacting with multidimensional data for
effective visual analytics, we first propose an interactive framework for better
understanding of the problem domains. Dynamic data selection is materialized by a novel
and sophisticated technique called the Hierarchical Virtual Node which opens an
application to interact with data directly in parallel coordinates that would otherwise have
been impossible or difficult to achieve by existing methods. It works well even under the
circumstance of the curse of dimensionality and offers several advantages over others.
For example, the use case only requires a mouse click to select a set of data item(s). To
achieve an efficient visual analytics, a set of analytic tasks are also developed in each

layer of the proposed framework.
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Chapter 1 Introduction

Information visualization is a broad field of study. The main area of interest primarily
focuses on the optimal organization of abstract data into a visual representation with
interactivity for knowledge discovery. The term knowledge discovery [1] refers to
previously unknown and potentially useful information from the given data.
Multidimensional visualization [2] is an important subfield of information visualization
with primary interest in the study of multidimensional dataset, organized in an X p
matrix for n observations on p variables.

Thanks to Moore’s law [3]. The rapid development of communication and storage
technologies have enabled data to be ubiquitously collected at an unprecedented rate over
the past few decades. The growing complexity of information space has posed many
challenges to visualization especially for these application domains require decision
making from a high dimensionality of data. These challenges urge a trend of moving

towards the integration of analytic tasks with a higher degree of interactivity.
1.1 From InfoVis to Visual Analytics

In the book “Graphics of large datasets: visualizing a million” authored by Unwin et al.
[4] with many techniques to present massive volumes of data were put forward.
Successful mapping of data into a graphic representation, however, does not always imply
the gaining of data insight. Kosara [5] asserted that if a visualization significantly
increases the cognitive process of a learning then it is merely expressed in a form of visual
art (see Figure 1.1). Mayer et al. [6] also pointed out that effective visualization must
focus on reasoning. The key point is that visualization shall be practical and the

information it reveals must be meaningful.



Figure 1.1. A botanic visualization of a hard disk, practical or art? The image is

sourced from [7].

In 2005, van Wijk [8] gave a work titled “The value of visualization” where he used
the study of his student [7] as an example (see Figure 1.1) to question that if a visualization
failed to convey knowledge from its visual representation then it is merely functioned as
an art. However, one of the key concepts in his study is the formulation of a simple model
of visualization as depicted in Figure 1.2. It shows that the knowledge is derived from
perception via an interactive exploration to produce a useful image. Keim et al. [9] further

developed a sense-making loop based on it and the relevant phrase is quoted as follow:

...... The solution offered by Visual Analytics is then to let the user enter into a loop
where data can be interactively manipulated to help gain insight both on the data and the

representation itself.

Manifestly, both tried to emphasize that the iterative interaction (main loop) with

visualization is the key element in the lifecycle of a visual analytics.



dK/dt
D V E P » K
S |e—
ds/dt <E>‘
Data Visualization User

Figure 1.2. A simple model of visualization. The image is reproduced based on [8]
where D, V, S, P, K, E, and I denote data, visualization, specification, perception,
knowledge, exploration and image. dK /dt is the amount of knowledge gained and

dS/dt means the interactive exploration by adapting a specification to a visualization.

In the taxonomy of visualization techniques contributed by Keim [10], many
techniques developed to be efficient are finding themselves no longer adequate to meet
the analytical needs without further integrating data mining, statistics, machine learning
or other reasoning. This inadequacy has resulted in the demand for an effective
framework by covering relevant theories collectively to deal with data complexity. Visual
analytics [11] emerges as an important field by introducing interdisciplinary
dependencies across scientific fields as illustrated in Figure 1.3. Thomas [12] defines the
term visual analytics in his book “Il/luminating the Path” as the science of analytical
reasoning facilitated by interactive visual interfaces. Overall, the objective of
interdisciplinary integration is to provide an effective framework for gaining the
perception and knowledge and eventually making a decision from a complex structure of

data that would otherwise have been impossible to achieve by a standalone field.

Visual Encoding Visualization

Big Data Statistics Data Mining




Figure 1.3 Visual analytics is an integration of interdisciplinary theories. The

image is reproduced based on [11].

1.1.1 Problem Statement

The term “interaction™ is becoming overloaded (a.k.a a buzzword) in information
visualization. In almost all the cases, every software tool is interactive through a widget
(such as a data grid, list box and etc.) which is cumbersome. Strictly speaking, a
visualization is just one software application. There is no difference whatsoever to other
software applications. What makes a visualization really special is how well its interactive
component can help the user to carry out visual analytics in an intuitive, efficient and user
friendly manner. This is indeed a significant problem if one further considers overplot
and visual clutter in multidimensional space. Mathematically, if one models visualization
as a super function then the problems can be classified into inputs and output. For
example, a visualization deals with data (input parameters) and applies analytical
reasoning (input command) to generate an image (output). Too many visualizations
claiming to be interactive have skipped inputs and only focused on output. The details of
how to accept inputs in an efficient, accurate and direct (not via widget) manner to an
application have often been neglected. Perhaps, this is because they assume the traditional
interaction of a widget style.

The aim of this research is how to improve the interaction mechanism in
multidimensional visualization such as in parallel coordinates visualization. The existing
interaction approaches that are currently used in the parallel coordinates [ 13] visualization
cannot perform the ‘Select’ operation in Yi’s [14] seven-layer interaction model. Unlike
graph visualization in which a ‘Select’ operation can be easily achieved through a mouse-
click (or mouse-rollover) on a shaped geometric region (a node), there is no geometric
region allocated to polylines in parallel coordinates geometry. Therefore, a mouse-click
(and mouse-rollover) operation over a particular polyline (visual object) is impossible.
Consequently, the ‘Select’ interaction in parallel coordinates visualization is also

theoretically impossible.



However, in visual analytics, data selections and data retrievals are very common
operations. Without these operations, a multidimensional visualization can only be used

as a data viewing tool. It cannot be deeply involved in the data analytics process.

1.2 Challenges and Goals

For challenges in visual interaction, Thomas [12], in his book “llluminating the Path”

claimed that:

Visual representations alone cannot satisfy analytics needs. Interaction techniques
are required to support the dialogue between the analyst and the data. ... more

sophisticated interactions are also needed to support the analytics reasoning process. ...

The key phrase here is the sophisticated interaction which implies novel and non-
trivial. While the point based interaction design is successfully applied in graph
visualization for supporting analytics reasoning, it is still in its very preliminary stage in
terms of applying in multidimensional visualization. This is because most of
multidimensional visualization techniques are based on polyline data representation,
which does not occupy a geometrical region for supporting point based interactions.
Therefore, some analytics reasoning processes are difficult to be implemented in
multidimensional visualizations. Overall, the goals of this dissertation are:

e investigate new interaction techniques that can support analytics reasoning
directly in multidimensional visualizations,

e investigate new visual data selection and data retrieval techniques through direct
point based interactions on polyline based data visual representations,

e apply a set of analytic reasoning algorithms into our proposed interactive
visualization to evaluate the effectiveness and efficiency of new approaches in
terms of how well our approaches can support analytics reasoning processes, and

e materialize a multidimensional visualization system that tightly integrates

developed data selection and a set of analytics reasoning tasks.



1.3 Contributions

In summary, the contributions of this dissertation include but are not limited to:

1. A new framework of visual interaction in multidimensional visualization (Chapter

3).

2. A novel and interactive data retrieval (or data selection) technique called the
Hierarchical Virtual Node (HVN) approach in parallel coordinates visualization

(Chapter 4).
Other additional contributions are:

3. A divide-and-conquer model developed on the basis of our new framework of

visual interaction for dealing with a big dataset (Section 5.2.4).

4. A successful application of Rough Set Theory (RST) for dimensionality reduction

in multidimensional visualization for visual data analytics (Section 5.3.1).
5. An enhanced scatterplot matrix method for visual data analytics (Section 8.1).

6. A new space filling multidimensional visualization (SPMDVis) (Section 8.2).

1.4 Outline

This dissertation is structured as follows:

e Chapter 2 Background: Covers an overview of existing visualizations and

interactive techniques.

e Chapter 3 A New Framework of Visual Interaction: Proposes a new model of

visual interaction based on existing frameworks.

e Chapter 4 Hierarchical Virtual Node: A complete chapter is dedicated to

describing the technique and the implementation of the hierarchical virtual node.



Chapter 5 Interactive Techniques for Visual Analytics: This chapter introduces a
set of analytic tasks for visual analytics by further expanding the model described
in Chapter 3. The core technique of interaction for the tasks is based on the

hierarchical virtual node described in Chapter 4.

Chapter 6 Technical Evaluations: Presents the technical evaluations of our
developed system based on the HVN against other publicly available visualization

systems.

Chapter 7 Case Studies: This chapter presents three case studies for the

applications of the techniques described.

Chapter 8 Extended Works: This chapter introduces two extended works about

the scatterplot matrix and a new space filling multidimensional visualization.

Chapter 9 Conclusion: This chapter concludes the dissertation.



Chapter 2 Background

In this chapter, we provide an overview of the multidimensional visualizations and
interactive techniques related to this dissertation. The concept of the curse of
dimensionality is also explained under subsection of terminology which describes the

problem domain that is commonly encountered when dealing with multidimensional data.
2.1 Terminology

We The author will kindly refer to himself and the contributing parties collectively as we.
This is to sincerely acknowledge the contributions of that others have made towards the

completion of this dissertation.

Dimension A dimension holds a data vector and is commonly referred to as variable or
attribute in many scientific disciplines so these terms will be used interchangeably

throughout this dissertation.

Multidimensional Data A dataset with arbitrary number of dimensions N and M

observations. For simplicity, it is usually organized in a form of matrix X = M X N.

X110 Xw
X=| : :
Xin o Xuw

We will use D and P to denote the column vector and row vector respectively. A
data vector D contains M observations for a variable X; and a data row P holds only one
observation for N dimensions. In other words, the notation of D; = {d,, d>, ..., dy},Vd €
X; and P; ={d,y,dy,...,dy},3!d;; € X; refer to a column and row major vector

respectively.

Data Element A data sample denotes as d; in an univariate data vector D. The term data
element is frequently referred to as data item or data point so these terms will be used

interchangeably throughout this dissertation.
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Object-oriented In the description of an algorithm, we often use dot notation to imply
the access to a field or method of an object Obj for simplicity. For example,
Obj.HasMoreChildren or Obj. HasMoreChildren( ) means the access to an object’s
field and method respectively.

2.1.1 Curse of Dimensionality

The study conducted by Lyman et al. [15] in 2003, estimated the information digitally
stored had grown nearly 30 percent between 1999 and 2002. A decade later, of course,
the trend is still continuing at a rate faster than ever in the age of big data. Information
collected with multiple attributes such that X = {a,,a,,...,a,} is known as
multidimensional data. High dimensionality creates extra complexities upon existing
challenges by orders of magnitude. To name a few, it needs more space for storing the
data and more time for searching the spare feature as well as more training data for
learning in classification. These phenomena are broadly known as the curse of
dimensionality which is the term first coined by Bellman [16] to describe the growing
complexity of the problem in terms of solving nonlinear optimization in dynamic
programming with high dimensionality.

Multidimensional visualizations inherit the curse of dimensionality as more
dimensions bring more challenges. The growing complexity of the visualization depends
on the increase in dimensionality, scale of data and non-linearity of the dimensions. An
example is illustrated in Figure 2.1 showing that the application of bar chart, line chart
and parallel coordinates to visualize one, two and multi-dimensional data respectively.
Obviously, the complications start to rise gradually from low to multi-dimensional
visualizations, making it more difficult to understand the meaning and more time

consuming to interpret the result from the visualization.



Figure 2.1. lllustration of visual and data complexities.

In summary, the curse of dimensionality will reflect in a visualization as follows:

1. Decline in visual perception because the phenomena of interest are often sparse
in multidimensional space. For example, it is easy to perceive the data distribution
and its linearity in a scatterplot rather than in parallel coordinate.

2. Create visual clutter and over-plotting.

3. Decline in learning accuracy due to data noise because not necessarily all the
variables ought to be analyzed. For example, in multiple regression, it is often a
time consuming task to analyzed all the variables first and then remove those
variables with less contribution (in terms of statistical significance) from the
model.

4. Increase prediction error and as a result, adds to the cost of interpretation. For
example, when classifying more variables would more training data in order to

improve the classification rate.
The understanding of the curse of dimensionality is important because in its attempt

to deal data with the high dimensionality of data it preempts problem domains that

commonly exist for all sciences.
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2.2 Multidimensional Visualizations

In this section, we will review multidimensional visualizations on the basis of the
taxonomies of visualization techniques presented by Keim [10] [17] and Kerigel [17].

Basically, they have classified the techniques into:
e Pixel oriented.
e Geometric projection.
e Icon based.
e Hierarchical based, and
e Graph based.

In particular, we will focus on the categories of pixel oriented, geometric projection
and hierarchically based visualizations. The visualizations reviewed will be technical and
comprehensive especially, for parallel coordinates because our interactive framework has

been developed on the basis of it.

2.2.1 Parallel Coordinates

The origin of parallel coordinates is vague. It is often believed that it was proposed by
Maurice d’Ocagne [18] in the 19" century. Strangely, the book written by d’Ocagne is
mathematical and has no connection with the parallel coordinates visualization. However,
in the mid-20" century, Inselberg [13] brought it back into awareness. Nowadays, it is
probably the most well-known and extensively used multidimensional visualization. This
is evident in a Google search with an illustration in Figure 2.2 where the results returned
for the keyword “parallel coordinates” is about 26.63 times more than the keyword

“scatteplot matrix”.

11



GO gle parallel coordinates GO 8[{»‘_‘ scatterplot matrix

Web mages Videos Shopy Web mages Videos News

About 27 700,000 results (0.28 seconds) About 1,040,000 results (0.14 seconds)
Figure 2.2. A comparison of the Google search results. Google returned
27,700,000 and 1,040,000 results for the keywords “parallel coordinates” and

“scatterplot matrix” respectively.

Parallel coordinates is considered to be a geometric projection based technique.
Given a set of variables X = {X;, X,, ..., Xy} in which each X; is drawn as a vertical axis
across a horizontal plane. The vertical axes serve the end knots of a polyline denoted as
P; ={d,,d,,...,dy} and every data point in P; is associated with one and only one

variable such that 3! d;: X;. We assume that the origin of the screen coordinate starts from

the bottom-left corner! on the target platform. It is trivial to compute the y-coordinate of

a data point d; with respect to its variable X; by the equation below.

v, + [ (—H i height
=Yy X ,
Yay Xi maxy, — miny, LGNt

Equation 2.1

Where Yy, heighty,, miny, and maxy, are the y-coordinate of a vertical axis,
height of the vertical axis, minimal value and maximal data value with respect to X;. The
output y, is a transformed value of d; in screen coordinate. These notations are

straightforward. Please refer to Figure 2.3 for clarity.

1 Typically, the 2D GUI coordinate system starts from the top-left corner and the origin of 3D starts from
the bottom-left.
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D; = {d:-d:- -~-d.~:}

0.54 ® 7.
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—heighty,

Yy,

Figure 2.3. Mapping a data point to a vertical axis. The diagram describes the

notations and how a data point is mapped to the screen coordinate.

The key property of a polyline is that it establishes the integrity of a
multidimensional data item geometrically. To perceive the data pattern, one needs to
discern a set of polylines with similar undulation.

Algorithm 2.1 provides an implementation of parallel coordinates where the details
of DrawPolyLine and DrawCircle have been skipped because they are simply the

wrapper functions of the software API. For example, GDI in the Windows platform.

1. procedure DrawParallelCoordinate(X, w,v,y)
2. X ={X., X, ..., Xy}

3. w /* Constant line width of a vertical axis. */
4. v /* Constant height of a vertical axis. */

5. startY = y /* Starting y-coordinate of a vertical axis. */
6. Initialization:

7. P=09

8. startX =0

9. of fset = screenWidth /(N — 1)

10

11. /* Draw the vertical axis here. */

12. fori:=0to N

13



13. endY = startY +v

14. Drawline(startX, startY, startX,endY)

15. startX = (startX + of fset)

16. end for

17.

18.  /* Draw the geometric primitives here. */

19. for each X; in X

20. for each d; in Dy,

21. Vi = yPointToScreen(di ,maxXi,minXi,v)
22. x; = Xx, /* A data point always attaches to a vertical axis, i.e. variable. */
23. P « (x;,y;) /* Add the coordinate to the list. */
24. DrawCircle(x;, y;)

25. end for

26. DrawPolyLine(P)

217. end for

28. end procedure

Algorithm 2.1 An implementation of the parallel coordinates visualization.

In Algorithm 2.1 where Dy, holds a column vector with respect to X; and
yPointToScreen is a wrapper function of Equation 2.1. Xy, denotes the x-coordinate of
a vertical axis X;. Note that, there is no need to map a data point to the x-coordinate which
is constant and always equal to its respective Xy, so only the computation of the y-

coordinate is necessary.

Figure 2.4 shows the implementation result of Algorithm 2.1 with an application of

car dataset2. The view has been optimized to promote the location proximity of correlated

variables while maximizing patterns.

2 Car dataset has obtained from StatLib, Carnegie Mellon University, see http:/lib.stat.cmu.edu/datasets/.
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Figure 2.4. A parallel coordinates visualization. Car dataset is used and the
geometric primitive is based on Bezier curve. The techniques applied here are brushing

and dimensional reordering.

Parallel coordinates is extensively used to discover data patterns but its visual
effectiveness is greatly dependent on the spatial arrangement of the variables. For
example, a subtle change in permutation can lead to a totally disparate pattern (polyline
undulation) than the others. One can compare Figure 2.4 with Figure 2.5 which used the
default ordering. Even though, a brushing technique has been applied in Figure 2.5 but

the view overall is more disorganized than the one produced in Figure 2.4.

mpg cylinders displasmenthorsepower weight acceleratiomodel origin

yﬁ 230 5140 24,8 pa=— 3

1613 B —— 1
Figure 2.5. A parallel coordinates visualization in default variable ordering. The

dataset used in this example is the same as per Figure 2.4.
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Misinterpretation of Linear Correlation The most confusing part of parallel
coordinates is the interpretation of the polyline slope. From the perspective of human
cognition, the slope intuitively suggests a linear relationship but this is not entirely true.
The coordinate system of parallel coordinates is not based on the Cartesian system which
uses the perpendicular line L XY to divide a plane into four quadrants. Instead, parallel

coordinates projects data only in one direction so the concept of slope y = mx +
¢,wherem = 2—; is really not applicable. This explanation aims to clarify that parallel

coordinates is not suitable to be used to discern a linear correlation in the way that
scatterplot is capable of.

A visual perception of the linear correlations between the parallel coordinates and
scatterplot matrix is provided in Figure 2.6. Here, one can easily perceive that there might
exist a linear dependency for a data pattern (data subset between pairwise variables) in
parallel coordinates but the overall correlation revealed in scatterplot suggests a different
interpretation. For example, it is hard to imagine that a) has no correlation, b) is negative
correlated and c) is less correlated or nonlinear. Especially, the patterns between b) and

c) are subtle in parallel coordinates, but scatterplot suggests a totally different trend.

origin model mpg weight weight acce
3 82 46.6 5140 5140 24.8
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Figure 2.6. The perception of linear correlations between parallel coordinates
and scatterplot matrix. Car dataset is used again. (Top) Snippet of the parallel
coordinates. Pairwise variables are{origin, model}, {mpg, weight}and
{weight, acceleration} from left to right. (Bottom) Scatterplot for the corresponding

variables above.
2.2.2 Scatterplot Matrix

Scatterplot matrix [19] is widely used in statistics for multivariate exploratory data
analysis. It is conceptually simple and should be considered as an extension of the classic
scatterplot [20] rather than an independent subject. It is classified as a geometric
projection technique by Keim and Kerigel [17].

Given a set of variables X;, X5, ..., X;, a pairwise variables X;, X;, i # j is plotted
where X; and X; are also known as independent (horizontal axis) or dependent (vertical
axis) variable respectively. Since {X X i} is a transposed plot of {X;, XJ}T and an identity
plot {X;, X;} is essentially a 45 line for a continuous or 180" line for discrete variable.
Therefore, it is widely acceptable to display either full or tri-diagonal matrix. The
implementation of the scatterplot matrix is trivial and Equation 2.1 can be reused by
invoking it twice, one for the y-coordinate and another call for the x-coordinate. Figure
2.7 shows the visualization of the full scatterplot matrix where the lower triangular matrix
is essentially a transposed view of the upper triangular matrix and vice versa.

The scatterplot matrix presents multidimensional data in such a way that it enables
the perception of linear correlations over an entire dataset simultaneously. On the other
hand, the major disadvantage is the linear reduction of screen space allocated to each
scatterplot. For example, let M, P, K denote scatterplot size, entire display size and

number of variables respectively. The size of a scatterplot can be trivially computed as
M="F / k Where M declines rapidly when K increases and eventually, the visualization

will become a point cloud. In general, parallel coordinates is more space efficient than

the scatterplot matrix.
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Figure 2.7. A visualization of the scatterplot matrix.

2.2.3 TableLens

TableLens [21] is a visualization for exploring a large amount of tabular information by
merging graphical and symbolic representations into an interactive view. The
visualization is tightly integrated with focus+context and zooming techniques. An
important feature of TableLens is that the scaling of a view is independent of each other
in either the horizontal or vertical order. Figure 2.8 provides an illustration of the
TableLens visualization. According to the taxonomy by Keim and Kerigel [17],

TableLens is considered as a geometric projection based technique.
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Figure 2.8. The TableLens visualization. The image is sourced from

http://www.ramanarao.com/articles/2001-12-online-info/cviz.html.

2.2.4 Space Filling Curve

The Hilbert curve [22] was first described by David Hilbert [23] in the 19" century. It is
a continuous and self-similar space filling curve with many useful applications such as
spatial database indexing or mapping of high dimensional data into lower dimensional
space such as multidimensional indexing. It is considered as a mixture of geometric and
pixel oriented techniques.

The basic building block of a Hilbert curve is a one side opened rectangle which we
call it a Hilbert curve element. Conceptually, the drawing process of the Hilbert curve is
simple, one can imagine the entire plane is logically divided intoa N X N grid and a grid
cell is further partitioned into 4 quadrants. Each quadrant can be visited at most once. The

points in the grid cells are connected to form an element as shown in Figure 2.9 (Left).
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Finally, self-similar neighboring elements are connected together to form a continuous

Hilbert curve in Figure 2.9 (Right).

Figure 2.9. Building block of Hilbert curve. (Left) A single element of a Hilbert
curve. (Right) A space filling curve in a 8 X 8 cells. An orange dotted line indicates the

join with the other element.

The guiding operations can be encoded by three symbols [24] {F, +, —}, interpreted
as “move forward”, “turn 90° to the left” and “turn 90" to the right”. Therefore, the
representation +F — F instructs the algorithm to move forward after turning 90° to the
left and then move forward after turning 90° to the right.

Figure 2.10 provides the visualizations of the Hilbert curve in different orders. For
a more advanced application, elements are usually coded by various colors to denote the

spatial separation.
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Figure 2.10. Visualizations of Hilbert space filling curve. The depth of recursion is

4 and 8 for left and right diagrams respectively.
2.2.5 Star Coordinates

Star coordinates (SC) [25] is a geometric projection based multidimensional visualization
that arranges axes on a circle in such a way that every axis starts at the same origin. The
coordinate system of SC is curvilinear where the data can be transformed into a Cartesian
coordinate by summing all the unit vectors in each coordinate and multiplying by the data
value that is similar to Equation 2.1 as defined for parallel coordinates.

Star coordinates visualization presents multidimensional data in a way similar to
the scatterplot matrix. For example, both were designed on the basis of scatterplot with
the main difference being the coordinate system but the overall approach of perceiving

data is similar. Figure 2.11 illustrates a star coordinates visualization.
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Figure 2.11. Star coordinates visualization. The image is sourced from [25].

2.2.6 TreeMap

TreeMap mainly deals with hierarchical data. Normally, the discussion of TreeMap shall

not be mixed with multidimensional visualization but Cao et al. [26] has successfully
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designed a TreeMap-like interface to visualize multidimensional clusters so it will be
briefly introduced here.

TreeMap is a hierarchical based visualization that was first introduced by
Shneiderman [27] to tackle the problem of visualizing hierarchical data such as a file
system structure. The TreeMap visualization has been successfully commercialized and
a renowned application in the real world is probably the Map of the Market that was
developed by SmartMoney?3 [28].
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Figure 2.12. Map of the market. The tool shows the live market data in TreeMap. The

diagram is sourced from the MarketWatch website (http://www.marketwatch.com).

3 Dow Jones ceased SmartMoney magazine. The September 2012 issue of SmartMoney was the

magazine’s last edition. All the contents and tools from SmartMoney are available on MarketWatch.com
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The key feature of the TreeMap is the ability to fully utilize display space. Given a
hierarchical dataset, the layout algorithm starts off with one rectangle that occupies the
entire display initially and is latter divided into nested rectangles recursively while the
algorithm traverses down along hierarchical data paths. This process continues until the
bottom of the hierarchy has been reached. Figure 2.13 illustrates the conceptual mapping

of the hierarchical data to the rectangles in the TreeMap.

Figure 2.13. Hierarchical data mapping.

There are variety of TreeMaps [27] [29] [30] but the layout principally remains
similar and in general, an optimal layout algorithm tries to produce rectangles with the
aspect ratio as close to one as possible.

The slice and dice TreeMap [27] is the first and simplest TreeMap layout algorithm
as it recursively divides a rectangle into rectangles using parallel lines. Sub-rectangles
represent children to its parent rectangle.

The squarified TreeMap [29] is another variation of the TreeMap that works by
dividing rectangles in horizontal and vertical rows. A rectangle is either added to the
current row or the current row is fixed and a new row is started. The decision to determine
whether a rectangle shall be fixed or continue its subdivision is given by the following
function:

worst(R, ) = rpeaRx{maX(a)2 rt/s?),s%/(w?r7)}

Where r* and r~ denote the maximum and minimum value of R and the width is

given by w.
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2.3 Interaction in Multidimensional Visualization

This section will review the common tasks of interaction with multidimensional
visualization. Usually in a visual analytics, one interacts with visualization for data
retrieval, and views change or analytic reasoning so they can be grouped for easy

understanding.

2.3.1 Data Retrieval

Data retrieval (a.k.a data selection) refers to the process of expressing the interested subset

of data for application by a subsequent task.

Widget based data selection This approach allows users to interact with data indirectly
through the traditional user interface such as tabular display as illustrated in Figure 2.14.
Data are usually presented in their raw form with no (or little) information to describe
their characteristics. Thus, the user needs to be familiar with the underlying dataset for
meaningful data selection in such a raw format.

The greatest advantage is its simplicity because very little effort needs to be
expanded to bring about rapid prototyping. However, the disadvantages include the lack
of visual indication and also the fact that data are usually organized in a natural order so

the effort to locate interested items can be quite significant.
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9 0 1 42 0 495 57 3
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13 0 0 9 1 13.07 28 3
10 1 0 27 0 445 43 3
12 0 0 9 0 19.47 27 3
16 0 0 1 0 13.28 33 3
12 0 0 9 0 875 27 3
12 0 0 17 1 11.35 35 3
12 0 0 19 1 11.5 37 3
8 1 0 27 0 6.5 41 3
9 1 0 30 1 6.25 45 3
9 1 0 29 0 19.98 44 3
12 0 0 37 0 73 55 3
7 1 0 44 0 8 57 3
12 0 0 26 1 222 44 3
11 0 0 16 0 365 33 3
17 n n 22 n 2N 55 51 2

Figure 2.14. Widget based data selection. The user interacts with raw data rather
than the visualized data. It is difficult to select data subset without understanding the

nature of the dataset.

Direct point selection This technique is often seen in graph or nodal based visualizations
such as a scatterplot in Figure 2.15. A node occupies a concrete region in the display with
the duality of representing coordinates and data points simultaneously. Therefore, the
common use case of data selection in such visualization allows users to select data directly
in the display. In general, point based selection is intuitive but its availability is limited

to nodal based visualizations.
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Figure 2.15. An example of scatterplot. The scatterplot typically uses point selection

technique by allowing user to interact with a data point by a mouse clicking.

Direct 2D data selection It allows users to select a set of data on a 2D plane. This
technique will be reviewed again comprehensively in Section 4.2. For such an application
in multidimensional visualization, Siirtola et al. [31] has applied a similar technique in
parallel coordinates. Basically, it selects a collection of polylines passing through the
rectangular area which is drawn by a sequence of mouse click, drag and release
operations. Obviously, it does not work well over a visualization with intensively
overlapping elements. Indeed, Siirtola has commented that it is more appropriate to use

2D selection for highlighting outliers.

Figure 2.16 Direct data selection by a 2D rectangle. This method is used to select

a set of data but its accuracy tends to decline in a crowded visualization.

2.3.2 Interaction for View Change

Brushing By using a brushing interaction, a subset of data items can be highlighted (or
focused) for viewing the detail of these data patterns. This technique is widely used in
parallel coordinates. In 2002, Hauser et al. [32] proposed the concept of angular brushing
as an extension to the standard brushing to facilitate the data subsets grouping and
highlighting the rational data properties of the date items. They also integrated the
composite brushing and focustcontext technique to further improve the visual

exploration in parallel coordinates.
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In addition, Zhou et al. [33] discussed the visual clustering technique which allows
users to specify transfer functions in order to control the density value of the lines using
alpha blending. We consider the visual clustering as a variation of brushing. One
significant drawback of applying alpha blending in brushing is that the low density
patterns tend to become illegible due to high transparency. This is certainly not desirable
if the low density pattern is statistically significant. Overall, brushing remains a

rudimentary technique which is popular mostly due to its simplicity.

Filtering It is a fundamental technique of data manipulation that attempts to minimize
data noise for uncovering interested data in a crowded visualization. In a visual analytics,
a noise typically refers to unwanted data with respect to a current task. In parallel
coordinates visualization, a good example of filtering is probably the system implemented
by Artero et al. [34]. They introduced an interactive filtering method by first computing
the frequency and density information. Such information is subsequently used to filter out
the data for greater visual perception for clutter reduction. Filtering requires better
familiarity with the analyzed dataset otherwise users can potentially filter out some
meaningful patterns or even create a poor view.

The major difference between filtering and brushing is the output strategy of
highlighting and grouping of user expected (interested) data items. The former hides or
dims the less important (or less interested) data items and the latter displays the complete
dataset and sets the unique color to the selected data item in order to differentiate a

selection from the rest.

Zooming It is generally concerned with the level of abstraction. A conceptual illustration
of zooming technique is provided in Figure 2.17. Basically, we consider zooming as a
general term that covers classic zooming, focustcontext and detail-on-demand. In
multidimensional visualizations, TableLens and a system implemented by Fua et al. [35]
are good examples. Fua [35] discussed the applications of using drill-down, roll-up and

dimension zooming techniques for navigating the level of detail in parallel coordinates
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and the techniques developed have been further integrated into XmdvTool4 [36] since

version 3.1.

|
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Figure 2.17 An illustration of zooming technique. The diagram illustrates the

applications of zooming to abstract a dataset into different levels of perspective.

For focus+context, Novotny and Hauser [37] discussed an interesting work for
outlier detection. The basic idea is to put the detail into focus while preserving the
relations to other data that is also known as the context. In other words, this idea is similar
to independent dimension scaling by varying the scale of one or few variables while fixing

others simultaneously.

Dimensional Reordering The technique is widely used in parallel coordinates
visualization. Recall that parallel coordinates is mainly used to explore data patterns but
that does not necessary imply patterns will be divulged naturally. The overall geometric
structures presented by parallel coordinates are susceptible to the ordering of variables
and inappropriate ordering tends to create visual clutter due to tangled line crossing. This
technique aims to promote the location proximity of correlated variables for uniform
undulation.

There are numerous studies about the technique of variable reordering in parallel
coordinates. For example, Ankerst et al. [38] developed a technique to arrange dimensions
based on the similarity measurement. Peng et al. [39] used dimension reordering to

rearrange variable axes based on their visual neighbouring similarity for clutter reduction.

4 Current version of XmdvTool is 8.0 released on October 20, 2010.
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Yang et al. [40] further contributed a technique based on optimal and heuristic ordering.
Furthermore, Huang et al. [41] presented a classification based method to maximize the

uniform undulation of geometric primitives and the result is shown in Figure 2.18.
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Figure 2.18 Reordering of variables in parallel coordinates. (Left) Parallel
coordinates visualization before dimension reordering. (Right) Parallel coordinates

visualization after dimension reordering.

2.3.3 Interaction for Analytical Reasoning

2.3.3.1 Clustering

Clustering techniques are often used in visual analytics to cluster data into groups on the

basis of a statistics principle rather than an arbitrary selection.

K-means [42] [43] is a simple method that aims to partition data into K clusters. The
algorithm first initializes a set of K clusters C = {Cy, C5, ..., Cy} by the random selection
of K data points to be the centroids accordingly. Each data point is assigned to a nearest

cluster C; with the following equation.

K
> ) -l
i=0 VdeC;
Equation 2.2

Where p; and d denote the centroid and a data point in C; respectively. The centroid

is updated in each iteration and the process continues until there is a convergence. That
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is, there is no change or the change can be tolerated. The efficiency of K-means is largely
determined by the speed of convergence and a heuristic is often used to select a good
initial data point for quick convergence. The drawback of K-means is the likelihood of a
convergence to a local optimum so it cannot guarantee that the outcome is always globally
optimum.

Figure 2.19 demonstrates our application of K-means where each cluster has been
color brushed for the visual separation of clusters and the convex hull algorithm is used

for plotting the boundary.

Figure 2.19. A K-means clustering. The randomly generated data have been

partitioned into 20 clusters where the yellow dot indicates the centroid of a cluster.

Hierarchical Clustering [44] It is a non-parametric technique and probably one of the
most widely used clustering methods in many scientific applications. Given a set of data,
the method partitions them into a set of hierarchically disjointed clusters in the following

form.
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G ={g1 U ga ..U gn}h, ---;{{91 Ugjuf..},..u {gN}}6 tging =0,i+j

Where 6 denotes the depth of the hierarchy. The hierarchy of the clusters are built
iteratively by merging two clusters with an objective function to form a new cluster in
each iteration. Generally, there are two categories of hierarchical clustering namely,
agglomerative and divisive. They are bottom up and top down for the former and the latter
respectively. A conceptual illustration is provided in Figure 2.20

Unlike K-means, it does not require K clusters to be known in advance but it needs
a stopping rule to terminate the process when an optimal number of clusters have been
found. Hierarchical clustering is used in our proposed technique of interactive data

selection and will be reviewed comprehensively in Chapter 4.

Figure 2.20. Hierarchical clustering categories. (Top) Agglomerative. (Bottom)

Divisive.
2.3.3.2 Dimensionality Reduction

Dimensionality reduction is an advanced analytic task and is commonly used in many
sciences to attenuate the curse of dimensionality. The basic principle is to map a high
dimensional dataset X = {X;,X,, ..., Xy} into a lower information subspace X = A U
B,A N B = @ while preserving the original interestingness. The terms interestingness is
subjective and is therefore dependent on the objective of an algorithm. Let A and B

denote the reduced and excluded subset respectively such that VA € X,VB € X. The
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reduced subset A shall be sufficient to describe the original superset X. There are two
classes of dimensionality reduction namely, supervised and unsupervised. In short,
supervised methods allow users to influence the outcome by a set of parameters and vice

versa.

Visual Hierarchical Dimensional Reduction Yang et al. [45] contributed an automatic
and manual brushing mechanism to parallel coordinates in their work called Visual
Hierarchical Dimensionality Reduction (VHDR). VHDR has been integrated into
XmdvTool [36] since version 6.0. The interaction technique offered by Yang is capable
of exploring a large dataset in a more interactive manner with greater flexibility to
dynamically change the view. VHDR first constructs a hierarchy of a dimensional tree
grouped by similarity and further allows users to interactively select an interested

dimensional cluster for analysis.

User-Defined Combinations of Quality Metrics Johansson et al. [46] introduced a
supervised method of dimensionality reduction in the field of visualization called the
User-Defined combinations of Quality Metrics (UD-QM). They used a set of metrics such
as Pearson correlation, outlier and cluster detection to rank variables. In UD-QM, the
prerequisite knowledge required to quantify the quality metric parameters might need
greater user expertise. For example, users need to define the correlation, outlier and
cluster values in such a way as to avoid insignificant correlations, outliers and clusters

adding up to a sum that appears to be significant.

The techniques described above were proposed primarily in the field of information
visualization. In addition, there are many well-known methods of dimensionality

reduction proposed in statistics and for a good taxonomy, one can refer to [47].

Principal Component Analysis It is often abbreviated by the acronym PCA.
Mathematically, it performs an orthogonal linear transformation by mapping data to a
lower dimensional space with non-trivial computation of covariance matrix and eigen-
problems. There are two commonly used selection criterions to select principal

components namely, the Kaiser criterion and the Scree test. For adopting PCA in the
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dimensionality reduction, the Kaiser criterion [48] is perhaps the widely acceptable
criterion by ignoring the components with eigenvalues less than one. The Scree test is
another popular criterion which was proposed by Cattell [49] who suggested plotting the
eigenvalues on the graph to find a smooth decrease then cutting off the line to retain those
components appearing on the left hand side of the cut point. For example, Figure 2.21
illustrates the use of Scree test to reduce a dataset from 8 to 2 variables. The disadvantage
of using PCA or other unsupervised methods is the unexpected outcome because the
operation was carried out without any consideration of user inputs and hence the

unexpectedness is often criticized as an information loss.
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Figure 2.21 A plot of eigenvalues for the Scree test.

Projection Pursuit (PP) [50] is a linear method to pursue the choices of possible
projections that can reveal the interested structure defined by a projection index. To
pursue the possible projections globally involves a task of non-trivial computation, as
described in Huber’s [51] study. XGobi [52] had already integrated PP for viewing high
dimensional data. The main problem of PP is the difficulty to quantize the value of the
projection index since it is possible to present interested structures spuriously given an

inappropriate projection index.

Rough Set Theory (RST) The rough set theory was first introduced by Pawlak [53] in
the field of approximation to classify objects in a set and in general it is applicable to any

problems that require classification tasks. Given a dataset, let U be a finite set of objects
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called the universe and A be the superset of all attributes A = {a,, a,, as, .....ay}, 3 q; €
A suchthata: U — V,, Va € A where V is called the domain of a. A is further classified
into two disjoint attribute subsets D called the decision attribute and rest the condition
attributes C such that A = (C,AU{D}),C N D = @. For any objects X € U with non-
empty subset P € C U D are said to be discernible with respect to P if and only if the

following equivalence relation is true.

Fo(Xu X)) = {1; if VaX) =Vo(X;),VV, EP, fori+j
PRty 0, otherwise

Equation 2.3

Clearly, given the equivalence relation defined in Equation 2.3, one can construct
equivalence classes denoted as U/IND(P) = {E;,E,, ..., E,} by partitioning U into
disjoint subsets with the following indiscernibility relation.

IND(P) = {(X;, X;) € U : fp(X;, X;) = 1}

RST further defines three regions of approximation called the lower approximation
PX, upper approximation PX and boundary region to approximate subsets X S U. The
lower approximation and upper approximation are also called the positive and negative
region respectively. The lower approximation contains objects that are securely in X and
the upper approximation consists of objects that cannot be classified to X whereas the
boundary region contains objects that possibly belong to X.

The RST is chosen in our system for the task of dimensionality reduction. The most
distinct advantage of applying RST as a supervised method is the concept of condition
and decision. Users simply specify a variable as decision and the rest become conditions

so the variables are reduced in such a way that they fully respects user specified decision.
2.4 Discussion

Widget based style is the simplest way to interact with visualization and remains the most
frequently used method. This can be understood because direct interaction in
multidimensional visualization is very challenging due to the curse of the dimensionality.

Furthermore, in an empirical evaluation of various multidimensional visualizations,

we use parallel coordinates as the main metaphor for our framework and interactive
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techniques. There are many reasons for this. First, it is space efficient when compared
with the scatterplot matrix. Second, it is relatively easy to understand and interpret
multidimensional data as oppose to others such the space filling curve, TreeMap or
TableLens. The overview of the multidimensional dataset can be completely visualized
in single view whereas the scatterplot matrix uses multiple scatterplots to puzzle the

overview of the multidimensional dataset.
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Chapter 3 A New Framework of Visual

Interaction

In this chapter, we present a new framework of visual interaction based on 7 layers
framework proposed by Yi et al. [14] earlier. The proposed framework simplifies 7 layers
into 3 layers for better understanding of the interactive tasks in multidimensional

visualization.
3.1 Introduction

Interaction mechanism extends the capability of a visualization beyond a static image.
From the perspective of cognitive science, Norman [54] pointed out that human beings
are social organisms so it is natural for us to interact with others for knowledge (or
message) transmission and interaction forms a fundamental aspect of our behaviour. In a
more recent study, Liu and Stasko [55] presented a work explaining the relationship
between mental model, visual reason and interaction from the view point of information
visualization. Although, they came from different fields they coincided on the point that
interaction plays a key role in human cognition. Figure 3.1 shows a conceptual model for
the progressive development of knowledge discovery. The interaction with visualization
to derive insight is an iterative process and each iteration refines a hypothesis while

improving one’s understanding towards the underlying data.

b
»

Iterative interactions

Cognitive development
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Figure 3.1 A cognitive model of gaining data insight.

There are diversities of interactive techniques already proposed in information
visualization and the easiest way to gain a good understanding is to review the relevant
works of taxonomy. In 1996, Shneiderman [56] provided a great taxonomy of interactive

techniques classified by task types. There are seven abstract tasks defined as follows:
e Overview: Global view of the entire dataset.
e Zooming: Zoom in or out on the interested data.
o Filter: Remove the data noise.
e Details-on-demand: Present the details when needed.
e Relate: View relationship between two selections.
e History: Keep a history of operations for undo, redo and etc.
e Extract: Allow extraction of sub-collections.

In addition to the taxonomy contributed by Shneiderman. Yi et al. [14] argued that
there exist many taxonomies but the discussions are often made from a low level
operation’s point of view. Hence, they proposed a taxonomy from the perspective of
user’s intent. That is, the tasks are classified from a user’s intention rather than the nature

of a task itself. Yi’s model of visual interaction consists of 7 layers as follows:
e Select: Make something as interesting.
e Explore: Show me something else.
e Reconfigure: Show me a different arrangement.
e Encode: Show me a different representation.
e Abstract/Elaborate: Show me more or less detail.
e Filter: Show me something conditionally.
e Connect: Show me related items.

The ‘select’ operation is used for highlighting or subset selection via the user

interface. On the other hand, the ‘explore’ operation is intended for finding out user-
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interested data items through the visual navigation of a data source. The layers 3 to 5
concern the strategies of view change for better understanding and highlighting one (or
more) portion(s) (or patterns) of the visualization that are currently perceived as
interesting by the user. The last two layers use the ‘filtering’ mechanism to display (or
visualize) only the interested or related data items in the visualization and remove other
less interested and related data items from the visualization. Certainly, there are still many
excellent taxonomies such as [57] [58] not being covered here, but we believe that these

two are particularly representative.

3.2 3-Layers Framework of Visual Interaction

Overall, there are many layers that overlap to some extent in Yi’s model. To make easy
understanding and better interpretation of the layered structure of visual interactions, we
further propose a new model by refining Yi et al.’s [14] 7 layers into 3 layers, broadly

based on the nature of the operations as follow:
e Dynamic selection (or locating) of data items
e Dynamic viewing of data (visual structure)
e Dynamic scoping of data (data structure)

The following table provides a best effort of mapping between our model in Table
3.1 (Left) and the models described by Yi [14] and Shneiderman [56] in Table 3.1
(Middle) and Table 3.1 (Right) respectively.

Refined Model User intention Task based
Dynamic selection Select Extract
Dynamic viewing Reconfigure Zooming
Encode Overview
Abstract/Elaborate Details-on-demand
Connect Relate
Explore History
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Dynamic scoping Filter Filter

Table 3.1. A mapping of taxonomies of interactive techniques.

3.2.1 Tasks by Dynamic Selection

Tasks in this layer are concerned with data subset retrieval that is similar to the Select;
layer 1, defined by Yi et.al [14]. The layer of dynamic selection is the frontier of a
visualization for providing a user with a mean to select or look up particular data item(s)
of interest. Therefore, its practicability greatly influences the efficiency and quality of the
subsequent task. Usually, the immediate task after a data selection is to apply a visual or
data analytic technique on the data subset. Technically speaking, a data selection bi-
divides the dataset logically into selected and unselected sets. A conceptual example is

illustrated in Figure 3.2.

Figure 3.2. An example of dynamic selection operation.

3.2.2 Tasks by Dynamic Viewing

Dynamic viewing (DV) interaction, that merges layers 3, 4 and 5: Reconfigure, Encode
and Abstract/Elaborate of the interaction defined in J. S. Yi’s model, allows users to
change data representations for achieving better readability or understanding of the data
and its relational structures. Examples include the reordering of axes in parallel
coordinates and navigation in the graph visualization by using a Hyperbolic Tree or a Fish
Eye Browser. DV interaction also includes the change of visual encoding; that is using an
alternative visualization method to present the same complete set of data.

In this layer, the primary concern is the interactive configuration of the visual
aspect. A conceptual example is illustrated in Figure 3.3.
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Figure 3.3. An example of dynamic viewing operation.
3.2.3 Tasks by Dynamic Scoping

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and
Connect of the interaction defined in J. S. Yi’s model, allows users to visualize a subset
of the data through the filtering of less important and relevant data items with respect to
an analysis. Examples include the navigation method used in DA-TU [59]: an On-Line
Visualization system and other dimensionality reduction techniques.

The effectiveness of data exploration has typically declined by a large number of
dimensions. One of the motivations of dynamic scoping aims to shape the data to a
smaller subset suitable for analysis while minimizing the visual clutter and information

overloading. A conceptual example is illustrated in Figure 3.4.

| —

Figure 3.4. An example of dynamic scoping operation.
3.2.4 Discussion

Overall, the proposed framework of visual interaction tries to avoid the fine-grained
classification because it is easier to understand an operation will result in a selection,
visual change or data change. Overall, the proposed framework will serve as a design

guideline for our interactive tasks to be discussed in the following chapters.
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Chapter 4 Hierarchical Virtual Node

Data selection is the frontier of a visualization. The design goal is to translate a user’s
intention into a selection query via the designated interface. In the overall trend, data
selection has received less attention in the development of interactive techniques since
the term interaction is becoming overloaded. Basically, every software tool is interactive
but mostly through the manipulation of a widget. Broadly speaking, a visualization is just
one of the available software applications. What makes the interactive component of a
visualization really distinctive is how well it supports arbitrary selection of data directly
in the interface both intuitively and efficiently in order to facilitate subsequent analytic
tasks. This is challenging especially in terms of interacting directly in multidimensional
space due to the curse of dimensionality such as over-plotting, visual clutter etc.

In this chapter, a novel technique of Hierarchical Virtual Node (HVN) will be
introduced which is revolutionary in such a way that it allows users to interact with data
hierarchically, directly in parallel coordinates and even under the circumstances of over-
plotting and visual clutter. However, the application of HVN does not limit itself only to
parallel coordinates and is applicable to any visualizations with geometric primitives

based on the polyline or polycurve.
4.1 Interaction or Selection?

Modern information visualization techniques, at their core, appear to have two main
components: representation and interaction. The representation component is concerned
with mapping from data to advanced computer graphics and how to draw or render them
on the display. The interaction component on the other hand concerns the dialog between
the user and the data stored on the system as the user explores the data set to uncover
insights. The interaction component’s roots lie in the area of Computer-Human
Interaction (CHI). Although discussed as two separate components, representation and

interaction clearly are not mutually exclusive.
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While an information visualization system is taking the role of providing advanced
GUISs for supporting Computer-Human Interaction (CHI), it is supposed to facilitate CHI
in both directions; that is 1) the input from human to computer (or data), and 2) the output
from computer (or data) to human. However, in the past decades, researchers in the
InfoVis community have paid more attention to the output part; that is they are concerned
more with the visual representation of output data, such as the output analysis results, for
users to better understand its contents, attributes and relational structures. They have not
paid enough attention to the human input part that is the human instructing, monitoring
and guidance in the whole circle of visual data manipulation and visual analytical
reasoning. The existing research work that has been done in the visual human input part
has mainly focused on low-level zooming and navigation operations and has not
addressed the benefit that human involvement provides in visual data manipulation and

visual analytical reasoning processes.

4.2 Revisiting the Data Selection Models

First of all, we would like to revisit the models of data selection before going into the
details of the HVN. In this section, numerous models, technical aspects and their awkward
use cases of data selection will be thoroughly discussed. The technical provisions help
one to understand that the complexity of the proposed HVN (see Figure 4.3) considerably
surpasses others. Here, we aim to provide a comprehensive background about the current
techniques and also help one to understand the significant contribution that the HVN has
made and the problems that it aims to solve.

The following table presents a classification of the data selection models applied in
parallel coordinates. The provision is on the basis of a courteous scan of the existing
literature. Note that, the table is discretionary and by no means an exhaustive list since
some authors did not explicit clarify the way to select data and also some systems are
interactive only for zooming and, viewing rather than data selection. Therefore, we have

decided to exclude them from the list.

Models References
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Rectangle Inclusion [31]

Value Range [60], [61], [62], [63]
Point Selection [64]2, [65], [66]

Table 4.1. A taxonomy of data selection technique.
4.2.1 Rectangular Selection Model

The operations require one to draw a bounding region by the sequence of mouse down,
drag and release operations. The bounding region defines the coordinates for searching
the embraced data items. It has been widely used in graph visualization since a node has
a duality of representing the data and coordinate simultaneously. For implementing this
model in graph visualization, one has to test a point (X, Y) with the following conditions:

recty < X < (recty + rectyiqn)
recty <Y < (recty + rectheight)

Please note that, these conditions presume the screen coordinate starts from
bottom-left corner.

In the parallel coordinates, a geometric polyline or curve is technically drawn by
passing multiple end points to a software API. Strictly speaking, a line other than both
ends does not occupy a bounding region nor does it represent any data points. Thus, a
practical implementation will need to test a slope-intercept between four sides of the
rectangle against a given line. Figure 4.1 illustrates the operation of the rectangular

selection model in parallel coordinates and scatterplot.

5 Authors did not actually implement a point based selection model in their work. However, we have

classified it here since its geometric primitive possibly allows a point based selection.
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Variable 1 Variable 2 Variable 3

100

Figure 4.1 Rectangular selection model. (Left) A direct data selection in parallel
coordinate, one has to find the intercept between line and rectangle. (Right) A direct

data selection in scatterplot which is more accurate and intuitive.

For searching the line-rectangle interception efficiently the Liang-Barsky algorithm
[67] is a desirable choice because it can return the occurrence an inception and also the
coordinates of interception. Although, the interest here is to determine a line and rectangle
interception one can further use the information of intercepted coordinates for
focus+context operation within the rectangular area. The algorithm developed by Liang-
Barsky was originally used to determine the interceptions between a line and its clipping
window. It formalizes a line segment into parametric representations described below.
Please refer to the diagram in Figure 4.2 for clarity.
X=Xxy+Ax Xt
y=yo+tAy Xt
Where A denotes a distance between two end points in one direction such that A
X =x; —Xgand Ay =y; — Yy, and t is a parametric value which is 0 at the point (X,Y)

and 1 at the point (X +A X,Y +AY).
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Figure 4.2 Properties of the Liang-Barsky algorithm. The diagram describes the

notations and concept of the algorithm.

By substituting the parametric representations (see [67]), one can lead to the

following notations.

(p1=—AX
) p2=Ax
p3=—Ay
\ P4+ =AYy

( Q1 = Xog —TeCligst
qz = Trectyignt — Xo
q3 = Yo — reClpottom

\ Q4 =TeCliop — Vo

The values {p;, p,, P3, P4} and {q4, 95, 3, 4} Will be passed to the algorithm for
testing the condition against the parametric value t. A versatile implementation is
described in Algorithm 4.1 where |*|, X and D denote the cardinality, dimensions and
data points. There are two inputs required namely P for a set of polylines and rect which

describes the attributes of the bounding rectangle.

input

P = {plprJ ""pN}

rect /* Bounding rectangle. */

b=

initialization
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11.
12.

13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.

to < 0
ty <1
P9
begin algorithm
for i :== 0 to || X]||
j=>0+1)
for k .= 0to ||D]||
Xo = Xy, /* X is the x-coordinate of X; in here. */
x1 = Xy, /* X is the x-coordinate of X; in here. */
/* convert to screen coordinate with respect to X; and X;. */
Yo = yPointToScreen(Dl- (k))
y1 = yPointToScreen (Dj (k))
if LiangBarsky(—Ax, (xo — left ect), to, t1) is true and
LiangBarsky(Ax, (right, .. — Xo), to, t1) is true and
LiangBarsky(—Ay, (yo — bottom,..;), ty, t1) is true and
LiangBarsky(—Ay, (top,ect — Vo), to, t1) is true then
P < D;(k)
P < D;(k)
end if
end for
end for
return P

end algorithm

procedure LiangBarsky(p, q, ty, t;)
if p =0 and g < 0 then

return false /* parallel line found. */

else
r = p/q
if p < 0 then
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35. if r > t; then

36. return false

37. else if r > ¢, then
38. to 1

39. end if

40. else if p > 0 then

41. if r < t, then

42. return false
43. else if r < t; then
44. ty «r

45. end if

46. end if

47.  endif

48.  return true

49.  end procedure

Algorithm 4.1 An implementation of the Liang-Barsky. The algorithm consists of
two functions where the top function iterates through the lines in parallel coordinates
and calls the function LiangBarsky which returns a Boolean to indicate whether the

intercepted condition is true or not.

The main drawback is the noise within selected data tends to increase rapidly when
parallel coordinates becomes cluttered. Under those circumstances, it is difficult to apply
serious analytic techniques due to an unacceptable amount of unwanted data being

included, as illustrated in Figure 4.3.
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Figure 4.3. Rectangular selection model within a crowded visualization. It shows

the challenge to select the intended data accurately when a visualization is overcrowded.

In summary, this model provides a rapid and agile data selection for a moderate
amount of data but the user’s frustration will soon arise when dealing with a crowded
visualization due to inevitable inclusion of unwanted data. For example, the parallel
coordinates system implemented by Siirtola [31] can select a collection of polylines
which pass through the rectangular area but the use case does not work well over a display
with intensively overlapping elements as Siirtola had further made a comment that it is

more appropriate to harness rectangular inclusion for highlighting outliers.

4.2.2 Value Range Model

According to Table 4.1, in which this model appears to be the most popular in parallel
coordinates probably due to its simplicity, there are numerous implementations but in
general, users do not interact with geometric primitive directly. For example, they interact
with widgets (i.e. a slider bar) attached to a vertical axis by adjusting its upper and lower
value range. Let [; and u; be the inputs of upper and lower bound with respect to a target
variable X;, one can easily use a conditional function to accept or reject the selection of a

data point d € X; expressed as follows:

_( true, l; <d; <u; Amin(X;) < l; < u; < max(X;)
fdi lyug, Xp) = {false, othwerwise
Equation 4.1
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AND (A) operator Given a set of bounding values L = {l;,l;,...ly} and U =
{uy, u,, ... uy} with respect to a target variable X;. Let p be a polyline with a set of data
points p = {d;,d5, ...,dy} € p in N dimensions. We can use Equation 4.1 to determine
whether p is in the selection set if all of its containing points D must satisfy the test
condition against its target variable X; € X as expressed below:

Z Z F(di Ly up XD A o A f(dyy, Lug, X), 30 d; € Xy i < N

d;€p LiELu;EU

Equation 4.2

In addition, it is equivalent to ignore the AND operator for a variable by relaxing [;
and u; with the following settings:
l; = min(X;)
u; = max(X;)
Where min and max return the minimal and maximal values so essentially all the
data in X; are selected. Usually, this is the initial state when the dataset is first loaded.

The counterpart of AND is the OR operator.

OR (V) operator The test condition of OR operator is more generous than the AND
operator. We consider a polyline is in the selection set if one of its containing point D has
satisfied the test condition against its target variable.

z Z f@ylyup, X)) VoV fldy_q, lyu, X)), i <N

d;€p l;EL,u;€U

Equation 4.3

Thus, if any of variables in X has set its bounding range to [; = min(X;) and u; =
max(X;) will result in a global data selection.

These operators are useful for restricting or relaxing the selection set but such
features come at the cost of intuitiveness. A polyline has no visual continuity so it is very
difficult to trace the direction of next line segment at a junction under the circumstance
of over-plotting. For example, a polyline appears to be included but may have been
filtered out by another AND operator which is far apart. This is illustrated in Figure 4.4

for clarity.
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Figure 4.4 The value range model with AND and OR operators in parallel
coordinates. The arrows define the upper and lower bound of the value range and the
polylines brushed with gold colors indicate the selection. (Top) A demonstration of OR

operator, the difference has brushed with green color for easy comparison with the

image below. (Bottom) A demonstration of AND operator.

2D AND/OR operator Both [ and u need to carry an additional dimension of
information denoted as [; ; and u;; with respect to X; and X;. It is trivial to rewrite
equations Equation 4.1 and Equation 4.2 for extending 2D operation. Please note that, for
1D data selection, these equations test the condition based on the data value of a given

data point rather than its coordinated location on the display.
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For visualizing the data selection on a 2D plane, we can apply a rectangular
selection technique as we have described previously. Let [(x,y) and u(x,y) be the
coordinate for intercepted points of [; ; and u; ; respectively. For each intercepted point,
we can draw two h90° infinite perpendicular lines [—oo, 0] past the point. The line must

be parallel to the axis such that [, |l u, and l,, Il u,,. One can find four intercepted points

L., L), (uy ), (uy,uy ), (L, u, ) that consist of a rectangular bound. The AND operator
y y y y

in two dimensional space is only interested in a point d, ,, which satisfies the following

condition:
ly<d,<u,Al,<d, <u,
Similarly, the condition for the OR operator can be rewritten as:
Ly <dy <u Vi, <d, <u,

The rectangle enclosure easily reveals the selected data as illustrated in Figure 4.5.
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Figure 4.5 An application of the value range model in 2D. The arrows define the
upper and lower bound of the value range. (Left) A demonstration of the 2D AND
operator. (Right) A demonstration of the 2D OR operator in scatterplot.

This method has a higher degree of accuracy but there are also many shortcomings.
The most serious one is the physical cost incurred with the high dimensionality of data if
the interaction cost framework studied by Lam [68] is taken into consideration. For
example, the physical motions spent will be non-trivial to adjust the value range for 20 or

even greater 100 variables. It is extremely time consuming and error prone so for practical
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purpose it will deteriorate and eventually become unusable. One can imagine that this

kind of situation could occur if one tried to fiddle with more than 100 slider bar widgets.
4.2.3 Point Selection Model

The standard case only needs a mouse click and this is by far the most intuitive behaviour
for humans. The minimum drawing unit on the screen is per pixel so the user needs to
position the mouse cursor just over the pixels occupied by a geometric primitive for
triggering a successful selection. Sometimes, a geometric primitive is misaligned due to
antialiasing so the common remedy is to use a tolerance for compensating the

misalignment. The basic concept is illustrated in Figure 4.6.

Tolerance (x1, v1)
- R

i
(X,

Figure 4.6. Point selection with a tolerance.

Lett, (X,Y) and (X;,Y;) denote a tolerance, location of a data point, and location
of a mouse cursor respectively. According to the Euclidean distance, if we treat t as a
radius then a given data point is considered as selected if the hypotenuse between (X,Y)
and (X;,Y;) is less than t. Thus, the test function of a point selection can be trivially

written as follow:

_|true JX =X+, —-Y)2<t
f((X' "), (. 1), t) B {false, otherwise

The point selection is the most intuitive model but unfortunately, the application in
information visualization is generally limited to node-link alike visualizations. The
selective accuracy may be fine-grained but it cannot achieve a substantial selection.

Figure 4.7 provides an example of a web application with node-link based navigation.
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Figure 4.7 A web application with a node-link based navigation. The uUser can
select a node on the left view which is a hyperlink and it will reflect to the browser on

the right view. This example demonstrates both select and viewing operations.

Currently, there is no application of point selection in parallel coordinates and this
is becomes apparent if we scan the relevant literature. However, we have noted from the
existing literature that there is a tile-based parallel coordinates contributed by Alsakran
et. al. [64] as shown in Figure 4.8. A tile is similar to a node strucutre and the principle
of applying a point selection on a tile and a node are alike. Theorically, we see a potential
application for point selection on the tile-based parallel coordinates but in practice, it will
be chellenging because there is not enough information provided by the author about the

association of a tile and the data it represents.

Figure 4.8. A tile-based parallel coordinates. The image is sourced from [64].

There is also an interesting implementation discussed by Shannon et. al. [65] as
shown in Figure 4.9 where they partition data into a graph network and expose it by a

separate view for the user to interact with them in a point selection fashion. Unfortunately,
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the user is only allowed to interact with data indirectly on a separate view and this makes

it difficult to understand the selection context.

Paired Parallel Coordinates: an individual's social network extracted from Facebook

Palities. Relationsh p Hetwerk Photes Total friends

Figure 4.9. An application of the indirect point selection in parallel coordinates.

The image is sourced from [65].

4.2.4 Discussion

The models introduced above generally do not provide an excellent user experience in
relation to parallel coordinates. In general, overplot and visual clutter are the main
barricades of interacting with data in a multidimensional space. The value range model is
able to deal with it but it also poses other problems. The following table summarizes the

advantages and disadvantages of the models as described previously.

Models Advantages Disadvantages
Rectangle Inclusion = Substantial selection. Poor accuracy and not intuitive.
Value Range _ ) ) High interaction cost and not
Fine selection granularity. =~
intuitive.
Point Selection Accuracy, simple and Quantity (Usually, select one data
intuitive. item at a time).
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Table 4.2. A summary of the data selection models.

In order to address the issues, we propose a novel technique of hierarchical virtual
node (HVN) for data selection directly in parallel coordinates with no assumption about
the given data. The basic idea behind it is depicted in Figure 4.10. In HVN, data are
partitioned hierarchically for variable selection on the basis of location proximity and the
display space is filled with virtual nodes for user interaction. Let v; and d; be a virtual
node and data item respectively where i denotes the hierarchical level and v; =
{d;, d;_q,...,d;_y} subjects to (i — N) > 0. When a node v; is mouse clicked, all the data
items beneath v; are included as part of the selection set. The approach offers better
flexibility and accuracy with lower physical cost of motion to interact with data in parallel

coordinates.

Figure 4.10. lllustration of the hierarchical virtual node design. Space is filled
with virtual nodes (circles with broken lines) for user interaction since they are placed

hierarchically so it allows the user to perform variable data selection.

The HVN combines the advantages of others with a careful design to minimize the
inherited shortcomings. The following table summarizes the features of HVN. The middle
and last column describe the operation about how to achieve it in HVN and which model

also offers similar features respectively.

Features How Similar Model(s)
Substantial selection | Click on the top node (global node) of Rectangle inclusion,
the hierarchy. value range.
Accuracy Click on the bottom node (data node) or | Point selection.

the child node of the hierarchy.
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Intuitiveness Requires only a mouse click on anode. | Point selection.

Lower motion cost Requires only a mouse click on anode. | Point selection.
Neighboring selection | Data are partitioning into clusters by Value range (without
hierarchical clustering. clustering)
Repeatability of a data | Click on the node again which was Point selection.

selection (Go back) clicked previously.
Global and Local Drill | Click on any node for interactive data N/A
Down exploration.
Hierarchical selection | Click on any node and its child nodes N/A
are selected.
Data Density Observation through the distribution of | N/A

the virtual nodes.

Table 4.3. Features of the hierarchical virtual node.

The repeatability of a data selection listed in the table is also known as the go back
feature. In visual analytics, one frequently needs to reproduce the previous view again for
gaining recollection. To achieve this, one has to redo the previous steps that were carried
out. In the rectangular selection model, it is difficult to exactly redraw the same rectangle
again but such a task is trivial in the HVN.

There are several advantages of the HVN over other techniques. First, there is no
need to specify a value range. Quantization is always difficult which usually requires the
user to understand the data characteristics. Second, it provides the granularity of multi-
level selection of data with greater flexibility to quickly explore the patterns between the
nearest neighbors. Third, virtual nodes provide the visual distribution of the data. The
distribution of the nodes also suggests the distribution of the continuous variable. Finally,
it has a minimal interaction cost because the entire operation can be activated by a single
mouse click rather than interpreting a sequence of mouse operations. Overall, the
compliexity of the HVN is greater than others and the technical details will be discussed

in the following section.
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4.3 Implementing the HVN

This section is dedicated to the technical discussion of the HVN. The basic idea of the
HVN was born in a discussion with Dr. Mao Lin Huang. The key points are briefly
extracted below to the best of our remembrance where Q and A mean the question asked

by me and the answer provided by Dr. Mao Lin Huang respectively.

O: ... existing techniques claiming to be fully interactive did not really
mention how they deal with the situation where the display is
overplotted and cluttered ..., ... also poly based geometric primitives

are very difficult to interact with ....

A: ... clutter is caused by the polylines..., why don’t we use a node to

represent the data for direct data selection? ...

Q: ... point selection is good, but it is not efficient to select data in the
multidimensional data space..., there are too many data to select one

by one ...
A: ... why not partition the data hierarchically? ...

Q: ... OK, the idea is feasible but how do we use a node to represent

the polyline? ...
A: ... how about we use a virtual node? ...

The above interaction serves to reveal the originality of the HVN.
4.3.1 System Overview

An interactive parallel coordinates system with the tight integration of HVN has been
successfully implemented. A simplified version of the system flowchart is outlined in
Figure 4.11. The simplification is in a form where some minor steps have been skipped
but they will not affect the overall integrity of the flow chart. In the figure, a diagram is
also attached to a step for visually explaining the state of the corresponding process.
Overall, the whole implementation of the HVN can be condensed into Figure 4.11. In the

following sections each section will be dedicated to each process in the figure.
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Figure 4.11. System flowchart of the HVN based parallel coordinates.
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4.3.2 Data Classification

The goal of applying classification is to remove data redundancy. This step enhances the
computational efficiency for the next stage of hierarchical clustering. Given a variable X;
which contains a set of data points D = {d;,d,, ...,dy},Vd € X;. Let EQ:A > B be a

function that defines the equivalence relation. Any two arbitrary elements d; and d; in X;
are said to be equivalent if and only if they meet the condition E Q(dl-, dj) =EQ (dj, di).

The expression of EQ can be written as:
dl=d](:>dlﬂd]¢¢

1
EQ (di' dj) B {0, otherwise

Equation 4.4

Given the equivalence relation defined in Equation 4.4, we can obtain the
equivalence classes denoted as D/IND(X;) = {E;, E,, ..., Ey} by partitioning D into a
disjoint subset using the following indiscernibility relation written as:

IND(X)) ={(d;, d;) € D:EQ(d;,d;) = 1}
Equation 4.5

These equivalence classes will be passed to the next stage of the system pipeline.
In summary, the purpose of this step is to ensure data uniqueness and they are only

logically removed from the dataset in order to avoid redundant computation.
4.3.3 Non-parametric Partitioning by Hierarchical Clustering

The core task of data partitioning involves a clustering technique. Michaud [69] provided
a great work that covers the well-known methods. As the name suggests, the HVN uses
hierarchical clustering. Although, K-means [43] is another alternative, it requires an input
parameter of K clusters to be known in advance which is not desirable in our case.
Hierarchical clustering [44] is a non-parametric technique and probably one of the
most widely used methods in data mining. Given a set of items, the method partitions

them into a set of disjoint clusters hierarchically in the following form.

1) . .
G={g1Ugp Vgt .. [{g1 Vg3 U{..},..U{gn}} tging;=0,i#]
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Where 6 denotes the depth of the hierarchy. The hierarchy of the clusters are built
iteratively by merging two clusters with greatest similarity to form a new cluster in each
iteration. The similarity is determined by the choice of an agglomerative algorithm which
will be described latter.

The first step in hierarchical clustering transforms the data items in each variable
into a distance matrix. Univariately, this is straightforward and one simply computes the
Euclidean distance on a pairwise data items as:

dist(d;, d;) = |d; — d;| where d; # d,
Equation 4.6

The result of dist(di, d]-) is carried forward in the corresponding [i, ] element

within a matrix as:
(dlst(dl, dl) R dlSt(dl, dN))
D = : . :

dist(dy,dy) - dist(dy,dy)

Where D denotes the distance matrix rather than data value matrix. The diagonal
elements dist(d;, d;) are always 0. Hierarchical clustering is nonparametric with no
assumption about the target K cluster known in advance. Instead, it requires a stopping
rule to break the process prematurely when the optimal number of clusters have been
determined within the range 1 < k < [{D}|. Fortunately, we build an entire hierarchy so
finding a suitable stopping rule is not a concern in this step. The strategy of hierarchical
clustering applied here is agglomerative which builds up the hierarchy from the bottom-
up.

Initially, hierarchical clustering initializes each data point in D into a singleton

cluster that is f: {D} — {G} and the cardinality is one such that V,¢;|{g}| = 1. Recall
that, D has already been preprocessed by the classification mentioned in Section 4.3.2. In
the next iteration, it recursively merges a pairwise cluster to form a new cluster G; ; =
{Gi U Gj} based on an objective function. The inter-cluster distance ?jd is updated by

the linkage criterion. At the end of each iteration, G is subtracted by 1 suchthat G = G —
1 and the process continues until [{G}| = 1 which represents a global set situated at the

top of the hierarchy.
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In many sciences, the homogeneous requirement is commonly quantized by the
distance measure. Thus, the objective function can be simplified to be a minimization
problem. Alternatively, one might be interested in maximizing the measure but it really
depends on the problem domain. Give a set of clusters G, the aim is to find a nearest
pairwise g; and g; with the minimum path by the following equation.

Z argmin|g; — g;| + |g: — 9;] = J(gi - 9;)(9: — 9))

geaG

Equation 4.7

Obviously, the objective function in Equation 4.7 is essentially a Euclidean distance
which measures the length between g; and g; in one direction. This is the most desirable
distance measure in our case since we expect the merge of clusters to fully respect to their
location proximity in the following order.

{{d1, 2}, {ds, d,}}
{{d1, d;, d3}, du}

In other words, we want neighboring clusters to be merged progressively without

{di,dy, d3,ds} = {{dp d,}, ds, d4} = { = {{dp dy, ds, d4}}

jumping since we cannot reorder® the data in the screen space. In visualization, the
distance of XY in the screen space typically implies their relative distance in data space
|X — Y| proportionally.

There are three well-known linkage criterions to update the inter-cluster distance
for the newly formed cluster G; ;. They are single link, complete link and average link
and these concepts have been well explained by Day and Edelsbrunner [70]. In short,
single linkage searches the shortest inter-cluster distance between g; and g; from the
adjacency matrix and Equation 4.6 can perfectly be reused in this case. Complete linkage
finds the maximum inter-cluster distance and is given by:

Z argmax |gi - gjl
gea

0 The concept of reordering only applies to variables rather than data items since doing so cannot guarantee

a data item will respect its origin in the coordinate system.
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In other words, single link and complete links aim to minimize and maximize the
inter-cluster separation respectively whereas, average linkage is a hybrid approach
between the two. The conceptual explanation of cluster separation is illustrated in Figure

4.12.
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Figure 4.12 An illustration of the single, complete and average linkages. The

diagram shows how the distances between clusters are computed.

In updating the inter-cluster distance, we have applied the average linkage. The
average linkage algorithm is also known as Unweighted Pair Group Mean Arithmetic
(UPGMA). As the name suggests, it computes the distance of a new cluster G; ; from the
average values of pairwise G; and G;. The equation is defined as follows:

1
UPGMA(G1G)) = > Y dist(dyd;),i %
i€l djeh;

Equation 4.8

Given a set of variables X = {X;,X,, ..., Xy}, Algorithm 4.2 provides a versatile

function for constructing the hierarchical clustering.

1. procedure HierarchicalClustering(X = {Xy, ..., Xy})

2. V=0
3. for each X; in X

4. G = Xaep ZdjED dist(d,, dj) K

5. while |[{G}| > 0 do

6. Pij = Xgec argmin|g; — g;| : i # j /* Find the clusters to merge. */
7 Gij = {Gpi + Gp,-} /* Merged two clusters. */
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8. G = G — G; /* Remove cluster. */

9. G = G — G; /* Remove cluster. */

10. for i < 0 to [{G}|

11. G; = UPGMA(G;, G, ;)

12. end for

13. G < G + G;; /* Add the merged cluster. */
14. end while

15. V=a

16.  end for

17. return V

18.  end procedure

Algorithm 4.2 An implementation of the hierarchical clustering using average

linkage.

Where p; ; denotes a temporary variable which holds the indices for G; and G;.
Given the example of a multidimensional data, our approach of hierarchical clustering is
univariate and this is also evident in Algorithm 4.2.

In our system pipeline, this process partitions data into logical groups hierarchically
as illustrated in Figure 4.13. The data hierarchy remains logical and the task of the next

process will map the virtual nodes into the visual space for visualization.
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Figure 4.13. Logical groups partitioned by the hierarchical clustering.
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4.3.4 Mapping Virtual Nodes into Visual Space

Let V be an output produced from the previous process which holds the hierarchical
clustering result for the whole variable set X with the following properties:
V ={v, vy .., o5} Vv ={g1,92, -, gn} vV >G> Dw.r.tX

It is important to classify here for avoiding confusion with the notations used. We
have used D, G and V to imply data points, data groups and vertices in Section 4.3.2 for
data classification, Section 4.3.3 for hierarchical clustering and for visual space mapping
respectively. It is just a convention adopted and they ultimately refer to the same raw data.
Technically, v simply describes a logical grouping G of input data D with respect to a
given variable X; and it remains abstract at this stage. Hence, we need to allocate the
physical region for v in the visual space before they can do any useful work.

Cluster level € provides important information for positioning a virtual node
correctly in the hierarchy and it was skipped in the previous section just to simplify the
notation of G. Given a v, it is critical to explore its deepest level £ otherwise, its screen
coordinate will be misplaced. Considering the example depicted in Figure 4.14, if we only
explore the right branch of the topmost node then £ is 1 which is clearly wrong and its

coordinate will be mapped to a lower location than it is supposed to be.
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Figure 4.14. Virtual node depth in the hierarchy. Nodes are annotated with levels.

One can determine the deepest cluster level £ for any given node v by traversing its

children recursively. Since our implementation is recursive, the precaution has been taken
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to persist with the local maximum found at each branch. The technique is also known as

depth first search [71] as implemented in Algorithm 4.3.

1. procedure DFS(v, currentDepth)
depth = currentDepth /* Keep track the local maximum. */
while v. HasMoreChildren() do
depth = depth + 1
for j < 0 to v.ChildrenCount then

2
3
4
5
6. d = currentDepth /* Save children’s state. */
7 depth = max(DFS(v.ChildAt(j),d), depth)
8 end for

9 end while

10 return depth

1. end procedure

Algorithm 4.3 An algorithm that computes the depth of a virtual node in the
hierarchy.

Each cluster has been assigned a value called the centroid denoted as T which is a
value which represents the center of a cluster and does not necessarily serve as part of a
data member of that cluster. A centroid is always a middle point between its left and right
children. Recall that, centroid is a data value so it can be perfectly mapped to the y
coordinate with respect to a target variable X; for a given virtual node v. Let § be a
constant representing the interval (aka width) between levels, the x coordinate can be
obtained by:

Xy = Xy, + (B X £,)

Where Xy, denotes the X coordinate of a vertical axis for X; in parallel coordinates
(the implementation that was already provided in Algorithm 2.1) and #,, denotes the level
(or depth) with respect to a given node. Accordingly, the Y coordinate is obtained by:

Y, = PointToScreen(X;, t,,)
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Where PointToScreen is a wrapper function of Equation 2.1 as provided earlier
and t,, denotes a centroid of v which was worked out from Equation 4.8. The algorithms
are completely provided in Algorithm 4.4. Virtual nodes are always laid out from the top
node so the usage is LayoutVirtualNode(V;, X;) where V; and X; are the top node and

the target variable respectively.

1. procedure LayoutVirtualNodes (v, X;)
2. Orientation = None

3. if (i + 1) < |X]| then

4. Orientation = Right

5. else

6. Orientation = Left

7. end if

8. width = 0

9. if Orientation is Left then

0 width = (X, - Xx,)/2.0
I1. else

12 width = (Xy, — Xy, )/2.0
13. end if

14. ¢, =DFS(v,0)

15. B =width/(¢£, + 1) /* Work out the width of the interval */

16.  LayoutVirtualNodes(v, X;, interval, Orientation)

17. end procedure

18.

19.  procedure LayoutVirtualNodesRecursive(v,X;, B, Orientation)
20.  offset=0

21.  if Orientation is Right then

22. of fset = (B x¥,)
23. else
24. of fset = —(B x £,)
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25. end if
26. Y, = PointToScreen(X;,t,) /* Work out the y coordinate here */
27. X, = Xy, + of fset /* Work out the x coordinate here */

28.  for j « 0 to v.ChildrenCount then

29. LayoutVirtualNodesRecursive (v. ChildAt(j), B, Orientation)
30. end for
31. end procedure

Algorithm 4.4. Algorithms of mapping a virtual node to the screen coordinate.

The width defined in the algorithm is a maximal height and it is half way to the

adjacent variable. Please refer to Figure 4.15 for clarity.
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- .
Width

Figure 4.15. Virtual node layout definitions.

In addition, one should also note that the orientation is taken into consideration
while transforming a virtual node into the screen coordinate. This is because the
orientation for positioning virtual nodes for the last vertical axis shall face toward left

rather than right as depicted in Figure 4.16.
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Figure 4.16. lllustration of the virtual node layout.

At this stage, the basic skeleton of the HVN has emerged. In the next section, a
dendrogram will be constructed. Actually, the interactive part of the HVN is fully
functioning without dendrogram but the sole purpose is to visualize a hierarchy for visual

association of a virtual node with its parent and child nodes.
4.3.5 Building a Dendrogram

A dendrogram is a tree-like structure which is used to visualize the hierarchy of the
clustering arrangement. The skeleton of a dendrogram can be materialized by connecting

all the virtual nodes and the purpose is to provide a visual association between parent and

child nodes. Let E denote a connection from a child to its parent node, there are two

lines [ and [, required as shown in Figure 4.17.

{child. X, child.Y} 1 {Parent.¥, node.Y)
@ --ooocenoees &
1
.‘ (parent.X, parent.Y}
i
I
@---oooeene -
[child.X, child.Y) (ParentX, node.Y]

Figure 4.17 Connection of virtual nodes.
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Given vepjq and Vpgrent, the start p; and end point p, of [; can be derived as

follow:
P1 = chhild
P1 = Vchild
XPZ = vaarent
sz = chhild

Similarly, the start p; and end point p, of [, can be written as follow:

Xpl = vaarent
Ypl = chhild
XPZ = vaarent
YPZ = vaarent

A complete implementation of drawing a dendrogram is provided in Algorithm 4.5

and again, we start the drawing from a topmost node.

1. procedure DrawDendrogram(v)
2. while v. HasMoreChildren() do
3. for j « 0 to v. ChildrenCount then
4, Venita = V. ChildAt(j)
S. Dr aWLine(chhild’ Yochitar Xv» chhizd)
6. DmWLine(vaarent' Yoenua XVparent’ vaarent)
7. DrawDendrogram(v)
end for
9. end while

10. end procedure

Algorithm 4.5. An implementation of drawing a dendrogram.

There are three types of nodes namely, global, data and virtual nodes. Figure 4.18

provides a diagram describing their locations. The lowest cluster level is called a data

node since it is a singleton cluster containing only a data point. The global node sits at
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the root level that holds the hierarchical topology entirely. The rest are called the virtual
nodes meaning that they are interpolated for interaction. Strictly speaking, a global node

is implicitly a virtual node.

2 L2 1n L2 L1 L1 L2 L3
$-- & --- . ¢
hl"————" I'J‘I-———-l !
- : v iGlobalnode
I .___, : |
Virtual node ! \‘l
| R
L i !
o r | :-----.
I I
I i I
-, | ey ! |
L : 4 . : I——1,li
oy P e
o I | 5 i
{r__' k"J,r,,,Data node -4
$------ ! 9---! --9
Variable 1 Variable 2 Variable 3

Figure 4.18 Types of virtual node.

4.3.6 Constructing Parallel Coordinates

In this section, we will be discussing the geometric drawings and the integration of HVN
into parallel coordinates. There are three geometric primitives currently provided in our

parallel coordinates system namely, polyline, Bezier curve and Bezier virtual nodes.
4.3.6.1 Polyline

Polyline is a classic primitive adopted by Inselberg [13] as well as many parallel
coordinates systems. A complete implementation of classic parallel coordinates has
already been provided in Algorithm 2.1 so we will not repeat it here.

A polyline is a simple way to model the path of a multidimensional data but it is
often criticized in terms of its geometric discontinuity where user can only observe partial

paths if they overlap. This problem is visualized in Figure 4.19.
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.1 //

Figure 4.19. Severities of the overlapped polylines. (Top Left) No overlapping,

(Top Right) Unable to observe p;p,p5 of the pink polyline. (Bottom Left) Unable to
observe p,p;p4ps of the pink polyline. (Bottom Right) Unable to observe others except

the brown polyline.

The implementation of polyline primitive is conceptually trivial and a snapshot of

our system implementation is provided in Figure 4.20

X —
- ‘H‘ﬁ‘“/
N

1613 8 0

Figure 4.20. A snapshot of polyline primitive in our system.
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4.3.6.2 Bezier Curve

A Bezier curve [72] is a parametric curve with the mathematical basis based on the
Bernstein polynomial [73]. Bezier curve is known as parametric in the sense that the path
is controlled by a set of control points C = {P,, P;, ..., Py_1} and a parameter t. Graham
[74] has discussed an application of curve in parallel coordinates and the advantage is the
dynamic path of oscillation which can be controlled by adjusting control points. By
contrast, the path of a classic polyline is always static and there is no way to change it to
avoid the overplot.
The properties of a Bezier curve are listed as follows:
e P, and Py_, are the end points and lie on a curve.
e Middle control points from P; to Py_, do not either pass through or lie on the
curve as shown in Figure 4.21. However, the linear Bezier curve is an exception.
o m is a tangent line L at the point Py. Similarily, m’ is a tangent line L at the
point Ps.

e Invariance with affine transformation.

Py s
N /
.
Py
1

Figure 4.21. Bezier curve with control points.

Mathematically, a Bezier curve of degree n is generally written as:

P(O) = ) P X BI®
i=0

Equation 4.9

Where t specifies a ratio along a line such that t € [0,1] and B} is a Bernstein

polynomial expressed as:
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Bl (®) = (1 -t
Where (" is a binomial coefficient given as:
n!
“TIe-D
These theorems have been exhaustively discussed in the existing literature and
widely accessible but we suggest, in particular, an excellent note written by Sederberg
[75]. Equation 4.9 is a generalized expression and for a Bezier curve with a degree of 3,

we can expand the polynomial to the following form:

B(t) = (1 —t)3Py + 3(1 — t)?tPy + 3(1 — t)t?P, + t3P,,VP; € {P,, P, ..., Py_1}
Equation 4.10

Recall that the nonlinear problem is often approximated linearly. The output of B(t)
evaluates to a point which lies on a Bezier curve, as shown in Figure 4.22 for t € [0,1].
In general, a smaller step of t generates a more smooth curve and vice versa. However,
from a practical point of view, t shall be chosen as just enough for smoothing a Bezier
curve otherwise it will impact the memory usage and performance of the system. In our
implementation, t increments at an interval of 0.05 so B(t) is actually invoked 21 times
to approximate just one Bezier curve segment. In Figure 4.24 provides an experiment
with various interval values where 0.5 and 0.1 have produced a C~?! continuous curve

since one can easily observe the discontinuities.

Py 7/
N « Y /s
'
Figure 4.22. Evaluation of points in a Bezier curve.
In our approach, we construct a Bezier curve segment with 4 points where the start

and end points are data points with respect to their target variables. For example, given a
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multidimensional data row P = {d,,d,,...,dy}, there are M — 1 Bezier curves
constructed as b; = d—ld_z), b, = m, v, by—1 = m These Bezier curves are
connected together to form a single C° continuous curve, as illustrated in Figure 4.23.
Alternative, there is another approach called B-spline curve, but it is more complex and

will not be implemented here.

X X3 X3 X,

Figure 4.23. Bezier curve segments.
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Figure 4.24. Bezier curves with various intervals of t. The value of t increments at

an interval of 0.5, 0.2, 0.1 and 0.05 from the top to the bottom image.
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4.3.6.3 Bezier Virtual Nodes

Bezier virtual nodes is not a new geometric primitive. It is considered to be an extension
of the Bezier curve by drawing non-uniform curve segments that must pass through

virtual nodes to form a single curve.

Definition 4.1 Knots are end points of a curve, the start and the end point. We say a

curve is uniform if the knots are equally spaced and vice versa.

The goal of the Bezier virtual nodes aims to prevent the overplot of the virtual
nodes. One feasible way is to interpolate them as knots in a curve. Figure 4.25 illustrates

the idea.

Figure 4.25 Geometric drawing of the selected data. (Left) A geometric drawing
with overplot of the virtual nodes. (Right) A geometric drawing by treating virtual

nodes as end points.

The geometric basis is based on the previous section. Considering virtual nodes as
knots, there are more Bezier curve segments generated by inserting knots and a Bezier
virtual nodes curve is formed by connecting them all together, as illustrated in Figure

4.26.
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Figure 4.26. Bezier virtual nodes style drawing.

The challenge of this drawing comes from the mapping for a mixture of virtual and
data nodes to form a complete curve. Please refer to Figure 4.18 again for the definition
of the node types. For example, suppose there are 10 data rows selected by a mouse click
over a virtual node before the system can draw them, then it needs to work out a complete
path that it must pass through (which consist of N virtual and data nodes just for a data
row) and such task is far from trivial.

This challenge is not an issue in the polyline and Bezier curve because their paths
are formed without any consideration of the virtual nodes. In the following, we will
describe how the system responds to a virtual node click and also how we have optimized

our data structures to achieve high system performance.

Tracing nodes in virtual space In our initial implementation, there were two separate
data structures maintained, one for storing the data values in a data matrix D and another
one for virtual nodes which persisted in a tree structure denoted as T. Given a virtual node
at location v;, the system had to cross reference D and T multiple times. The time
consuming nature of this implementation was approximately O(n®) which is
computationally expensive if a given dataset is considered large N - oo . As a
consequence, the system performance was poor. A better optimization is given in the

following.

Optimization by tracing the virtual node in data space One feasible performance

improvement can be made by mapping a virtual node and its hierarchical level to a
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corresponding data point and virtual dimension respectively. In other words, the
additional data of £ X M dimensions are added to the dataset with respect to X; where the
size of £ is equal to the number of levels. Thus, the data matrix D needs to be redefined
with respect to each variable X; as:

D ={Dy,...,Dy} U [£x M]

The greatest advantage of this implementation is the ability to treat virtual nodes
and real data points consistently but it comes at the cost of space complexity. However,
we are mainly concerned with reduction of the time complexity to achieve a reasonable
response time for better user experience.

The data table in Figure 4.27 illustrates the conceptual implementation which
contains one data dimension and three visual dimensions shaded in black and blue colors
respectively. Recall that, a virtual dimension is inserted to represent each level in the
hierarchical clustering. The NaN means a null node and does not represent any end point
in a geometry. For example, there are two null nodes in the fourth row of the data table
so the algorithm will draw only one line segment. Note that, ifa NaN appears in a normal
dataset it is called missing data. Dealing with missing data is outside the scope of this

thesis hence they will be removed in the preprocessing step for simplicity.

Real Data Virtual Data Real Data Virtual Data

Dimension 1 Dimension 2

"0 | wew [umas | wew | ow | o | s |
I 0 TV T I N
o [ wes s [ wen | & | s | s |
BT B T T I

Figure 4.27 Redefinition of a data matrix. The data matrix is redefined to support the

storage of the virtual node and virtual dimension.

Suppose, if D1 (P2 with a value of 18.25) and D2 (P1 with a value of 2) in Figure
4.28 are clicked then the top three rows and bottom two rows are selected. Thus, we only

need to translate the data points to the screen coordinates since the virtual nodes have
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already been stored in the matrix D. One can see that such optimization greatly simplifies
the overall problem by completely removing the cross references between separate data

structures.

Figure 4.28 An illustration of geometric mapping of data and virtual node to
parallel coordinates.

Following the procedures described above, we can obtain the result as illustrated in

a snapshot from our system in Figure 4.29.

mpg cylinders displaement horsepower weight acceleration model ongin

1

Figure 4.29. A snapshot of the Bezier virtue nodes drawing in our system.
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Interestingly, by comparing these 3 drawings with a dataset which contains 58776
(12 x 4898) data points, we were surprised that the Bezier virtual node incurs less visual
clutter due to its hierarchical arrangement of the curves and the result is also shown in
Figure 4.30 where the geometric primitives are polyline, Bezier curve and Bezier virtual
nodes for the top, middle and bottom image respectively. It is obvious that the rendering

by the Bezier virtual nodes can reduce the overplot of the visualization.
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Figure 4.30. Comparison of the overplot severity between geometric primitives.
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4.3.7 Overview Presentation by Virtual Nodes Density

All the technical implementations of the HVV have been fully described above and a real
snapshot of the system is illustrated in Figure 4.31. By default, our overview hides all the
geometric objects except the virtual nodes. Thanks to the virtual nodes, we are able to
modify the Visual Information Seeking mantra proposed by Shneiderman [56] from
overview first to overview first by virtual nodes. This allows the user to perceive the
distribution of the data density through the distribution of the virtual nodes in an elegant
way.

Mg eylinders displaeme =nil horsepower weight acceleration miode! ongin
466 & 455 230 5140 248 a2

] 3 (4] 46 1613 g 0 1

Figure 4.31. Overview presentation of the HVN in parallel coordinates.

Alternatively, the observation of the density distribution can be achieved by
embedding histogram to parallel coordinates and it was actually our initial consideration.
However, we have soon realized that the virtual nodes provide a better way of perceiving
the data density in reality. Nonetheless, an analysis of the histogram will be provided

below.

Histogram [76] is the simplest nonparametric method for estimation of the data
distribution of a random variable. Figure 4.32 provides an example of the histogram for
visualizing data distribution.
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Frequency
Frequency

Variable Variable

Figure 4.32. An illustration of ordinary histograms. The bin size and width are the
most crucial factors that determine the shape of the histogram. For example, the shape
of the data distribution has changed from 8 (left) to 4 bins (right). The discontinuities

are the artifact of the chosen bin size.

The procedure of the histogram begins by classifying data univariately into bins and
then counting the occurrence of each disjoint bin B = {b; Ub, U ...by} : b; N b; =

@,i # j. The following equation is used to find the number of bins.

(Xmax - Xmin)
h
Equation 4.11

k =

Where & denotes the bin width. The choice of proper width /4 is difficult since the
variance is not unity. To address this problem, one can alternatively work out the optimal

k first by Sturges’s [77] formula as follows:

— (Xmax - Xmin)
log,N +1

Equation 4.12

By substituting k£ obtained in Equation 4.12 back to Equation 4.11 to work out the

bin width 4. It defines the cut point for counting the data occurrence fall within a bin

range expressed as follows:
(Xmin + (A x D) < d < (X + (A% (@ + 1))
Equation 4.13
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Where i denotes the bin index and X,,,;;,, is the minimum value of a target variable
X;. If the range condition specified in Equation 4.13 has met for a given data point d then
we simply increment the cardinality as n; « |b;| + 1 where n; holds the number of
samples in bin b;. The histogram density function for estimating a data point is therefore

given as:
a n;
d) =—
@y ==t
Where the width of b; must straddle the data point d and it can be easily determined

by using Equation 4.13 and » and % denotes the total samples and bin width respectively.
The probability of a data point which falls within the width of a bin is given as

pi=| f(d)dx
b;

The parallel coordinates system implemented by Hauser el al. [32] embeds the
histogram as shown in Figure 4.33. However, such as approach significantly increases
the visual loading of overall visualization by displaying a mixture of geometric objects
and histograms simultaneously. In contrast, our overview first by virtual nodes approach

presents an uninterrupted way of perceiving the data density.
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Figure 4.33. A parallel coordinates with histograms embedded. The image is
collected from [32].
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4.4 Performance

A system has been successfully implemented which was written in C# and OpenGL
Shader Language (GLSL) in order to gain GPU hardware acceleration. The Open Tookkit
library (OpenTK) [78] is used for OpenGL binding by exposing C functions to C#. The

technology is also called Interop in .NET. The performance benchmarking is based on

the hardware platform depicted in Figure 4.34.

CPU
10% 3.28 GHz

Memory
7.9/31.9 GB (25%)

Disk 0 (C:D:E: F)

0%

Disk 1 (G H: I: 1)

0%

Ethernet
50 F: 0 Kbps

CPU  intelR) Core(TM) i7-3930K CPU @ 3.20GHz
% Utilization over 60 seconds 100

I" - ,J| .JI‘—- - FI

- .}| .JL__‘ F|

.‘IL._ JI .Jl - ]
Utilization  Speed Maximum speed: 3.60 GHz
10% 3.28GHz = !

Cores:
Processes  Threads  Handles Logical processors: 12
5g ggg, 21137 Virtualization: Enabled
) L1 cache: 384 KB

Up time L2 cache: 15M8
1:08:51:56 L3 cache: 120 MB

Figure 4.34. Hardware environment for benchmarking.

There are 4 datasets used in benchmarking and the performance metric has been
provided in Table 4.4. The frame per second (FPS) is an important counter since it affects
the responsiveness of the visualization when responding to a user request. In most cases,
the FPS can satisfy the request except the NYTS dataset where all the geometric
primitives are set to visible and then the FPS will suddenly drop to 9. Note that, FPS

(Geometric primitives invisible) means visualization is in an initial state as shown in

Figure 4.31.
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Dataset Size FPS (Geometric FPS (Geometric
(M xN) primitives invisible) = primitives visible)
Car 8 x 392 477 334
Wage 11 x 534 730 476
Wine 12 x 4898 113 65
NYTS 116 X 14776 81 9

Table 4.4. Performance measurements of the system. Car and Wage datasets

were obtained from http://lib.stat.cmu.edu/datasets/, the source of the Wine dataset is

https://archive.ics.uci.edu/ml/datasets/Wine and NYTS dataset was obtained from

http://www.cdc.gov/tobacco/data_statistics/surveys/nyts/.

4.5 Discussion

In summary, this chapter presents a novel technique to interact with data in parallel

coordinates. We described several data selection models but they generally do not work

well in multidimensional space. The basic idea behind HVN is to interpolate virtual nodes

directly in parallel coordinates for hierarchical data selection. A node structure is an

intuitive interface of interaction because it has a duality of data and coordinates. Overall,

the HVN is a revolutionary way of data selection which provides a truly direct interaction

with data and is also effective under the circumstances of overplotting and visual clutter.

It is also a core technique in our interactive framework in which all the interactive tasks

are built on the basis of it. To recall the advantages and features of the HVN, please refer

to Table 4.2 and Table 4.3.
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Chapter S Interactive Techniques for Visual

Analytics

In this chapter, we will focus on the HVN-oriented interactions in visual analytics. With
the advent of the visual analytics, we have noted the Visual Analytics mantra described

by Keim [11] as:

Analyze first, show the important, zoom, filter and analyze further, details on

demand.

Obviously, it is based on the Visual Information Seeking mantra proposed by

Shneiderman [56]. Keim [79] which also describes the process of visual analytics as:

The visual analytics process is a combination of automatic and visual analysis
methods with a tight coupling through human interaction in order to gain knowledge from

data.

This mantra reinforces the importance of iterative analysis and interaction in
connection with attempts to explore a dataset because a fully automatic data analysis can
only be accomplished if the problems are well-defined and this is usually not possible in
most real world cases. Therefore, the user remains the final decision maker to drive the
direction of the whole process through the iterative interactions with a visualization.
Recall that we have merged Yi et al.’s [ 14] seven layers model into three so the following

sections will focus on our three layers model.
5.1 Task by Dynamic Selection

Interactive data selection is an indispensable component of an effective visualization. It
improves the usability by accurately translating the intention of mouse operations into a

selection query for data manipulation. Many parallel coordinates visualizations claiming
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to be interactive did not really focus on the Select interaction; layer 1, defined by J. S. Yi
el al. [14]. Overall, there are so far none of the existing techniques that could well achieve
the functions covered by the Select layer of J. S. Y1’s [14] seven-layer interaction model
or the Highlighting (or Selection) layer defined. Perhaps, it is too difficult to have mouse
click (or selection) on the data item which is virtually represented by a polyline (or curve)
in strongly overlapped parallel coordinates.

The HVN is the core technique of data selection in our model. It helps users to
perform subsequent analytics tasks in an efficient and practical manner. In the following

sections, we will describe some tasks in the dynamic selection layer based on the HVN.
5.1.1 Interact with Data by the HVN

Materializing a point selection model in parallel coordinates is one of contributions that
the HVN has made. The use case of HVN simply requires a mouse click on a target node
of interest. Recall that again, virtual nodes storage has been optimized in Section 4.3.6.3
for tracing a complete end-to-end path of a virtual node efficiently. Given a random
mouse click captured at the location (X, pyser Ymouse)- We know that a virtual node is
strictly placed on an interval boundary S such that § = width/(¢, + 1) and this
equation was already defined in Algorithm 4.4. With this information, we can apply the

function below for querying which variable and level € to search for in the data matrix D.

i ZXXl'i‘(lXBXL):X :XXi(ixﬂXi)<XXi
f(Xi, Xmouse) = =0 monse o

-1 otherwise

Equation 5.1

Where i denotes a relative offset with respect to its base X; and —1 indicates an
invalid index because the negative value cannot be used to index a matrix column.
Suppose X;, Xx,, Xmouse are Dimensionl, 200 and 210 respectively and let By, be 5. The
above function returns £ = 2 which translates to an offset starting from X; for looking up
D. The next step involves building a range query by transforming Y,,,,,se to a data value
denotes as d,,ouse - The value transformation can be easily achieved by rewriting

Equation 2.1 as:
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_ (Ymouse — Yx,) X (maxy, — miny,) _
Amouse = + miny,

heighty,
Equation 5.2

Suppose Yiouse » Yx;» maxy,, miny, and heighty, are 90.8, 0, 20, 1 and 100

respectively. The above equation returns = 18.25. Now, we are able to query the data

matrix D with the following pseudo query expressed as:
SELECT ROWS FROM Dimensionl WHERE £ = 2 AND d = 18.25
Of course, the query above is used for illustration purpose and is not an actual case.

We shall obtain 3 data rows as illustrated in Figure 5.1. Please note that £ = 0 returns a

real data value rather than a virtual data (which represents a virtual node).

 Real Data [EESSEEEEN . Rea'Data
Dimension2
Cw | o | s N LT
), ~—

B T T

oo
\\

Dimension 1 Dimension 2

Figure 5.1. Data query in the HVN. It shows the mapping of the real data and virtual

data to the parallel coordinates.

The implementation for the procedure of querying selected data is provided in

Algorithm 5.1.

1. procedure HitTest(Xpmouse Ymouse)

2. Y = @ /* A list of selected row indices, initialize to empty. */
3. for each X; in X

4. £ = HitTestX (X;, Xmouse)
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5 if £ > 0 then

6 dmouse = HitTestY (X, Yimouse)
7. fori = 0to |D|

8 if D[i,?] = dpouse then

9

Y —i
10. end for
1. end if
12. end for
13. return (X;, Y, fx,, £)
14. end procedure

Algorithm 5.1. An algorithm for hit test.

Where D, [*], HitTestX and HitTestY denote a global data matrix, indexing
operation and the wrapper functions for Equation 5.1 and Equation 5.2 respectively. The
output is a tuple (X;,Y, #Xi,f) which holds a target variable, selected row indices, base
column index for X;, and relative offset from its base €y, for indexing a virtual node.

Please refer the notations in Figure 5.2 for clarity.

€x,(Basevariable index) #£(Relative tovariable index)
X;

Dimension 1

Y(selected row indices 17

dpouse = 18.25 e

Figure 5.2. Notations used for query the global data matrix.
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Where £y, is a static value associated with X; and € is obtained by translating the
y-coordinate of a mouse click to an index relative to €y, in the runtime. The tuple answers

enough technical questions below for us to look up D.
1. What is the target variable X;?
2. How many row are selected as well as their indices?

3. If a selected node is a data node such that £ = 0, we use £, otherwise it is a

relative offset from £y, such that £, + £ (see Figure 5.1).

Since we are equipped with all the information provided by the tuple, the next step
is to look up the data values and transform them into the screen coordinates connected by
a geometric primitive. In Figure 5.3, we have demonstrated the operation of direct data
selection by clicking on a virtual node as indicated in the top image and the middle and
bottom diagrams show the selected data in polyline and Bezier virtual nodes styles. Note
that, we only need to transform virtual data into screen coordinates if the specified
geometric primitive are Bezier virtual nodes otherwise we skip them.

In general, the HVN completely changes the way that user interacts with data
directly in parallel coordinates which is more simple, intuitive and accurate than any

existing techniques.
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Figure 5.3. Direct data selection via a virtual node.
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5.1.2 Dynamic Brushing via HVN

Brushing is commonly used to discern multidimensional data patterns by visual
differentiation. In 1994, Ward [36] first proposed a concept of N dimensional brushing
that can be used to highlight N dimensional data items which fall within a user-specified
subspace (or sub-region) in either scatterplots or parallel-coordinates. By using brushing,
a subset of data items (polylines) within specified value ranges of one or more dimensions
can be highlighted (or focused) for viewing the structure of data patterns. This allows
users to gain insights into the spatial relationships of N dimension. Lately, several
alternative brushing methods have been proposed in the parallel coordinates visualization.
For example, Hauser et al. [32] in 2002 presented a concept of angular brushing as an
extension of Ward’s standard brushing to facilitate data subsets grouping and highlighting
by a technique called angular constraint. Both techniques integrated the composite
brushing and focus+context technique to further improve the visual exploration in parallel
coordinates. In 2003, Yang et al. [45] contributed an automatic and manual brushing
mechanism to the parallel coordinate geometry called Visual Hierarchical Dimensionality
Reduction (VHDR).

Nowadays, brushing has become an integral component in parallel coordinates. Our
system equipped with the HVN has provided an excelling interface for users to carry out

such tasks with the simple steps as follows:
1. Observe the data density through the distribution of the virtual nodes,
2. Apply the color,
3. Click on a target node of interest, and
4. Go to step 1 if the task is not yet finished.

One can see that the contribution of the HVN greatly enhanced the interactivity and
usability of the parallel coordinates. In other models, this can be cumbersome. For
example, one gets to first figure out the maximal and minimal values of a data group for

value range filtering in value range model before brushing.
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Figure 5.4 shows the outcome of brushing from the procedures described above
which only took approximately ~16 seconds to brush 5 data groups and the time was
mostly spent on choosing the next color. Of course, the timing can be considerably
reduced by random coloring. That is, a distinctive color is generated after every brushing
operation.
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Figure 5.4. Brushing task via the HVN.

The overplot issue is always challenging especially when attempting to brush a
large dataset in parallel coordinates. For example, a rendered geometric primitive can be
drawn again with a different color in a subsequent rendering and then it eventually ceases
to exist. However, such problems exist in almost all visualizations and not just parallel

coordinates. Alternatively, alpha blending is often employed to reveal the density.

Alpha blending [80] is an image compositing technique and the process involves mixing
a source and background color together with a “blending ratio” (a.k.a alpha channel) to a
destination pixel. The color component of a pixel can be represented by a 32-bit integers
(R, G, B, A) where A € [0,1] holds an alpha channel. Let RGB, and A, denote the source
color and alpha respectively. The resulting color can be obtained by:
a=A;+A;x(1—-A)
RGB = (RGB; x As) + (RGBy x Ay(1 — Ag))/a
Equation 5.3
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Where a must be greater than zero, if not, simply output the black color (RGB = 0)
in the destination pixel. Figure 5.5 demonstrates an application of alpha blending in our
system where it is obvious that the top diagram reveals a heavily over-plotted view but
the bottom one has uncovered a major pattern after applying an alpha value of 0.01.

Basically, that means some geometric objects are invisible due to insufficient density.
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Figure 5.5. Alpha blending for uncovering a major pattern.

One significant drawback of alpha blending is the configuration of the a value is
really empirical and more specifically, the data density is relative to the dataset size. For
example, Figure 5.6 shows results for a values of 0.7, 0.1, and 0.01 for the top, middle
and bottom diagrams respectively. A lower a value eases the overplotting issue but low
density patterns tend to be illegible due to high transparency. This may not be desirable

if the low density pattern is really statistically significant.
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5.1.3 Highlighting Detail on Demand

In a typical visual analytics, the user’s interest over a subset of data is constantly changing
so the rest implies the data noise. Details on demands is a feature in our system that allows
users to indicate an area of interest to be stand out from the noise.

Details on demands is the last step in the Visual Information Seeking mantra
because details implies the quality (interested data to highlight) and not the quantity
(number of data to highlight). Let (X,0user Ymouse) and t denote the location of a mouse
click and a threshold for the number of data that can be highlighted at a time. Furthermore,
letT =(X;,Y, ¢ Xy ) be a tuple that holds 4 elements returned from the HitTest function

defined in Algorithm 5.1. The conditional function defined below returns a Boolean to
indicate whether a highlighting operation can proceed or not, by our system.

- true IT[1]| <t

Equation 5.4

Where |*| means a cardinality and T[1] is an indexing operation for the second
element in tuple T. The activation of the details on demand task slightly differs from data
selection. The user needs to hover a mouse cursor over an interested virtual node for

activating this task. Figure 5.7 provides a screenshot for the task taken from our system.

Figure 5.7. An application of detail on demand.
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5.1.4 Discussion

A key point that we keep highlighting throughout this work is that, the HVN changes the
way to interact with data in parallel coordinates. All the tasks described in this section
only require a mouse click or hovering directly over a virtual node. In summary, the HVN
is really an efficient and intuitive way to select data in our empirical study that would

otherwise have been cumbersome by manipulating through a separate widget.

5.2 Task by Dynamic Viewing

The dynamic viewing layer that merges layers 3, 4 and 5 of Yi’s model, allows users to
change the way of data representations for achieving better readability or understanding
of the data and its relational structures. In the following sections, we will discuss the local
and global drill-down to achieve the details on demand with case studies. In addition, an
analytics task of probability density estimation for the visual analytic will also be

introduced.
5.2.1 Hierarchical Local Drill-Down

To the best of our knowledge, the term drill-down was first referenced in parallel

coordinates by Fua et al. [35] in 1999, and is described as:
A process of viewing data at a level of increased detail.

Zooming is one aspect of drill-down and probably the simplest zooming is classic
zooming which scales all the graphic objects proportionally with respect to a zooming
factor. For advanced zooming, Stolte et al. [81] described a technique of multiscale which
is capable of displaying multiple zooming paths for both data and visual abstraction.
Multiscale is particularly useful for exploring multiple hierarchies simultaneously. For a

great taxonomy of zooming techniques, one can refer to a study conducted by Cockburn

et al. [82].
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Local drill-down enables users to scrutinize interested subsets of data and our
technique is similar to multiscaling by changing the context of a target variable while
rests remain fixed. The local drill-down operation is again tightly integrated with the
HVN. A conceptual illustration of local drill-down is provided in Figure 5.8 where a

brown node indicates a selected virtual node.
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Figure 5.8. Hierarchical local-drill-down. Local drill-down is achieved by changing

the maximal and minimal range of a target variable and rests are fixed.

Technically, local drill-down is achieved by triggering the view change for a
variable X; through the adjustment of its maximal and minimal range because all the
geometric objects are always positioned relatively to that scale. Recall that a data
selection (see Section 5.1.1) returns Y which holds a list of selected row indices. In
addition, the global data matrix D contains a mixture of real and virtual data (see Section
4.3.6.3), so for simplicity, we skip offset computation here and assume i can index a
column vector for X; in D. The procedure of a local drill down is therefore given in

Algorithm 5.2.

1. procedure LocalDrillDown(X,ouser Ymouse)
2. (X;,Y, tx,) ?) = HitTest(Xmouse» Ymouse)
3. if |Y| > 0 then

4. if £ = 0 then
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5. /* Data node is selected so set max and min to the data value. */
6. maxy, = D[Y,, x|

7. miny, = D[Yo,fxi]

8. else

9. maxy, = I?E%(X{D [YJ, L]} /* Compute the new maximum. */

10. miny, = IJI.lei\r[I{D [Y], l]} /* Compute the new minimum. */

11. end if

12. end if

13. LayoutVirtualNodes (v, X;)

14. end procedure

Algorithm 5.2. Local drill-down algorithm.

Where LayoutVirtualNodes was defined in Algorithm 4.4 and the virtual node can
simply be repositioned relative to the new range as depicted in Figure 5.9 where we have
reproduced Equation 2.1 for clarity. The logics in our system have been divided into data
and visual operations, so we only have to adjust the data values and the drawing
procedures defined in Section 4.3.6 will perform the rests such as screen coordinate

transformation.
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Figure 5.9. Remapping maximal and minimal values in local drill-down.
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Local drill-down facilitates the exploration of a multidimensional dataset by
allowing users to focus on the details of a variable while other remain fixed. A case study
that specifically demonstrates the usefulness of the local drill-down will be presented in

Section 7.1.

5.2.2 Hierarchical Global Drill-Down

Global drill-down is similar to local drill-down but instead of adjusting the numerical
span for a variable, global drill-down adjusts the ranges for all the variables. It can be
easily extended based on the detail described in Section 5.2.1. Global drill-down is
suitable for rapid pattern discovery where the user just wants to focus on a view with full
respect to numerical ranges from the selected data subset. A case study that specifically

demonstrates the usefulness of the global drill-down will be presented in Section 7.2.

5.2.3 Probability Density Estimation

Probability density estimation is an advanced task exposed in our dynamic viewing layer
which also corresponds to Encode layer in Yi’s [14] seven-layer of visual interaction. In
visual analytics, many problem domains involve the visualization of density estimation
given a random variable. The term estimation is used in such a way that datasets were
often collected on the basis of finite observations, that is, they are a small subsets of an
entire population. Recall that, even though virtual nodes provide the density distribution
they do not give smoothing nor estimation.

Histogram (see Section 4.3.7) is the simplest method of plotting data density but
the artifact is largely dependent on the bin width and therefore the distribution can be
artificially distorted due to a poor bin width chosen. Alternatively, kernel density

estimation is often adopted.

Kernel Density Estimation (KDE) [83] [84] is probably the most popular nonparametric
method for probability density estimation in many scientific applications. Let X; be a
random variable, its probability density can be estimated by the kernel density estimator

introduced by Rosenblatt [83] as:
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Equation 5.5

In a more generalized form, it is often expressed as:
N
A 1
f@) =% Ku(d=D))
i=1

Where K(x) is a univariate kernel function and d denotes the data value to be
estimated. / is the smooth parameter or also known as bandwidth that controls the

smoothing. For multivariate kernel density estimation, Equation 5.5 can be rewritten as

1o d—D
fa =g 2] [ x(52)

i=1 j=1
Where j refers to the subscript of the target variable in the multidimensional dataset.
A kernel is a weighted function and the choosing of bandwidth 4 is crucial to the shape
of the function. In general, the properties of a kernel function should be symmetric around

zero and integrating to one as described by Hardle and Linton [85]:
K(x) = K(—x);jK(x) dx =1

Where K(x) = 0. Therefore, any functions satisfying these properties can be
regarded as kernel functions in KDE. In general, there are six common kernels [85] and

we have reproduced them in Table 5.1.

Kernel K(d)
Epanechnikov 3/4 (1—-d*)forld| <1
Quartic 15/ @ —d?) for|d| < 1
Triangular (1—|d]) for|d| <1

Gauss 2~ 2exp (_dz/z)
Uniform 1/, for |d| < 1

Table 5.1. Six common kernel functions. The table content is based on [85].
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The Gaussian kernel with zero mean and unit variance is the most popular kernel
and it gives more weight to these data D € X; close to d than those away from it. Gaussian

is also the kernel that we have applied in the algorithm.

Bandwidth selection The choice of bandwidth % is crucial to the shape of the density
estimation. The study conducted by Silverman [86] had also shown that the choice of a
kernel does not significantly influence the degree of smoothing but instead it is largely
controlled by the bandwidth. The smaller bandwidth produces smaller bin width which
implies acute variance with reduced bias and vice versa. Let h,;,; denote the optimal
bandwidth, Figure 5.10 shows the comparison of smoothing produced by various

bandwidths as h,; (blue), hyp,e /4 (red) and 4 X h,,, (green).
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Figure 5.10. Comparison of different bandwidth selection in KDE. The settings of
bandwidth are h,,, (blue), h,,./4 (red) and 4 X h,,, (green). The MATLAB function

ksdensity was used with the bandwidths above to produce the result where h,), is

computed by ksdensity.

If we choose h = h(N) as a function of N which denotes the number of samples.

Parzen [84] has shown us that the expected value of f;, (x) is:
N
~ 1 1 x — Xj 1 x—y
E(f@) = WZEE (K( . )) [ k() roray
i=
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Equation 5.6

As we know that KDE is always biased, the common way of choosing a bandwidth

is to minimize the Mean Integrated Square Error (MISE) [83] that is given as:
. _ 2
misE (7)) = [ (A - £@) dx

Where f;, denotes the kernel estimate. By introducing integrated bias and variance

terms, the above MISE can be rewritten as:
~ - . 2
MISE(f,) = f VAR (fa(x)) dx + f Bias (f(x))  dx
Equation 5.7

Where Bias is a Taylor series expansion of density estimation expressed as:

h2p, (K)f" (x)
2

Bias (fh(x)) = + o(h?)

Equation 5.8

Where K is a kernel function. Similarly, VAR is given as:

VAR (fu(x)) = % +o (%)
Equation 5.9

Where

R(K) = sz (x) dx
Equation 5.10

Equation 5.10 is the kernel variance as noted by Wand and Jones [87] . Obviously,
one should expect smaller variance when / increases from Equation 5.9 which also
corresponds to our observation in Equation 5.6 above.

By substituting Equation 5.8 and Equation 5.9 back to Equation 5.7, Parzen [84]
has shown that the bandwidth /4 that minimizes MISE can be written as:

_(_R®WO N
hMISE_(R(f”)Mz(K)2> N /5
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Equation 5.11

Where hy; g holds the optimal bandwidth. One problem of Equation 5.11 is that it
cannot be used directly because it contains an unknown term R(f'") which measures the
speed of the curvature. To address this issue, there are many methods that have already
been developed such as plug-in [88] and cross-validation [89]. The rules of thumb [86] is
one of the pug-in techniques and we have applied as the bandwidth selector since our
kernel is Gaussian.

In the rules of thumb, the unknown term R(f'") of hy; s is replaced by a reference
known as the normal distribution for the Gaussian kernel and by substituting it into

Equation 2.1. Silverman [86] had also shown that it is reduced to:
1 1/5
favz

—_— = 1.060N"1/5
3/8 7-1/25-5

hyise =

Equation 5.12

The implementation of KDE with optimal bandwidth is provided in Algorithm 5.3.

—

function KDE (K, d, X;)
/I K —kernel function pointer.
/I d — the data point to be estimated.
/I X; — the univariate variable.
begin
h = 1.06 x gy, x |X;|7%?
ksum =0
/* Tterate through each data point. */
foreach D € X; do

A A R

[
e

ksum = ksum + K(d B d/h)

—
—

end

return (ksum/|Xi| % h)

end

_
o

—
[98)
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Algorithm 5.3. Implementation of KDE. X? and |X| denote the standard deviation
and cardinality with respect to the target variable X. The bandwidth is chosen based on

the optimal bandwidth.

Figure 5.11 is composed of the screenshots for various bandwidth studies taken in
our system. It shows the comparison of smoothing using multiple bandwidths where one

can observe the strong variance from the left-most variable which has the smallest

bandwidth setting.
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Figure 5.11. Gaussian kernel with various bandwidths. The bandwidth settings are

0.01, 0.1, 0.5 and Gaussian hygp from left to right.
5.2.4 Variable Overview of Big Dataset

This section is added due to the growing attention on big datasets in information
visualization. Visualizing a multidimensional dataset is challenging, visualizing a big
dataset is much more challenging. In 1996, the internet was starting to thrive when

Shneiderman [56] proposed the Visual Information Seeking mantra. The overview first
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guideline as part of the mantra profoundly influenced the visualization design. Nowadays,
data are produced exponentially so it is not uncommon to deal with a dataset with more
than 100 variables. Researchers who deal with big datasets which simply follow the
classic overview first will soon fail to align with user experience.

To illustrate the complexity, we have visualized the National Youth Tobacco
Survey 2009 (NYTS) dataset in classic parallel coordinates. The dataset surveyed high
school youths about their attitudes, beliefs, behaviors and influences in relation to the
tobacco. It contains 116 dimensions (including metadata) and 22,679 data rows with
approximately 2,630,764 data points. Unfortunately, the result was frustrated which

presents no useful pattern other than visual clutter as shown in Figure 5.12.
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Figure 5.12. Visualization of NYTS 2009 dataset in parallel coordinates. The
dataset contains 116 dimensions and 22,679 data rows with approximately 2,630,764

data points. Please refer to Table 4.4 for the dataset source.

The consequences are the cluttered view with struggling system performance that
could merely achieve less than 1 FPS approximately. Please note that, we have not yet
found a case study of a similar scale through a courtesy scan of relevant literatures.
However, we noted a technique called Circle Segments [90] which provided an overview
of 50 dimensions with 265,000 data items as shown in Figure 5.13, but it was not designed
for an interactive visualization. The scale of the dataset applied in Figure 5.13 is still far

less than the one applied in Figure 5.12.
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Figure 5.13. Circle segments visualization. The image is sourced from [90].
5.2.4.1 Divide-and-Conquer Model

In this section, we will discuss the divide-and-conquer model for dealing with big datasets
in visual analytics. The idea is not new and a similar model in distributed data engineering
is called MapReduce which aggregates a massive amount of distributed data into a smaller
set for analysis. They are conceptually similar in such a way that they attempt to tackle a
problem by breaking down complexities. The basic idea behind the approach of divide-
and-conquer is based on several prior works which will be described below.

Liu et al. [55] presented a study about the mental model, visual reasoning and
interaction in visualization. The key point learnt with the relevant phrases is quoted

below:

When asked about the relative location of San Diego with respect to Reno, people
incorrectly responded that San Diego was west of Reno. ......... People do not remember
the locations of cities. Instead they remember the relative locations of the states and infer

the locations of the cities from the state superset.
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Liu reminds us that people are not concerned with detailed aspects of data when
information space is large and instead, they tend to learn from its superset. Inspired by
Liu’s study, the overview first is further amended as the variable overview first by the use
of a correlation matrix as the information superset.

In 2005, van Wijk [8] gave a simple model of visualization in his work titled “7The
value of visualization”. In 2008, Keim et al. [9] proposed a sense-making loop based on
it. For interactive visual analytics of big datasets, we further develop a divide-and-
conquer model based on our framework discussed in Chapter 3 (based on Yi’s [14]
framework), a simple model of visualization [8], a sense-making loop [9] and also the
study contributed by Liu [55].

The model is illustrated in Figure 5.14 which is similar to the simple model of
visualization as shown in Figure 1.2 and sense-making loop conceptually with the main
difference being, a divide-and-conquer approach. Variables are “divided“ by their
correlations with color coding for guiding the user to “conquer” them. Dealing with
hundreds or even thousands of variables, user is often challenged by the question of “how
to start dealing with it”. Therefore, the correlation matrix is designed to shield the user
from information overload while providing a sufficient visual hint for the user to start

with an interactive visual analytics.
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Figure 5.14. An interactive divide-and-conquer model. The model is designed for

the interactive visual analytics of big datasets.
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5.2.4.2 Overview by Correlation Matrix

The multivariate correlation matrix view is designed to gain the variable insight. It is an
auxiliary view and not an integral part of parallel coordinates. The view provides an inter-
correlation between variables so the user can interactively add an interested variable to
parallel coordinates progressively since it is impractical to place a large quantity of
variables simultaneously.

There many ways to measure the correlation and one of the most commonly used
methods is Pearson’s [91] product moment correlation written as:

WX -X) (Y -7)
JEr - B2 [srer -7y
Equation 5.13

cor(X,Y) =

The output of cor(X,Y) is in the range between [—1,1] where a positive value
means a positive correlation and vice versa. The multivariate distance matrix can be
constructed by passing a pairwise variables X; and X; to Equation 5.13 at element [{, j]
as:

cor(Xy, Xy) - cor(Xy, Xy)
DN = ( : . : )

cor(Xy,Xy) - cor(Xy,Xy)

From the properties of covariance, we know that the operation cor(X,Y) =
cor(Y,X)T is symmetric. For diagonal elements, cor(X,X) is equivalent to VAR(X).
Therefore, the computation of the covariance matrix can be reduced to the tri-diagonal
matrix for efficiency. Given a set of variables X = {X;, ..., Xy}, the correlation matrix can

be obtained by passing X to Algorithm 5.4 as below.

1. procedure CorrelationMatrix(X = {Xy, ..., Xy})
2 for each X; € X

3. for each D; € X;

4 /* We need to first normalize the values here. */
> D, = (d; _E)/GXL'

6. end if
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7. end if
8. fori:=0toi < |X|

0. forj=0toj <i

10. if i # j then

11. r = cor(X;, X;)

12. color = GetColor(r)

13. /* Fill the cell for i" row and j** column. */
14. FillCell(color,i,j)

15. end if

16. end if

17.  endif

Algorithm 5.4. An implementation of the multivariate correlation matrix.

The user interface is a grid layout. It divides the space into grid cells where each
cell is color brushed to convey the linear dependency between pairwise variables. The
color model applied for denoting the correlation is RGB ramping with hot-cold colors in
a sequence of red, red-yellow, green, blue-green and blue where red and blue represent
highly positive and highly negative respectively.

An application of Algorithm 5.4 is provided in Figure 5.15 where the user can

interactively add interested pairwise variables to the visualization by clicking on a cell.

mpg cylinders displaement horsepower weight acceleration model
mpg
cylinders _
acceleration ‘ _—
model

Figure 5.15. Multivariate correlation matrix view of a car dataset.

The scale of the dataset used in Figure 5.15 is probably trivial and not

representative. In order to demonstrate the effectiveness of the technique for guiding a
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user to explore a big dataset, Figure 5.16 presents a multivariate correlation view of the
NYTS 2009 dataset with more than 100 variables. There is no space to fit all the text

labels but a dynamic label will show up if one hovers the mouse cursor over a cell.

Figure 5.16. Correlation matrix view for the NYTS 2009 dataset.

The novelty of this technique is that, it adds an additional step of the variable
overview in the Visual Information Seeking mantra to shield a user from cognitive
overload. There are some advantages offered by this design. 1) Features are sparse in the
high dimensional dataset so it is not necessary to study all the dimensions. The color
coding provides a visual hint of understanding the inter-correlation. 2) It allows the user
to add or remove a pairwise variables arbitrarily in a divide-and-conquer approach.

The performance is an important consideration in our implementation and the
ability to parallelize the computation of correlation coefficient is a primary reason to use
a matrix. It decouples the data dependency so elements can be updated concurrently.
Figure 5.17 provides a performance measure based on Intel Core 17-3930 with 12 logical
processors and 32 GB RAM. It took approximately 2 seconds to build a multivariate

correlation matrix for 116 dimensions.
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Figure 5.17. Performance of building the multivariate correlation matrix.

Overview by Multidimensional Scaling (MDS) First of all, MDS is not implemented in
our system but the primary purpose to describe it here is to document a potential

application in the variable overview. MDS is probably well-known for its application in

dimensionality reduction. It was first introduced by Torgerson’ [92] for mapping the
distance of dimensional correlation and such capability inspires us to extend its
application in guiding a user over the overview presentation of a large multidimensional
dataset. The basic idea is similar to the multivariate correlation matrix view discussed in
the previous section. For a complete introduction of class MDS procedures, one should
refer to [93]. Let X = {X;, X5, ..., Xy} be a multidimensional dataset which needs to be
converted into a proximity matrix by the following distance measure as:
pixx)= > Y ()’
di€X; d;EX

Equation 5.14

Equation 5.14 is essentially a two dimensional Euclidean function. Alternatively,

one can use the Pearson correlation in Equation 5.13 to construct the proximity matrix if

7 There are many variants of MDS but the method originally introduced by Torgerson is known as classic

MDS.

113



the concept of distance is not applicable on the given dataset. The first step in classic

MDS is to square the proximity matrix by:
D(Xllxl)2 D(X1'XN)2
XZ = ( . ‘. . >

DXy, X1)? - DXy, Xn)?
Next, apply the double centering as:

B = 1X2
——51 ]

Equation 5.15

Where J is given as
J=1-N"1]
Where N is the cardinality of X. [1] and I denotes the unit matrix of ones and the

identity matrix respectively. They are trivially expressed as follows:

1 - 1 10 0
[1]=<5 s>,1=<0 1 o)
1 - 1 0 0 1

The Singular Value Decomposition (SVD) is applied on B to obtain the first two
largest positive eigenvalues {1, 4,} and corresponding eigenvectors E, = {e;,e,}. We
are only interested in the first two largest eigenvalues because the final representation is
a projection of the two dimensional scatterplot of N variables. To work out the two
dimensional coordinate matrix M,, eigenvectors need to be multiplied with the diagonal
matrix of eigenvalues.

M, = E,A,"?

Where A4, holds the diagonal matrix of two eigenvalues. E, is the union of two
eigenvectors in matrix. The final procedure negates the sign of the coordinate matrix as
—M,. The MDS map is obtained by projecting M, in a scatterplot. Figure 5.18 provides

an example of using MDS for variable overview.
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Figure 5.18. Application of MDS map for variable overview. The image was
produced in MATLAB.

5.2.5 Discussion

In summary, this section describes several techniques in the layer of dynamic viewing.
Local and global drill-down were developed on the basis of the HVN that provide an
effortless way of navigating data. We also introduced the use of KDE to study the
probability density distribution. Even though, virtual nodes offer the information of data
distribution but they do not give smoothing and estimation. Finally, a model and
technique have been presented for interacting with big datasets. A case study that
demonstrates the effectiveness of the divide-and-conquer model to tackle a big dataset

will be presented in Section 7.3.

5.3 Task by Dynamic Scoping

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and
Connect of the interaction are defined in J. S. Y1’s model, allowing users to visualize a
subset of the data through techniques such as filtering or dimensionality reduction. The

technique of filtering is trivial so we will not discuss it here.
5.3.1 Dimensionality Reduction by RST

Dimensionality reduction is considered as an advanced task in visual analytics. A dataset
is reduced to a smaller subset while being sufficient to describe a whole set of variables.

To approach the dimensionality reduction, the technique adopted here is the Rough Set
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Theory (RST) (see Section 2.3.3.2). It offers a distinct advantage over others because of
the concepts of condition and decision. Users simply specify a dimension as a decision
and rest become conditions so the dimensions are reduced in such a way that they fully

respect to the user specified decision.

Variable Precision Rough Set RST was initially designed to deal with a consistent
dataset by its strict definition of approximation regions. It assumes the underlying dataset
is consistent and possesses complete certainty in terms of classifying objects into correct
approximation regions. For example, if ab — D then c¢d — D is considered to be
conflicting. This assumption of the error-free classification of the consistent dataset is
unrealistic in relation to most real world datasets. Although, a dataset can be partitioned
into consistent and inconsistent data space and operates RST on the consistent one, we
considered this to be meaningless and impractical for use in this case. To deal with the
inconsistent dataset, Ziarko [94] argued that partially incorrect classification should be
taken into account and accordingly proposed the Variable Precision Rough Set (VPRS)
model as an inconsistent dataset extension to RST. VPRS model allows for probability
classification by introducing a precision value [ to relax the strict classification in
original RST. It introduces the concept of major inclusion to tolerate the inconsistent
dataset and the definition of majority implies no more than 50% of classification error so

the admissible range of f is (0.5, 1.0]. The S positive in the VPRS model is defined as:

POSE(D) = U (X; € IND(P)}
Pr(IND(D)*|X;)=B

Where IND(D)* and X; denotes a set of the equivalent classes for D and P € C
respectively. Clearly, a portion of objects with specified value £ in the equivalence
classes need to be classified into the decision class for it to be included in the f positive
region. Ziarko also formulated the definition for quality of classification that is used to

extract the § reducts and we will explain the definition of reduct in the next section.

U sy >g 1X; €EIND(P)}
yB(P,D) = | PrND®) le)ZI[ZII ! | where Pr(P|D) = lDlglpl

Where | * | denotes the cardinality for the union of all the equivalence classes in the

B positive region where classification is possible at specified the value f with respect to

relation IND(D)* and |U| denotes the cardinality of the universe. Obviously, the quality
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of classification provides the measure for the degree of attribute dependency in such a
way that if y#(P, D) = 1 means D fully depends on P at specified f value.

There are certain advantages of using RST over other methods such as PCA, 1) it
minimizes the impact of information loss by removing the irrelevant or dispensable
dimensions and 2) the resultant subset of attributes is more intuitive by preserving the
quality of classification. Typically we may find several subsets of attributes that satisfy
the criteria called reduct sets denoted as R = {P: P € C}. The minimal cardinality in the
reduct sets called the minimal reduct denotes as R,,;, where R,,;; € C is the minimum
subset of the condition attributes that cannot be reduced anymore while preserving the
quality of classification with respect to the decision attribute. In the VPRS model, the
reduct is called S-reduct denoted as RE Df (C,D) and according to Ziarko a subset P € C

is a reduct of C with respect to D if the following two criteria are satisfied:
1. y#(C,D)=y#(RED’(C,D), D) and,

2. No attributes can be eliminated from RED? (C,D) without affecting the

requirement (1).

The requirement (2) can also be mathematically expressed as POSg_{a}(D) *

POSg(D),a € P. Obviously, Ziarko has defined a strict satisfaction of the £ reduct in
relation to the requirement (1) that some attributes can only be removed if the
qualification of classification y# for subset P € C is the same against y# for the whole set
of original attributes C.

The applications of the RST have been demonstrated in Figure 5.19 where the
decision variables selected were cylinders and experience for car and wage datasets

respectively.
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Figure 5.19. Applications of RST. a) The car dataset has been reduced from 8 to 4

variables. b) The wage dataset has been reduced from 11 to 6 variables.
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5.3.2 Discussion

This section introduced the use of RST for dimensionality reduction in the layer of
dynamic scoping. Many methods of dimensionality reduction exist such as principal
component analysis, self-organizing maps or MDS (See Section 5.2.4) but the distinct
advantage of RTS over other methods are the concepts of decision and condition
variables. Such concepts can minimize the perception of information loss which is often
used to criticize the result if it is not intuitive e.g. a variable that is expected to be retained
but has been excluded. To the best of our knowledge, we have produced the first

application of RST in parallel coordinates [41] for dimensionality reduction.
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Chapter 6 Technical Evaluations

This chapter will present some technical evaluations of our HVN based parallel

coordinates visualization against other publicly available visualization systems.
6.1 Visual Clutter of Overview

The versatile HVN allows us to adopt a different approach of overview presentation in
parallel coordinates, as already discussed in Section 4.3.7. The central idea is that the
organization of virtual nodes already provides the initial data insight of data distribution
so that it is redundant to draw classic polylines which often create clutter in many cases.
The challenge of evaluating the visual performance comes from the quantization of visual
clutter since the term clutter is abstract. However, the study conducted by Rosenholtz
[95] has suggested two approaches to measure it namely, subband entropy and feature
congestion. Subband entropy measures how well the content in an image is organized by
first decomposing an image into subbands of wavelength and sums up the entropies
computed for each subband. Feature congestion measures the degree of the visual search
based on the statistical saliency model. For example, how well an obverse can find a target
amongst other graphics objects in an image.

Our evaluation was conducted with 3 datasets and 3 implementations of parallel

coordinates and their details are described in the following table.

Name Comment
Dataset Car, Wage and Wine = See Table 4.4.
Parallel coordinate Classic PC This is our implementation of classic
visualization 1 parallel coordinate.
Parallel coordinate HVN This is our implementation of parallel
visualization 2 coordinate based on HVN.
Parallel coordinate = GGobi A publicly available software. See
visualization 3 [96].
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Measurement 1 Subband entropy MATLAB code was written by
Rosenholtz [95].
Measurement 2 Feature congestion MATLAB code was written by

Rosenholtz [95].

Table 6.1. The setup of evaluating visual clutter. The MATLAB source code was
obtained from http://dspace.mit.edu/handle/1721.1/37593.

The steps executed in the evaluation are outlined below.
e Produce the images of dataset overview in PNG format for 3 datasets in
each parallel coordinate visualization.
e Execute getClutter SE function in MATLAB and record the output value.
e Execute getClutter FC function in MATLAB and record the output value.
Where getClutter SE and getClutter FC are the MATLAB functions for subband
entropy and feature congestion respectively. Figure 6.1 and Figure 6.2 show the results

of the visual clutter measurements.

Subband Entropy

“I .| |

Visal Clutter Meas.
o [ N w H (] (o)}

Classic PC HVN GGobi

H CAR 3.7582 1.3353 3.4987
B WAGE 4.3072 1.3476 3.4749
WINE 3.544 1.5928 2.8687

B CAR B WAGE WINE

Figure 6.1. Subband entropy measure of visual cutter.
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Figure 6.2. Feature congestion measure of visual clutter.

According to Figure 6.1, the HVN has incurred less visual clutter. Interestingly,
GGobi outperforms the HVN without the application of automatic brushing in the
measurement of feature congestion but the algorithm considers the image as more
cluttered with the brushing enabled. This probably suggests that the brushing is not

suitable in the overview presentation.

6.2 Data Selection

One of the key innovations that the HVN has made in parallel coordinates is the
materialization of the point selection hierarchically and therefore, it is paramount for us
to compare its efficiency and accuracy with other techniques. The third-party
visualizations that have been chosen in this evaluation are GGobi and Mondrian [60]. The
data selection model coincidently incorporated in both is the 2D rectangle (see 4.2.1) with
activation over points. That is, the drawing of the rectangular bound over polylines will
not activate the data selection mechanism. In this section, we will conduct two common
use cases of continuous and non-continuous selection in order to evaluate how well these

visualizations support the basic interactivity with data.
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6.2.1 Continuous Neighbour Selection

The continuous neighbour selection is a rudimentary evaluation of the select operation.
Basically, we try to evaluate the accuracy and the error rate when attempting to mark a
continuous range of data as selected directly on the display. Interestingly, GGobi and
Mondrian both adopt the 2D rectangle to include data over points which is an elementary
technique of interaction since a polyline other end points does not occupy a bounding
region from the perspective of a visualization system. Therefore, it is much easier to work
out whether a point is enclosed by a rectangle rather than the expensive computation of a
point-to-line intercept.

In this evaluation, it was started first by loading the car dataset into GGobi,
Mondrian and our HVN. The overview of GGobi and Mondrian is provided in Figure 6.3
and Figure 6.4 respectively. In our experience, we found that the 2D rectangle is
cumbersome in terms of aligning the mouse cursor and this is also evident in the figures.
Specifically, it might lead to much trial and error because the misalignment of few pixels
can lead to unwanted selection if the gap between the continuous data is too small.
Accordingly, we decided to carry out the selection on the variable cylinders for simplicity

because the gaps are apart.

madel

Figure 6.3. 2D rectangular data selection in GGobi.

123



accelearation dizplacement

D ——

mpg cylincers horsepowwer weeight

Figure 6.4. 2D rectangular data selection in Mondrian.

The result is recorded in Table 6.2 where all the visualizations were able to achieve

100% accuracy without error.

Selection Count Unwanted Data Selection Model Error Rate

HVN 388/388 0 Point selection 0%

388/388 0 2D rectangle 0%
388/388 0 2D rectangle 0%

Table 6.2. Result of the evaluation of the continuous neighbor selection.

6.2.2 Non-Continuous Selection

In visual analytics, it is a common practice to explore data patterns between groups with
diverse quintiles. For example, Group A with the value range 1~20 and Group B with the
value range 65~90. Therefore, we would like to evaluate the facility catered by the
visualizations to deal with such use cases. In our HVN, the operation was accomplished

by clicking directly on the nodes as indicated in Figure 6.5.
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Figure 6.5. Non-continuous data selection in the HVN.

However, it is not straightforward to carry out the same task on GGobi and
Mondrian because they only allow a single 2D rectangle so the workaround for us is to
coerce the inclusion of undesired data in between. This creates a poor user experience but
on the other hand, it highlights the practicality of the HVN as we have successfully used

the HVN to achieve the operation that is otherwise impossible to achieve by the others.

accelearation displacement horsepower model

Figure 6.6. Coerce data selection in GGobi.
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The evaluation result is provided in Table 6.3 where the HVN outperforms GGobi

and Mondrain without the error rate penalized by the data coercion.

Selection Count Unwanted Data Model Error Rate

302/302 0 Point selection 0%
388/302 86 2D rectangle 28.5%
388/302 86 2D rectangle 28.5%

Table 6.3. Result of the evaluation of the non-continuous selection

To further study the technique of data selection materialized in other parallel

coordinates visualizations, we discovered a website [97] that lists approximately 1897

applications of D3.js8 [98] and 10 of them contain the keywords parallel coordinates.
We further explored them and were surprised by the fact that the data selection is all
designed to be similar to the interface which combines both the value range and 2D
rectangle. That is, the 2D rectangle aligns strictly to the vertical axis but this essentially
offers no functional difference to GGobi and Mondrian. Figure 6.7 illustrates one of the
applications of parallel coordinates visualization in d3.js that we explored.

In summary, we ascertained that the HVN is an innovative technique for data
selection in parallel coordinates because it simplifies the cumbersome procedures of
activating a data selection into a straightforward mouse click. The same operation that
could be easily carried out in the HVN with a higher degree of accuracy is difficult in the

others especially, under the circumstance of overplot.

8 D3.js is a popular JavaScript library that can be used to create a powerful visualization in a data-driven

approach.
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Figure 6.7. An application of parallel coordinates visualization in d3.js. The

image is sourced from http://bl.ocks.org/jasondavies/1341281. The website bl.ocks.org

is run by Mike Bostock.

6.3 Drill-Down

This evaluation is concerned with the usability of the general drill-down facility provided
by the visualization appraised. Drill-down provides a means for the dynamic navigation
of data and a parallel coordinates visualization reveals that such a well-designed feature
can greatly improve the user experience by allowing the user to quickly focus in or out
on the area of interest.

We first proceeded with GGobi but there is no way to materialize such an operation
directly in the user interface. Thus, we needed to open a separate window and manually
entered the values 39 and 46 as the user defined range for the variable mpg as highlighted
in the top image of Figure 6.8. Unfortunately, the result confused us due to the distortion
of the geometric primitives in Figure 6.8. Certainly, from our perspective, the resulting

frustration created a poor user experience.
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Figure 6.8. Evaluation of drill down feature in GGobi. (Top) Manually enter the
user-defined range via a separate window in GGobi. (Bottom) The view which reflects

the user-defined range.

The next visualization examined is Mondrian where the holistic tasks of interaction
can be accessed by a menu which is activated through the classic approach of the right
mouse-click on the user interface. The first related feature explored is called the data
alignment but the result is really convoluted as there is misalignment with all the rendered
geometric primitives so they are not intuitive for the purpose of interpretation. A

screenshot of such an operation is illustrated in Figure 6.9.
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Figure 6.9. Convoluted result of data alignment in Mondrian.

In Mondrian, the function that most aligns to our expectations is probably called the
Scale Common as shown in the topmost menu item in Figure 6.9. It seems to scale the
view by setting a uniform range for all the variables at the global maximum and minimum.
This is not very useful when dealing with a multidimensional dataset due to the

discrepancies of the variable measurement.

PC{carbig.csv) ;Igl 5'

accelearation displacement model

5140

mpg cylinders hiar zepover weeigght

Figure 6.10. Evaluation of the drill down feature in Mondrian.
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In our evaluations of GGobi and Mondrian, the dissatisfaction mainly came from
the misalignment of the expectation for the interactivity provided by the visualizations as
well as the result rendered. On the other hand, interactivity is also one of main problems
that we try to address in parallel coordinates. The last visualization evaluated is our
developed parallel coordinates with the tight integration of the HVN. For a local drill-
down, we simply mouse right selection the node as indicated in the top image of Figure
6.11 and select the operation of local drill-down. The bottom image in Figure 6.11 reflects
the rendered result immediately. Our drill-down functions facilitated by the HVN provide
the best form of interactivity that would otherwise have been impossible to achieve in

both GGobi and Mondrain.
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Figure 6.11. Evaluation of the local drill down feature in our HVN.
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Table 6.4 lists the summary of the drill-down (or similar) feature evaluated in
GGobi, Mondrian and our HVN where our approach incurs the lowest interaction cost.

Obviously, we only need a simple mouse click to achieve the task rather than the input of

several values via the widgets.

Local Drill Global Drill Model Interaction Cost
Down Down

HVN X X Point selection Low
GGobi X Widget input Median

Mondrian X Widget input Median

Table 6.4. A summary of the drill down function evaluated in GGobi, Mondrian
and our HVN.
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Chapter 7 Case Studies

This chapter will present three case studies to demonstrate the effectiveness of the
techniques described earlier. Case studies 1 and 2 are concerned with the local and global
drill-down respectively. Case study 3 presents the use of the divide-and-conquer model
(See Section 5.2.4) for tackling the visual analytics of a big dataset with more than 100

variables.
7.1 Case Study 1

The dataset used in this case study is Portuguese "Vinho Verde" wine data [99] which
contains approximately 58776 observations (12 X 4898) on 12 variables namely, fixed
acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates, alcohol and quality. Nowadays, dealing with a
dataset of such scale is not considered to be large but one can see the overview is already
heavily cluttered in Figure 7.1. Interestingly, the nature of the data is not distributed
uniformly and hence it is easy to identify a pattern for the first 8 variables as their values
are mostly aggregated to the lower range.

In this case study, wine quality is the most interested variable which serves as a
decision variable with respect to others. Owing to this, we performed a local drill-down
by clicking on the data node with the highest value for quality variable as indicated by an

arrow in Figure 7.1.
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Figure 7.1. Local drill-down scenario 1.

The resultant view after a local drill-down from step 1 is presented in Figure 7.2
below. The selection set only includes those data with value 9 for quality (rightmost
variable) value 9. One may question why the overall viewing context did not change, as
we mentioned earlier the maximal and minimal range will be set to the same value when
a data node is selected (see Algorithm 5.2) because the data node sits in the bottom of the
hierarchy so it is a scalar value. That is, if one carefully looks at the maximum and
minimum value labels for the rightmost variable in Figure 7.2 then it is evident that the
value is 9 for both.

According to the result, there is a pattern for wines of the highest quality within the
dataset. We could also visually identify an outlier sample in alcohol as indicated by a blue
arrow because its value differs from the rest but its quality seems to be not affected due
to such a difference. At this stage, we could conclude that the attributes fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide and density shall be lower values in order to produce the highest quality wines.
Next, pH has attracted our attention so we decided to drill down on it locally again starting

from the visual node indicated by a red arrow in Figure 7.2.
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Figure 7.2. Local drill-down scenario 2.

Figure 7.3 shows the result after two consecutive local drill-down operations. One
can see that the data points for pH have changed but overall the view remains fixed except
for its adjacent variables. The numerical span of pH is between 2.72 ~ 3.82 and data with
highest quality fall within the range of 3.2 ~ 3.41. One can also easily perceive 3 groups

in pH through the visual inspection.

“fixed acdity” “volatle acdity” stncaad”  “residual sugar” chiondes” “free sulfur dioxide” | sulfur dioxide” sity” “pH" “sulphates”
142 1 166 658 0346 289 440 103898 41 108

2 9 N9]’711 32 n22 8 9

Figure 7.3. Local drill-down scenario 3.
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In order to segregate data patterns, we applied brushing on a virtual node as
indicated by an arrow in Figure 7.4. The result suggests that total sulfur dioxide tends to

be lower with a relatively higher pH value amongst the highest quality wines.

“fixed acdty” “volatle acdity” atnc acd™ “residual sugar” hlondes” “free sulfur dioxide”  sulfur doxide™ aty” “pH” “sulphates”  “alcohol” “qua
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Figure 7.4. Local drill-down scenario 4.

Finally, we performed a highlighting on a polyline by hovering the mouse cursor
over the data node with label pops on as shown in Figure 7.5. We concluded that wines
of higher quality tended to have relatively higher alcohol but if it had lower alcohol and
pH then the fixed acidity value needed to be higher to compensate.

‘fixed acidity” “volatile acidity” tnc acid”  “residual sugar” hlondes™  “free sulfur dioxide” sulfur dioxide”™ ty” “pH” “sulphates™  “alcohol” “qua
142 11 166 658 0346 289 440 103898 34 108 142 9
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Figure 7.5. Local drill-down scenario 5.
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This case study demonstrated the use of the local drill-down to arbitrarily explore
the data subset interactively. In other parallel coordinates visualizations, a similar task
required the user to define a numerical range which involved quantization so it was not
trivial, especially as it did not contain visual hints such as data density or groups. In our
parallel coordinates system, the embedded visual nodes in the display allowed for direct
interaction with visual hints that would otherwise have needed multiple views or separate

widgets to achieve similar functions.

7.2 Case Study 2

The dataset [100] used in this case study was collected in a Current Population Survey
(CPS) 1985. It contains 534 random observations on 11 variables describing an
individual’s education, southern residence, sex, work experience, union membership,
wage level, age, race, occupation, work sector and marital status.

Figure 7.6 presents a dataset overview and one can easily recognize the
visualization brings out a mixture of continuous and discrete variables. Our visual
analytics was first started by intuitively clicking on the virtual node (virtual data with the
value 47) on experience with an operation of the global drill-down as indicated by a red

arrow.
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Figure 7.6. Global drill-down scenario 1.
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The result presents a neat visualization as shown in Figure 7.7. According to the
dataset summary, union members were paid 23% higher than non-union members and
also, northern residents were paid 11% more than southern residents. With this in mind,
one particular pattern attracted our interest where it could be observe that union member
tended to have less wages than those without union membership. It is important to note
that this statement holds true only for the selected data subset. Unfortunately, the polyline
does not adequately support the visual trace of an entire path due to the nature of its
geometric discontinuity at the segment junctions. There are two ways to uncover patterns
under this circumstance such as brushing or highlighting. Brushing is probably not
desirable for the loaded dataset where discrete variables outweigh continuous variables
in quantity thus, we decided to execute a highlighting operation by hovering the mouse

cursor over the virtual node, as indicated by a red arrow in Figure 7.7.
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Figure 7.7. Global drill-down scenario 2.

Figure 7.8 shows the visualization of the highlighting task conducted where there
were two patterns which partially overlapped near the tail. It describes observations with
northern residents and non-union members with higher experience but a lesser wage. This
is interesting because northern residents were paid 11% more than southern residents

however, this phenomenon can be explained if we look at their education.
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Figure 7.8. Global drill-down scenario 3.

Next, we decided to highlight observations with southern residents and the result is
shown in Figure 7.9. It describes a pattern with a less experienced non-union member
with a higher age and relatively higher pay albeit the residency is based on the southern
area. We also noted that the residents in Figure 7.8 and Figure 7.9 were working in the
same industry sector. We were able to conclude that within the selected data subset,

education was the main driving factor for wage rather than sex, residency or work

experience.
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Figure 7.9. Global drill-down scenario 4.
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Through these case studies, we have demonstrated the capabilities of the local and
global drill-down to rapidly discover patterns in visual analytics by the assistance of the

tasks defined in the dynamic selection layer (see Section 5.1).

7.3 Case Study 3

In this case study, we would like to demonstrate the exploration of a big dataset using the
technique of multivariate correlation matrix described above. We have again used the
National Youth Tobacco Survey 2009 (NYTS) dataset which surveyed high school
youths about their attitudes, beliefs, behaviors and influences in terms of the tobacco. It
contains 116 dimensions (including metadata) and 22679 data rows with approximately
2630764 data points. A visualization of the NYTS dataset in classic parallel coordinates
has already been presented in Figure 5.16. The dataset with such a scale is considered
extremely high dimensional and theoretically impossible for meaningful visualization due
to the overplotting of the display space. Furthermore, following a thorough survey of the
relevant literature, to the best of our knowledge there appear to be no case studies which
used datasets of such a scale in visual analytics.

A correlation matrix is shown when the dataset has been loaded initially into the
system. In Figure 7.10, one can see that there is not enough space to draw the text label
but a tooltip will pop up if the user moves the mouse over a colored box which details the
name of the dimensions and their coefficient of correlation. We first selected Qn33, Qn34,
Qn35 and Qn37 by clicking the color boxes because they are highly correlated as hinted

by the red color. The corresponding survey questions are also listed below:

Qn33: In the past 12 months, did you have to go to a stop smoking class because
you were caught smoking?

Qn34: Do you think you would be able to quit smoking cigarettes now if you wanted
to?

Qn35: How long can you go without smoking before you feel like you need a

cigarette?
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Qn37: How true is this statement for you? When I go without a smoke for a few

hours, I experience craving.
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Figure 7.10. Initial view of the multivariate correlation matrix. It consists of two
views where the top view is the parallel coordinates and the bottom view presents the

correlation matrix.

We began the visual exploration by clicking three virtual nodes beloningg to Qn35
and each had been assigned a different color. From Figure 7.11, we found a pattern that
people smoked regardless of whether they attended the stop smoking class or not and
believed they could quit smoking easily if they wanted to. Also, people needing a cigarette
within a 3 to 24 hour timeframe tended to agree on Qn37. Interestingly, people either
answered they have quit smoking or never smoked in Qn35 even if they experienced
cravings for a smoke after a few hours. This suggests that there are some false statements
answered in Qn35 of the survey which further presents an area for the improvement of

our system to support outlier detection visually.
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Figure 7.11. Case study step 1. The visualization result after adding Qn33, Qn34,
Qn35 and Qn37 from the matrix view where the arrows indicate the mouse click over

the virtual nodes.

In the next step, we clicked on a rectangle with strong correlation which added Qn58
and Qn60 to the parallel coordinates as shown in Figure 7.12 with the survey questions

provided below:

Qn58: Do you think you will smoke a cigarette at any time during the next year?

Qno60: If one of your best friends offered you a cigarette, would you smoke it?

Interesting, we could visually identify a minor pattern for those who answered “/
have never smoked cigarettes” in Qn37 and also responded that they would probably
smoke at any time during the next year (Qn58) and would definitely accept a cigarette
offered by one of their best friends (Qn60). It implies the risk of becoming a first-time
smoker largely results from the influence of best friends. Perhaps the behavior of the
friends explains the result of most first-time trials in real world cases. Unfortunately, there
is no question which specifically asks about the influences leading to their decision to
smoke in the first place such as friends, family, movies, TV etc. otherwise, we could

derive more phenomenon in terms of the interests between the various sources.
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Figure 7.12. Case study step 2. The visualization result after adding Qn58 and Qn60

from the matrix view.

Next, we decided to add Qn48 and Qn49 to parallel coordinates from the matrix

view with the questions provided below:

Qn48: During the past 30 days, on how many days did you smoke bidis?
Qn49: During the past 30 days, on how many days did you smoke kreteks?

Figure 7.13 has shown the visualization result of the operation where an arrow
indicates a pattern where those people truly experiencing a craving for a smoke after a
few hours tend to use bidis in all the past 30 days. Our interpretation is that bidi is
probably attractive for truly nicotine addicted youth rather than those less addicted.
Peculiarly, there was a pattern which showed that adolescents who believed that they
would definitely not smoke a cigarette at any time during the next year also answered
either 5 (10 ~ 19 days), 6 (20 ~ 29 days) or 7 (All 30 days) in Qn49 which means they are
the frequent smokers of kretek. It is difficult for us to interpret this phenomenon because
we have never ever tried both. However, a possible explanation is that the frequent
smokers of kretek did not really intend to quit smoking. Perhaps, they really meant that

they would not smoke a normal cigarette once they had tried kretek.
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Figure 7.13. Case study step 3. The visualization result after adding Qn48 and Qn49

from the matrix view where an arrow indicates an interesting pattern.

The process can continue iteratively by adding or removing more dimensions for
the dynamic view change of parallel coordinates. The purpose of this case study is to
demonstrate that our framework is capable of interacting and analyzing a big dataset with
high dimensionality through the guidance of the correlation matrix view. However, we
do not mean to analyze them all simultaneously because human recognition cannot digest

them all at once.
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Chapter 8 Extended Works

In this chapter, we will introduce two extended works in relation to the interaction in

multidimensional visualization.
8.1 Flow based Scatterplot Matrix

A variant of the scatterplot matrix is introduced in this section. The scatterplot is a
fundamental visualization of the scatterplot matrix but it cannot explain the correlation
beyond two variables. To further enhance the usability of a scatterplot matrix, we have
contributed a flow based scatterplot matrix [101] for multidimensional data exploration
by augmenting a scatter point to approximate its relationship with respect to a third virtual

variable Z,. Please note that, we acknowledge a similar work already contributed by Chan

et al. [102] that was discovered prior to us, but we have further extended the idea to the
application of the scatterplot matrix.

A scatter point is positioned by its data value (X 0 YO,) with a line attached to it. The

slope indicates the positive or negative correlation with respect to (X, Z,) or (YOJZO). In
global linear approximation, there is one slope so all the points reveal the same trend.
Chan [102] computed the local neighborhood of radius w to smooth the local trend
around a given point. In our case, we compute the local trend from the members in the
class of a given point. To approximate the decision trend, the least squares in the linear
regression model [103] are applied to best fit the line of a given point (X,, ¥,) with respect

to a third variable. In the linear regression model, there are two coefficients b; and b,

9 we acknowledge that the idea of the flow based scatterplot was first discussed by Chan et al. [16] prior
to us for studying the sensitivity, but we further extend it to the application of the scatterplot matrix and

add user interaction for class exploration.
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which need to be solved first, where b; is the slope that measures the change in Y with
respect to X and b, is the intercept. They are defined as follow:
NIV~ X) (Y — Yo) — BN K — Xo) TN — Yo)
) NI = X0)* = (BN (K — X,))?
Equation 8.1

by

XN = Xo) — by BV (X — Xp)
B N
Equation 8.2

bo

Where x; € E(P) and X, € E(P). Substituting byand b; into the linear equation
below to interpolate the best fitting line at a point (X, ¥y).
Yi(Xo £ k) =Yy + b (Xo £ k) + b
Equation 8.3

Where k is a desired length and please note that, we add the value of Y because Y;

is a local linear approximation from a given point (X,, ¥y).
8.1.1 Interaction by Point-to-Region

There are many cases where scatter points are partitioned into a number of classes. Given
a set of points P which is further classified into the disjoint set of classes P =
{C1,Cy, ..., Cp} such that C; N C; = @, # j. The point-to-region technique highlights the
entire geometric region occupied upon the immediate selection of any data within the
class.

Technically, the core problem of point-to-region is to build a convex hull [104] of
C;. Given two vectors AB and AC, the sign of the cross product of AB x AC determines
the direction of the triangle ABC based on the right-hand-side rule. If the cross product of

AB x AC is positive it means the triangle is clockwise. For example, in Figure 8.1 if we

attempt to find the convex hull from the clockwise direction then the negative cross

product implies that AC is outmost with respect to AF otherwise, we need to swap the

order of B and C which constructs a triangle. This process continues until we reach the
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origin A. Figure 8.1 depicts the concept of using the cross product to find the convex hull

on a 2D plane.

i /‘-\.) =/ e '\'.:
X r X

‘v ‘v

Figure 8.1 An example of the cross product. The diagram shows the application of
using the cross product to find the convex hull of the data points. The direction of Z is
important which determines the triangle is constructed either clockwise or

counterclockwise.

The technique offers the ability of focus+context for analyzing multiple classes over
the highlighted regions. An application of point-to-region has been provided in Figure
8.2. Obviously, the preliminary requirement of class data is certainly a weakness that
limits its application to non-classified data points. However, its applicability can be
extended by embedding the automatic data analysis of the clustering. The basic idea is to
perform the K-means or hierarchical clustering on demand over the selected point in order

to completely eliminate the preliminary requirement of data classification.
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Figure 8.2 An example of point-to-region interaction. The diagram shows

integrating point-to-region interaction with the flow based scatterplot matrix.

Figure 8.3 (a) and Figure 8.3 (b) provide a visual comparison between the classic
and flow based scatterplot representations. Figure 8.3 (c) shows our point-to-region
interaction technique. In the interaction design, we allow users to use the focus+context
concept to interact with scatter points directly. This interaction method can achieve noise
reduction in class selection process. For example, when visualization detects a point that
has been clicked, the entire convex hull of a corresponding class is highlighted and it

greys out the background of the convex hull in the meantime.
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(a) (b) (c)
Figure 8.3 From scatterplot to flow based scatterplot. (a) A classic scatter plots
visualization. (b) Adding the decision flow where plots are augmented with respect to
the decision variable. (¢) Interaction (mouse click) by using point-to-region concept:

that is, a point click causes an entire convex hull (a class) highlighted.
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An application of flow based scatterplot matrix is shown in Figure 8.4 where the

upper matrix remains the traditional scatterplot and the lower matrix embeds the flow

based scatterplot.

horsepower horsepower

Figure 8.4 A visualization of the flow based scatterplot matrix. The car dataset is
used in this example where the upper and lower triangular matrix display the classic

scatterplot and flow based scatterplot respectively.
8.2 Space Filling Multidimensional Visualization

Space Filling Multidimensional Visualization (SFMDVis) is a novel technique of
multidimensional visualization that is primarily designed to avoid overplot and visual
clutter. According to the categories defined by Keim and Kerigel [17], it is classified as
a pixel oriented technique. For a similar prior work, a pixel bar chart visualization

developed by Keim [105] will be a good example.
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8.2.1 Properties and Definitions

Multidimensional dataset consists of a set of variables X = {X;, X5, X5, ..., Xy}, 1 X; €X
with M observations. For simplicity, we typically organized the dataset in the form of an
M x N matrix as follows:

X1,1 Xl,N
X = : . :
XM,l XM,N

The column vector in the matrix is expressed as D = {d,, d,, ds, ..., dy}. P; is used
to denote an observation such that P; = {Xm, Ay, e dXN} and P; € P. P and D describes
the fundamental row and column vectors that we will be working with. Please note that,
the notation of dy, will also be used individually for element indexing in P; for
convenience. In addition, we expect the drawing surface to be rectangular. w and h
denote the width and height respectively in pixels where [w X h] defines the drawing

bound. Given a set of variables X, we further divide the w into the equal length as
. w
-1

Where wy simply defines the width that we allocate to each variable in a horizontal

Wy

line for color mapping and Wy, Wy, refers to the line segment. Please refer to Figure 8.5

for clarity.

Variable 1 Wariahle 2 Variable 3
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T
e
Figure 8.5. The properties of SFMDVis.
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8.2.2 SFMDVis

The basic idea behind the space filling visualization is the representation of a data row P;
by a horizontal line which serves as a fundamental geometric primitive. The line is further
segmented by the colors to denote the values with respect to each variable X;. The width
of P; equals to w and the height occupies a unit size in pixels on the screen multiplied by
the zooming factor y. For example, if the unit size is one pixel and y = 2, then each line
will occupy 2 pixels in height.

In a multidimensional dataset X, variables might scale differently. Therefore, we
need to apply a normalize function in order to remove the discrepancy such that f : P —

~

P.

~ Dy — X,;
pP= (E( = )’(’”")) : Dy, € X;
PP DxeP; X min
Equation 8.4

Where P; = {Dx,, Dx,, ..., Dx, } holds the normalized values with respect to each
variable X; within the range [0,1]? and X,,,;,, and X,,,,, denote the minimal and maximal
values of a target variable such that [X,,,in, Xmaxl-

Recall that P; will be mapped to a line that further consists of a set of segments

{ Wy, Wy,, Wy, Wx,, ) wXN—leN} and each segment is coded by two colors. This is
because each segment holds two end points and each point represents a variable X;. Let
C denotes the color vectors and C = {R, G, B} be a class in C. We can map a normalized

data ﬁ;l to the nearest C; and it is given as:

1.0
ICI

Equation 8.5

Where |*]| denotes a floor function. Recall that, the maximal normalized value is 1
so we divide it by the number of colors to work out the normalized cut point. We then
divide the normalized data by the cut point to index a color. Therefore, the color order is

important since the color progression is often perceived as a value magnitude with respect
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to a variable. Similarly, we can work out the cut point range that C; holds in data value
(non normalized) with respect to X; by the following equation:

(Xmax -

|C|Xmin)’ [Xmin + (l X k);Xmin + ((l + 1) X k)]

k =

Equation 8.6

Where i and k refer to the bin index and cut point respectively. Recall that, we have
mentioned earlier that each end point of a segment represents a variable so it is further

divided by 2 as wy, wy,/2 for painting the value of each variable. Thus, given the tuple

(lewX], Ci, Cj), there are two DrawlLine calls required to paint the sub-segments with
length [le., wleJ/Z] and [a)le]/Z , wj] for C; and C; respectively.

The core algorithm of SFMDVis has been completely described in Algorithm 8.1

where we pass two arguments P and X that hold the row and column vectors respectively.

1. procedure RenderSpaceFilling(P, X)
2. curPixel < 0

3. /* Draw the vertical coordinates. */

4. for i := 0to |X| do

5. DrawLine((i X wy),0, (i X wx), h, Gray)
6. end

7. /* Iterate through each data row. */

8. for P, € P do

9. P = normalize(P;)

10. if IsDataRowSelected(PB)) then
11. /* Draw the line segment. */

12. for j:=0to |X|—1do

13. C; < mapColor (DAX])

14. Ci+1 < mapColor (D/X\]H)

15. mid « (jo+jo+1)/2

16. /* Apply the zooming factor. */
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17. fork:=0tok <ydo

18. l « (curPixel + k)

19. DrawlLine (jo, l,mid,, Cj)

20. DrawlLine (mid, L, WXy L, Cj+1)
21. end

22. end

23. end

24. curPixel « curPixel +y

25. end

26. end procedure

Algorithm 8.1. The core algorithm of SFMDVis.

Figure 8.6 illustrates a visualization of SFMDVis where one can see that there is no
visual clutter and overplotting in SFMDVis because data items do not overlapped to each
other. There two problems are commonly seen in parallel coordinates due to its spatial
arrangement of data items. Also, every data item is directly selectable that makes
SFMDVis really distinctive from others.

Overall, the interactive techniques developed within SFMDVis have influenced our
framework significantly. For example, the zooming technique developed in SFMDVis
has been extended to interactive drill-down (Section 5.2.1 and 5.2.2) in parallel

coordinates.
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Figure 8.6. A visualization of SFMDVis. (1) Text labels that describe the variable
names. (2) Color legend. (3) and (4) denote the maximal and minimal value range. (5)

Dynamic values and these refer to the data row pointed to by the mouse cursor.
8.2.3 Color Models

This section describes two supported color schemes in SFMDVis namely, the RGB and

single-hue.
8.2.3.1 RGB Color Ramping

In the RGB color ramping scheme, red, green and blue are commonly chosen to express
the higher, middle and lower magnitude of a value. This is probably because people
naturally tend to associate red and blue with hot and cold respectively. In RGB ramping,
the number of color bins are determined by a ramping factor denoted as r which also
controls the variation of the colors when progressing in between blue (0,0,1) to red

(1,0,0). Figure 8.7 has demonstrated a color legend of RGB ramping with r = 6.
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Figure 8.7. An illustration of using RGB color remapping to denote the value
magnitude. The red, blue and green denote the highest, lowest and middle value

magnitude.

The higher ramping factor separates colors in smaller step changes that may
possibly affect the ability of the human eye to interpret the magnitude of the value if the
change is really subtle. For example, if 7 is too small then the number of color bins might
be insufficient to represent the data distribution. On the other hand, the usability will
decline rapidly when r increases because the human eye might not be able to discern the
subtle change in adjacent colors. When determining the proper ramping factor, we have
noticed a study contributed by Healey [106] for choosing the effective colors in data
visualization. According to the study, the result has suggested the human visual system
can quickly identify up to 5 classes of color in parallel but the response time of target
identification has increased during 7 and 9 color studies. Based on this observation, the
ramping factor is set to 6 by default in our visualization for RGB color ramping.

The algorithm implemented in our visualization is based on the implementation
described by Bourke [107]. Although, we have modified the original work slightly but in

general, the principal is the same so it will not be reproduced here.
8.2.3.2 Single-Hue Ramping

With multiple classes of color in RGB ramping, the user may need to reference the color
legend frequently if they cannot translate the spectrum to the magnitude that it implies
intuitively. For this reason, the single-hue is added as an alternative ramping scheme that
aims to support users who are not comfortable with the RGB style colors. Please note that
we offer the interaction possibilities for the user to switch between the color schemes by
right-clicking the mouse over the color legend which will then display the color scheme
options in a menu widget.

Single-hue is commonly applied in the choropleth map for mapping the magnitude
of the data (often aggregated) with respect to a geographic location. In single-hue
ramping, the appearance of the color is progressed from dark to a light shade of the same
color but with different levels of saturation and lightness, and therefore, the method is
named single-hue. The basic idea of single-hue is illustrated in Figure 8.8 by Hue,
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Saturation and Lightness (HSL) where the hue value ranges from [0,255] and, saturation

and lightness are both measured in percentage between [0,100]%.

Figure 8.8. An example of single-hue progression in the purple color. The
corresponding HSL values are (270, 100%, 25%), (266, 57%, 36%), (243, 31%, 61%),
(245, 29%, 69%), expressed from left to right.

Our color selection is based on ColorBrewer [108] which is an excellent online tool
that provides prebuilt-in colors for sequential, diverging and qualitative schemes. In the
visualization, we provide the single-hue color options of blue, green, orange, purple and
grey scale for user preference. Figure 8.9 has shown the visualization results of using the

blue and green single-hue.

3 46

Figure 8.9. Single-hue color ramping in blue and green colors.
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8.2.4 Interaction Techniques in SFMDVis

In this section, we will introduce the interactive techniques supported in SFMDVis.
8.2.4.1 Zooming

In SFMDVis, the zooming enlarges a pixel size for scaling a pattern. Sometimes it can be
difficult to notice a weak pattern through the visual inspection since an entire pattern
might occupy just few pixels in height. To address this issue, we have incorporated a
zooming technique which can be activated by pressing the Ctrl-key and scrolling the
mouse wheel in the meantime to control the zooming factor y. The zooming factor is in
the range of [1,10]. Technically, y can be infinitely large [1, o] but we believe that a
maximal value of 10 is enough in most cases. For example, if the unit size is one pixel
with y = 10 then each line will occupy 10 pixels in height which shall be large enough
to perceive a pattern. Figure 8.10 compares two visualizations with the zooming factor
set to 1 and 10. The color pattern for every single line can be observable easily when
zooming factor has set to 10 where each line is 10 times larger than its default size and

that is the maximal value supported.
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Figure 8.10. Zooming in SFMDVis. (Left) The overview of the car dataset withy = 1

0
70

which is the default and that means, there is no scaling at all. (Right) The car dataset

with zooming factor y = 10.
8.2.4.2 AND and OR Operator for Data Selection

In SFMDVis, the technique to interact with data is a point-to-color region. The main
consideration that we do not filter data based on an absolute value is to maintain visual
consistency and expectation. For example, when a mouse clicks on a point with a color

C; for a variable X;, the user intuitively expects that for these lines P; with color brushing
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Cp, # C;tobe filtered out. Recall that, we deal with data in classes rather than absolute
L

X
value so if we strictly filter data based on their values rather than their classes then the
visual consistency cannot be maintained. When a mouse click within a drawing region
[w X h] is detected, we pass the x-coordinate to the following equation to determine the

matrix column index n — X such that 0 < n < |X]|.

Xi, Z Wy, <X = Wy, O, /2
Xi€EX

null, otherwise

f&) =

Equation 8.7

Where (i + 1) < |X| to ensure that we access an element within the vector bound.
For finding the matrix row index m = X such that 0 < m < |P|, we need to divide the

y-coordinate by the zooming factor y that is written as:

fly) = Y/y + hoffset/y

Equation 8.8

Where hgfrser denotes the view offset in screen coordinate to the original due to
the scrolling effect. These information are persisted by a tuple (m, n). In SFMDVis, the
user is able to select data with the AND and OR operator in order to control the visibility
of the interested data for comparison with greater flexibility. Figure 8.11 illustrates the

operation of data selection using the AND and OR operator.
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- .
Figure 8.11. Interactive AND and OR data selection in SFMDVis. (Left) Data
selection with AND operator. (Right) Data selection with OR operator. The cursor
indicates the mouse clicks. The AND operator is useful in filtering out the data while

OR operator can be used to find the data pattern between groups rapidly.

8.3 Discussion

In this chapter, we have first introduced a flow-based scatterplot matrix with a point-to-
region technique for interacting with a class of data. In addition, we have further
introduced a novel multidimensional visualization called SFMDVis which does not use
traditional coordinated system as well as classic geometric primitive to represent
multidimensional data. Those two works are served as the extended contributions to the

interactive mechanism in multidimensional visualization in addition to the virtual node.
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Chapter 9 Conclusion

9.1 Summary

In summary, this dissertation presented models and techniques for interactive visual
analytics in multidimensional visualization particularly in parallel coordinates. Overall,
the materialized contributions are summarized as below.

Chapter 3 introduced a new framework of visual interactions by refining Yi’s 7-
layer models. Existing frameworks tend to classify interactive tasks in a fine-grained
manner based on the nature of the operations or the user’s intent. We argue that this is not
necessary and the interactions can be narrowed down to inputs and output if one models
visualization as a function. Therefore, we propose a 3-layer framework based on Yi’s
model. The new model broadly classifies interactive visual analytics into 3 categories as
data selection, visual techniques for view change, and data analytics techniques for
reasoning. Formally, the layers in the new model are dynamic selection, dynamic viewing
and dynamic scoping of data. The advantage of this new model makes it easy to
understand and allows for better interpretation of the layered structure of visual
interactions.

In Chapter 4, a novel and sophisticated technique of data selection has been
contributed, called the hierarchical virtual node (HVN). The chapter also provides
comprehensive technical and implantation details. The basic idea is to interpolate visual
nodes in parallel coordinate hierarchically for data selection. To the best of our
knowledge, it is the first technique that enables users to interact directly with data in
parallel coordinates using a point-selection (mouse click) method. There are many
advantages of HVN. For example, point selection is always more intuitive, efficient and
accurate than other methods. Also, it enables a multi-level of data interaction through the
hierarchical grouping of the data. Another advantage that was not realized before the
implementation is that it enables users to perceive the data distribution through the
distribution of the virtual nodes and such information is often lost due to overplot in

parallel coordinates.
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Chapter 5 presented the HVN-oriented interactive tasks for visual analytics based
on our model introduced in Chapter 3. These tasks were carried out in the system

developed.

9.2 Final Conclusion

In conclusion, we have taken the research challenges and satisfied the goals defined. The
proposed HVN which is the core technique of interaction has solved the issue to interact
with multidimensional data directly in parallel coordinates. It opens the applications of
many analytic tasks introduced earlier but is not limited to these. Moreover, they can be
easily carried out by a point-selection technique which is the most intuitive model for
human interaction and this would have otherwise been impossible to achieve by other
techniques.

In future work, the concept of the virtual nodes will be extended to other
visualizations where applicable. The theoretical development of virtual interpolation will
also continue. For example, the interpolation of the virtual node is based on the basis of
hierarchical clustering but it is also possible to interpolate nodes based on the density for

interaction though, this needs further study to prove its feasibility.
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Appendix A Publications

T. H. Huang, M. L. Huang, Q. V. Nguyen, L. Zhao, Space-Filling
Multidimensional Visualization (SFMDVis) for Exploratory Data Analysis, In
Proc. of the 7™ Inter. Sym. On Visual Information Communication and

Interaction, pp. 19-28, 2014.

T. H. Huang, M. L. Huang, K. Zhang: An Interactive Scatter Plot Metrics
Visualization for Decision Trend Analysis. ICMLA (2), pp. 258-264, 2012.

T. H. Huang, M. L. Huang, Jesse S. Jin: Parallel Rough Set: Dimensionality
Reduction and Feature Discovery of Multi-Dimensional Data in Visualization.

ICONIP (2), pp. 99-108, 2011.

M. L. Huang, T. H. Huang, J. Zhang: TreemapBar: Visualizing Additional
Dimensions of Data in Bar Chart. IEEE Intel. Conf. on Information Visualization,

pp. 98-103, 2009.

T. H. Huang, M. L. Huang: Visualization of Individual's Knowledge by Analyzing
the Citation Networks. CGIV 2007, pp. 465-470, 2007.

T. H. Huang, M. L. Huang: Analysis and Visualization of Co-authorship
Networks for Understanding Academic Collaboration and Knowledge Domain of

Individual Researchers. CGIV 2006, pp. 18-23, 2006.
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