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Abstract 

Interaction is an overloaded term in information visualization. Basically, every software 

tool is interactive but mostly through the manipulation of a widget. Broadly speaking, a 

visualization is just a software application. What makes the interactive component of a 

visualization really distinctive is how well it supports an arbitrary selection of data 

directly in the interface in order to facilitate subsequent analytic tasks. This is challenging 

due to over-plotting and visual clutter in the multidimensional space and such 

phenomenon is commonly known as the curse of dimensionality. 

Data selection is a frontier of a visualization and too many multidimensional 

visualizations claiming to be interactive mostly address the change of view without 

explicitly specifying the core technique of how to materialize such operations. Perhaps, 

the interactive component is achieved through the traditional widget. 

To overcome the complexity of truly interacting with multidimensional data for 

effective visual analytics, we first propose an interactive framework for better 

understanding of the problem domains. Dynamic data selection is materialized by a novel 

and sophisticated technique called the Hierarchical Virtual Node which opens an 

application to interact with data directly in parallel coordinates that would otherwise have 

been impossible or difficult to achieve by existing methods. It works well even under the 

circumstance of the curse of dimensionality and offers several advantages over others. 

For example, the use case only requires a mouse click to select a set of data item(s). To 

achieve an efficient visual analytics, a set of analytic tasks are also developed in each 

layer of the proposed framework. 
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Chapter 1 Introduction 

Information visualization is a broad field of study. The main area of interest primarily 

focuses on the optimal organization of abstract data into a visual representation with 

interactivity for knowledge discovery. The term knowledge discovery [1] refers to 

previously unknown and potentially useful information from the given data. 

Multidimensional visualization [2] is an important subfield of information visualization 

with primary interest in the study of multidimensional dataset, organized in a ݊ ൈ  ݌

matrix for ݊ observations on ݌ variables.  

Thanks to Moore’s law [3]. The rapid development of communication and storage 

technologies have enabled data to be ubiquitously collected at an unprecedented rate over 

the past few decades. The growing complexity of information space has posed many 

challenges to visualization especially for these application domains require decision 

making from a high dimensionality of data. These challenges urge a trend of moving 

towards the integration of analytic tasks with a higher degree of interactivity. 

1.1 From InfoVis to Visual Analytics 

In the book “Graphics of large datasets: visualizing a million” authored by Unwin et al. 

[4] with many techniques to present massive volumes of data were put forward. 

Successful mapping of data into a graphic representation, however, does not always imply 

the gaining of data insight. Kosara [5] asserted that if a visualization significantly 

increases the cognitive process of a learning then it is merely expressed in a form of visual 

art (see Figure 1.1). Mayer et al. [6] also pointed out that effective visualization must 

focus on reasoning. The key point is that visualization shall be practical and the 

information it reveals must be meaningful. 
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Figure 1.1. A botanic visualization of a hard disk, practical or art? The image is 

sourced from [7]. 

 

In 2005, van Wijk [8] gave a work titled “The value of visualization” where he used 

the study of his student [7] as an example (see Figure 1.1) to question that if a visualization 

failed to convey knowledge from its visual representation then it is merely functioned as 

an art. However, one of the key concepts in his study is the formulation of a simple model 

of visualization as depicted in Figure 1.2. It shows that the knowledge is derived from 

perception via an interactive exploration to produce a useful image. Keim et al. [9] further 

developed a sense-making loop based on it and the relevant phrase is quoted as follow: 

 

…… The solution offered by Visual Analytics is then to let the user enter into a loop 

where data can be interactively manipulated to help gain insight both on the data and the 

representation itself. 

 

Manifestly, both tried to emphasize that the iterative interaction (main loop) with 

visualization is the key element in the lifecycle of a visual analytics. 
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Figure 1.2. A simple model of visualization. The image is reproduced based on [8] 

where D, V, S, P, K, E, and I denote data, visualization, specification, perception, 

knowledge, exploration and image. ݀ݐ݀/ܭ is the amount of knowledge gained and 

 .means the interactive exploration by adapting a specification to a visualization ݐ݀/ܵ݀

 

In the taxonomy of visualization techniques contributed by Keim [10], many 

techniques developed to be efficient are finding themselves no longer adequate to meet 

the analytical needs without further integrating data mining, statistics, machine learning 

or other reasoning. This inadequacy has resulted in the demand for an effective 

framework by covering relevant theories collectively to deal with data complexity. Visual 

analytics [11] emerges as an important field by introducing interdisciplinary 

dependencies across scientific fields as illustrated in Figure 1.3. Thomas [12] defines the 

term visual analytics in his book “Illuminating the Path” as the science of analytical 

reasoning facilitated by interactive visual interfaces. Overall, the objective of 

interdisciplinary integration is to provide an effective framework for gaining the 

perception and knowledge and eventually making a decision from a complex structure of 

data that would otherwise have been impossible to achieve by a standalone field. 

 

Visual Encoding

Dimensionality 
Reduction

Big Data

Interaction

Machine Learning

Data MiningStatistics

Visualization

Visual Analytics
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Figure 1.3 Visual analytics is an integration of interdisciplinary theories.  The 

image is reproduced based on [11]. 

1.1.1 Problem Statement 

The term “interaction” is becoming overloaded (a.k.a a buzzword) in information 

visualization. In almost all the cases, every software tool is interactive through a widget 

(such as a data grid, list box and etc.) which is cumbersome. Strictly speaking, a 

visualization is just one software application. There is no difference whatsoever to other 

software applications. What makes a visualization really special is how well its interactive 

component can help the user to carry out visual analytics in an intuitive, efficient and user 

friendly manner. This is indeed a significant problem if one further considers overplot 

and visual clutter in multidimensional space. Mathematically, if one models visualization 

as a super function then the problems can be classified into inputs and output. For 

example, a visualization deals with data (input parameters) and applies analytical 

reasoning (input command) to generate an image (output). Too many visualizations 

claiming to be interactive have skipped inputs and only focused on output. The details of 

how to accept inputs in an efficient, accurate and direct (not via widget) manner to an 

application have often been neglected. Perhaps, this is because they assume the traditional 

interaction of a widget style. 

The aim of this research is how to improve the interaction mechanism in 

multidimensional visualization such as in parallel coordinates visualization. The existing 

interaction approaches that are currently used in the parallel coordinates [13] visualization 

cannot perform the ‘Select’ operation in Yi’s [14] seven-layer interaction model. Unlike 

graph visualization in which a ‘Select’ operation can be easily achieved through a mouse-

click (or mouse-rollover) on a shaped geometric region (a node), there is no geometric 

region allocated to polylines in parallel coordinates geometry. Therefore, a mouse-click 

(and mouse-rollover) operation over a particular polyline (visual object) is impossible. 

Consequently, the ‘Select’ interaction in parallel coordinates visualization is also 

theoretically impossible.  
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However, in visual analytics, data selections and data retrievals are very common 

operations. Without these operations, a multidimensional visualization can only be used 

as a data viewing tool. It cannot be deeply involved in the data analytics process. 

1.2 Challenges and Goals 

For challenges in visual interaction, Thomas [12], in his book “Illuminating the Path” 

claimed that: 

 

Visual representations alone cannot satisfy analytics needs. Interaction techniques 

are required to support the dialogue between the analyst and the data. … more 

sophisticated interactions are also needed to support the analytics reasoning process. … 

 

The key phrase here is the sophisticated interaction which implies novel and non-

trivial. While the point based interaction design is successfully applied in graph 

visualization for supporting analytics reasoning, it is still in its very preliminary stage in 

terms of applying in multidimensional visualization. This is because most of 

multidimensional visualization techniques are based on polyline data representation, 

which does not occupy a geometrical region for supporting point based interactions. 

Therefore, some analytics reasoning processes are difficult to be implemented in 

multidimensional visualizations. Overall, the goals of this dissertation are: 

 investigate new interaction techniques that can support analytics reasoning 

directly in multidimensional visualizations, 

 investigate new visual data selection and data retrieval techniques through direct 

point based interactions on polyline based data visual representations, 

 apply a set of analytic reasoning algorithms into our proposed interactive 

visualization to evaluate the effectiveness and efficiency of new approaches in 

terms of how well our approaches can support analytics reasoning processes, and 

 materialize a multidimensional visualization system that tightly integrates 

developed data selection and a set of analytics reasoning tasks.  
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1.3 Contributions 

In summary, the contributions of this dissertation include but are not limited to:  

1. A new framework of visual interaction in multidimensional visualization (Chapter 

3). 

2. A novel and interactive data retrieval (or data selection) technique called the 

Hierarchical Virtual Node (HVN) approach in parallel coordinates visualization 

(Chapter 4). 

Other additional contributions are: 

3. A divide-and-conquer model developed on the basis of our new framework of 

visual interaction for dealing with a big dataset (Section 5.2.4). 

4. A successful application of Rough Set Theory (RST) for dimensionality reduction 

in multidimensional visualization for visual data analytics (Section 5.3.1). 

5. An enhanced scatterplot matrix method for visual data analytics (Section 8.1). 

6. A new space filling multidimensional visualization (SPMDVis) (Section 8.2). 

1.4 Outline 

This dissertation is structured as follows: 

 Chapter 2 Background: Covers an overview of existing visualizations and 

interactive techniques. 

 Chapter 3 A New Framework of Visual Interaction: Proposes a new model of 

visual interaction based on existing frameworks. 

 Chapter 4 Hierarchical Virtual Node: A complete chapter is dedicated to 

describing the technique and the implementation of the hierarchical virtual node. 
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 Chapter 5 Interactive Techniques for Visual Analytics: This chapter introduces a 

set of analytic tasks for visual analytics by further expanding the model described 

in Chapter 3. The core technique of interaction for the tasks is based on the 

hierarchical virtual node described in Chapter 4. 

 Chapter 6 Technical Evaluations: Presents the technical evaluations of our 

developed system based on the HVN against other publicly available visualization 

systems. 

 Chapter 7 Case Studies: This chapter presents three case studies for the 

applications of the techniques described.  

 Chapter 8 Extended Works: This chapter introduces two extended works about 

the scatterplot matrix and a new space filling multidimensional visualization. 

 Chapter 9 Conclusion: This chapter concludes the dissertation. 
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Chapter 2 Background 

In this chapter, we provide an overview of the multidimensional visualizations and 

interactive techniques related to this dissertation. The concept of the curse of 

dimensionality is also explained under subsection of terminology which describes the 

problem domain that is commonly encountered when dealing with multidimensional data. 

2.1 Terminology 

We The author will kindly refer to himself and the contributing parties collectively as we. 

This is to sincerely acknowledge the contributions of that others have made towards the 

completion of this dissertation. 

 

Dimension A dimension holds a data vector and is commonly referred to as variable or 

attribute in many scientific disciplines so these terms will be used interchangeably 

throughout this dissertation. 

 

Multidimensional Data A dataset with arbitrary number of dimensions ܰ  and ܯ 

observations. For simplicity, it is usually organized in a form of matrix ܺ ൌ ܯ ൈ ܰ.  

ܺ ൌ ൭
ଵܺଵ ⋯ ܺ୑ଵ
⋮ ⋱ ⋮
ଵܺ୒ ⋯ ܺெே

൱ 

We will use ܦ and ܲ to denote the column vector and row vector respectively. A 

data vector ܦ contains ܯ observations for a variable ௜ܺ and a data row ܲ holds only one 

observation for ܰ dimensions. In other words, the notation of ܦ௜ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∀݀ ∈

௜ܺ  and ௜ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∃! ݀௜௝ ∈ ௝ܺ  refer to a column and row major vector 

respectively. 

 

Data Element  A data sample denotes as ݀௜ in an univariate data vector ܦ. The term data 

element is frequently referred to as data item or data point so these terms will be used 

interchangeably throughout this dissertation. 
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Object-oriented In the description of an algorithm, we often use ݀ݐ݋ notation to imply 

the access to a field or method of an object ܱܾ݆  for simplicity. For example, 

ܱܾ݆. .݆ܾܱ or ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ  ሻ means the access to an object’s	ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ

field and method respectively. 

2.1.1 Curse of Dimensionality 

The study conducted by Lyman et al. [15] in 2003, estimated the information digitally 

stored had grown nearly 30 percent between 1999 and 2002. A decade later, of course, 

the trend is still continuing at a rate faster than ever in the age of big data. Information 

collected with multiple attributes such that ܺ ൌ ሼܽଵ, ܽଶ, … , ܽ௡ሽ  is known as 

multidimensional data. High dimensionality creates extra complexities upon existing 

challenges by orders of magnitude. To name a few, it needs more space for storing the 

data and more time for searching the spare feature as well as more training data for 

learning in classification. These phenomena are broadly known as the curse of 

dimensionality which is the term first coined by Bellman [16] to describe the growing 

complexity of the problem in terms of solving nonlinear optimization in dynamic 

programming with high dimensionality.  

Multidimensional visualizations inherit the curse of dimensionality as more 

dimensions bring more challenges. The growing complexity of the visualization depends 

on the increase in dimensionality, scale of data and non-linearity of the dimensions. An 

example is illustrated in Figure 2.1 showing that the application of bar chart, line chart 

and parallel coordinates to visualize one, two and multi-dimensional data respectively. 

Obviously, the complications start to rise gradually from low to multi-dimensional 

visualizations, making it more difficult to understand the meaning and more time 

consuming to interpret the result from the visualization. 
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Figure 2.1. Illustration of visual and data complexities. 

 

In summary, the curse of dimensionality will reflect in a visualization as follows: 

1. Decline in visual perception because the phenomena of interest are often sparse 

in multidimensional space. For example, it is easy to perceive the data distribution 

and its linearity in a scatterplot rather than in parallel coordinate. 

2. Create visual clutter and over-plotting. 

3. Decline in learning accuracy due to data noise because not necessarily all the 

variables ought to be analyzed. For example, in multiple regression, it is often a 

time consuming task to analyzed all the variables first and then remove those 

variables with less contribution (in terms of statistical significance) from the 

model. 

4. Increase prediction error and as a result, adds to the cost of interpretation. For 

example, when classifying more variables would more training data in order to 

improve the classification rate. 

 

The understanding of the curse of dimensionality is important because in its attempt 

to deal data with the high dimensionality of data it preempts problem domains that 

commonly exist for all sciences. 
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2.2 Multidimensional Visualizations 

In this section, we will review multidimensional visualizations on the basis of the 

taxonomies of visualization techniques presented by Keim [10] [17] and Kerigel [17].  

Basically, they have classified the techniques into: 

 Pixel oriented. 

 Geometric projection. 

 Icon based. 

 Hierarchical based, and 

 Graph based. 

In particular, we will focus on the categories of pixel oriented, geometric projection 

and hierarchically based visualizations. The visualizations reviewed will be technical and 

comprehensive especially, for parallel coordinates because our interactive framework has 

been developed on the basis of it. 

2.2.1 Parallel Coordinates 

The origin of parallel coordinates is vague. It is often believed that it was proposed by 

Maurice d’Ocagne [18] in the 19th century. Strangely, the book written by d’Ocagne is 

mathematical and has no connection with the parallel coordinates visualization. However, 

in the mid-20th century, Inselberg [13] brought it back into awareness. Nowadays, it is 

probably the most well-known and extensively used multidimensional visualization. This 

is evident in a Google search with an illustration in Figure 2.2 where the results returned 

for the keyword “parallel coordinates” is about 26.63 times more than the keyword 

“scatteplot matrix”. 
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Figure 2.2. A comparison of the Google search results. Google returned 

27,700,000 and 1,040,000 results for the keywords “parallel coordinates” and 

“scatterplot matrix” respectively. 

 

Parallel coordinates is considered to be a geometric projection based technique. 

Given a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ in which each ௜ܺ is drawn as a vertical axis 

across a horizontal plane. The vertical axes serve the end knots of a polyline denoted as 

௜ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ேሽ  and every data point in ௜ܲ  is associated with one and only one 

variable such that ∃! ݀௜: ௜ܺ. We assume that the origin of the screen coordinate starts from 

the bottom-left corner1 on the target platform. It is trivial to compute the ݕ-coordinate of 

a data point ݀௜ with respect to its variable ௜ܺ by the equation below. 

ௗ೔ݕ ൌ ௑ܻ೔ ൅ ൭ቆ
݀௜ െ ݉݅݊௑೔

௑೔ݔܽ݉ െ ݉݅݊௑೔
ቇ ൈ  ௑೔൱ݐ݄݄݃݅݁

Equation 2.1 

Where ௑ܻ೔ ௑೔ݐ݄݄݃݅݁ , , ݉݅݊௑೔  and ݉ܽݔ௑೔  are the ݕ-coordinate of a vertical axis, 

height of the vertical axis, minimal value and maximal data value with respect to ௜ܺ. The 

output ݕௗ೔  is a transformed value of ݀௜  in screen coordinate. These notations are 

straightforward. Please refer to Figure 2.3 for clarity. 

  

                                                 

 

1 Typically, the 2D GUI coordinate system starts from the top-left corner and the origin of 3D starts from 

the bottom-left. 
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Figure 2.3. Mapping a data point to a vertical axis.  The diagram describes the 

notations and how a data point is mapped to the screen coordinate. 

 

The key property of a polyline is that it establishes the integrity of a 

multidimensional data item geometrically. To perceive the data pattern, one needs to 

discern a set of polylines with similar undulation.  

Algorithm 2.1 provides an implementation of parallel coordinates where the details 

of ݁݊݅ܮݕ݈݋ܲݓܽݎܦ  and ݈݁ܿݎ݅ܥݓܽݎܦ  have been skipped because they are simply the 

wrapper functions of the software API. For example, GDI in the Windows platform. 

 

1. procedure DrawParallelCoordinateሺܺ, ߱, ,ߥ  ሻݕ

2.     ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ 

3.     ߱ /* Constant line width of a vertical axis. */ 

 /* .Constant height of a vertical axis */ ߥ     .4

ܻݐݎܽݐݏ     .5 ൌ  /* .Starting y-coordinate of a vertical axis */ ݕ

6. Initialization: 

7.     ܲ ൌ ∅ 

ܺݐݎܽݐݏ     .8 ൌ 0 

	ݐ݁ݏ݂݂݋				 .9 ൌ ݄ݐܹ݀݅݊݁݁ݎܿݏ ോ ሺܰ െ 1ሻ

10 	

11. /* Draw the vertical axis here. */ 

12. for ݅ ≔ 0 to ܰ 
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13.     ܻ݁݊݀ ൌ ܻݐݎܽݐݏ ൅  ߥ

,ܺݐݎܽݐݏሺ݁݊݅ܮݓܽݎܦ     .14 ,ܻݐݎܽݐݏ ,ܺݐݎܽݐݏ ܻ݁݊݀ሻ 

ܺݐݎܽݐݏ     .15 ൌ ሺܺݐݎܽݐݏ ൅ ݐ݁ݏ݂݂݋ ሻ 

16. end for 

17.  

18. /* Draw the geometric primitives here. */ 

19. for each ௜ܺ in ܺ 

20.     for each ݀௜ in ܦ௑೔ 

௜ݕ         .21 ൌ ൫݀௜݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ ,௑೔,݉݅݊௑೔ݔܽ݉,  ൯ߥ

௜ݔ         .22 ൌ ܺ௑೔ /* A data point always attaches to a vertical axis, i.e. variable. */

23.         ܲ ← ሺݔ௜,  /* .௜ሻ /* Add the coordinate to the listݕ

,௜ݔሺ݈݁ܿݎ݅ܥݓܽݎܦ         .24  ௜ሻݕ

25.     end for 

 ሺܲሻ݁݊݅ܮݕ݈݋ܲݓܽݎܦ     .26

27. end for 

28. end procedure 

 

Algorithm 2.1 An implementation of the parallel coordinates visualization. 

In Algorithm 2.1 where ܦ௑೔  holds a column vector with respect to ௜ܺ  and 

 coordinate of-ݔ is a wrapper function of Equation 2.1. ܺ௑೔ denotes the ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ

a vertical axis ௜ܺ. Note that, there is no need to map a data point to the ݔ-coordinate which 

is constant and always equal to its respective ܺ௑೔  so only the computation of the ݕ-

coordinate is necessary.  

Figure 2.4 shows the implementation result of Algorithm 2.1 with an application of 

car dataset2. The view has been optimized to promote the location proximity of correlated 

variables while maximizing patterns. 

                                                 

 

2 Car dataset has obtained from StatLib, Carnegie Mellon University, see http://lib.stat.cmu.edu/datasets/. 
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Figure 2.4. A parallel coordinates visualization. Car dataset is used and the 

geometric primitive is based on Bezier curve. The techniques applied here are brushing 

and dimensional reordering. 

 

Parallel coordinates is extensively used to discover data patterns but its visual 

effectiveness is greatly dependent on the spatial arrangement of the variables. For 

example, a subtle change in permutation can lead to a totally disparate pattern (polyline 

undulation) than the others. One can compare Figure 2.4 with Figure 2.5 which used the 

default ordering. Even though, a brushing technique has been applied in Figure 2.5 but 

the view overall is more disorganized than the one produced in Figure 2.4. 

 

 

Figure 2.5. A parallel coordinates visualization in default variable ordering.  The 

dataset used in this example is the same as per Figure 2.4. 
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Misinterpretation of Linear Correlation The most confusing part of parallel 

coordinates is the interpretation of the polyline slope. From the perspective of human 

cognition, the slope intuitively suggests a linear relationship but this is not entirely true. 

The coordinate system of parallel coordinates is not based on the Cartesian system which 

uses the perpendicular line ٣ ܻܺ to divide a plane into four quadrants. Instead, parallel 

coordinates projects data only in one direction so the concept of slope ݕ ൌ ݔ݉ ൅

ܿ,where	݉ ൌ ∆௒

∆௑
 is really not applicable. This explanation aims to clarify that parallel 

coordinates is not suitable to be used to discern a linear correlation in the way that 

scatterplot is capable of.  

A visual perception of the linear correlations between the parallel coordinates and 

scatterplot matrix is provided in Figure 2.6. Here, one can easily perceive that there might 

exist a linear dependency for a data pattern (data subset between pairwise variables) in 

parallel coordinates but the overall correlation revealed in scatterplot suggests a different 

interpretation. For example, it is hard to imagine that a) has no correlation, b) is negative 

correlated and c) is less correlated or nonlinear. Especially, the patterns between b) and 

c) are subtle in parallel coordinates, but scatterplot suggests a totally different trend. 
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Figure 2.6. The perception of linear correlations between parallel coordinates 

and scatterplot matrix. Car dataset is used again. (Top) Snippet of the parallel 

coordinates. Pairwise variables areሼ݈݁݀݋݉,݊݅݃݅ݎ݋ሽ, ሼ݉ݐ݄݃݅݁ݓ,݃݌ሽand 

ሼݐ݄݃݅݁ݓ,  ሽ from left to right. (Bottom) Scatterplot for the corresponding݊݋݅ݐܽݎ݈݁݁ܿܿܽ

variables above. 

2.2.2 Scatterplot Matrix 

Scatterplot matrix [19] is widely used in statistics for multivariate exploratory data 

analysis. It is conceptually simple and should be considered as an extension of the classic 

scatterplot [20] rather than an independent subject. It is classified as a geometric 

projection technique by Keim and Kerigel [17].  

Given a set of variables ଵܺ, ܺଶ, … , ௜ܺ , a pairwise variables ௜ܺ , ௝ܺ , ݅ ് ݆ is plotted 

where ௜ܺ and ௝ܺ are also known as independent (horizontal axis) or dependent (vertical 

axis) variable respectively. Since ሼܺ௝, ௜ܺሽ is a transposed plot of ሼ ௜ܺ, ௝ܺሽ் and an identity 

plot ሼ ௜ܺ, ௜ܺሽ is essentially a 45° line for a continuous or 180° line for discrete variable. 

Therefore, it is widely acceptable to display either full or tri-diagonal matrix. The 

implementation of the scatterplot matrix is trivial and Equation 2.1 can be reused by 

invoking it twice, one for the ݕ-coordinate and another call for the ݔ-coordinate. Figure 

2.7 shows the visualization of the full scatterplot matrix where the lower triangular matrix 

is essentially a transposed view of the upper triangular matrix and vice versa. 

The scatterplot matrix presents multidimensional data in such a way that it enables 

the perception of linear correlations over an entire dataset simultaneously. On the other 

hand, the major disadvantage is the linear reduction of screen space allocated to each 

scatterplot. For example, let M, P, K denote scatterplot size, entire display size and 

number of variables respectively. The size of a scatterplot can be trivially computed as 

ܯ ൌ ܲ
ൗܭ  where ܯ declines rapidly when ܭ increases and eventually, the visualization 

will become a point cloud. In general, parallel coordinates is more space efficient than 

the scatterplot matrix. 
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Figure 2.7. A visualization of the scatterplot matrix. 

2.2.3 TableLens 

TableLens [21] is a visualization for exploring a large amount of tabular information by 

merging graphical and symbolic representations into an interactive view. The 

visualization is tightly integrated with focus+context and zooming techniques. An 

important feature of TableLens is that the scaling of a view is independent of each other 

in either the horizontal or vertical order. Figure 2.8 provides an illustration of the 

TableLens visualization. According to the taxonomy by Keim and Kerigel [17], 

TableLens is considered as a geometric projection based technique. 
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Figure 2.8. The TableLens visualization.  The image is sourced from 

http://www.ramanarao.com/articles/2001-12-online-info/cviz.html. 

2.2.4 Space Filling Curve 

The Hilbert curve [22] was first described by David Hilbert [23] in the 19th century. It is 

a continuous and self-similar space filling curve with many useful applications such as 

spatial database indexing or mapping of high dimensional data into lower dimensional 

space such as multidimensional indexing. It is considered as a mixture of geometric and 

pixel oriented techniques. 

The basic building block of a Hilbert curve is a one side opened rectangle which we 

call it a Hilbert curve element. Conceptually, the drawing process of the Hilbert curve is 

simple, one can imagine the entire plane is logically divided into a ܰ ൈ ܰ grid and a grid 

cell is further partitioned into 4 quadrants. Each quadrant can be visited at most once. The 

points in the grid cells are connected to form an element as shown in Figure 2.9 (Left). 
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Finally, self-similar neighboring elements are connected together to form a continuous 

Hilbert curve in Figure 2.9 (Right). 

 

 

Figure 2.9. Building block of Hilbert curve. (Left) A single element of a Hilbert 

curve. (Right) A space filling curve in a 8 ൈ 8 cells. An orange dotted line indicates the 

join with the other element. 

 

The guiding operations can be encoded by three symbols [24] ሼܨ, ൅, െሽ, interpreted 

as “move forward”, “turn 90°  to the left” and “turn 90°  to the right”. Therefore, the 

representation ൅ܨ െ  instructs the algorithm to move forward after turning 90° to the ܨ

left and then move forward after turning 90° to the right. 

Figure 2.10 provides the visualizations of the Hilbert curve in different orders. For 

a more advanced application, elements are usually coded by various colors to denote the 

spatial separation. 
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Figure 2.10. Visualizations of Hilbert space filling curve. The depth of recursion is 

4 and 8 for left and right diagrams respectively. 

2.2.5 Star Coordinates 

Star coordinates (SC) [25] is a geometric projection based multidimensional visualization 

that arranges axes on a circle in such a way that every axis starts at the same origin. The 

coordinate system of SC is curvilinear where the data can be transformed into a Cartesian 

coordinate by summing all the unit vectors in each coordinate and multiplying by the data 

value that is similar to Equation 2.1 as defined for parallel coordinates. 

Star coordinates visualization presents multidimensional data in a way similar to 

the scatterplot matrix. For example, both were designed on the basis of scatterplot with 

the main difference being the coordinate system but the overall approach of perceiving 

data is similar. Figure 2.11 illustrates a star coordinates visualization. 

 

 

Figure 2.11. Star coordinates visualization. The image is sourced from [25]. 

 

2.2.6 TreeMap 

TreeMap mainly deals with hierarchical data. Normally, the discussion of TreeMap shall 

not be mixed with multidimensional visualization but Cao et al. [26] has successfully 
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designed a TreeMap-like interface to visualize multidimensional clusters so it will be 

briefly introduced here. 

TreeMap is a hierarchical based visualization that was first introduced by 

Shneiderman [27] to tackle the problem of visualizing hierarchical data such as a file 

system structure. The TreeMap visualization has been successfully commercialized and 

a renowned application in the real world is probably the Map of the Market that was 

developed by SmartMoney3 [28].  

 

Figure 2.12. Map of the market. The tool shows the live market data in TreeMap. The 

diagram is sourced from the MarketWatch website (http://www.marketwatch.com). 

 

                                                 

 

3  Dow Jones ceased SmartMoney magazine. The September 2012 issue of SmartMoney was the 

magazine’s last edition. All the contents and tools from SmartMoney are available on MarketWatch.com 
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The key feature of the TreeMap is the ability to fully utilize display space. Given a 

hierarchical dataset, the layout algorithm starts off with one rectangle that occupies the 

entire display initially and is latter divided into nested rectangles recursively while the 

algorithm traverses down along hierarchical data paths. This process continues until the 

bottom of the hierarchy has been reached. Figure 2.13 illustrates the conceptual mapping 

of the hierarchical data to the rectangles in the TreeMap. 

 

 

Figure 2.13. Hierarchical data mapping. 

 

There are variety of TreeMaps [27] [29] [30] but the layout principally remains 

similar and in general, an optimal layout algorithm tries to produce rectangles with the 

aspect ratio as close to one as possible. 

The slice and dice TreeMap [27] is the first and simplest TreeMap layout algorithm 

as it recursively divides a rectangle into rectangles using parallel lines. Sub-rectangles 

represent children to its parent rectangle. 

The squarified TreeMap [29] is another variation of the TreeMap that works by 

dividing rectangles in horizontal and vertical rows. A rectangle is either added to the 

current row or the current row is fixed and a new row is started. The decision to determine 

whether a rectangle shall be fixed or continue its subdivision is given by the following 

function: 

,ሺܴݐݏݎ݋ݓ ߱ሻ ൌ max
௥∈ோ

ሼmaxሺ߱ଶ ାݎ ⁄ଶݏ ሻ, ଶݏ ሺ߱ଶିݎሻ⁄ ሽ 

Where ݎା and ିݎ denote the maximum and minimum value of ܴ and the width is 

given by ߱. 
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2.3 Interaction in Multidimensional Visualization 

This section will review the common tasks of interaction with multidimensional 

visualization. Usually in a visual analytics, one interacts with visualization for data 

retrieval, and views change or analytic reasoning so they can be grouped for easy 

understanding. 

2.3.1 Data Retrieval 

Data retrieval (a.k.a data selection) refers to the process of expressing the interested subset 

of data for application by a subsequent task. 

 

Widget based data selection This approach allows users to interact with data indirectly 

through the traditional user interface such as tabular display as illustrated in Figure 2.14. 

Data are usually presented in their raw form with no (or little) information to describe 

their characteristics. Thus, the user needs to be familiar with the underlying dataset for 

meaningful data selection in such a raw format. 

The greatest advantage is its simplicity because very little effort needs to be 

expanded to bring about rapid prototyping. However, the disadvantages include the lack 

of visual indication and also the fact that data are usually organized in a natural order so 

the effort to locate interested items can be quite significant. 
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Figure 2.14. Widget based data selection.  The user interacts with raw data rather 

than the visualized data. It is difficult to select data subset without understanding the 

nature of the dataset. 

 

Direct point selection This technique is often seen in graph or nodal based visualizations 

such as a scatterplot in Figure 2.15. A node occupies a concrete region in the display with 

the duality of representing coordinates and data points simultaneously. Therefore, the 

common use case of data selection in such visualization allows users to select data directly 

in the display. In general, point based selection is intuitive but its availability is limited 

to nodal based visualizations. 
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Figure 2.15. An example of scatterplot. The scatterplot typically uses point selection 

technique by allowing user to interact with a data point by a mouse clicking. 

 

Direct 2D data selection  It allows users to select a set of data on a 2D plane. This 

technique will be reviewed again comprehensively in Section 4.2. For such an application 

in multidimensional visualization, Siirtola et al. [31] has applied a similar technique in 

parallel coordinates. Basically, it selects a collection of polylines passing through the 

rectangular area which is drawn by a sequence of mouse click, drag and release 

operations. Obviously, it does not work well over a visualization with intensively 

overlapping elements. Indeed, Siirtola has commented that it is more appropriate to use 

2D selection for highlighting outliers. 

 

 

Figure 2.16 Direct data selection by a 2D rectangle.  This method is used to select 

a set of data but its accuracy tends to decline in a crowded visualization. 

2.3.2 Interaction for View Change 

Brushing By using a brushing interaction, a subset of data items can be highlighted (or 

focused) for viewing the detail of these data patterns. This technique is widely used in 

parallel coordinates. In 2002, Hauser et al. [32] proposed the concept of angular brushing 

as an extension to the standard brushing to facilitate the data subsets grouping and 

highlighting the rational data properties of the date items. They also integrated the 

composite brushing and focus+context technique to further improve the visual 

exploration in parallel coordinates. 
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In addition, Zhou et al. [33] discussed the visual clustering technique which allows 

users to specify transfer functions in order to control the density value of the lines using 

alpha blending. We consider the visual clustering as a variation of brushing. One 

significant drawback of applying alpha blending in brushing is that the low density 

patterns tend to become illegible due to high transparency. This is certainly not desirable 

if the low density pattern is statistically significant. Overall, brushing remains a 

rudimentary technique which is popular mostly due to its simplicity. 

 

Filtering It is a fundamental technique of data manipulation that attempts to minimize 

data noise for uncovering interested data in a crowded visualization. In a visual analytics, 

a noise typically refers to unwanted data with respect to a current task. In parallel 

coordinates visualization, a good example of filtering is probably the system implemented 

by Artero et al. [34]. They introduced an interactive filtering method by first computing 

the frequency and density information. Such information is subsequently used to filter out 

the data for greater visual perception for clutter reduction. Filtering requires better 

familiarity with the analyzed dataset otherwise users can potentially filter out some 

meaningful patterns or even create a poor view. 

The major difference between filtering and brushing is the output strategy of 

highlighting and grouping of user expected (interested) data items. The former hides or 

dims the less important (or less interested) data items and the latter displays the complete 

dataset and sets the unique color to the selected data item in order to differentiate a 

selection from the rest. 

 

Zooming It is generally concerned with the level of abstraction. A conceptual illustration 

of zooming technique is provided in Figure 2.17. Basically, we consider zooming as a 

general term that covers classic zooming, focus+context and detail-on-demand. In 

multidimensional visualizations, TableLens and a system implemented by Fua et al. [35] 

are good examples. Fua [35] discussed the applications of using drill-down, roll-up and 

dimension zooming techniques for navigating the level of detail in parallel coordinates 
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and the techniques developed have been further integrated into XmdvTool4 [36] since 

version 3.1.  

 

 

Figure 2.17 An illustration of zooming technique.  The diagram illustrates the 

applications of zooming to abstract a dataset into different levels of perspective.  

 

For focus+context, Novotny and Hauser [37] discussed an interesting work for 

outlier detection. The basic idea is to put the detail into focus while preserving the 

relations to other data that is also known as the context. In other words, this idea is similar 

to independent dimension scaling by varying the scale of one or few variables while fixing 

others simultaneously. 

 

Dimensional Reordering The technique is widely used in parallel coordinates 

visualization. Recall that parallel coordinates is mainly used to explore data patterns but 

that does not necessary imply patterns will be divulged naturally. The overall geometric 

structures presented by parallel coordinates are susceptible to the ordering of variables 

and inappropriate ordering tends to create visual clutter due to tangled line crossing. This 

technique aims to promote the location proximity of correlated variables for uniform 

undulation. 

There are numerous studies about the technique of variable reordering in parallel 

coordinates. For example, Ankerst et al. [38] developed a technique to arrange dimensions 

based on the similarity measurement. Peng et al. [39] used dimension reordering to 

rearrange variable axes based on their visual neighbouring similarity for clutter reduction. 

                                                 

 

4 Current version of XmdvTool is 8.0 released on October 20, 2010. 
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Yang et al. [40] further contributed a technique based on optimal and heuristic ordering. 

Furthermore, Huang et al. [41] presented a classification based method to maximize the 

uniform undulation of geometric primitives and the result is shown in Figure 2.18.  

 

 

Figure 2.18 Reordering of variables in parallel coordinates.  (Left) Parallel 

coordinates visualization before dimension reordering. (Right) Parallel coordinates 

visualization after dimension reordering. 

2.3.3 Interaction for Analytical Reasoning  

2.3.3.1 Clustering 

Clustering techniques are often used in visual analytics to cluster data into groups on the 

basis of a statistics principle rather than an arbitrary selection. 

 

K-means [42] [43] is a simple method that aims to partition data into ܭ clusters. The 

algorithm first initializes a set of ܭ clusters ܥ ൌ ሼܥଵ, ,ଶܥ … ,  ேሽ by the random selectionܥ

of ܭ data points to be the centroids accordingly. Each data point is assigned to a nearest 

cluster ܥ௜ with the following equation.  

෍ ෍ ‖݀ െ ௜‖ଶߤ

∀ௗ∈஼ೕ

௄

௜ୀ଴

 

Equation 2.2 

Where ߤ௜ and ݀ denote the centroid and a data point in ܥ௜ respectively. The centroid 

is updated in each iteration and the process continues until there is a convergence. That 



30 

 

 

is, there is no change or the change can be tolerated. The efficiency of K-means is largely 

determined by the speed of convergence and a heuristic is often used to select a good 

initial data point for quick convergence. The drawback of K-means is the likelihood of a 

convergence to a local optimum so it cannot guarantee that the outcome is always globally 

optimum.  

Figure 2.19 demonstrates our application of K-means where each cluster has been 

color brushed for the visual separation of clusters and the convex hull algorithm is used 

for plotting the boundary. 

 

 

Figure 2.19. A K-means clustering. The randomly generated data have been 

partitioned into 20 clusters where the yellow dot indicates the centroid of a cluster. 

 

Hierarchical Clustering [44] It is a non-parametric technique and probably one of the 

most widely used clustering methods in many scientific applications. Given a set of data, 

the method partitions them into a set of hierarchically disjointed clusters in the following 

form. 
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ܩ ൌ ሼ ଵ݃ ∪ ݃ଶ, …∪ ݃ேሽଵ, … , ൛ሼ ଵ݃ ∪ ݃ଶሽ ∪ ሼ… ሽ, …∪ ሼ݃ேሽൟ
ఋ
∶ ݃௜ ∩ ݃௝ ൌ ∅, ݅ ് ݆ 

Where ߜ denotes the depth of the hierarchy. The hierarchy of the clusters are built 

iteratively by merging two clusters with an objective function to form a new cluster in 

each iteration. Generally, there are two categories of hierarchical clustering namely, 

agglomerative and divisive. They are bottom up and top down for the former and the latter 

respectively. A conceptual illustration is provided in Figure 2.20 

Unlike K-means, it does not require ܭ clusters to be known in advance but it needs 

a stopping rule to terminate the process when an optimal number of clusters have been 

found. Hierarchical clustering is used in our proposed technique of interactive data 

selection and will be reviewed comprehensively in Chapter 4. 

 

 

Figure 2.20. Hierarchical clustering categories.  (Top) Agglomerative. (Bottom) 

Divisive. 

2.3.3.2 Dimensionality Reduction 

Dimensionality reduction is an advanced analytic task and is commonly used in many 

sciences to attenuate the curse of dimensionality. The basic principle is to map a high 

dimensional dataset ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ  into a lower information subspace ܺ ൌ ܣ ∪

,ܤ ܣ ∩ ܤ ൌ ∅ while preserving the original interestingness. The terms interestingness is 

subjective and is therefore dependent on the objective of an algorithm. Let ܣ  and ܤ 

denote the reduced and excluded subset respectively such that ∀ܣ ∈ ܺ, ܤ∀ ∈ ܺ . The 
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reduced subset ܣ shall be sufficient to describe the original superset ܺ. There are two 

classes of dimensionality reduction namely, supervised and unsupervised. In short, 

supervised methods allow users to influence the outcome by a set of parameters and vice 

versa.  

 

Visual Hierarchical Dimensional Reduction Yang et al. [45] contributed an automatic 

and manual brushing mechanism to parallel coordinates in their work called Visual 

Hierarchical Dimensionality Reduction (VHDR). VHDR has been integrated into 

XmdvTool [36] since version 6.0. The interaction technique offered by Yang is capable 

of exploring a large dataset in a more interactive manner with greater flexibility to 

dynamically change the view. VHDR first constructs a hierarchy of a dimensional tree 

grouped by similarity and further allows users to interactively select an interested 

dimensional cluster for analysis.  

 

User-Defined Combinations of Quality Metrics Johansson et al. [46] introduced a 

supervised method of dimensionality reduction in the field of visualization called the 

User-Defined combinations of Quality Metrics (UD-QM). They used a set of metrics such 

as Pearson correlation, outlier and cluster detection to rank variables. In UD-QM, the 

prerequisite knowledge required to quantify the quality metric parameters might need 

greater user expertise. For example, users need to define the correlation, outlier and 

cluster values in such a way as to avoid insignificant correlations, outliers and clusters 

adding up to a sum that appears to be significant.  

 

The techniques described above were proposed primarily in the field of information 

visualization. In addition, there are many well-known methods of dimensionality 

reduction proposed in statistics and for a good taxonomy, one can refer to [47]. 

 

Principal Component Analysis It is often abbreviated by the acronym PCA. 

Mathematically, it performs an orthogonal linear transformation by mapping data to a 

lower dimensional space with non-trivial computation of covariance matrix and eigen-

problems. There are two commonly used selection criterions to select principal 

components namely, the Kaiser criterion and the Scree test. For adopting PCA in the 
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dimensionality reduction, the Kaiser criterion [48] is perhaps the widely acceptable 

criterion by ignoring the components with eigenvalues less than one. The Scree test is 

another popular criterion which was proposed by Cattell [49] who suggested plotting the 

eigenvalues on the graph to find a smooth decrease then cutting off the line to retain those 

components appearing on the left hand side of the cut point. For example, Figure 2.21 

illustrates the use of Scree test to reduce a dataset from 8 to 2 variables. The disadvantage 

of using PCA or other unsupervised methods is the unexpected outcome because the 

operation was carried out without any consideration of user inputs and hence the 

unexpectedness is often criticized as an information loss. 

 

 

Figure 2.21 A plot of eigenvalues for the Scree test. 

Projection Pursuit (PP) [50] is a linear method to pursue the choices of possible 

projections that can reveal the interested structure defined by a projection index. To 

pursue the possible projections globally involves a task of non-trivial computation, as 

described in Huber’s [51] study. XGobi [52] had already integrated PP for viewing high 

dimensional data. The main problem of PP is the difficulty to quantize the value of the 

projection index since it is possible to present interested structures spuriously given an 

inappropriate projection index. 

 

Rough Set Theory (RST) The rough set theory was first introduced by Pawlak [53] in 

the field of approximation to classify objects in a set and in general it is applicable to any 

problems that require classification tasks. Given a dataset, let ܷ be a finite set of objects 
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called the universe and ܣ be the superset of all attributes ܣ ൌ ሼܽଵ, ܽଶ, ܽଷ, … . . ܽேሽ, ∃! ܽ௜ ∈

:ܽ such that ܣ ܷ → ௔ܸ, ∀ܽ ∈  is further classified ܣ .ܽ where ܸܽ is called the domain of ܣ

into two disjoint attribute subsets ܦ called the decision attribute and rest the condition 

attributes ܥ  such that ܣ ൌ ሺܥ, ܣ ∪ ሼܦሽሻ, ܥ ∩ ܦ ൌ ∅. For any objects ܺ ∈ ܷ  with non-

empty subset ܲ ⊆ ܥ ∪  are said to be discernible with respect to ܲ if and only if the ܦ

following equivalence relation is true. 

݂ܲ൫ܺ݅,݆ܺ൯ ൌ ቊ
1, ݂݅	ܸܽሺܺ݅ሻ ൌ ܸܽ൫݆ܺ൯, ∀ܸܽ ∈ ݅	ݎ݋݂,ܲ ് ݆

0, ݁ݏ݅ݓݎ݄݁ݐ݋
 

Equation 2.3 

Clearly, given the equivalence relation defined in Equation 2.3, one can construct 

equivalence classes denoted as ܷ/ܦܰܫሺܲሻ ൌ ሼܧଵ, ,ଶܧ … , ௡ሽܧ  by partitioning ܷ  into 

disjoint subsets with the following indiscernibility relation. 

ሺܲሻܦܰܫ ൌ ൛൫ ௜ܺ, ௝ܺ൯ ∈ ܷ ∶ ௉݂൫ ௜ܺ, ௝ܺ൯ ൌ 1ൟ 

RST further defines three regions of approximation called the lower approximation 

ܲܺ, upper approximation ܲܺ and boundary region to approximate subsets ܺ ⊆ ܷ. The 

lower approximation and upper approximation are also called the positive and negative 

region respectively. The lower approximation contains objects that are securely in ܺ and 

the upper approximation consists of objects that cannot be classified to ܺ whereas the 

boundary region contains objects that possibly belong to ܺ.  

The RST is chosen in our system for the task of dimensionality reduction. The most 

distinct advantage of applying RST as a supervised method is the concept of condition 

and decision. Users simply specify a variable as decision and the rest become conditions 

so the variables are reduced in such a way that they fully respects user specified decision. 

2.4 Discussion 

Widget based style is the simplest way to interact with visualization and remains the most 

frequently used method. This can be understood because direct interaction in 

multidimensional visualization is very challenging due to the curse of the dimensionality.  

Furthermore, in an empirical evaluation of various multidimensional visualizations, 

we use parallel coordinates as the main metaphor for our framework and interactive 
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techniques. There are many reasons for this. First, it is space efficient when compared 

with the scatterplot matrix. Second, it is relatively easy to understand and interpret 

multidimensional data as oppose to others such the space filling curve, TreeMap or 

TableLens. The overview of the multidimensional dataset can be completely visualized 

in single view whereas the scatterplot matrix uses multiple scatterplots to puzzle the 

overview of the multidimensional dataset. 

 

 



36 

 

 

Chapter 3 A New Framework of Visual 

Interaction 

In this chapter, we present a new framework of visual interaction based on 7 layers 

framework proposed by Yi et al. [14] earlier. The proposed framework simplifies 7 layers 

into 3 layers for better understanding of the interactive tasks in multidimensional 

visualization. 

3.1 Introduction 

Interaction mechanism extends the capability of a visualization beyond a static image. 

From the perspective of cognitive science, Norman [54] pointed out that human beings 

are social organisms so it is natural for us to interact with others for knowledge (or 

message) transmission and interaction forms a fundamental aspect of our behaviour. In a 

more recent study, Liu and Stasko [55] presented a work explaining the relationship 

between mental model, visual reason and interaction from the view point of information 

visualization. Although, they came from different fields they coincided on the point that 

interaction plays a key role in human cognition. Figure 3.1 shows a conceptual model for 

the progressive development of knowledge discovery. The interaction with visualization 

to derive insight is an iterative process and each iteration refines a hypothesis while 

improving one’s understanding towards the underlying data. 
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Figure 3.1 A cognitive model of gaining data insight. 

There are diversities of interactive techniques already proposed in information 

visualization and the easiest way to gain a good understanding is to review the relevant 

works of taxonomy. In 1996, Shneiderman [56] provided a great taxonomy of interactive 

techniques classified by task types. There are seven abstract tasks defined as follows: 

 Overview: Global view of the entire dataset. 

 Zooming: Zoom in or out on the interested data. 

 Filter: Remove the data noise. 

 Details-on-demand: Present the details when needed. 

 Relate: View relationship between two selections. 

 History: Keep a history of operations for undo, redo and etc. 

 Extract: Allow extraction of sub-collections. 

In addition to the taxonomy contributed by Shneiderman. Yi et al. [14] argued that 

there exist many taxonomies but the discussions are often made from a low level 

operation’s point of view. Hence, they proposed a taxonomy from the perspective of 

user’s intent. That is, the tasks are classified from a user’s intention rather than the nature 

of a task itself. Yi’s model of visual interaction consists of 7 layers as follows: 

 Select: Make something as interesting. 

 Explore: Show me something else. 

 Reconfigure: Show me a different arrangement. 

 Encode: Show me a different representation. 

 Abstract/Elaborate: Show me more or less detail. 

 Filter: Show me something conditionally. 

 Connect: Show me related items. 

The ‘select’ operation is used for highlighting or subset selection via the user 

interface. On the other hand, the ‘explore’ operation is intended for finding out user-
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interested data items through the visual navigation of a data source. The layers 3 to 5 

concern the strategies of view change for better understanding and highlighting one (or 

more) portion(s) (or patterns) of the visualization that are currently perceived as 

interesting by the user. The last two layers use the ‘filtering’ mechanism to display (or 

visualize) only the interested or related data items in the visualization and remove other 

less interested and related data items from the visualization. Certainly, there are still many 

excellent taxonomies such as [57] [58] not being covered here, but we believe that these 

two are particularly representative.  

3.2 3-Layers Framework of Visual Interaction 

Overall, there are many layers that overlap to some extent in Yi’s model. To make easy 

understanding and better interpretation of the layered structure of visual interactions, we 

further propose a new model by refining Yi et al.’s [14] 7 layers into 3 layers, broadly 

based on the nature of the operations as follow: 

 Dynamic selection (or locating) of data items 

 Dynamic viewing of data (visual structure) 

 Dynamic scoping of data (data structure) 

The following table provides a best effort of mapping between our model in Table 

3.1 (Left) and the models described by Yi [14] and Shneiderman [56] in Table 3.1 

(Middle) and Table 3.1 (Right) respectively. 

 

Refined Model User intention Task based 

Dynamic selection Select Extract 

Dynamic viewing Reconfigure Zooming 

 Encode Overview 

 Abstract/Elaborate Details-on-demand 

 Connect Relate 

 Explore History 
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Dynamic scoping Filter Filter 

 

Table 3.1. A mapping of taxonomies of interactive techniques. 

3.2.1 Tasks by Dynamic Selection 

Tasks in this layer are concerned with data subset retrieval that is similar to the Select; 

layer 1, defined by Yi et.al [14]. The layer of dynamic selection is the frontier of a 

visualization for providing a user with a mean to select or look up particular data item(s) 

of interest. Therefore, its practicability greatly influences the efficiency and quality of the 

subsequent task. Usually, the immediate task after a data selection is to apply a visual or 

data analytic technique on the data subset. Technically speaking, a data selection bi-

divides the dataset logically into selected and unselected sets. A conceptual example is 

illustrated in Figure 3.2. 

 

 

Figure 3.2. An example of dynamic selection operation. 

3.2.2 Tasks by Dynamic Viewing 

Dynamic viewing (DV) interaction, that merges layers 3, 4 and 5: Reconfigure, Encode 

and Abstract/Elaborate of the interaction defined in J. S. Yi’s model, allows users to 

change data representations for achieving better readability or understanding of the data 

and its relational structures. Examples include the reordering of axes in parallel 

coordinates and navigation in the graph visualization by using a Hyperbolic Tree or a Fish 

Eye Browser. DV interaction also includes the change of visual encoding; that is using an 

alternative visualization method to present the same complete set of data. 

In this layer, the primary concern is the interactive configuration of the visual 

aspect. A conceptual example is illustrated in Figure 3.3. 
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Figure 3.3. An example of dynamic viewing operation. 

3.2.3 Tasks by Dynamic Scoping 

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and 

Connect of the interaction defined in J. S. Yi’s model, allows users to visualize a subset 

of the data through the filtering of less important and relevant data items with respect to 

an analysis.  Examples include the navigation method used in DA-TU [59]: an On-Line 

Visualization system and other dimensionality reduction techniques. 

The effectiveness of data exploration has typically declined by a large number of 

dimensions. One of the motivations of dynamic scoping aims to shape the data to a 

smaller subset suitable for analysis while minimizing the visual clutter and information 

overloading. A conceptual example is illustrated in Figure 3.4. 

 

 

Figure 3.4. An example of dynamic scoping operation. 

3.2.4 Discussion 

Overall, the proposed framework of visual interaction tries to avoid the fine-grained 

classification because it is easier to understand an operation will result in a selection, 

visual change or data change. Overall, the proposed framework will serve as a design 

guideline for our interactive tasks to be discussed in the following chapters. 
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Chapter 4 Hierarchical Virtual Node 

Data selection is the frontier of a visualization. The design goal is to translate a user’s 

intention into a selection query via the designated interface. In the overall trend, data 

selection has received less attention in the development of interactive techniques since 

the term interaction is becoming overloaded. Basically, every software tool is interactive 

but mostly through the manipulation of a widget. Broadly speaking, a visualization is just 

one of the available software applications. What makes the interactive component of a 

visualization really distinctive is how well it supports arbitrary selection of data directly 

in the interface both intuitively and efficiently in order to facilitate subsequent analytic 

tasks. This is challenging especially in terms of interacting directly in multidimensional 

space due to the curse of dimensionality such as over-plotting, visual clutter etc. 

In this chapter, a novel technique of Hierarchical Virtual Node (HVN) will be 

introduced which is revolutionary in such a way that it allows users to interact with data 

hierarchically, directly in parallel coordinates and even under the circumstances of over-

plotting and visual clutter. However, the application of HVN does not limit itself only to 

parallel coordinates and is applicable to any visualizations with geometric primitives 

based on the polyline or polycurve. 

4.1 Interaction or Selection? 

Modern information visualization techniques, at their core, appear to have two main 

components: representation and interaction. The representation component is concerned 

with mapping from data to advanced computer graphics and how to draw or render them 

on the display. The interaction component on the other hand concerns the dialog between 

the user and the data stored on the system as the user explores the data set to uncover 

insights. The interaction component’s roots lie in the area of Computer-Human 

Interaction (CHI). Although discussed as two separate components, representation and 

interaction clearly are not mutually exclusive. 



42 

 

 

While an information visualization system is taking the role of providing advanced 

GUIs for supporting Computer-Human Interaction (CHI), it is supposed to facilitate CHI 

in both directions; that is 1) the input from human to computer (or data), and 2) the output 

from computer (or data) to human. However, in the past decades, researchers in the 

InfoVis community have paid more attention to the output part; that is they are concerned 

more with the visual representation of output data, such as the output analysis results, for 

users to better understand its contents, attributes and relational structures. They have not 

paid enough attention to the human input part that is the human instructing, monitoring 

and guidance in the whole circle of visual data manipulation and visual analytical 

reasoning. The existing research work that has been done in the visual human input part 

has mainly focused on low-level zooming and navigation operations and has not 

addressed the benefit that human involvement provides in visual data manipulation and 

visual analytical reasoning processes. 

4.2 Revisiting the Data Selection Models 

First of all, we would like to revisit the models of data selection before going into the 

details of the HVN. In this section, numerous models, technical aspects and their awkward 

use cases of data selection will be thoroughly discussed. The technical provisions help 

one to understand that the complexity of the proposed HVN (see Figure 4.3) considerably 

surpasses others. Here, we aim to provide a comprehensive background about the current 

techniques and also help one to understand the significant contribution that the HVN has 

made and the problems that it aims to solve. 

The following table presents a classification of the data selection models applied in 

parallel coordinates. The provision is on the basis of a courteous scan of the existing 

literature. Note that, the table is discretionary and by no means an exhaustive list since 

some authors did not explicit clarify the way to select data and also some systems are 

interactive only for zooming and, viewing rather than data selection. Therefore, we have 

decided to exclude them from the list. 

 

Models References 
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Rectangle Inclusion [31] 

Value Range [60], [61], [62], [63] 

Point Selection [64]5, [65], [66] 

 

Table 4.1. A taxonomy of data selection technique. 

4.2.1 Rectangular Selection Model 

The operations require one to draw a bounding region by the sequence of mouse down, 

drag and release operations. The bounding region defines the coordinates for searching 

the embraced data items. It has been widely used in graph visualization since a node has 

a duality of representing the data and coordinate simultaneously. For implementing this 

model in graph visualization, one has to test a point ሺܺ, ܻሻ with the following conditions: 

ቊ
௑ݐܿ݁ݎ ൑ ܺ ൑ ሺݐܿ݁ݎ௑ ൅ ௪௜ௗ௧௛ሻݐܿ݁ݎ
௒ݐܿ݁ݎ ൑ ܻ ൑ ൫ݐܿ݁ݎ௒ ൅ ௛௘௜௚௛௧൯ݐܿ݁ݎ

 

 Please note that, these conditions presume the screen coordinate starts from 

bottom-left corner. 

In the parallel coordinates, a geometric polyline or curve is technically drawn by 

passing multiple end points to a software API. Strictly speaking, a line other than both 

ends does not occupy a bounding region nor does it represent any data points. Thus, a 

practical implementation will need to test a slope-intercept between four sides of the 

rectangle against a given line. Figure 4.1 illustrates the operation of the rectangular 

selection model in parallel coordinates and scatterplot. 

 

                                                 

 

5 Authors did not actually implement a point based selection model in their work. However, we have 

classified it here since its geometric primitive possibly allows a point based selection.   
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Figure 4.1 Rectangular selection model.  (Left) A direct data selection in parallel 

coordinate, one has to find the intercept between line and rectangle. (Right) A direct 

data selection in scatterplot which is more accurate and intuitive.  

 

For searching the line-rectangle interception efficiently the Liang-Barsky algorithm 

[67] is a desirable choice because it can return the occurrence an inception and also the 

coordinates of interception. Although, the interest here is to determine a line and rectangle 

interception one can further use the information of intercepted coordinates for 

focus+context operation within the rectangular area. The algorithm developed by Liang-

Barsky was originally used to determine the interceptions between a line and its clipping 

window. It formalizes a line segment into parametric representations described below. 

Please refer to the diagram in Figure 4.2 for clarity. 

ݔ ൌ ଴ݔ ൅ᇞ ݔ ൈ  ݐ

ݕ ൌ ଴ݕ ൅ᇞ ݕ ൈ  ݐ

Where ᇞ denotes a distance between two end points in one direction such that ᇞ

ݔ ൌ ଵݔ െ ଴ and ᇞݔ ݕ ൌ ଵݕ െ ,is a parametric value which is 0 at the point ሺܺ ݐ ଴ andݕ ܻሻ 

and 1 at the point ሺܺ ൅ᇞ ܺ, ܻ ൅ᇞ ܻሻ. 
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Figure 4.2 Properties of the Liang-Barsky algorithm. The diagram describes the 

notations and concept of the algorithm. 

 

By substituting the parametric representations (see [67]), one can lead to the 

following notations. 

൞

ଵ݌ ൌ െ ᇞ ݔ
ଶ݌ ൌᇞ ݔ

ଷ݌ ൌ െ ᇞ ݕ
ସ݌ ൌᇞ ݕ

 

൞

ଵݍ ൌ ଴ݔ െ ௟௘௙௧ݐܿ݁ݎ
ଶݍ ൌ ௥௜௚௛௧ݐܿ݁ݎ െ ଴ݔ
ଷݍ ൌ ଴ݕ െ ௕௢௧௧௢௠ݐܿ݁ݎ
ସݍ ൌ ௧௢௣ݐܿ݁ݎ െ ଴ݕ

 

The values ሼ݌ଵ, ,ଶ݌ ,ଷ݌ ,ଵݍସሽ and ሼ݌ ,ଶݍ ,ଷݍ  ସሽ will be passed to the algorithm forݍ

testing the condition against the parametric value ݐ . A versatile implementation is 

described in Algorithm 4.1 where |∗|, ܺ and ܦ denote the cardinality, dimensions and 

data points. There are two inputs required namely ܲ for a set of polylines and ݐܿ݁ݎ which 

describes the attributes of the bounding rectangle. 

 

1. input 

2.     ܲ ൌ ሼ݌ଵ, ,ଶ݌ … ,  ேሽ݌

 /* .Bounding rectangle */ ݐܿ݁ݎ     .3

4. initialization 
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଴ݐ     .5 ← 0 

ଵݐ     .6 ← 1 

7.     ܲ ← ∅ 

8. begin algorithm 

9. for ݅ ≔ 0 to ‖ܺ‖ 

10.     ݆ ൌ ሺ݅ ൅ 1ሻ 

11.     for ݇ ≔ 0 to ‖ܦ‖ 

଴ݔ         .12 ൌ ܺ௑೔ /* ܺ is the x-coordinate of ௜ܺ in here. */ 

ଵݔ         .13 ൌ ܺ௑ೕ /* ܺ is the x-coordinate of ௝ܺ in here. */ 

14.         /* convert to screen coordinate with respect to ௜ܺ and ௝ܺ. */ 

଴ݕ         .15 ൌ   ௜ሺ݇ሻ൯ܦ൫݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ

ଵݕ         .16 ൌ ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲݕ ቀܦ௝ሺ݇ሻቁ 

17.         if ݕ݇ݏݎܽܤ݃݊ܽ݅ܮሺെ∆ݔ, ሺݔ଴ െ ,௥௘௖௧ሻݐ݂݈݁ ,଴ݐ  ଵሻ is true andݐ

,ݔ∆ሺݕ݇ݏݎܽܤ݃݊ܽ݅ܮ            .18 ሺݐ݄݃݅ݎ௥௘௖௧ െ ,଴ሻݔ ,଴ݐ  ଵሻ is true andݐ

,ݕ∆ሺെݕ݇ݏݎܽܤ݃݊ܽ݅ܮ            .19 ሺݕ଴ െ ,௥௘௖௧ሻ݉݋ݐݐ݋ܾ ,଴ݐ  ଵሻ is true andݐ

,ݕ∆ሺെݕ݇ݏݎܽܤ݃݊ܽ݅ܮ            .20 ሺ݌݋ݐ௥௘௖௧ െ ,଴ሻݕ ,଴ݐ  ଵሻ is true thenݐ

21.             ܲ ←  ௜ሺ݇ሻܦ

22.             ܲ ←  ௝ሺ݇ሻܦ

23.         end if 

24.     end for 

25. end for 

26. return ܲ 

27. end algorithm 

28.  

29. procedure ݕ݇ݏݎܽܤ݃݊ܽ݅ܮሺ݌, ,ݍ ,଴ݐ  ଵሻݐ

30. if ݌ ൌ 0 and ݍ ൏ 0 then 

31.     return false /* parallel line found. */ 

32. else 

ݎ     .33 ൌ ݌
ൗݍ  

34.     if ݌ ൏ 0 then 
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35.         if ݎ ൐  ଵ thenݐ

36.             return false 

37.         else if ݎ ൐  ଴ thenݐ

଴ݐ             .38 ←  ݎ

39.         end if 

40.    else if ݌ ൐ 0 then 

41.         if ݎ ൏  ଴ thenݐ

42.             return false 

43.         else if ݎ ൏  ଵ thenݐ

ଵݐ             .44 ←  ݎ

45.         end if 

46.     end if 

47. end if 

48. return true 

49. end procedure 

 

Algorithm 4.1 An implementation of the Liang-Barsky.  The algorithm consists of 

two functions where the top function iterates through the lines in parallel coordinates 

and calls the function LiangBarsky which returns a Boolean to indicate whether the 

intercepted condition is true or not. 

 

The main drawback is the noise within selected data tends to increase rapidly when 

parallel coordinates becomes cluttered. Under those circumstances, it is difficult to apply 

serious analytic techniques due to an unacceptable amount of unwanted data being 

included, as illustrated in Figure 4.3. 
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Figure 4.3. Rectangular selection model within a crowded visualization. It shows 

the challenge to select the intended data accurately when a visualization is overcrowded. 

 

In summary, this model provides a rapid and agile data selection for a moderate 

amount of data but the user’s frustration will soon arise when dealing with a crowded 

visualization due to inevitable inclusion of unwanted data. For example, the parallel 

coordinates system implemented by Siirtola [31] can select a collection of polylines 

which pass through the rectangular area but the use case does not work well over a display 

with intensively overlapping elements as Siirtola had further made a comment that it is 

more appropriate to harness rectangular inclusion for highlighting outliers.  

4.2.2 Value Range Model 

According to Table 4.1, in which this model appears to be the most popular in parallel 

coordinates probably due to its simplicity, there are numerous implementations but in 

general, users do not interact with geometric primitive directly. For example, they interact 

with widgets (i.e. a slider bar) attached to a vertical axis by adjusting its upper and lower 

value range. Let ݈௜ and ݑ௜ be the inputs of upper and lower bound with respect to a target 

variable ௜ܺ, one can easily use a conditional function to accept or reject the selection of a 

data point ݀ ∈ ௜ܺ expressed as follows: 

݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ ൌ ൜
,݁ݑݎݐ ݈௜ ൑ ݀௜ ൑ ݉݅݊ሺ	⋀	௜ݑ ௜ܺሻ ൑ ݈௜ ൏ ௜ݑ ൑ ሺݔܽ݉ ௜ܺሻ
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݁ݓ݄ݐ݋

 

Equation 4.1 
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AND ( ∧ ) operator Given a set of bounding values ܮ ൌ ሼ݈ଵ, ݈ଶ, … ݈ேሽ  and ܷ ൌ

ሼݑଵ, ,ଶݑ  be a polyline with a set of data ݌ ேሽ with respect to a target variable ௜ܺ. Letݑ…

points ݌ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ேሽ ∈  in ܰ dimensions. We can use Equation 4.1 to determine ݌

whether ݌ is in the selection set if all of its containing points ܦ must satisfy the test 

condition against its target variable ௜ܺ ∈ ܺ as expressed below: 

෍ ෍ ݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ
௟೔∈௅,௨೔∈௎

∧ …∧ ݂ሺ݀ேିଵ, ݈௜, ,௜ݑ ௜ܺሻ, ∃! ݀௜ ∈ ௜ܺ, ݅ ൏ ܰ
ௗ೔∈௣

 

Equation 4.2 

In addition, it is equivalent to ignore the AND operator for a variable by relaxing ݈௜ 

and ݑ௜ with the following settings: 

݈௜ ൌ ݉݅݊ሺ ௜ܺሻ 

௜ݑ ൌ ሺݔܽ݉ ௜ܺሻ 

Where ݉݅݊ and ݉ܽݔ return the minimal and maximal values so essentially all the 

data in ௜ܺ are selected. Usually, this is the initial state when the dataset is first loaded. 

The counterpart of AND is the OR operator. 

 

OR (∨) operator The test condition of OR operator is more generous than the AND 

operator. We consider a polyline is in the selection set if one of its containing point ܦ has 

satisfied the test condition against its target variable.  

෍ ෍ ݂ሺ݀௜, ݈௜, ,௜ݑ ௜ܺሻ
௟೔∈௅,௨೔∈௎

∨ …∨ ݂ሺ݀ேିଵ, ݈௜, ,௜ݑ ௜ܺሻ, ݅ ൏ ܰ
ௗ೔∈௣

 

Equation 4.3 

Thus, if any of variables in ܺ has set its bounding range to ݈௜ ൌ ݉݅݊ሺ ௜ܺሻ and ݑ௜ ൌ

ሺݔܽ݉ ௜ܺሻ will result in a global data selection. 

These operators are useful for restricting or relaxing the selection set but such 

features come at the cost of intuitiveness. A polyline has no visual continuity so it is very 

difficult to trace the direction of next line segment at a junction under the circumstance 

of over-plotting. For example, a polyline appears to be included but may have been 

filtered out by another AND operator which is far apart. This is illustrated in Figure 4.4 

for clarity. 
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Figure 4.4 The value range model with AND and OR operators in parallel 

coordinates.  The arrows define the upper and lower bound of the value range and the 

polylines brushed with gold colors indicate the selection. (Top) A demonstration of OR 

operator, the difference has brushed with green color for easy comparison with the 

image below. (Bottom) A demonstration of AND operator. 

 

2D AND/OR operator Both ݈  and ݑ  need to carry an additional dimension of 

information denoted as ݈௜,௝  and ݑ௜,௝  with respect to ௜ܺ  and ௝ܺ . It is trivial to rewrite 

equations Equation 4.1 and Equation 4.2 for extending 2D operation. Please note that, for 

1D data selection, these equations test the condition based on the data value of a given 

data point rather than its coordinated location on the display.  
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For visualizing the data selection on a 2D plane, we can apply a rectangular 

selection technique as we have described previously. Let ݈ሺݔ, ሻݕ  and ݑሺݔ, ሻݕ  be the 

coordinate for intercepted points of ݈௜,௝ and ݑ௜,௝ respectively. For each intercepted point, 

we can draw two ⊾90° infinite perpendicular lines ሾെ∞,∞ሿ past the point. The line must 

be parallel to the axis such that ݈௫ ∥ ௫ and ݈௬ݑ ∥  ௬. One can find four intercepted pointsݑ

൫݈௫, ݈௬൯, ൫ݑ௫, ݈௬൯, ൫ݑ௫, ,௬൯ݑ ൫݈௫,  ௬൯ that consist of a rectangular bound. The AND operatorݑ

in two dimensional space is only interested in a point ݀௫,௬ which satisfies the following 

condition: 

݈௫ ൑ ݀௫ ൑ ௫ݑ ∧ ݈௬ ൑ ݀௬ ൑  ௬ݑ

Similarly, the condition for the OR operator can be rewritten as: 

݈௫ ൑ ݀௫ ൑ ݈௬	௫⋁ݑ ൑ ݀௬ ൑  ௬ݑ

The rectangle enclosure easily reveals the selected data as illustrated in Figure 4.5. 

 

 

Figure 4.5 An application of the value range model in 2D. The arrows define the 

upper and lower bound of the value range. (Left) A demonstration of the 2D AND 

operator. (Right) A demonstration of the 2D OR operator in scatterplot. 

 

This method has a higher degree of accuracy but there are also many shortcomings. 

The most serious one is the physical cost incurred with the high dimensionality of data if 

the interaction cost framework studied by Lam [68] is taken into consideration. For 

example, the physical motions spent will be non-trivial to adjust the value range for 20 or 

even greater 100 variables. It is extremely time consuming and error prone so for practical 
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purpose it will deteriorate and eventually become unusable. One can imagine that this 

kind of situation could occur if one tried to fiddle with more than 100 slider bar widgets. 

4.2.3 Point Selection Model 

The standard case only needs a mouse click and this is by far the most intuitive behaviour 

for humans. The minimum drawing unit on the screen is per pixel so the user needs to 

position the mouse cursor just over the pixels occupied by a geometric primitive for 

triggering a successful selection. Sometimes, a geometric primitive is misaligned due to 

antialiasing so the common remedy is to use a tolerance for compensating the 

misalignment. The basic concept is illustrated in Figure 4.6. 

 

 

Figure 4.6. Point selection with a tolerance. 

Let ݐ, ሺܺ, ܻሻ and ሺ ଵܺ, ଵܻሻ denote a tolerance, location of a data point, and location 

of a mouse cursor respectively. According to the Euclidean distance, if we treat ݐ as a 

radius then a given data point is considered as selected if the hypotenuse between ሺܺ, ܻሻ 

and ሺ ଵܺ, ଵܻሻ is less than ݐ. Thus, the test function of a point selection can be trivially 

written as follow: 

݂൫ሺܺ, ܻሻ, ሺ ଵܺ, ଵܻሻ, ൯ݐ ൌ ቊ݁ݑݎݐ									ඥሺ ଵܺ െ ܺሻଶ ൅ ሺ ଵܻ െ ܻሻଶ ൑ ݐ
݁ݏ݅ݓݎ݄݁ݐ݋																																							,݁ݏ݈݂ܽ

 

The point selection is the most intuitive model but unfortunately, the application in 

information visualization is generally limited to node-link alike visualizations. The 

selective accuracy may be fine-grained but it cannot achieve a substantial selection. 

Figure 4.7 provides an example of a web application with node-link based navigation.  
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Figure 4.7 A web application with a node-link based navigation. The uUser can 

select a node on the left view which is a hyperlink and it will reflect to the browser on 

the right view. This example demonstrates both select and viewing operations. 

 

Currently, there is no application of point selection in parallel coordinates and this 

is becomes apparent if we scan the relevant literature. However, we have noted from the 

existing literature that there is a tile-based parallel coordinates contributed by Alsakran 

et. al. [64] as shown in Figure 4.8. A tile is similar to a node strucutre and the principle 

of applying a point selection on a tile and a node are alike. Theorically, we see a potential 

application for point selection on the tile-based parallel coordinates but in practice, it will 

be chellenging because there is not enough information provided by the author about the 

association of a tile and the data it represents. 

 

 

Figure 4.8. A tile-based parallel coordinates.  The image is sourced from [64]. 

 

There is also an interesting implementation discussed by Shannon et. al. [65] as 

shown in Figure 4.9 where they partition data into a graph network and expose it by a 

separate view for the user to interact with them in a point selection fashion. Unfortunately, 
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the user is only allowed to interact with data indirectly on a separate view and this makes 

it difficult to understand the selection context.  

 

 

Figure 4.9. An application of the indirect point selection in parallel coordinates.  

The image is sourced from [65]. 

4.2.4 Discussion 

The models introduced above generally do not provide an excellent user experience in 

relation to parallel coordinates. In general, overplot and visual clutter are the main 

barricades of interacting with data in a multidimensional space. The value range model is 

able to deal with it but it also poses other problems. The following table summarizes the 

advantages and disadvantages of the models as described previously. 

 

Models Advantages Disadvantages 

Rectangle Inclusion Substantial selection. Poor accuracy and not intuitive. 

Value Range 
Fine selection granularity. 

High interaction cost and not 

intuitive. 

Point Selection Accuracy, simple and 

intuitive. 

Quantity (Usually, select one data 

item at a time). 
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Table 4.2. A summary of the data selection models. 

In order to address the issues, we propose a novel technique of hierarchical virtual 

node (HVN) for data selection directly in parallel coordinates with no assumption about 

the given data. The basic idea behind it is depicted in Figure 4.10. In HVN, data are 

partitioned hierarchically for variable selection on the basis of location proximity and the 

display space is filled with virtual nodes for user interaction. Let ݒ௜ and ݀௜ be a virtual 

node and data item respectively where ݅  denotes the hierarchical level and  ݒ௜ ൌ

ሼ݀௜, ݀௜ିଵ, … , ݀௜ିேሽ subjects to ሺ݅ െ ܰሻ ൐ 0. When a node ݒ௜ is mouse clicked, all the data 

items beneath ݒ௜  are included as part of the selection set. The approach offers better 

flexibility and accuracy with lower physical cost of motion to interact with data in parallel 

coordinates. 

 

 

Figure 4.10. Illustration of the hierarchical virtual node design.  Space is filled 

with virtual nodes (circles with broken lines) for user interaction since they are placed 

hierarchically so it allows the user to perform variable data selection.  

 

The HVN combines the advantages of others with a careful design to minimize the 

inherited shortcomings. The following table summarizes the features of HVN. The middle 

and last column describe the operation about how to achieve it in HVN and which model 

also offers similar features respectively. 

 

Features How Similar Model(s) 

Substantial selection Click on the top node (global node) of 

the hierarchy. 

Rectangle inclusion, 

value range. 

Accuracy Click on the bottom node (data node) or 

the child node of the hierarchy. 

Point selection. 



56 

 

 

Intuitiveness Requires only a mouse click on a node. Point selection. 

Lower motion cost Requires only a mouse click on a node. Point selection. 

Neighboring selection Data are partitioning into clusters by 

hierarchical clustering. 

Value range (without 

clustering) 

Repeatability of a data 

selection (Go back) 

Click on the node again which was 

clicked previously. 

Point selection. 

Global and Local Drill 

Down 

Click on any node for interactive data 

exploration. 

N/A 

Hierarchical selection Click on any node and its child nodes 

are selected. 

N/A 

Data Density Observation through the distribution of 

the virtual nodes. 

N/A 

 

Table 4.3. Features of the hierarchical virtual node. 

The repeatability of a data selection listed in the table is also known as the go back 

feature. In visual analytics, one frequently needs to reproduce the previous view again for 

gaining recollection. To achieve this, one has to redo the previous steps that were carried 

out. In the rectangular selection model, it is difficult to exactly redraw the same rectangle 

again but such a task is trivial in the HVN.  

There are several advantages of the HVN over other techniques. First, there is no 

need to specify a value range. Quantization is always difficult which usually requires the 

user to understand the data characteristics. Second, it provides the granularity of multi-

level selection of data with greater flexibility to quickly explore the patterns between the 

nearest neighbors. Third, virtual nodes provide the visual distribution of the data. The 

distribution of the nodes also suggests the distribution of the continuous variable. Finally, 

it has a minimal interaction cost because the entire operation can be activated by a single 

mouse click rather than interpreting a sequence of mouse operations. Overall, the 

compliexity of the HVN is greater than others and the technical details will be discussed 

in the following section. 
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4.3 Implementing the HVN 

This section is dedicated to the technical discussion of the HVN. The basic idea of the 

HVN was born in a discussion with Dr. Mao Lin Huang. The key points are briefly 

extracted below to the best of our remembrance where ܳ and ܣ mean the question asked 

by me and the answer provided by Dr. Mao Lin Huang respectively. 

Q: … existing techniques claiming to be fully interactive did not really 

mention how they deal with the situation where the display is 

overplotted and cluttered …, … also poly based geometric primitives 

are very difficult to interact with …. 

A: … clutter is caused by the polylines…, why don’t we use a node to 

represent the data for direct data selection? … 

Q: … point selection is good, but it is not efficient to select data in the 

multidimensional data space…, there are too many data to select one 

by one … 

A: … why not partition the data hierarchically?… 

Q: … OK, the idea is feasible but how do we use a node to represent 

the polyline? … 

A: … how about we use a virtual node? … 

 The above interaction serves to reveal the originality of the HVN. 

4.3.1 System Overview 

An interactive parallel coordinates system with the tight integration of HVN has been 

successfully implemented. A simplified version of the system flowchart is outlined in 

Figure 4.11. The simplification is in a form where some minor steps have been skipped 

but they will not affect the overall integrity of the flow chart. In the figure, a diagram is 

also attached to a step for visually explaining the state of the corresponding process. 

Overall, the whole implementation of the HVN can be condensed into Figure 4.11. In the 

following sections each section will be dedicated to each process in the figure. 
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Figure 4.11. System flowchart of the HVN based parallel coordinates. 
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4.3.2 Data Classification 

The goal of applying classification is to remove data redundancy. This step enhances the 

computational efficiency for the next stage of hierarchical clustering. Given a variable ௜ܺ 

which contains a set of data points ܦ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ, ∀݀ ∈ ௜ܺ . Let ܳܧ: ܣ →  be a ܤ

function that defines the equivalence relation. Any two arbitrary elements ݀௜ and ௝݀ in ௜ܺ 

are said to be equivalent if and only if they meet the condition ܳܧ൫݀௜, ௝݀൯ ൌ ൫ܳܧ ௝݀, ݀௜൯. 

The expression of ܳܧ can be written as: 

,൫݀௜ܳܧ ௝݀൯ ൌ ൜
1											݀௜ ൌ ௝݀ ⇔ ݀௜ ∩ ௝݀ ് ∅
݁ݏ݅ݓݎ݄݁ݐ݋																																	,0

 

Equation 4.4 

Given the equivalence relation defined in Equation 4.4, we can obtain the 

equivalence classes denoted as ܦ ሺܦܰܫ ௜ܺሻ ൌ ሼܧଵ, ,ଶܧ … , ⁄ேሽܧ  by partitioning ܦ  into a 

disjoint subset using the following indiscernibility relation written as: 

ሺܦܰܫ ௜ܺሻ ൌ ൛൫݀௜, ௝݀൯ ∈ :ܦ ,൫݀௜ܳܧ ௝݀൯ ൌ 1ൟ 

Equation 4.5 

These equivalence classes will be passed to the next stage of the system pipeline. 

In summary, the purpose of this step is to ensure data uniqueness and they are only 

logically removed from the dataset in order to avoid redundant computation. 

4.3.3 Non-parametric Partitioning by Hierarchical Clustering 

The core task of data partitioning involves a clustering technique. Michaud [69] provided 

a great work that covers the well-known methods. As the name suggests, the HVN uses 

hierarchical clustering. Although, K-means [43] is another alternative, it requires an input 

parameter of ܭ clusters to be known in advance which is not desirable in our case. 

Hierarchical clustering [44] is a non-parametric technique and probably one of the 

most widely used methods in data mining. Given a set of items, the method partitions 

them into a set of disjoint clusters hierarchically in the following form. 

ܩ ൌ ሼ ଵ݃ ∪ ݃ଶ, …∪ ݃ேሽଵ, … , ൛ሼ ଵ݃ ∪ ݃ଶሽ ∪ ሼ… ሽ, …∪ ሼ݃ேሽൟ
ఋ
∶ ݃௜ ∩ ݃௝ ൌ ∅, ݅ ് ݆ 
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Where ߜ denotes the depth of the hierarchy. The hierarchy of the clusters are built 

iteratively by merging two clusters with greatest similarity to form a new cluster in each 

iteration. The similarity is determined by the choice of an agglomerative algorithm which 

will be described latter.  

The first step in hierarchical clustering transforms the data items in each variable 

into a distance matrix. Univariately, this is straightforward and one simply computes the 

Euclidean distance on a pairwise data items as: 

,൫݀௜ݐݏ݅݀ ௝݀൯ ൌ ห݀௜ െ ௝݀ห	݁ݎ݄݁ݓ	݀௜ ് ݀ௗ 

Equation 4.6 

The result of ݀݅ݐݏ൫݀௜, ௝݀൯ is carried forward in the corresponding ሾ݅, ݆ሿ element 

within a matrix as: 

ܦ ൌ ൭
,ሺ݀ଵݐݏ݅݀ ݀ଵሻ ⋯ ,ሺ݀ଵݐݏ݅݀ ݀ேሻ

⋮ ⋱ ⋮
,ሺ݀ேݐݏ݅݀ ݀ଵሻ ⋯ ,ሺ݀ேݐݏ݅݀ ݀ேሻ

൱ 

Where ܦ denotes the distance matrix rather than data value matrix. The diagonal 

elements ݀݅ݐݏሺ݀୧, ݀୧ሻ  are always 0. Hierarchical clustering is nonparametric with no 

assumption about the target ܭ cluster known in advance. Instead, it requires a stopping 

rule to break the process prematurely when the optimal number of clusters have been 

determined within the range 1 ൑ ݇ ൑ 	 |ሼܦሽ|. Fortunately, we build an entire hierarchy so 

finding a suitable stopping rule is not a concern in this step. The strategy of hierarchical 

clustering applied here is agglomerative which builds up the hierarchy from the bottom-

up. 

Initially, hierarchical clustering initializes each data point in ܦ  into a singleton 

cluster that is ݂: ሼܦሽ → ሼܩሽ and the cardinality is one such that ∀௚∈ீ|ሼ݃ሽ| ൌ 1. Recall 

that, ܦ has already been preprocessed by the classification mentioned in Section 4.3.2. In 

the next iteration, it recursively merges a pairwise cluster to form a new cluster ܩ௜.௝ ൌ

൛ܩ௜ ∪  ሬሬሬሬሬሬሬሬሬԦ is updated byܩప,ఫܩ ௝ൟ based on an objective function. The inter-cluster distanceܩ

the linkage criterion.  At the end of each iteration, ܩ is subtracted by 1 such that ܩ ൌ ܩ െ

1 and the process continues until |ሼܩሽ| ൌ 1 which represents a global set situated at the 

top of the hierarchy. 
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In many sciences, the homogeneous requirement is commonly quantized by the 

distance measure. Thus, the objective function can be simplified to be a minimization 

problem. Alternatively, one might be interested in maximizing the measure but it really 

depends on the problem domain. Give a set of clusters ܩ, the aim is to find a nearest 

pairwise ݃௜ and ݃௝ with the minimum path by the following equation. 

෍ܽ݊݅݉݃ݎ
௚∈ீ

ห݃௜ െ ݃௝ห ∶ 	 ห݃௜ െ ݃௝ห ൌ ට൫݃௜ െ ݃௝൯൫݃௜ െ ݃௝൯ 

Equation 4.7 

Obviously, the objective function in Equation 4.7 is essentially a Euclidean distance 

which measures the length between ݃௜ and ݃௝ in one direction. This is the most desirable 

distance measure in our case since we expect the merge of clusters to fully respect to their 

location proximity in the following order. 

ሼ݀ଵ, ݀ଶ, ݀ଷ, ݀ସሽ ⇒ ൛ሼ݀ଵ, ݀ଶሽ, ݀ଷ, ݀ସൟ ⇒ ቊ
൛ሼ݀ଵ, ݀ଶሽ, ሼ݀ଷ, ݀ସሽൟ

൛ሼ݀ଵ, ݀ଶ, ݀ଷሽ, ݀ସൟ
⇒ ൛ሼ݀ଵ, ݀ଶ, ݀ଷ, ݀ସሽൟ 

In other words, we want neighboring clusters to be merged progressively without 

jumping since we cannot reorder6 the data in the screen space. In visualization, the 

distance of ܻܺሬሬሬሬሬԦ in the screen space typically implies their relative distance in data space 

|ܺ െ ܻ| proportionally. 

There are three well-known linkage criterions to update the inter-cluster distance 

for the newly formed cluster ܩ௜,௝. They are single link, complete link and average link 

and these concepts have been well explained by Day and Edelsbrunner [70]. In short, 

single linkage searches the shortest inter-cluster distance between ݃௜  and ݃௝  from the 

adjacency matrix and Equation 4.6 can perfectly be reused in this case. Complete linkage 

finds the maximum inter-cluster distance and is given by: 

෍ܽݔܽ݉݃ݎ
௚∈ீ

ห݃௜ െ ݃௝ห 

                                                 

 

6 The concept of reordering only applies to variables rather than data items since doing so cannot guarantee 

a data item will respect its origin in the coordinate system. 
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In other words, single link and complete links aim to minimize and maximize the 

inter-cluster separation respectively whereas, average linkage is a hybrid approach 

between the two. The conceptual explanation of cluster separation is illustrated in Figure 

4.12.  

 

 

Figure 4.12 An illustration of the single, complete and average linkages. The 

diagram shows how the distances between clusters are computed. 

 

In updating the inter-cluster distance, we have applied the average linkage. The 

average linkage algorithm is also known as Unweighted Pair Group Mean Arithmetic 

(UPGMA). As the name suggests, it computes the distance of a new cluster ܩ௜,௝ from the 

average values of pairwise ܩ௜ and ܩ௝. The equation is defined as follows: 

,௜ܩ൫ܣܯܩܷܲ ௝൯ܩ ൌ
1

|௜ܩ| ൈ หܩ௝ห
෍ ෍ ,൫݀௜ݐݏ݅݀ ௝݀൯

ௗೕ∈ீೕௗ೔∈ீ೔

, ݅ ് ݆ 

Equation 4.8 

Given a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ, Algorithm 4.2 provides a versatile 

function for constructing the hierarchical clustering. 

 

1. procedure ݃݊݅ݎ݁ݐݏݑ݈ܥ݈݄ܽܿ݅ܿݎܽݎ݁݅ܪሺܺ ൌ ሼ ଵܺ, … , ܺேሽሻ 

2. ܸ ൌ ∅ 

3. for each ௜ܺ in ܺ 

ܩ     .4 ൌ ∑ ∑ ,൫݀௜ݐݏ݅݀ ௝݀൯ௗೕ∈஽ௗ೔∈஽ ∶ ݅ ് ݆ 

5.     while |ሼܩሽ| ൐ 0 do 

௜,௝݌         .6 ൌ ∑ ீ∋௚݊݅݉݃ݎܽ ห݃௜ െ ݃௝ห ∶ ݅ ് ݆ /* Find the clusters to merge. */ 

௜,௝ܩ         .7 ൌ ቄܩ௣೔ ൅  /* .௣ೕቅ /* Merged two clustersܩ
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ܩ         .8 ൌ ܩ െ  /* .௜ /* Remove clusterܩ

ܩ         .9 ൌ ܩ െ  /* .௝ /* Remove clusterܩ

10.         for ݅ ← 0 to |ሼܩሽ| 

௜ܩ             .11 ൌ ,௜ܩ൫ܣܯܩܷܲ  ௜,௝൯ܩ

12.         end for 

ܩ         .13 ← ܩ ൅  /* .௜,௝ /* Add the merged clusterܩ

14.     end while 

15.     ܸ ൌ  ܩ

16. end for 

17. return ܸ 

18. end procedure 

 

Algorithm 4.2 An implementation of the hierarchical clustering using average 

linkage.  

Where ݌௜,௝  denotes a temporary variable which holds the indices for ܩ௜  and ܩ௝ . 

Given the example of a multidimensional data, our approach of hierarchical clustering is 

univariate and this is also evident in Algorithm 4.2. 

In our system pipeline, this process partitions data into logical groups hierarchically 

as illustrated in Figure 4.13. The data hierarchy remains logical and the task of the next 

process will map the virtual nodes into the visual space for visualization. 

 

 

Figure 4.13. Logical groups partitioned by the hierarchical clustering. 
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4.3.4 Mapping Virtual Nodes into Visual Space 

Let ܸ  be an output produced from the previous process which holds the hierarchical 

clustering result for the whole variable set ܺ with the following properties: 

ܸ ൌ ሼݒଵ, ,ଶݒ … , ேሽݒ ∶ ݒ∀ ൌ ሼ݃ଵ, ݃ଶ, … , ݃ேሽ, ݒ → ܩ → .ݓ	ܦ .ݎ 	ݐ ௜ܺ 

It is important to classify here for avoiding confusion with the notations used. We 

have used ܩ ,ܦ and ܸ to imply data points, data groups and vertices in Section 4.3.2 for 

data classification, Section 4.3.3 for hierarchical clustering and for visual space mapping 

respectively. It is just a convention adopted and they ultimately refer to the same raw data. 

Technically, ݒ simply describes a logical grouping ܩ of input data ܦ with respect to a 

given variable ௜ܺ and it remains abstract at this stage. Hence, we need to allocate the 

physical region for ݒ in the visual space before they can do any useful work. 

Cluster level ℓ  provides important information for positioning a virtual node 

correctly in the hierarchy and it was skipped in the previous section just to simplify the 

notation of ܩ. Given a ݒ, it is critical to explore its deepest level ℓ otherwise, its screen 

coordinate will be misplaced. Considering the example depicted in Figure 4.14, if we only 

explore the right branch of the topmost node then ℓ is 1 which is clearly wrong and its 

coordinate will be mapped to a lower location than it is supposed to be. 

 

 

Figure 4.14. Virtual node depth in the hierarchy. Nodes are annotated with levels. 

 

One can determine the deepest cluster level ℓ for any given node ݒ by traversing its 

children recursively. Since our implementation is recursive, the precaution has been taken 
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to persist with the local maximum found at each branch. The technique is also known as 

depth first search [71] as implemented in Algorithm 4.3. 

 

1. procedure ܵܨܦሺݒ,  ሻ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

݄ݐ݌݁݀     .2 ൌ  /* .Keep track the local maximum */ ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

3.     while ݒ. ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ ሻ do 

݄ݐ݌݁݀         .4 ൌ ݄ݐ݌݁݀ ൅ 1 

5.         for ݆ ← 0 to ݒ.  then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

6.             ݀ ൌ  /* .Save children’s state */ ݄ݐ݌݁ܦݐ݊݁ݎݎݑܿ

݄ݐ݌݁݀             .7 ൌ .ݒሺܵܨܦሺݔܽ݉ ,ሺ݆ሻݐܣ݈݄݀݅ܥ ݀ሻ,  ሻ݄ݐ݌݁݀

8.         end for 

9.     end while 

10     return ݄݀݁ݐ݌ 

11. end procedure 

 

Algorithm 4.3 An algorithm that computes the depth of a virtual node in the 

hierarchy. 

 

Each cluster has been assigned a value called the centroid denoted as ߬ which is a 

value which represents the center of a cluster and does not necessarily serve as part of a 

data member of that cluster. A centroid is always a middle point between its left and right 

children. Recall that, centroid is a data value so it can be perfectly mapped to the ݕ 

coordinate with respect to a target variable ௜ܺ  for a given virtual node ݒ . Let ߚ be a 

constant representing the interval (aka width) between levels, the ݔ coordinate can be 

obtained by: 

ܺ௩ ൌ ܺ௑೔ ൅ ሺߚ ൈ ℓ௩ሻ 

Where ܺ௑೔ denotes the ܺ coordinate of a vertical axis for ௜ܺ in parallel coordinates 

(the implementation that was already provided in Algorithm 2.1) and ℓ௩ denotes the level 

(or depth) with respect to a given node. Accordingly, the ܻ coordinate is obtained by: 

௩ܻ ൌ ሺ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲ ௜ܺ, ߬௩ሻ 
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Where ܲ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ is a wrapper function of Equation 2.1 as provided earlier 

and ߬௩ denotes a centroid of  ݒ which was worked out from Equation 4.8. The algorithms 

are completely provided in Algorithm 4.4. Virtual nodes are always laid out from the top 

node so the usage is ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮሺ ଵܸ, ௜ܺሻ where ଵܸ and ௜ܺ are the top node and 

the target variable respectively. 

 

1. procedure ݏ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮሺݒ, ௜ܺሻ 

݊݋݅ݐܽݐ݊݁݅ݎܱ .2 ൌ  ݁݊݋ܰ

3. if ሺ݅ ൅ 1ሻ ൏ |ܺ| then 

݊݋݅ݐܽݐ݊݁݅ݎܱ     .4 ≔  ݐ݄ܴ݃݅

5. else 

݊݋݅ݐܽݐ݊݁݅ݎܱ     .6 ≔  ݐ݂݁ܮ

7. end if 

݄ݐ݀݅ݓ .8 ൌ 0 

9. if ܱ݊݋݅ݐܽݐ݊݁݅ݎ is ݐ݂݁ܮ then 

݄ݐ݀݅ݓ     .10 ൌ ቀܺ௑ሺ೔షభሻ െ ܺ௑೔ቁ 2.0⁄  

11. else 

݄ݐ݀݅ݓ     ,12 ൌ ቀܺ௑೔ െ ܺ௑ሺ೔శభሻቁ 2.0⁄  

13. end if 

14. ℓ௩ ൌ ,ݒሺܵܨܦ 0ሻ 

ߚ .15 ൌ ݄ݐ݀݅ݓ ሺℓ௩ ൅ 1ሻ⁄  /* Work out the width of the interval */ 

16. LayoutVirtualNodesሺݒ, ௜ܺ , ,݈ܽݒݎ݁ݐ݊݅  ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

17. end procedure 

18.  

19. procedure  LayoutVirtualNodesRecursiveሺݒ, ௜ܺ , ,ߚ  ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

ݐ݁ݏ݂݂݋ .20 ൌ 0 

21. if ܱ݊݋݅ݐܽݐ݊݁݅ݎ is ܴ݄݅݃ݐ then 

ݐ݁ݏ݂݂݋     .22 ൌ ሺߚ ൈ ℓ௩ሻ 

23. else 

ݐ݁ݏ݂݂݋     .24 ൌ െሺߚ ൈ ℓ௩ሻ 
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25. end if 

26. ௩ܻ ൌ ሺ݊݁݁ݎܿܵ݋ܶݐ݊݅݋ܲ ௜ܺ, ߬௩ሻ /* Work out the y coordinate here */ 

27. ܺ௩ ൌ ܺ௑೔ ൅  /* Work out the x coordinate here */ ݐ݁ݏ݂݂݋

28. for ݆ ← 0 to ݒ.  then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

29.     LayoutVirtualNodesRecursive ሺݒ. ,ሺ݆ሻݐܣ݈݄݀݅ܥ ,ߚ  ሻ݊݋݅ݐܽݐ݊݁݅ݎܱ

30. end for 

31. end procedure 

 

Algorithm 4.4. Algorithms of mapping a virtual node to the screen coordinate. 

The width defined in the algorithm is a maximal height and it is half way to the 

adjacent variable. Please refer to Figure 4.15 for clarity. 

 

 

Figure 4.15. Virtual node layout definitions. 

In addition, one should also note that the orientation is taken into consideration 

while transforming a virtual node into the screen coordinate. This is because the 

orientation for positioning virtual nodes for the last vertical axis shall face toward left 

rather than right as depicted in Figure 4.16. 
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Figure 4.16. Illustration of the virtual node layout. 

At this stage, the basic skeleton of the HVN has emerged. In the next section, a 

dendrogram will be constructed. Actually, the interactive part of the HVN is fully 

functioning without dendrogram but the sole purpose is to visualize a hierarchy for visual 

association of a virtual node with its parent and child nodes. 

4.3.5 Building a Dendrogram 

A dendrogram is a tree-like structure which is used to visualize the hierarchy of the 

clustering arrangement. The skeleton of a dendrogram can be materialized by connecting 

all the virtual nodes and the purpose is to provide a visual association between parent and 

child nodes. Let ݈ଵ݈ଶሬሬሬሬሬሬԦ denote a connection from a child to its parent node, there are two 

lines ݈ଵ and ݈ଶ required as shown in Figure 4.17.  

 

 

Figure 4.17 Connection of virtual nodes. 
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Given ݒ௖௛௜௟ௗ  and ݒ௣௔௥௘௡௧ , the start ߩଵ  and end point ߩଶ  of ݈ଵ  can be derived as 

follow: 

ఘܺభ ൌ ܺ௩೎೓೔೗೏ 

ఘܻభ ൌ ௩ܻ೎೓೔೗೏ 

ఘܺమ ൌ ܺ௩೛ೌೝ೐೙೟ 

ఘܻమ ൌ ܺ௩೎೓೔೗೏ 

Similarly, the start ߩଵ and end point ߩଶ of ݈ଶ can be written as follow: 

ఘܺభ ൌ ܺ௩೛ೌೝ೐೙೟ 

ఘܻభ ൌ ௩ܻ೎೓೔೗೏ 

ఘܺమ ൌ ܺ௩೛ೌೝ೐೙೟ 

ఘܻమ ൌ ܺ௩೛ೌೝ೐೙೟ 

A complete implementation of drawing a dendrogram is provided in Algorithm 4.5 

and again, we start the drawing from a topmost node. 

 

1. procedure ݉ܽݎ݃݋ݎ݀݊݁ܦݓܽݎܦሺݒሻ 

2.     while ݒ. ሺ݊݁ݎ݈݄݀݅ܥ݁ݎ݋ܯݏܽܪ ሻ do 

3.         for ݆ ← 0 to ݒ.  then ݐ݊ݑ݋ܥ݊݁ݎ݈݄݀݅ܥ

௖௛௜௟ௗݒ             .4 ൌ .ݒ  ሺ݆ሻݐܣ݈݄݀݅ܥ

5.             DrawLine൫ܺ௩೎೓೔೗೏, ௩ܻ೎೓೔೗೏, ܺ௩, ௩ܻ೎೓೔೗೏൯ 

6.             DrawLineቀܺ௩೛ೌೝ೐೙೟, ௩ܻ೎೓೔೗೏, ܺ௩೛ೌೝ೐೙೟, ௩ܻ೛ೌೝ೐೙೟ቁ 

7.             DrawDendrogramሺݒሻ 

8.         end for 

9.     end while 

10. end procedure 

 

Algorithm 4.5. An implementation of drawing a dendrogram. 

There are three types of nodes namely, global, data and virtual nodes. Figure 4.18 

provides a diagram describing their locations. The lowest cluster level is called a data 

node since it is a singleton cluster containing only a data point. The global node sits at 
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the root level that holds the hierarchical topology entirely. The rest are called the virtual 

nodes meaning that they are interpolated for interaction. Strictly speaking, a global node 

is implicitly a virtual node. 

 

 

Figure 4.18 Types of virtual node. 

4.3.6 Constructing Parallel Coordinates 

In this section, we will be discussing the geometric drawings and the integration of HVN 

into parallel coordinates. There are three geometric primitives currently provided in our 

parallel coordinates system namely, polyline, Bezier curve and Bezier virtual nodes. 

4.3.6.1 Polyline 

Polyline is a classic primitive adopted by Inselberg [13] as well as many parallel 

coordinates systems. A complete implementation of classic parallel coordinates has 

already been provided in Algorithm 2.1 so we will not repeat it here. 

A polyline is a simple way to model the path of a multidimensional data but it is 

often criticized in terms of its geometric discontinuity where user can only observe partial 

paths if they overlap. This problem is visualized in Figure 4.19. 

 



71 

 

 

 

Figure 4.19. Severities of the overlapped polylines.  (Top Left) No overlapping, 

(Top Right) Unable to observe ݌ଵ݌ଶ݌ଷሬሬሬሬሬሬሬሬሬሬሬሬሬԦ of the pink polyline. (Bottom Left) Unable to 

observe ݌ଶ݌ଷ݌ସ݌ହሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ of the pink polyline. (Bottom Right) Unable to observe others except 

the brown polyline. 

 

The implementation of polyline primitive is conceptually trivial and a snapshot of 

our system implementation is provided in Figure 4.20 

 

 

Figure 4.20. A snapshot of polyline primitive in our system. 
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4.3.6.2 Bezier Curve 

A Bezier curve [72] is a parametric curve with the mathematical basis based on the 

Bernstein polynomial [73]. Bezier curve is known as parametric in the sense that the path 

is controlled by a set of control points ܥ ൌ ሼ ଴ܲ, ଵܲ, … , ேܲିଵሽ and a parameter ݐ. Graham 

[74] has discussed an application of curve in parallel coordinates and the advantage is the 

dynamic path of oscillation which can be controlled by adjusting control points. By 

contrast, the path of a classic polyline is always static and there is no way to change it to 

avoid the overplot.  

The properties of a Bezier curve are listed as follows: 

 ଴ܲ and ேܲିଵ are the end points and lie on a curve. 

 Middle control points from ଵܲ to ேܲିଶ do not either pass through or lie on the 

curve as shown in Figure 4.21. However, the linear Bezier curve is an exception. 

 ଴ܲ ଵܲሬሬሬሬሬሬሬሬԦ is a tangent line ٣ at the point ଴ܲ. Similarily, ଶܲ ଷܲሬሬሬሬሬሬሬሬԦ is a tangent line ٣ at the 

point ଷܲ. 

 Invariance with affine transformation. 

 

 

Figure 4.21. Bezier curve with control points. 

Mathematically, a Bezier curve of degree ݊ is generally written as: 

ܲሺݐሻ ൌ ෍ ௜ܲ

௡ିଵ

௜ୀ଴

ൈ ௜ܤ
௡ሺݐሻ 

Equation 4.9 

Where ݐ  specifies a ratio along a line such that ݐ ∈ ሾ0,1ሿ and ܤ௜
௡  is a Bernstein 

polynomial expressed as: 
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௜ܤ
௡ሺݐሻ ൌ ௜ܥ

௡ሺ1 െ  ௜ݐሻ௡ିଵݐ

Where ܥ௜
௡ is a binomial coefficient given as: 

௜ܥ
௡ ൌ

݊!
݅! ሺ݊ െ 1ሻ

 

These theorems have been exhaustively discussed in the existing literature and 

widely accessible but we suggest, in particular, an excellent note written by Sederberg 

[75]. Equation 4.9 is a generalized expression and for a Bezier curve with a degree of 3, 

we can expand the polynomial to the following form: 

 

ሻݐሺܤ ൌ ሺ1 െ ሻଷݐ ଴ܲ ൅ 3ሺ1 െ ݐሻଶݐ ଴ܲ ൅ 3ሺ1 െ ଶݐሻݐ ଵܲ ൅ ଷݐ ଵܲ, ∀ ௜ܲ ∈ ሼ ௢ܲ, ଵܲ, … , ேܲିଵሽ 

Equation 4.10 

Recall that the nonlinear problem is often approximated linearly. The output of ܤሺݐሻ 

evaluates to a point which lies on a Bezier curve, as shown in Figure 4.22 for ݐ ∈ ሾ0,1ሿ. 

In general, a smaller step of ݐ generates a more smooth curve and vice versa. However, 

from a practical point of view, ݐ shall be chosen as just enough for smoothing a Bezier 

curve otherwise it will impact the memory usage and performance of the system. In our 

implementation, ݐ increments at an interval of 0.05 so ܤሺݐሻ is actually invoked 21 times 

to approximate just one Bezier curve segment. In Figure 4.24 provides an experiment 

with various interval values where 0.5 and 0.1 have produced a  ିܥଵ continuous curve 

since one can easily observe the discontinuities. 

 

 

Figure 4.22. Evaluation of points in a Bezier curve. 

In our approach, we construct a Bezier curve segment with 4 points where the start 

and end points are data points with respect to their target variables. For example, given a 
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multidimensional data row ܲ ൌ ሼ݀ଵ, ݀ଶ, … , ݀ெሽ , there are ܯ െ 1  Bezier curves 

constructed as ܾଵ ൌ ݀ଵ݀ଶሬሬሬሬሬሬሬሬሬԦ, ܾଶ ൌ ݀ଶ݀ଷሬሬሬሬሬሬሬሬሬԦ, … , ܾெିଵ ൌ ݀ெିଵ݀ெሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ . These Bezier curves are 

connected together to form a single ܥ଴ continuous curve, as illustrated in Figure 4.23. 

Alternative, there is another approach called B-spline curve, but it is more complex and 

will not be implemented here. 

 

 

Figure 4.23. Bezier curve segments. 
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Figure 4.24. Bezier curves with various intervals of ݐ.  The value of ݐ increments at 

an interval of 0.5, 0.2, 0.1 and 0.05 from the top to the bottom image. 
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4.3.6.3 Bezier Virtual Nodes 

Bezier virtual nodes is not a new geometric primitive. It is considered to be an extension 

of the Bezier curve by drawing non-uniform curve segments that must pass through 

virtual nodes to form a single curve. 

 

Definition 4.1  Knots are end points of a curve, the start and the end point. We say a 

curve is uniform if the knots are equally spaced and vice versa. 

 

The goal of the Bezier virtual nodes aims to prevent the overplot of the virtual 

nodes. One feasible way is to interpolate them as knots in a curve. Figure 4.25 illustrates 

the idea. 

 

 

Figure 4.25 Geometric drawing of the selected data.  (Left) A geometric drawing 

with overplot of the virtual nodes. (Right) A geometric drawing by treating virtual 

nodes as end points. 

 

The geometric basis is based on the previous section. Considering virtual nodes as 

knots, there are more Bezier curve segments generated by inserting knots and a Bezier 

virtual nodes curve is formed by connecting them all together, as illustrated in Figure 

4.26. 
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Figure 4.26. Bezier virtual nodes style drawing.  

The challenge of this drawing comes from the mapping for a mixture of virtual and 

data nodes to form a complete curve. Please refer to Figure 4.18 again for the definition 

of the node types. For example, suppose there are 10 data rows selected by a mouse click 

over a virtual node before the system can draw them, then it needs to work out  a complete 

path that it must pass through (which consist of ܰ virtual and data nodes just for a data 

row) and such task is far from trivial. 

This challenge is not an issue in the polyline and Bezier curve because their paths 

are formed without any consideration of the virtual nodes. In the following, we will 

describe how the system responds to a virtual node click and also how we have optimized 

our data structures to achieve high system performance. 

 

Tracing nodes in virtual space In our initial implementation, there were two separate 

data structures maintained, one for storing the data values in a data matrix ܦ and another 

one for virtual nodes which persisted in a tree structure denoted as ܶ. Given a virtual node 

at location ݒ௜ , the system had to cross reference ܦ  and ܶ  multiple times. The time 

consuming nature of this implementation was approximately ܱሺ݊ଷሻ  which is 

computationally expensive if a given dataset is considered large ܰ → ∞ . As a 

consequence, the system performance was poor. A better optimization is given in the 

following. 

 

Optimization by tracing the virtual node in data space One feasible performance 

improvement can be made by mapping a virtual node and its hierarchical level to a 
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corresponding data point and virtual dimension respectively. In other words, the 

additional data of ℓ ൈ  dimensions are added to the dataset with respect to ௜ܺ where the ܯ

size of ℓ is equal to the number of levels. Thus, the data matrix ܦ needs to be redefined 

with respect to each variable ௜ܺ as: 

ܦ ൌ ሼܦଵ,… , ெሽܦ ∪ ሾℓ ൈ  ሿܯ

The greatest advantage of this implementation is the ability to treat virtual nodes 

and real data points consistently but it comes at the cost of space complexity. However, 

we are mainly concerned with reduction of the time complexity to achieve a reasonable 

response time for better user experience.  

The data table in Figure 4.27 illustrates the conceptual implementation which 

contains one data dimension and three visual dimensions shaded in black and blue colors 

respectively. Recall that, a virtual dimension is inserted to represent each level in the 

hierarchical clustering. The ܰܽܰ means a null node and does not represent any end point 

in a geometry. For example, there are two null nodes in the fourth row of the data table 

so the algorithm will draw only one line segment. Note that, if a ܰܽܰ appears in a normal 

dataset it is called missing data. Dealing with missing data is outside the scope of this 

thesis hence they will be removed in the preprocessing step for simplicity.  

 

 

Figure 4.27 Redefinition of a data matrix. The data matrix is redefined to support the 

storage of the virtual node and virtual dimension. 

 

Suppose, if D1 (P2 with a value of 18.25) and D2 (P1 with a value of 2)  in Figure 

4.28 are clicked then the top three rows and bottom two rows are selected. Thus, we only 

need to translate the data points to the screen coordinates since the virtual nodes have 
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already been stored in the matrix ܦ. One can see that such optimization greatly simplifies 

the overall problem by completely removing the cross references between separate data 

structures. 

 

 

Figure 4.28 An illustration of geometric mapping of data and virtual node to 

parallel coordinates. 

Following the procedures described above, we can obtain the result as illustrated in 

a snapshot from our system in Figure 4.29. 

 

 

Figure 4.29. A snapshot of the Bezier virtue nodes drawing in our system. 
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Interestingly, by comparing these 3 drawings with a dataset which contains 58776 

(12 ൈ 4898) data points, we were surprised that the Bezier virtual node incurs less visual 

clutter due to its hierarchical arrangement of the curves and the result is also shown in 

Figure 4.30 where the geometric primitives are polyline, Bezier curve and Bezier virtual 

nodes for the top, middle and bottom image respectively. It is obvious that the rendering 

by the Bezier virtual nodes can reduce the overplot of the visualization. 
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Figure 4.30. Comparison of the overplot severity between geometric primitives. 
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4.3.7 Overview Presentation by Virtual Nodes Density 

All the technical implementations of the HVV have been fully described above and a real 

snapshot of the system is illustrated in Figure 4.31. By default, our overview hides all the 

geometric objects except the virtual nodes. Thanks to the virtual nodes, we are able to 

modify the Visual Information Seeking mantra proposed by Shneiderman [56] from 

overview first to overview first by virtual nodes. This allows the user to perceive the 

distribution of the data density through the distribution of the virtual nodes in an elegant 

way. 

 

 

Figure 4.31. Overview presentation of the HVN in parallel coordinates. 

Alternatively, the observation of the density distribution can be achieved by 

embedding histogram to parallel coordinates and it was actually our initial consideration. 

However, we have soon realized that the virtual nodes provide a better way of perceiving 

the data density in reality. Nonetheless, an analysis of the histogram will be provided 

below. 

 

Histogram [76] is the simplest nonparametric method for estimation of the data 

distribution of a random variable. Figure 4.32 provides an example of the histogram for 

visualizing data distribution. 
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Figure 4.32. An illustration of ordinary histograms.  The bin size and width are the 

most crucial factors that determine the shape of the histogram. For example, the shape 

of the data distribution has changed from 8 (left) to 4 bins (right). The discontinuities 

are the artifact of the chosen bin size. 

 

The procedure of the histogram begins by classifying data univariately into bins and 

then counting the occurrence of each disjoint bin ܤ ൌ ሼܾଵ ∪ ܾଶ ∪ …ܾேሽ ∶ ܾ௜ ∩ ௝ܾ ൌ

∅, ݅ ് ݆. The following equation is used to find the number of bins. 

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ

݄
 

Equation 4.11 

Where h denotes the bin width. The choice of proper width h is difficult since the 

variance is not unity. To address this problem, one can alternatively work out the optimal 

k first by Sturges’s [77] formula as follows: 

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ
ଶܰ݃݋݈ ൅ 1

 

Equation 4.12 

By substituting k obtained in Equation 4.12 back to Equation 4.11 to work out the 

bin width h. It defines the cut point for counting the data occurrence fall within a bin 

range expressed as follows: 

൫ܺ௠௜௡ ൅ ሺ݄ ൈ ݅ሻ൯ ൏ ݀ ൑ ቀܺ௠௜௡ ൅ ൫݄ ൈ ሺ݅ ൅ 1ሻ൯ቁ 

Equation 4.13 
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Where i denotes the bin index and ܺ௠௜௡ is the minimum value of a target variable 

௝ܺ. If the range condition specified in Equation 4.13 has met for a given data point d then 

we simply increment the cardinality as ݊௜ ← |ܾ௜| ൅ 1  where ݊௜  holds the number of 

samples in bin ܾ௜. The histogram density function for estimating a data point is therefore 

given as: 

መ݂ሺ݀ሻ ൌ
݊௜
݄݊

 

Where the width of ܾ௜ must straddle the data point d and it can be easily determined 

by using Equation 4.13 and n and h denotes the total samples and bin width respectively. 

The probability of a data point which falls within the width of a bin is given as 	

௜݌ ൌ න ݂ሺ݀ሻ
௕೔

 ݔ݀

The parallel coordinates system implemented by Hauser el al. [32] embeds the 

histogram as shown in Figure 4.33. However, such as approach significantly increases 

the visual loading of overall visualization by displaying a mixture of geometric objects 

and histograms simultaneously. In contrast, our overview first by virtual nodes approach 

presents an uninterrupted way of perceiving the data density. 

 

 

Figure 4.33. A parallel coordinates with histograms embedded.  The image is 

collected from [32]. 
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4.4 Performance 

A system has been successfully implemented which was written in C# and OpenGL 

Shader Language (GLSL) in order to gain GPU hardware acceleration. The Open Tookkit 

library (OpenTK) [78] is used for OpenGL binding by exposing C functions to C#. The 

technology is also called Interop in .NET. The performance benchmarking is based on 

the hardware platform depicted in Figure 4.34. 

 

 

Figure 4.34. Hardware environment for benchmarking.  

There are 4 datasets used in benchmarking and the performance metric has been 

provided in Table 4.4. The frame per second (FPS) is an important counter since it affects 

the responsiveness of the visualization when responding to a user request. In most cases, 

the FPS can satisfy the request except the NYTS dataset where all the geometric 

primitives are set to visible and then the FPS will suddenly drop to 9. Note that, FPS 

(Geometric primitives invisible) means visualization is in an initial state as shown in 

Figure 4.31. 
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Dataset Size 

ሺࡹ ൈ  ሻࡺ

FPS (Geometric 

primitives invisible) 

FPS (Geometric 

primitives visible) 

Car 8 ൈ 392 477 334 

Wage 11 ൈ 534 730 476 

Wine 12 ൈ 4898 113 65 

NYTS 116 ൈ 14776 81 9 

 

Table 4.4. Performance measurements of the system.  Car and Wage datasets 

were obtained from http://lib.stat.cmu.edu/datasets/, the source of the Wine dataset is 

https://archive.ics.uci.edu/ml/datasets/Wine and NYTS dataset was obtained from 

http://www.cdc.gov/tobacco/data_statistics/surveys/nyts/. 

 

4.5 Discussion 

In summary, this chapter presents a novel technique to interact with data in parallel 

coordinates. We described several data selection models but they generally do not work 

well in multidimensional space. The basic idea behind HVN is to interpolate virtual nodes 

directly in parallel coordinates for hierarchical data selection. A node structure is an 

intuitive interface of interaction because it has a duality of data and coordinates. Overall, 

the HVN is a revolutionary way of data selection which provides a truly direct interaction 

with data and is also effective under the circumstances of overplotting and visual clutter. 

It is also a core technique in our interactive framework in which all the interactive tasks 

are built on the basis of it. To recall the advantages and features of the HVN, please refer 

to Table 4.2 and Table 4.3.  
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Chapter 5 Interactive Techniques for Visual 

Analytics 

In this chapter, we will focus on the HVN-oriented interactions in visual analytics. With 

the advent of the visual analytics, we have noted the Visual Analytics mantra described 

by Keim [11] as: 

 

Analyze first, show the important, zoom, filter and analyze further, details on 

demand. 

 

Obviously, it is based on the Visual Information Seeking mantra proposed by 

Shneiderman [56]. Keim [79] which also describes the process of visual analytics as: 

 

The visual analytics process is a combination of automatic and visual analysis 

methods with a tight coupling through human interaction in order to gain knowledge from 

data. 

 

This mantra reinforces the importance of iterative analysis and interaction in 

connection with attempts to explore a dataset because a fully automatic data analysis can 

only be accomplished if the problems are well-defined and this is usually not possible in 

most real world cases. Therefore, the user remains the final decision maker to drive the 

direction of the whole process through the iterative interactions with a visualization. 

Recall that we have merged Yi et al.’s [14] seven layers model into three so the following 

sections will focus on our three layers model. 

5.1 Task by Dynamic Selection 

Interactive data selection is an indispensable component of an effective visualization. It 

improves the usability by accurately translating the intention of mouse operations into a 

selection query for data manipulation. Many parallel coordinates visualizations claiming 
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to be interactive did not really focus on the Select interaction; layer 1, defined by J. S. Yi 

el al. [14]. Overall, there are so far none of the existing techniques that could well achieve 

the functions covered by the Select layer of J. S. Yi’s [14] seven-layer interaction model 

or the Highlighting (or Selection) layer defined. Perhaps, it is too difficult to have mouse 

click (or selection) on the data item which is virtually represented by a polyline (or curve) 

in strongly overlapped parallel coordinates. 

The HVN is the core technique of data selection in our model. It helps users to 

perform subsequent analytics tasks in an efficient and practical manner. In the following 

sections, we will describe some tasks in the dynamic selection layer based on the HVN.   

5.1.1 Interact with Data by the HVN 

Materializing a point selection model in parallel coordinates is one of contributions that 

the HVN has made. The use case of HVN simply requires a mouse click on a target node 

of interest. Recall that again, virtual nodes storage has been optimized in Section 4.3.6.3 

for tracing a complete end-to-end path of a virtual node efficiently. Given a random 

mouse click captured at the location ሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ. We know that a virtual node is 

strictly placed on an interval boundary ߚ  such that ߚ ൌ ݄ݐ݀݅ݓ ሺℓ௩ ൅ 1ሻ⁄  and this 

equation was already defined in Algorithm 4.4. With this information, we can apply the 

function below for querying which variable and level ℓ to search for in the data matrix ܦ. 

݂ሺ ௜ܺ, ܺ௠௢௨௦௘ሻ ൌ ቐ
݅												෍ܺ௑೔ ൅ ൫݅ ൈ ௑೔൯ߚ ൌ ܺ௠௢௨௦௘

௜ୀ଴

: ܺ௑೔൫݅ ൈ ௑೔൯ߚ ൏ ܺ௑೔శభ

െ1																																																																																			݁ݏ݅ݓݎ݄݁ݐ݋

 

Equation 5.1 

Where ݅ denotes a relative offset with respect to its base ௜ܺ  and െ1 indicates an 

invalid index because the negative value cannot be used to index a matrix column. 

Suppose ௜ܺ, ܺ௑೔, ܺ௠௢௨௦௘ are Dimension1, 200 and 210 respectively and let ߚ௑೔ be 5. The 

above function returns ℓ ൌ 2 which translates to an offset starting from ௜ܺ for looking up 

 The next step involves building a range query by transforming ௠ܻ௢௨௦௘ to a data value .ܦ

denotes as ݀௠௢௨௦௘ . The value transformation can be easily achieved by rewriting 

Equation 2.1 as: 
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݀௠௢௨௦௘ ൌ ቆ
൫ ௠ܻ௢௨௦௘ െ ௑ܻ೔൯ ൈ ൫݉ܽݔ௑೔ െ ݉݅݊௑೔൯

௑೔ݐ݄݄݃݅݁
ቇ ൅ ݉݅݊௑೔ 

Equation 5.2 

Suppose ௠ܻ௢௨௦௘ , ௑ܻ೔ ௑೔ݔܽ݉ , , ݉݅݊௑೔  and ݄݄݁݅݃ݐ௑೔  are 90.8, 0, 20, 1 and 100 

respectively. The above equation returns ൎ 18.25. Now, we are able to query the data 

matrix ܦ with the following pseudo query expressed as: 

 

SELECT ROWS FROM Dimension1 WHERE ℓ ൌ 2 AND ݀ ൌ 18.25 

 

Of course, the query above is used for illustration purpose and is not an actual case. 

We shall obtain 3 data rows as illustrated in Figure 5.1. Please note that ℓ ൌ 0 returns a 

real data value rather than a virtual data (which represents a virtual node). 

 

 

Figure 5.1. Data query in the HVN. It shows the mapping of the real data and virtual 

data to the parallel coordinates. 

 

The implementation for the procedure of querying selected data is provided in 

Algorithm 5.1. 

 

1. procedure ݐݏ݁ܶݐ݅ܪሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ 

2.     Υ ൌ ∅ /* A list of selected row indices, initialize to empty. */ 

3.     for each ௜ܺ in ܺ 

4.         ℓ ൌ ሺܺݐݏ݁ܶݐ݅ܪ ௜ܺ, ܺ௠௢௨௦௘ሻ 
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5.         if ℓ ൒ 0 then 

6.             ݀௠௢௨௦௘ ൌ ሺܻݐݏ݁ܶݐ݅ܪ ௜ܺ, ௠ܻ௢௨௦௘ሻ 

7.             for ݅ ൌ 0 to |ܦ| 

8.                 if ܦሾ݅, ℓሿ ൌ ݀௠௢௨௦௘ then 

9.                     Υ ⟵ ݅ 

10.             end for 

11.         end if 

12.     end for 

13.     return 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 

14. end procedure 

 

Algorithm 5.1. An algorithm for hit test. 

Where ܦ , ሾ∗ሿ ܺݐݏ݁ܶݐ݅ܪ ,  and ܻݐݏ݁ܶݐ݅ܪ  denote a global data matrix, indexing 

operation and the wrapper functions for Equation 5.1 and Equation 5.2 respectively. The 

output is a tuple 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 which holds a target variable, selected row indices, base 

column index for ௜ܺ , and relative offset from its base ℓ௑೔  for indexing a virtual node. 

Please refer the notations in Figure 5.2 for clarity. 

 

 

Figure 5.2. Notations used for query the global data matrix. 
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Where ℓ௑೔ is a static value associated with ௜ܺ and ℓ is obtained by translating the 

 coordinate of a mouse click to an index relative to ℓ௑೔ in the runtime. The tuple answers-ݕ

enough technical questions below for us to look up ܦ. 

1. What is the target variable ௜ܺ? 

2. How many row are selected as well as their indices? 

3. If a selected node is a data node such that ℓ ൌ 0, we use ℓ௑೔, otherwise it is a 

relative offset from ℓ௑೔ such that ℓ௑೔ ൅ ℓ (see Figure 5.1). 

Since we are equipped with all the information provided by the tuple, the next step 

is to look up the data values and transform them into the screen coordinates connected by 

a geometric primitive. In Figure 5.3, we have demonstrated the operation of direct data 

selection by clicking on a virtual node as indicated in the top image and the middle and 

bottom diagrams show the selected data in polyline and Bezier virtual nodes styles. Note 

that, we only need to transform virtual data into screen coordinates if the specified 

geometric primitive are Bezier virtual nodes otherwise we skip them.  

In general, the HVN completely changes the way that user interacts with data 

directly in parallel coordinates which is more simple, intuitive and accurate than any 

existing techniques. 
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Figure 5.3. Direct data selection via a virtual node. 
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5.1.2 Dynamic Brushing via HVN 

Brushing is commonly used to discern multidimensional data patterns by visual 

differentiation. In 1994, Ward [36] first proposed a concept of ܰ dimensional brushing 

that can be used to highlight ܰ dimensional data items which fall within a user-specified 

subspace (or sub-region) in either scatterplots or parallel-coordinates. By using brushing, 

a subset of data items (polylines) within specified value ranges of one or more dimensions 

can be highlighted (or focused) for viewing the structure of data patterns. This allows 

users to gain insights into the spatial relationships of ܰ  dimension. Lately, several 

alternative brushing methods have been proposed in the parallel coordinates visualization. 

For example, Hauser et al. [32] in 2002 presented a concept of angular brushing as an 

extension of Ward’s standard brushing to facilitate data subsets grouping and highlighting 

by a technique called angular constraint. Both techniques integrated the composite 

brushing and focus+context technique to further improve the visual exploration in parallel 

coordinates. In 2003, Yang et al. [45] contributed an automatic and manual brushing 

mechanism to the parallel coordinate geometry called Visual Hierarchical Dimensionality 

Reduction (VHDR).  

Nowadays, brushing has become an integral component in parallel coordinates. Our 

system equipped with the HVN has provided an excelling interface for users to carry out 

such tasks with the simple steps as follows: 

1. Observe the data density through the distribution of the virtual nodes, 

2. Apply the color, 

3. Click on a target node of interest, and 

4. Go to step 1 if the task is not yet finished. 

One can see that the contribution of the HVN greatly enhanced the interactivity and 

usability of the parallel coordinates. In other models, this can be cumbersome. For 

example, one gets to first figure out the maximal and minimal values of a data group for 

value range filtering in value range model before brushing. 
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Figure 5.4 shows the outcome of brushing from the procedures described above 

which only took approximately ൎ16 seconds to brush 5 data groups and the time was 

mostly spent on choosing the next color. Of course, the timing can be considerably 

reduced by random coloring. That is, a distinctive color is generated after every brushing 

operation. 

 

 

Figure 5.4. Brushing task via the HVN. 

The overplot issue is always challenging especially when attempting to brush a 

large dataset in parallel coordinates. For example, a rendered geometric primitive can be 

drawn again with a different color in a subsequent rendering and then it eventually ceases 

to exist. However, such problems exist in almost all visualizations and not just parallel 

coordinates. Alternatively, alpha blending is often employed to reveal the density. 

 

Alpha blending  [80] is an image compositing technique and the process involves mixing 

a source and background color together with a “blending ratio” (a.k.a alpha channel) to a 

destination pixel. The color component of a pixel can be represented by a 32-bit integers 

ሺܴ, ,ܩ ,ܤ ܣ ሻ whereܣ ∈ ሾ0,1ሿ holds an alpha channel. Let ܴܤܩ௦ and ܣ௦ denote the source 

color and alpha respectively. The resulting color can be obtained by: 

ߙ ൌ ௦ܣ ൅ ௗܣ ൈ ሺ1 െ  ௦ሻܣ

ܤܩܴ ൌ ሺܴܤܩ௦ ൈ ௦ሻܣ ൅ ൫ܴܤܩௗ ൈ ௗሺ1ܣ െ ௦ሻ൯ܣ ⁄ߙ  

Equation 5.3 
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Where ߙ must be greater than zero, if not, simply output the black color (ܴܤܩ ൌ 0) 

in the destination pixel. Figure 5.5 demonstrates an application of alpha blending in our 

system where it is obvious that the top diagram reveals a heavily over-plotted view but 

the bottom one has uncovered a major pattern after applying an alpha value of 0.01. 

Basically, that means some geometric objects are invisible due to insufficient density.  

 

 

Figure 5.5. Alpha blending for uncovering a major pattern.  

One significant drawback of alpha blending is the configuration of the ߙ value is 

really empirical and more specifically, the data density is relative to the dataset size. For 

example, Figure 5.6 shows results for ߙ values of 0.7, 0.1, and 0.01 for the top, middle 

and bottom diagrams respectively. A lower ߙ value eases the overplotting issue but low 

density patterns tend to be illegible due to high transparency. This may not be desirable 

if the low density pattern is really statistically significant. 
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Figure 5.6. Comparison of alpha blending with various alpha values. 
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5.1.3 Highlighting Detail on Demand 

In a typical visual analytics, the user’s interest over a subset of data is constantly changing 

so the rest implies the data noise. Details on demands is a feature in our system that allows 

users to indicate an area of interest to be stand out from the noise. 

Details on demands is the last step in the Visual Information Seeking mantra 

because details implies the quality (interested data to highlight) and not the quantity 

(number of data to highlight). Let ሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ and ݐ denote the location of a mouse 

click and a threshold for the number of data that can be highlighted at a time. Furthermore, 

let ܶ ൌ 〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 be a tuple that holds 4 elements returned from the ݐݏ݁ܶݐ݅ܪ function 

defined in Algorithm 5.1. The conditional function defined below returns a Boolean to 

indicate whether a highlighting operation can proceed or not, by our system. 

,ሺܺ௠௢௨௦௘ݐ݄݈݄݃݅݃݅ܪ݊ܽܥ ௠ܻ௢௨௦௘ሻ ൜
|ሾ1ሿܶ|															݁ݑݎݐ ൑ ݐ
 ݁ݏ݅ݓݎ݄݁ݐ݋												݁ݏ݈݂ܽ

Equation 5.4 

Where |∗| means a cardinality and ܶሾ1ሿ is an indexing operation for the second 

element in tuple ܶ. The activation of the details on demand task slightly differs from data 

selection. The user needs to hover a mouse cursor over an interested virtual node for 

activating this task. Figure 5.7 provides a screenshot for the task taken from our system. 

 

 

Figure 5.7. An application of detail on demand. 
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5.1.4 Discussion 

A key point that we keep highlighting throughout this work is that, the HVN changes the 

way to interact with data in parallel coordinates. All the tasks described in this section 

only require a mouse click or hovering directly over a virtual node. In summary, the HVN 

is really an efficient and intuitive way to select data in our empirical study that would 

otherwise have been cumbersome by manipulating through a separate widget.  

5.2 Task by Dynamic Viewing 

The dynamic viewing layer that merges layers 3, 4 and 5 of Yi’s model, allows users to 

change the way of data representations for achieving better readability or understanding 

of the data and its relational structures. In the following sections, we will discuss the local 

and global drill-down to achieve the details on demand with case studies. In addition, an 

analytics task of probability density estimation for the visual analytic will also be 

introduced. 

5.2.1 Hierarchical Local Drill-Down 

To the best of our knowledge, the term drill-down was first referenced in parallel 

coordinates by Fua et al. [35] in 1999, and is described as: 

 

 A process of viewing data at a level of increased detail.  

 

Zooming is one aspect of drill-down and probably the simplest zooming is classic 

zooming which scales all the graphic objects proportionally with respect to a zooming 

factor. For advanced zooming, Stolte et al. [81] described a technique of multiscale which 

is capable of displaying multiple zooming paths for both data and visual abstraction. 

Multiscale is particularly useful for exploring multiple hierarchies simultaneously. For a 

great taxonomy of zooming techniques, one can refer to a study conducted by Cockburn 

et al. [82].  
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Local drill-down enables users to scrutinize interested subsets of data and our 

technique is similar to multiscaling by changing the context of a target variable while 

rests remain fixed. The local drill-down operation is again tightly integrated with the 

HVN. A conceptual illustration of local drill-down is provided in Figure 5.8 where a 

brown node indicates a selected virtual node.  

 

 

Figure 5.8. Hierarchical local-drill-down.  Local drill-down is achieved by changing 

the maximal and minimal range of a target variable and rests are fixed. 

 

Technically, local drill-down is achieved by triggering the view change for a 

variable ௜ܺ  through the adjustment of its maximal and minimal range because all the 

geometric objects are always positioned relatively to that scale. Recall that a data 

selection (see Section 5.1.1) returns Υ which holds a list of selected row indices. In 

addition, the global data matrix ܦ contains a mixture of real and virtual data (see Section 

4.3.6.3), so for simplicity, we skip offset computation here and assume ݅ can index a 

column vector for ௜ܺ  in ܦ. The procedure of a local drill down is therefore given in 

Algorithm 5.2. 

 

1. procedure ݊ݓ݋ܦ݈݈݅ݎܦ݈ܽܿ݋ܮሺܺ௠௢௨௦௘, ௠ܻ௢௨௦௘ሻ 

2.     〈 ௜ܺ, Υ, ℓ௑೔, ℓ〉 ൌ ,ሺܺ௠௢௨௦௘ݐݏ݁ܶݐ݅ܪ ௠ܻ௢௨௦௘ሻ 

3.     if |Υ| ൐ 0 then 

4.         if ℓ ൌ 0 then 
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5.             /* Data node is selected so set max and min to the data value. */ 

௑೔ݔܽ݉             .6 ൌ ,Υ଴ൣܦ ℓ௑೔൧ 

7.             ݉݅݊௑೔ ൌ ,Υ଴ൣܦ ℓ௑೔൧ 

8.         else 

௑೔ݔܽ݉             .9 ൌ max
௝∈஌

൛ൣܦΥ௝, ݅൧ൟ /* Compute the new maximum. */ 

10.             ݉݅݊௑೔ ൌ min
௝∈஌

൛ൣܦΥ௝, ݅൧ൟ /* Compute the new minimum. */ 

11.         end if 

12.     end if 

,ݒሺݏ݁݀݋݈ܰܽݑݐݎܸ݅ݐݑ݋ݕܽܮ     .13 ௜ܺሻ 

14. end procedure 

 

Algorithm 5.2. Local drill-down algorithm. 

Where LayoutVirtualNodes was defined in Algorithm 4.4 and the virtual node can 

simply be repositioned relative to the new range as depicted in Figure 5.9 where we have 

reproduced Equation 2.1 for clarity. The logics in our system have been divided into data 

and visual operations, so we only have to adjust the data values and the drawing 

procedures defined in Section 4.3.6 will perform the rests such as screen coordinate 

transformation. 

 

 

Figure 5.9. Remapping maximal and minimal values in local drill-down. 
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Local drill-down facilitates the exploration of a multidimensional dataset by 

allowing users to focus on the details of a variable while other remain fixed. A case study 

that specifically demonstrates the usefulness of the local drill-down will be presented in 

Section 7.1. 

5.2.2 Hierarchical Global Drill-Down 

Global drill-down is similar to local drill-down but instead of adjusting the numerical 

span for a variable, global drill-down adjusts the ranges for all the variables. It can be 

easily extended based on the detail described in Section 5.2.1. Global drill-down is 

suitable for rapid pattern discovery where the user just wants to focus on a view with full 

respect to numerical ranges from the selected data subset. A case study that specifically 

demonstrates the usefulness of the global drill-down will be presented in Section 7.2. 

5.2.3 Probability Density Estimation 

Probability density estimation is an advanced task exposed in our dynamic viewing layer 

which also corresponds to Encode layer in Yi’s [14] seven-layer of visual interaction. In 

visual analytics, many problem domains involve the visualization of density estimation 

given a random variable. The term estimation is used in such a way that datasets were 

often collected on the basis of finite observations, that is, they are a small subsets of an 

entire population. Recall that, even though virtual nodes provide the density distribution 

they do not give smoothing nor estimation.  

Histogram (see Section 4.3.7) is the simplest method of plotting data density but 

the artifact is largely dependent on the bin width and therefore the distribution can be 

artificially distorted due to a poor bin width chosen. Alternatively, kernel density 

estimation is often adopted. 

 

Kernel Density Estimation (KDE) [83] [84] is probably the most popular nonparametric 

method for probability density estimation in many scientific applications. Let ௜ܺ  be a 

random variable, its probability density can be estimated by the kernel density estimator 

introduced by Rosenblatt [83] as: 
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መ݂ሺ݀ሻ ൌ
1
݄ܰ

෍ܭ൬
݀ െ ௜ܦ
݄

൰

ே

௜ୀଵ

, ܦ∀ ∈ ௜ܺ 

Equation 5.5 

In a more generalized form, it is often expressed as: 

መ݂ሺ݀ሻ ൌ
1
ܰ
෍ܭ௛ሺ݀ െ ௜ሻܦ
ே

௜ୀଵ

 

Where ܭሺݔሻ is a univariate kernel function and d denotes the data value to be 

estimated. h is the smooth parameter or also known as bandwidth that controls the 

smoothing. For multivariate kernel density estimation, Equation 5.5 can be rewritten as 

መ݂ሺ݀ሻ ൌ
1
ܰ
෍ෑ ௝݄

ିଵ

ெ

௝ୀଵ

ܭ ቆ
݀ െ ௜௝ܦ

௝݄
ቇ

ே

௜ୀଵ

 

Where ݆ refers to the subscript of the target variable in the multidimensional dataset. 

A kernel is a weighted function and the choosing of bandwidth h is crucial to the shape 

of the function. In general, the properties of a kernel function should be symmetric around 

zero and integrating to one as described by Hardle and Linton [85]: 

ሻݔሺܭ ൌ ሻݔሺܭሻ;නݔሺെܭ ݔ݀ ൌ 1 

Where ܭሺݔሻ ൒ 0 . Therefore, any functions satisfying these properties can be 

regarded as kernel functions in KDE. In general, there are six common kernels [85] and 

we have reproduced them in Table 5.1. 

 

Kernel ࡷሺࢊሻ 

Epanechnikov 3
4ൗ ሺ1 െ ݀ଶሻ for |݀| ൑ 1 

Quartic 15
16ൗ ሺ1 െ ݀ଶሻ for |݀| ൑ 1 

Triangular ሺ1 െ |݀|ሻ for |݀| ൑ 1 

Gauss 2ିߨଵ ଶ⁄ ݌ݔ݁ ቀെ݀
ଶ

2ൗ ቁ 

Uniform 1
2ൗ  for |݀| ൑ 1 

 

Table 5.1. Six common kernel functions. The table content is based on [85]. 
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The Gaussian kernel with zero mean and unit variance is the most popular kernel 

and it gives more weight to these data ܦ ∈ ௜ܺ close to d than those away from it. Gaussian 

is also the kernel that we have applied in the algorithm. 

 

Bandwidth selection  The choice of bandwidth h is crucial to the shape of the density 

estimation. The study conducted by Silverman [86] had also shown that the choice of a 

kernel does not significantly influence the degree of smoothing but instead it is largely 

controlled by the bandwidth. The smaller bandwidth produces smaller bin width which 

implies acute variance with reduced bias and vice versa. Let ݄௢௣௧  denote the optimal 

bandwidth, Figure 5.10 shows the comparison of smoothing produced by various 

bandwidths as ݄௢௣௧ (blue), ݄௢௣௧ 4⁄  (red) and 4 ൈ ݄௢௣௧ (green). 

  

 

Figure 5.10. Comparison of different bandwidth selection in KDE.  The settings of 

bandwidth are ݄௢௣௧ (blue),  ݄௢௣௧ 4⁄  (red) and 4 ൈ ݄௢௣௧ (green). The MATLAB function 

ksdensity was used with the bandwidths above to produce the result where ݄௢௣௧ is 

computed by ksdensity. 

 

If we choose ݄ ൌ ݄ሺܰሻ as a function of N which denotes the number of samples. 

Parzen [84] has shown us that the expected value of ௛݂
෡ ሺݔሻ is: 

ܧ ቀ ௛݂
෡ ሺݔሻቁ ൌ

1
݄ܰ

෍
1
݄
ܧ ቆܭ ൬

ݔ െ ௜ܺ

݄
൰ቇ

ே

௜ୀଵ

ൌ
1
݄
නܭ ቀ

ݔ െ ݕ
݄

ቁ ݂ሺݕሻ  ݕ݀
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Equation 5.6 

As we know that KDE is always biased, the common way of choosing a bandwidth 

is to minimize the Mean Integrated Square Error (MISE) [83] that is given as:  

ܧܵܫܯ ቀ ௛݂
෡ ሺݔሻቁ ൌ නቀܧ ௛݂

෡ ሺݔሻ െ ݂ሺݔሻቁ
ଶ
 ݔ݀

Where ௛݂
෡  denotes the kernel estimate. By introducing integrated bias and variance 

terms, the above MISE can be rewritten as: 

൫ܧܵܫܯ ௛݂
෡ ൯ ൌ නܸܴܣ ቀ ௛݂

෡ ሺݔሻቁ ݔ݀ ൅ නݏܽ݅ܤ ቀ ௛݂
෡ ሺݔሻቁ

ଶ
 ݔ݀

Equation 5.7 

Where Bias is a Taylor series expansion of density estimation expressed as: 

ݏܽ݅ܤ ቀ ௛݂
෡ ሺݔሻቁ ൌ

݄ଶߤଶሺܭሻ݂ᇱᇱሺݔሻ
2

൅  ሺ݄ଶሻ݋

Equation 5.8 

Where K is a kernel function. Similarly, VAR is given as: 

ܴܣܸ ቀ ௛݂
෡ ሺݔሻቁ ൌ

ܴሺܭሻ݂ሺݔሻ
݄ܰ

൅ ݋ ൬
1
݄ܰ

൰ 

Equation 5.9 

Where 

ܴሺܭሻ ൌ නܭଶ ሺݔሻ  ݔ݀

Equation 5.10 

Equation 5.10 is the kernel variance as noted by Wand and Jones [87] . Obviously, 

one should expect smaller variance when h increases from Equation 5.9 which also 

corresponds to our observation in Equation 5.6 above. 

By substituting Equation 5.8 and Equation 5.9 back to Equation 5.7, Parzen [84] 

has shown that the bandwidth h that minimizes MISE can be written as: 

݄ெூௌா ൌ ቆ
ܴሺܭሻ

ܴሺ݂ᇱᇱሻߤଶሺܭሻଶ
ቇ
ଵ ହ⁄

ܰିଵ ହ⁄  
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Equation 5.11 

Where ݄ெூௌா holds the optimal bandwidth. One problem of Equation 5.11 is that it 

cannot be used directly because it contains an unknown term ܴሺ݂ᇱᇱሻ which measures the 

speed of the curvature. To address this issue, there are many methods that have already 

been developed such as plug-in [88] and cross-validation [89]. The rules of thumb [86] is 

one of the pug-in techniques and we have applied as the bandwidth selector since our 

kernel is Gaussian. 

In the rules of thumb, the unknown term ܴሺ݂ᇱᇱሻ of ݄ெூௌா is replaced by a reference 

known as the normal distribution for the Gaussian kernel and by substituting it into 

Equation 2.1. Silverman [86] had also shown that it is reduced to: 

݄ெூௌா ൌ ቌ

1
ߨ√2
ൗ

3
8ൗ ଵିߨ ଶ⁄ ହିߪ

ቍ

ଵ ହ⁄

ൌ ଵିܰߪ1.06 ହ⁄  

Equation 5.12 

The implementation of KDE with optimal bandwidth is provided in Algorithm 5.3. 

 

1. function ܧܦܭሺܭ, ݀, ௜ܺሻ 

2. // K – kernel function pointer. 

3. // d – the data point to be estimated. 

4. // ௜ܺ – the univariate variable. 

5. begin 

6.     ݄ ൌ 1.06 ൈ ௑೔ߪ ൈ | ௜ܺ|ି଴.ଶ 

݉ݑݏ݇     .7 ൌ 0 

8.     /* Iterate through each data point. */ 

9.     foreach ܦ ∈ ௜ܺ do 

݉ݑݏ݇         .10 ൌ ݉ݑݏ݇ ൅ ቀ݀ܭ െ ݀
݄ൗ ቁ 

11.     end 

12.     return ቀ݇݉ݑݏ | ௜ܺ| ൈ ݄ൗ ቁ 

13. end 
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Algorithm 5.3. Implementation of KDE.  ܺఙ and |ܺ| denote the standard deviation 

and cardinality with respect to the target variable ܺ. The bandwidth is chosen based on 

the optimal bandwidth. 

 

Figure 5.11 is composed of the screenshots for various bandwidth studies taken in 

our system. It shows the comparison of smoothing using multiple bandwidths where one 

can observe the strong variance from the left-most variable which has the smallest 

bandwidth setting. 

 

 

Figure 5.11. Gaussian kernel with various bandwidths.  The bandwidth settings are 

0.01, 0.1, 0.5 and Gaussian ݄ெூௌா from left to right. 

5.2.4 Variable Overview of Big Dataset 

This section is added due to the growing attention on big datasets in information 

visualization. Visualizing a multidimensional dataset is challenging, visualizing a big 

dataset is much more challenging. In 1996, the internet was starting to thrive when 

Shneiderman [56] proposed the Visual Information Seeking mantra. The overview first 
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guideline as part of the mantra profoundly influenced the visualization design. Nowadays, 

data are produced exponentially so it is not uncommon to deal with a dataset with more 

than 100 variables. Researchers who deal with big datasets which simply follow the 

classic overview first will soon fail to align with user experience.  

To illustrate the complexity, we have visualized the National Youth Tobacco 

Survey 2009 (NYTS) dataset in classic parallel coordinates. The dataset surveyed high 

school youths about their attitudes, beliefs, behaviors and influences in relation to the 

tobacco. It contains 116 dimensions (including metadata) and 22,679 data rows with 

approximately 2,630,764 data points. Unfortunately, the result was frustrated which 

presents no useful pattern other than visual clutter as shown in Figure 5.12. 

 

 

Figure 5.12. Visualization of NYTS 2009 dataset in parallel coordinates. The 

dataset contains 116 dimensions and 22,679 data rows with approximately 2,630,764 

data points. Please refer to Table 4.4 for the dataset source. 

 

The consequences are the cluttered view with struggling system performance that 

could merely achieve less than 1 FPS approximately. Please note that, we have not yet 

found a case study of a similar scale through a courtesy scan of relevant literatures. 

However, we noted a technique called Circle Segments [90] which provided an overview 

of 50 dimensions with 265,000 data items as shown in Figure 5.13, but it was not designed 

for an interactive visualization. The scale of the dataset applied in Figure 5.13 is still far 

less than the one applied in Figure 5.12. 

 



108 

 

 

 

Figure 5.13. Circle segments visualization. The image is sourced from [90]. 

5.2.4.1 Divide-and-Conquer Model 

In this section, we will discuss the divide-and-conquer model for dealing with big datasets 

in visual analytics. The idea is not new and a similar model in distributed data engineering 

is called MapReduce which aggregates a massive amount of distributed data into a smaller 

set for analysis. They are conceptually similar in such a way that they attempt to tackle a 

problem by breaking down complexities. The basic idea behind the approach of divide-

and-conquer is based on several prior works which will be described below.  

Liu et al. [55] presented a study about the mental model, visual reasoning and 

interaction in visualization. The key point learnt with the relevant phrases is quoted 

below: 

 

When asked about the relative location of San Diego with respect to Reno, people 

incorrectly responded that San Diego was west of Reno. ……… People do not remember 

the locations of cities. Instead they remember the relative locations of the states and infer 

the locations of the cities from the state superset. 
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Liu reminds us that people are not concerned with detailed aspects of data when 

information space is large and instead, they tend to learn from its superset. Inspired by 

Liu’s study, the overview first is further amended as the variable overview first by the use 

of a correlation matrix as the information superset. 

In 2005, van Wijk [8] gave a simple model of visualization in his work titled “The 

value of visualization”. In 2008, Keim et al. [9] proposed a sense-making loop based on 

it. For interactive visual analytics of big datasets, we further develop a divide-and-

conquer model based on our framework discussed in Chapter 3 (based on Yi’s [14] 

framework), a simple model of visualization [8], a sense-making loop [9] and also the 

study contributed by Liu [55]. 

The model is illustrated in Figure 5.14 which is similar to the simple model of 

visualization as shown in Figure 1.2 and sense-making loop conceptually with the main 

difference being, a divide-and-conquer approach. Variables are “divided“ by their 

correlations with color coding for guiding the user to “conquer” them. Dealing with 

hundreds or even thousands of variables, user is often challenged by the question of “how 

to start dealing with it”. Therefore, the correlation matrix is designed to shield the user 

from information overload while providing a sufficient visual hint for the user to start 

with an interactive visual analytics. 

 

 

Figure 5.14. An interactive divide-and-conquer model.  The model is designed for 

the interactive visual analytics of big datasets. 
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5.2.4.2 Overview by Correlation Matrix 

The multivariate correlation matrix view is designed to gain the variable insight. It is an 

auxiliary view and not an integral part of parallel coordinates. The view provides an inter-

correlation between variables so the user can interactively add an interested variable to 

parallel coordinates progressively since it is impractical to place a large quantity of 

variables simultaneously. 

There many ways to measure the correlation and one of the most commonly used 

methods is Pearson’s [91] product moment correlation written as: 

,ሺܺݎ݋ܿ ܻሻ ൌ
∑ ሺ ௜ܺ െ തܺሻே
௜ ሺܻ െ തܻሻ

ට∑ ሺ ௜ܺ െ തܺሻଶே
௜ ට∑ ሺܻ െ തܻሻଶே

௜

 

Equation 5.13 

The output of ܿݎ݋ሺܺ, ܻሻ is in the range between ሾെ1,1ሿ where a positive value 

means a positive correlation and vice versa. The multivariate distance matrix can be 

constructed by passing a pairwise variables ௜ܺ and ௝ܺ to Equation 5.13 at element ሾ݅, ݆ሿ 

as: 

ேܦ ൌ ൭
ሺݎ݋ܿ ଵܺ, ଵܺሻ ⋯ ሺݎ݋ܿ ଵܺ, ܺேሻ

⋮ ⋱ ⋮
,ሺܺேݎ݋ܿ ଵܺሻ ⋯ ,ሺܺேݎ݋ܿ ܺேሻ

൱ 

From the properties of covariance, we know that the operation ܿݎ݋ሺܺ, ܻሻ ൌ

,ሺܻݎ݋ܿ ܺሻ்  is symmetric. For diagonal elements, ܿݎ݋ሺܺ, ܺሻ is equivalent to ܸܴܣሺܺሻ. 

Therefore, the computation of the covariance matrix can be reduced to the tri-diagonal 

matrix for efficiency. Given a set of variables ܺ ൌ ሼ ଵܺ, … , ܺேሽ, the correlation matrix can 

be obtained by passing ܺ to Algorithm 5.4 as below. 

 

1. procedure CorrelationMatrixሺܺ ൌ ሼ ଵܺ, … , ܺேሽሻ 

2. for each ௜ܺ ∈ ܺ 

3.     for each ܦ௜ ∈ ௜ܺ 

4.         /* We need to first normalize the values here. */ 

ప෡ܦ         .5 ൌ ൫݀௜ െ ௜ܺ൯ ௑೔ൗߪ  

6.     end if 
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7. end if 

8. for ݅ ≔ 0 to ݅ ൏ |ܺ| 

9.     for ݆ ≔ 0 to ݆ ൏ ݅ 

10.         if ݅ ് ݆ then 

ݎ             .11 ൌ ൫ݎ݋ܿ ௜ܺ, ௝ܺ൯ 

ݎ݋݈݋ܿ             .12 ൌ  ሻݎሺݎ݋݈݋ܥݐ݁ܩ

13.             /* Fill the cell for ݅௧௛ row and ݆௧௛ column. */ 

,ݎ݋݈݋ሺ݈݈ܿ݁ܥ݈݈݅ܨ             .14 ݅, ݆ሻ 

15.         end if 

16.     end if 

17. end if 

 

Algorithm 5.4. An implementation of the multivariate correlation matrix. 

The user interface is a grid layout. It divides the space into grid cells where each 

cell is color brushed to convey the linear dependency between pairwise variables. The 

color model applied for denoting the correlation is RGB ramping with hot-cold colors in 

a sequence of red, red-yellow, green, blue-green and blue where red and blue represent 

highly positive and highly negative respectively.  

An application of Algorithm 5.4 is provided in Figure 5.15 where the user can 

interactively add interested pairwise variables to the visualization by clicking on a cell. 

 

 

Figure 5.15. Multivariate correlation matrix view of a car dataset. 

The scale of the dataset used in Figure 5.15 is probably trivial and not 

representative. In order to demonstrate the effectiveness of the technique for guiding a 
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user to explore a big dataset, Figure 5.16 presents a multivariate correlation view of the 

NYTS 2009 dataset with more than 100 variables. There is no space to fit all the text 

labels but a dynamic label will show up if one hovers the mouse cursor over a cell. 

 

 

Figure 5.16. Correlation matrix view for the NYTS 2009 dataset. 

The novelty of this technique is that, it adds an additional step of the variable 

overview in the Visual Information Seeking mantra to shield a user from cognitive 

overload. There are some advantages offered by this design. 1) Features are sparse in the 

high dimensional dataset so it is not necessary to study all the dimensions. The color 

coding provides a visual hint of understanding the inter-correlation. 2) It allows the user 

to add or remove a pairwise variables arbitrarily in a divide-and-conquer approach. 

The performance is an important consideration in our implementation and the 

ability to parallelize the computation of correlation coefficient is a primary reason to use 

a matrix. It decouples the data dependency so elements can be updated concurrently. 

Figure 5.17 provides a performance measure based on Intel Core i7-3930 with 12 logical 

processors and 32 GB RAM. It took approximately 2 seconds to build a multivariate 

correlation matrix for 116 dimensions. 
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Figure 5.17. Performance of building the multivariate correlation matrix. 

Overview by Multidimensional Scaling (MDS) First of all, MDS is not implemented in 

our system but the primary purpose to describe it here is to document a potential 

application in the variable overview. MDS is probably well-known for its application in 

dimensionality reduction. It was first introduced by Torgerson7 [92] for mapping the 

distance of dimensional correlation and such capability inspires us to extend its 

application in guiding a user over the overview presentation of a large multidimensional 

dataset. The basic idea is similar to the multivariate correlation matrix view discussed in 

the previous section. For a complete introduction of class MDS procedures, one should 

refer to [93]. Let ܺ ൌ ሼ ଵܺ, ܺଶ, … , ܺேሽ be a multidimensional dataset which needs to be 

converted into a proximity matrix by the following distance measure as: 

൫ܦ ௜ܺ, ௝ܺ൯ ൌ ෍ ෍ ට൫݀௜ െ ௝݀൯
ଶ

ௗೕ∈௑ೕௗ೔∈௑೔

 

Equation 5.14 

Equation 5.14 is essentially a two dimensional Euclidean function. Alternatively, 

one can use the Pearson correlation in Equation 5.13 to construct the proximity matrix if 

                                                 

 

7 There are many variants of MDS but the method originally introduced by Torgerson is known as classic 

MDS. 
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the concept of distance is not applicable on the given dataset. The first step in classic 

MDS is to square the proximity matrix by: 

ܺଶ ൌ ൭
ሺܦ ଵܺ, ଵܺሻଶ ⋯ ሺܦ ଵܺ, ܺேሻଶ

⋮ ⋱ ⋮
,ሺܺேܦ ଵܺሻଶ ⋯ ,ሺܺேܦ ܺேሻଶ

൱ 

 Next, apply the double centering as: 

ܤ ൌ െ
1
2
 ܬଶܺܬ

Equation 5.15 

Where J is given as 

ܬ ൌ ܫ െ ܰିଵሾ1ሿ 

Where N is the cardinality of X. [1] and ܫ denotes the unit matrix of ones and the 

identity matrix respectively. They are trivially expressed as follows: 

ሾ1ሿ ൌ ൭
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

൱ , ܫ ൌ ൭
1 0 0
0 1 0
0 0 1

൱ 

The Singular Value Decomposition (SVD) is applied on B to obtain the first two 

largest positive eigenvalues ሼߣଵ, ଶܧ ଶሽ and corresponding eigenvectorsߣ ൌ ሼ݁ଵ, ݁ଶሽ. We 

are only interested in the first two largest eigenvalues because the final representation is 

a projection of the two dimensional scatterplot of N variables. To work out the two 

dimensional coordinate matrix ܯଶ, eigenvectors need to be multiplied with the diagonal 

matrix of eigenvalues. 

ଶܯ ൌ ଶܣଶܧ
ଵ ଶ⁄  

Where ܣଶ holds the diagonal matrix of two eigenvalues. ܧଶ is the union of two 

eigenvectors in matrix. The final procedure negates the sign of the coordinate matrix as 

െܯଶ. The MDS map is obtained by projecting ܯଶ in a scatterplot. Figure 5.18 provides 

an example of using MDS for variable overview.  
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Figure 5.18. Application of MDS map for variable overview. The image was 

produced in MATLAB. 

5.2.5 Discussion 

In summary, this section describes several techniques in the layer of dynamic viewing. 

Local and global drill-down were developed on the basis of the HVN that provide an 

effortless way of navigating data. We also introduced the use of KDE to study the 

probability density distribution. Even though, virtual nodes offer the information of data 

distribution but they do not give smoothing and estimation. Finally, a model and 

technique have been presented for interacting with big datasets. A case study that 

demonstrates the effectiveness of the divide-and-conquer model to tackle a big dataset 

will be presented in Section 7.3. 

5.3 Task by Dynamic Scoping 

Dynamic scoping (DS) interaction, that merges layers 2, 6 and 7: Explore, Filter and 

Connect of the interaction are defined in J. S. Yi’s model, allowing users to visualize a 

subset of the data through techniques such as filtering or dimensionality reduction. The 

technique of filtering is trivial so we will not discuss it here. 

5.3.1 Dimensionality Reduction by RST 

Dimensionality reduction is considered as an advanced task in visual analytics. A dataset 

is reduced to a smaller subset while being sufficient to describe a whole set of variables. 

To approach the dimensionality reduction, the technique adopted here is the Rough Set 
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Theory (RST) (see Section 2.3.3.2). It offers a distinct advantage over others because of 

the concepts of condition and decision. Users simply specify a dimension as a decision 

and rest become conditions so the dimensions are reduced in such a way that they fully 

respect to the user specified decision. 

 

Variable Precision Rough Set RST was initially designed to deal with a consistent 

dataset by its strict definition of approximation regions. It assumes the underlying dataset 

is consistent and possesses complete certainty in terms of classifying objects into correct 

approximation regions. For example, if ܾܽ → ܦ  then ܿ݀ → ܦ  is considered to be 

conflicting. This assumption of the error-free classification of the consistent dataset is 

unrealistic in relation to most real world datasets. Although, a dataset can be partitioned 

into consistent and inconsistent data space and operates RST on the consistent one, we 

considered this to be meaningless and impractical for use in this case. To deal with the 

inconsistent dataset, Ziarko [94] argued that partially incorrect classification should be 

taken into account and accordingly proposed the Variable Precision Rough Set (VPRS) 

model as an inconsistent dataset extension to RST. VPRS model allows for probability 

classification by introducing a precision value ߚ  to relax the strict classification in 

original RST. It introduces the concept of major inclusion to tolerate the inconsistent 

dataset and the definition of majority implies no more than 50% of classification error so 

the admissible range of ߚ is ሺ0.5, 1.0ሿ. The ߚ positive in the VPRS model is defined as: 

ܱܲܵܲ
ߚ
ሺܦሻ ൌ ራ 	ሼܺ݅ ∈ ሺܲሻሽܦܰܫ

Pr൫ܦܰܫሺܦሻ∗|ܺ݅൯൒ߚ

 

Where ܦܰܫሺܦሻ∗  and ܺ݅ denotes a set of the equivalent classes for ܦ and ܲ ⊆  ܥ

respectively. Clearly, a portion of objects with specified value ߚ  in the equivalence 

classes need to be classified into the decision class for it to be included in the ߚ positive 

region. Ziarko also formulated the definition for quality of classification that is used to 

extract the ߚ reducts and we will explain the definition of reduct in the next section. 

ሻܦ,ሺܲߚߛ ൌ
ቚ⋃ 	ሼܺ݅ ∈ ߚሻ∗|ܺ݅൯൒ܦሺܦܰܫሺܲሻሽPr൫ܦܰܫ ቚ

|ܷ| 	݁ݎ݄݁ݓ	 Prሺܲ|ܦሻ ൌ
|ܲ∩ܦ|
|ܲ|  

Where |	∗	| denotes the cardinality for the union of all the equivalence classes in the 

 with respect to ߚ positive region where classification is possible at specified the value ߚ

relation ܦܰܫሺܦሻ∗ and |ܷ| denotes the cardinality of the universe. Obviously, the quality 
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of classification provides the measure for the degree of attribute dependency in such a 

way that if ߚߛሺܲ,ܦሻ ൌ 1 means ܦ fully depends on ܲ at specified ߚ value. 

There are certain advantages of using RST over other methods such as PCA, 1) it 

minimizes the impact of information loss by removing the irrelevant or dispensable 

dimensions and 2) the resultant subset of attributes is more intuitive by preserving the 

quality of classification. Typically we may find several subsets of attributes that satisfy 

the criteria called reduct sets denoted as ܴ ൌ ሼܲ: ܲ ⊆  ሽ. The minimal cardinality in theܥ

reduct sets called the minimal reduct denotes as ܴ݉݅݊ where ܴ݉݅݊ ∈  is the minimum ܥ

subset of the condition attributes that cannot be reduced anymore while preserving the 

quality of classification with respect to the decision attribute. In the VPRS model, the 

reduct is called ߚ-reduct denoted as ܴߚܦܧሺܦ,ܥሻ and according to Ziarko a subset ܲ ⊆  ܥ

is a reduct of ܥ with respect to ܦ if the following two criteria are satisfied: 

൯ܦ,ܥ൫ߚߛ .1 ൌ ߚߛ ൬ܴߚܦܧ൫ܦ,ܥ൯,ܦ൰ and, 

2. No attributes can be eliminated from ܴߚܦܧ൫ܦ,ܥ൯  without affecting the 

requirement (1). 

The requirement (2) can also be mathematically expressed as ܱܲܵܲെሼܽሽ
ߚ

ሺܦሻ ്

ܱܲܵܲ
ߚ
ሺܦሻ, ܽ ∈ ܲ. Obviously, Ziarko has defined a strict satisfaction of the ߚ reduct in 

relation to the requirement (1) that some attributes can only be removed if the 

qualification of classification ߚߛ for subset ܲ ⊆  for the whole set ߚߛ is the same against ܥ

of original attributes ܥ. 

The applications of the RST have been demonstrated in Figure 5.19 where the 

decision variables selected were cylinders and experience for car and wage datasets 

respectively. 
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Figure 5.19. Applications of RST. a) The car dataset has been reduced from 8 to 4 

variables. b) The wage dataset has been reduced from 11 to 6 variables. 
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5.3.2 Discussion 

This section introduced the use of RST for dimensionality reduction in the layer of 

dynamic scoping. Many methods of dimensionality reduction exist such as principal 

component analysis, self-organizing maps or MDS (See Section 5.2.4) but the distinct 

advantage of RTS over other methods are the concepts of decision and condition 

variables. Such concepts can minimize the perception of information loss which is often 

used to criticize the result if it is not intuitive e.g. a variable that is expected to be retained 

but has been excluded. To the best of our knowledge, we have produced the first 

application of RST in parallel coordinates [41] for dimensionality reduction. 
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Chapter 6 Technical Evaluations 

This chapter will present some technical evaluations of our HVN based parallel 

coordinates visualization against other publicly available visualization systems. 

6.1 Visual Clutter of Overview 

The versatile HVN allows us to adopt a different approach of overview presentation in 

parallel coordinates, as already discussed in Section 4.3.7. The central idea is that the 

organization of virtual nodes already provides the initial data insight of data distribution 

so that it is redundant to draw classic polylines which often create clutter in many cases. 

The challenge of evaluating the visual performance comes from the quantization of visual 

clutter since the term clutter is abstract. However, the study conducted by Rosenholtz 

[95] has suggested two approaches to measure it namely, subband entropy and feature 

congestion. Subband entropy measures how well the content in an image is organized by 

first decomposing an image into subbands of wavelength and sums up the entropies 

computed for each subband. Feature congestion measures the degree of the visual search 

based on the statistical saliency model. For example, how well an obverse can find a target 

amongst other graphics objects in an image. 

Our evaluation was conducted with 3 datasets and 3 implementations of parallel 

coordinates and their details are described in the following table.  

 

 Name Comment 

Dataset Car, Wage and Wine See Table 4.4. 

Parallel coordinate 

visualization 1 

Classic PC This is our implementation of classic 

parallel coordinate. 

Parallel coordinate 

visualization 2 

HVN This is our implementation of parallel 

coordinate based on HVN. 

Parallel coordinate 

visualization 3 

GGobi A publicly available software. See 

[96]. 
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Measurement 1 Subband entropy MATLAB code was written by 

Rosenholtz [95]. 

Measurement 2 Feature congestion MATLAB code was written by 

Rosenholtz [95]. 

 

Table 6.1. The setup of evaluating visual clutter. The MATLAB source code was 

obtained from http://dspace.mit.edu/handle/1721.1/37593. 

 

The steps executed in the evaluation are outlined below. 

 Produce the images of dataset overview in PNG format for 3 datasets in 

each parallel coordinate visualization. 

 Execute getClutter_SE function in MATLAB and record the output value. 

 Execute getClutter_FC function in MATLAB and record the output value. 

Where getClutter_SE and getClutter_FC are the MATLAB functions for subband 

entropy and feature congestion respectively. Figure 6.1 and Figure 6.2 show the results 

of the visual clutter measurements. 

 

 

Figure 6.1. Subband entropy measure of visual cutter. 
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Figure 6.2. Feature congestion measure of visual clutter. 

According to Figure 6.1, the HVN has incurred less visual clutter. Interestingly, 

GGobi outperforms the HVN without the application of automatic brushing in the 

measurement of feature congestion but the algorithm considers the image as more 

cluttered with the brushing enabled. This probably suggests that the brushing is not 

suitable in the overview presentation. 

6.2 Data Selection 

One of the key innovations that the HVN has made in parallel coordinates is the 

materialization of the point selection hierarchically and therefore, it is paramount for us 

to compare its efficiency and accuracy with other techniques. The third-party 

visualizations that have been chosen in this evaluation are GGobi and Mondrian [60]. The 

data selection model coincidently incorporated in both is the 2D rectangle (see 4.2.1) with 

activation over points. That is, the drawing of the rectangular bound over polylines will 

not activate the data selection mechanism. In this section, we will conduct two common 

use cases of continuous and non-continuous selection in order to evaluate how well these 

visualizations support the basic interactivity with data. 
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6.2.1 Continuous Neighbour Selection 

The continuous neighbour selection is a rudimentary evaluation of the select operation. 

Basically, we try to evaluate the accuracy and the error rate when attempting to mark a 

continuous range of data as selected directly on the display. Interestingly, GGobi and 

Mondrian both adopt the 2D rectangle to include data over points which is an elementary 

technique of interaction since a polyline other end points does not occupy a bounding 

region from the perspective of a visualization system. Therefore, it is much easier to work 

out whether a point is enclosed by a rectangle rather than the expensive computation of a 

point-to-line intercept. 

In this evaluation, it was started first by loading the car dataset into GGobi, 

Mondrian and our HVN. The overview of GGobi and Mondrian is provided in Figure 6.3 

and Figure 6.4 respectively. In our experience, we found that the 2D rectangle is 

cumbersome in terms of aligning the mouse cursor and this is also evident in the figures. 

Specifically, it might lead to much trial and error because the misalignment of few pixels 

can lead to unwanted selection if the gap between the continuous data is too small. 

Accordingly, we decided to carry out the selection on the variable cylinders for simplicity 

because the gaps are apart. 

 

 

Figure 6.3. 2D rectangular data selection in GGobi. 
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Figure 6.4. 2D rectangular data selection in Mondrian. 

The result is recorded in Table 6.2 where all the visualizations were able to achieve 

100% accuracy without error. 

 

 Selection Count Unwanted Data Selection Model Error Rate 

HVN 388/388 0 Point selection 0% 

GGobi 388/388 0 2D rectangle 0% 

Mondrian 388/388 0 2D rectangle 0% 

 

Table 6.2. Result of the evaluation of the continuous neighbor selection. 

6.2.2 Non-Continuous Selection 

In visual analytics, it is a common practice to explore data patterns between groups with 

diverse quintiles. For example, Group A with the value range 1~20 and Group B with the 

value range 65~90. Therefore, we would like to evaluate the facility catered by the 

visualizations to deal with such use cases. In our HVN, the operation was accomplished 

by clicking directly on the nodes as indicated in Figure 6.5. 
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Figure 6.5. Non-continuous data selection in the HVN.  

However, it is not straightforward to carry out the same task on GGobi and 

Mondrian because they only allow a single 2D rectangle so the workaround for us is to 

coerce the inclusion of undesired data in between. This creates a poor user experience but 

on the other hand, it highlights the practicality of the HVN as we have successfully used 

the HVN to achieve the operation that is otherwise impossible to achieve by the others. 

 

 

Figure 6.6. Coerce data selection in GGobi. 
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The evaluation result is provided in Table 6.3 where the HVN outperforms GGobi 

and Mondrain without the error rate penalized by the data coercion.   

 

 Selection Count Unwanted Data Model Error Rate 

HVN 302/302 0 Point selection 0% 

GGobi 388/302 86 2D rectangle 28.5% 

Mondrian 388/302 86 2D rectangle 28.5% 

 

Table 6.3. Result of the evaluation of the non-continuous selection 

To further study the technique of data selection materialized in other parallel 

coordinates visualizations, we discovered a website [97] that lists approximately 1897 

applications of D3.js8 [98] and 10 of them contain the keywords parallel coordinates. 

We further explored them and were surprised by the fact that the data selection is all 

designed to be similar to the interface which combines both the value range and 2D 

rectangle. That is, the 2D rectangle aligns strictly to the vertical axis but this essentially 

offers no functional difference to GGobi and Mondrian. Figure 6.7 illustrates one of the 

applications of parallel coordinates visualization in d3.js that we explored. 

In summary, we ascertained that the HVN is an innovative technique for data 

selection in parallel coordinates because it simplifies the cumbersome procedures of 

activating a data selection into a straightforward mouse click. The same operation that 

could be easily carried out in the HVN with a higher degree of accuracy is difficult in the 

others especially, under the circumstance of overplot. 

 

 

                                                 

 

8 D3.js is a popular JavaScript library that can be used to create a powerful visualization in a data-driven 

approach. 
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Figure 6.7. An application of parallel coordinates visualization in d3.js.  The 

image is sourced from http://bl.ocks.org/jasondavies/1341281. The website bl.ocks.org 

is run by Mike Bostock. 

6.3 Drill-Down 

This evaluation is concerned with the usability of the general drill-down facility provided 

by the visualization appraised. Drill-down provides a means for the dynamic navigation 

of data and a parallel coordinates visualization reveals that such a well-designed feature 

can greatly improve the user experience by allowing the user to quickly focus in or out 

on the area of interest. 

We first proceeded with GGobi but there is no way to materialize such an operation 

directly in the user interface. Thus, we needed to open a separate window and manually 

entered the values 39 and 46 as the user defined range for the variable mpg as highlighted 

in the top image of Figure 6.8. Unfortunately, the result confused us due to the distortion 

of the geometric primitives in Figure 6.8. Certainly, from our perspective, the resulting 

frustration created a poor user experience. 
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Figure 6.8. Evaluation of drill down feature in GGobi.  (Top) Manually enter the 

user-defined range via a separate window in GGobi. (Bottom) The view which reflects 

the user-defined range. 

 

The next visualization examined is Mondrian where the holistic tasks of interaction 

can be accessed by a menu which is activated through the classic approach of the right 

mouse-click on the user interface. The first related feature explored is called the data 

alignment but the result is really convoluted as there is misalignment with all the rendered 

geometric primitives so they are not intuitive for the purpose of interpretation. A 

screenshot of such an operation is illustrated in Figure 6.9. 
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Figure 6.9. Convoluted result of data alignment in Mondrian. 

In Mondrian, the function that most aligns to our expectations is probably called the 

Scale Common as shown in the topmost menu item in Figure 6.9. It seems to scale the 

view by setting a uniform range for all the variables at the global maximum and minimum. 

This is not very useful when dealing with a multidimensional dataset due to the 

discrepancies of the variable measurement. 

 

 

Figure 6.10. Evaluation of the drill down feature in Mondrian. 
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In our evaluations of GGobi and Mondrian, the dissatisfaction mainly came from 

the misalignment of the expectation for the interactivity provided by the visualizations as 

well as the result rendered. On the other hand, interactivity is also one of main problems 

that we try to address in parallel coordinates. The last visualization evaluated is our 

developed parallel coordinates with the tight integration of the HVN. For a local drill-

down, we simply mouse right selection the node as indicated in the top image of Figure 

6.11 and select the operation of local drill-down. The bottom image in Figure 6.11 reflects 

the rendered result immediately. Our drill-down functions facilitated by the HVN provide 

the best form of interactivity that would otherwise have been impossible to achieve in 

both GGobi and Mondrain. 

 

 

Figure 6.11. Evaluation of the local drill down feature in our HVN. 
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Table 6.4 lists the summary of the drill-down (or similar) feature evaluated in 

GGobi, Mondrian and our HVN where our approach incurs the lowest interaction cost. 

Obviously, we only need a simple mouse click to achieve the task rather than the input of 

several values via the widgets. 

 

 Local Drill 

Down 

Global Drill 

Down 

Model Interaction Cost 

HVN X X Point selection Low 

GGobi X  Widget input Median 

Mondrian  X Widget input Median 

 

Table 6.4. A summary of the drill down function evaluated in GGobi, Mondrian 

and our HVN. 
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Chapter 7 Case Studies 

This chapter will present three case studies to demonstrate the effectiveness of the 

techniques described earlier. Case studies 1 and 2 are concerned with the local and global 

drill-down respectively. Case study 3 presents the use of the divide-and-conquer model 

(See Section 5.2.4) for tackling the visual analytics of a big dataset with more than 100 

variables.  

7.1 Case Study 1 

The dataset used in this case study is Portuguese "Vinho Verde" wine data [99] which 

contains approximately 58776 observations (12 ൈ 4898) on 12 variables namely, fixed 

acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total 

sulfur dioxide, density, pH, sulphates, alcohol and quality. Nowadays, dealing with a 

dataset of such scale is not considered to be large but one can see the overview is already 

heavily cluttered in Figure 7.1. Interestingly, the nature of the data is not distributed 

uniformly and hence it is easy to identify a pattern for the first 8 variables as their values 

are mostly aggregated to the lower range. 

In this case study, wine quality is the most interested variable which serves as a 

decision variable with respect to others. Owing to this, we performed a local drill-down 

by clicking on the data node with the highest value for quality variable as indicated by an 

arrow in Figure 7.1. 
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Figure 7.1. Local drill-down scenario 1. 

The resultant view after a local drill-down from step 1 is presented in Figure 7.2 

below. The selection set only includes those data with value 9 for quality (rightmost 

variable) value 9. One may question why the overall viewing context did not change, as 

we mentioned earlier the maximal and minimal range will be set to the same value when 

a data node is selected (see Algorithm 5.2) because the data node sits in the bottom of the 

hierarchy so it is a scalar value. That is, if one carefully looks at the maximum and 

minimum value labels for the rightmost variable in Figure 7.2 then it is evident that the 

value is 9 for both. 

According to the result, there is a pattern for wines of the highest quality within the 

dataset. We could also visually identify an outlier sample in alcohol as indicated by a blue 

arrow because its value differs from the rest but its quality seems to be not affected due 

to such a difference. At this stage, we could conclude that the attributes fixed acidity, 

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur 

dioxide and density shall be lower values in order to produce the highest quality wines. 

Next, pH has attracted our attention so we decided to drill down on it locally again starting 

from the visual node indicated by a red arrow in Figure 7.2. 
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Figure 7.2. Local drill-down scenario 2. 

Figure 7.3 shows the result after two consecutive local drill-down operations. One 

can see that the data points for pH have changed but overall the view remains fixed except 

for its adjacent variables. The numerical span of pH is between 2.72 ~ 3.82 and data with 

highest quality fall within the range of 3.2 ~ 3.41. One can also easily perceive 3 groups 

in pH through the visual inspection. 

 

 

Figure 7.3. Local drill-down scenario 3. 
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In order to segregate data patterns, we applied brushing on a virtual node as 

indicated by an arrow in Figure 7.4. The result suggests that total sulfur dioxide tends to 

be lower with a relatively higher pH value amongst the highest quality wines. 

 

 

Figure 7.4. Local drill-down scenario 4. 

Finally, we performed a highlighting on a polyline by hovering the mouse cursor 

over the data node with label pops on as shown in Figure 7.5. We concluded that wines 

of higher quality tended to have relatively higher alcohol but if it had lower alcohol and 

pH then the fixed acidity value needed to be higher to compensate. 

 

 

Figure 7.5. Local drill-down scenario 5. 
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This case study demonstrated the use of the local drill-down to arbitrarily explore 

the data subset interactively. In other parallel coordinates visualizations, a similar task 

required the user to define a numerical range which involved quantization so it was not 

trivial, especially as it did not contain visual hints such as data density or groups. In our 

parallel coordinates system, the embedded visual nodes in the display allowed for direct 

interaction with visual hints that would otherwise have needed multiple views or separate 

widgets to achieve similar functions. 

7.2 Case Study 2 

The dataset [100] used in this case study was collected in a Current Population Survey 

(CPS) 1985. It contains 534 random observations on 11 variables describing an 

individual’s education, southern residence, sex, work experience, union membership, 

wage level, age, race, occupation, work sector and marital status.  

Figure 7.6 presents a dataset overview and one can easily recognize the 

visualization brings out a mixture of continuous and discrete variables. Our visual 

analytics was first started by intuitively clicking on the virtual node (virtual data with the 

value 47) on experience with an operation of the global drill-down as indicated by a red 

arrow. 

 

 

Figure 7.6. Global drill-down scenario 1. 
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The result presents a neat visualization as shown in Figure 7.7. According to the 

dataset summary, union members were paid 23% higher than non-union members and 

also, northern residents were paid 11% more than southern residents. With this in mind, 

one particular pattern attracted our interest where it could be observe that union member 

tended to have less wages than those without union membership. It is important to note 

that this statement holds true only for the selected data subset. Unfortunately, the polyline 

does not adequately support the visual trace of an entire path due to the nature of its 

geometric discontinuity at the segment junctions. There are two ways to uncover patterns 

under this circumstance such as brushing or highlighting. Brushing is probably not 

desirable for the loaded dataset where discrete variables outweigh continuous variables 

in quantity thus, we decided to execute a highlighting operation by hovering the mouse 

cursor over the virtual node, as indicated by a red arrow in Figure 7.7. 

 

 

Figure 7.7. Global drill-down scenario 2. 

Figure 7.8 shows the visualization of the highlighting task conducted where there 

were two patterns which partially overlapped near the tail. It describes observations with 

northern residents and non-union members with higher experience but a lesser wage. This 

is interesting because northern residents were paid 11% more than southern residents 

however, this phenomenon can be explained if we look at their education. 
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Figure 7.8. Global drill-down scenario 3. 

Next, we decided to highlight observations with southern residents and the result is 

shown in Figure 7.9. It describes a pattern with a less experienced non-union member 

with a higher age and relatively higher pay albeit the residency is based on the southern 

area. We also noted that the residents in Figure 7.8 and Figure 7.9 were working in the 

same industry sector. We were able to conclude that within the selected data subset, 

education was the main driving factor for wage rather than sex, residency or work 

experience. 

 

 

Figure 7.9. Global drill-down scenario 4. 
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Through these case studies, we have demonstrated the capabilities of the local and 

global drill-down to rapidly discover patterns in visual analytics by the assistance of the 

tasks defined in the dynamic selection layer (see Section 5.1). 

7.3 Case Study 3 

In this case study, we would like to demonstrate the exploration of a big dataset using the 

technique of multivariate correlation matrix described above. We have again used the 

National Youth Tobacco Survey 2009 (NYTS) dataset which surveyed high school 

youths about their attitudes, beliefs, behaviors and influences in terms of the tobacco. It 

contains 116 dimensions (including metadata) and 22679 data rows with approximately 

2630764 data points. A visualization of the NYTS dataset in classic parallel coordinates 

has already been presented in Figure 5.16. The dataset with such a scale is considered 

extremely high dimensional and theoretically impossible for meaningful visualization due 

to the overplotting of the display space. Furthermore, following a thorough survey of the 

relevant literature, to the best of our knowledge there appear to be no case studies which 

used datasets of such a scale in visual analytics. 

A correlation matrix is shown when the dataset has been loaded initially into the 

system. In Figure 7.10, one can see that there is not enough space to draw the text label 

but a tooltip will pop up if the user moves the mouse over a colored box which details the 

name of the dimensions and their coefficient of correlation. We first selected Qn33, Qn34, 

Qn35 and Qn37 by clicking the color boxes because they are highly correlated as hinted 

by the red color. The corresponding survey questions are also listed below: 

 

Qn33: In the past 12 months, did you have to go to a stop smoking class because 

you were caught smoking? 

Qn34: Do you think you would be able to quit smoking cigarettes now if you wanted 

to? 

Qn35: How long can you go without smoking before you feel like you need a 

cigarette? 
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Qn37: How true is this statement for you? When I go without a smoke for a few 

hours, I experience craving. 

 

 

Figure 7.10. Initial view of the multivariate correlation matrix.  It consists of two 

views where the top view is the parallel coordinates and the bottom view presents the 

correlation matrix. 

 

We began the visual exploration by clicking three virtual nodes beloningg to Qn35 

and each had been assigned a different color. From Figure 7.11, we found a pattern that 

people smoked regardless of whether they attended the stop smoking class or not and 

believed they could quit smoking easily if they wanted to. Also, people needing a cigarette 

within a 3 to 24 hour timeframe tended to agree on Qn37. Interestingly, people either 

answered they have quit smoking or never smoked in Qn35 even if they experienced 

cravings for a smoke after a few hours. This suggests that there are some false statements 

answered in Qn35 of the survey which further presents an area for the improvement of 

our system to support outlier detection visually. 
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Figure 7.11. Case study step 1.  The visualization result after adding Qn33, Qn34, 

Qn35 and Qn37 from the matrix view where the arrows indicate the mouse click over 

the virtual nodes. 

 

In the next step, we clicked on a rectangle with strong correlation which added Qn58 

and Qn60 to the parallel coordinates as shown in Figure 7.12 with the survey questions 

provided below: 

 

Qn58: Do you think you will smoke a cigarette at any time during the next year? 

Qn60: If one of your best friends offered you a cigarette, would you smoke it? 

 

Interesting, we could visually identify a minor pattern for those who answered “I 

have never smoked cigarettes” in Qn37 and also responded that they would probably 

smoke at any time during the next year (Qn58) and would definitely accept a cigarette 

offered by one of their best friends (Qn60). It implies the risk of becoming a first-time 

smoker largely results from the influence of best friends. Perhaps the behavior of the 

friends explains the result of most first-time trials in real world cases. Unfortunately, there 

is no question which specifically asks about the influences leading to their decision to 

smoke in the first place such as friends, family, movies, TV etc. otherwise, we could 

derive more phenomenon in terms of the interests between the various sources. 
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Figure 7.12. Case study step 2.  The visualization result after adding Qn58 and Qn60 

from the matrix view. 

 

Next, we decided to add Qn48 and Qn49 to parallel coordinates from the matrix 

view with the questions provided below: 

 

Qn48: During the past 30 days, on how many days did you smoke bidis? 

Qn49: During the past 30 days, on how many days did you smoke kreteks?  

 

Figure 7.13 has shown the visualization result of the operation where an arrow 

indicates a pattern where those people truly experiencing a craving for a smoke after a 

few hours tend to use bidis in all the past 30 days. Our interpretation is that bidi is 

probably attractive for truly nicotine addicted youth rather than those less addicted. 

Peculiarly, there was a pattern which showed that adolescents who believed that they 

would definitely not smoke a cigarette at any time during the next year also answered 

either 5 (10 ~ 19 days), 6 (20 ~ 29 days) or 7 (All 30 days) in Qn49 which means they are 

the frequent smokers of kretek. It is difficult for us to interpret this phenomenon because 

we have never ever tried both. However, a possible explanation is that the frequent 

smokers of kretek did not really intend to quit smoking. Perhaps, they really meant that 

they would not smoke a normal cigarette once they had tried kretek. 
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Figure 7.13. Case study step 3.  The visualization result after adding Qn48 and Qn49 

from the matrix view where an arrow indicates an interesting pattern. 

 

The process can continue iteratively by adding or removing more dimensions for 

the dynamic view change of parallel coordinates. The purpose of this case study is to 

demonstrate that our framework is capable of interacting and analyzing a big dataset with 

high dimensionality through the guidance of the correlation matrix view. However, we 

do not mean to analyze them all simultaneously because human recognition cannot digest 

them all at once. 
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Chapter 8 Extended Works 

In this chapter, we will introduce two extended works in relation to the interaction in 

multidimensional visualization. 

8.1 Flow based Scatterplot Matrix 

A variant of the scatterplot matrix is introduced in this section. The scatterplot is a 

fundamental visualization of the scatterplot matrix but it cannot explain the correlation 

beyond two variables. To further enhance the usability of a scatterplot matrix, we have 

contributed a flow based scatterplot matrix [101] for multidimensional data exploration 

by augmenting a scatter point to approximate its relationship with respect to a third virtual 

variable ܼ଴. Please note that, we acknowledge a similar work already contributed by Chan 

et al. [102]9 that was discovered prior to us, but we have further extended the idea to the 

application of the scatterplot matrix. 

A scatter point is positioned by its data value ൫ܺ଴, ଴ܻ,൯ with a line attached to it. The 

slope indicates the positive or negative correlation with respect to ሺܺ଴, ܼ଴ሻ or	൫ ଴ܻ,ܼ଴൯. In 

global linear approximation, there is one slope so all the points reveal the same trend. 

Chan [102] computed the local neighborhood of radius ݓ  to smooth the local trend 

around a given point. In our case, we compute the local trend from the members in the 

class of a given point. To approximate the decision trend, the least squares in the linear 

regression model [103] are applied to best fit the line of a given point ሺܺ଴, ଴ܻሻ with respect 

to a third variable. In the linear regression model, there are two coefficients ܾଵ and ܾ଴ 

                                                 

 

9 We acknowledge that the idea of the flow based scatterplot was first discussed by Chan et al. [16] prior 

to us for studying the sensitivity, but we further extend it to the application of the scatterplot matrix and 

add user interaction for class exploration. 
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which need to be solved first, where ܾଵ is the slope that measures the change in ܻ with 

respect to ܺ and ܾ଴ is the intercept. They are defined as follow: 

ܾଵ ൌ
ܰ∑ ሺ ௜ܺ െ ܺ଴ሻሺ ௜ܻ െ ଴ܻሻ െ ∑ ሺ ௜ܺ െ ܺ଴ሻ

ே
௜ ∑ ሺ ௜ܻ െ ଴ܻሻ

ே
௜

ே
௜

ܰ ∑ ሺ ௜ܺ െ ܺ଴ሻே
௜

ଶ
െ ሺ∑ ሺ ௜ܺ െ ܺ଴ሻே

௜ ሻଶ
 

Equation 8.1 

ܾ଴ ൌ
∑ ሺ ௜ܻ െ ܺ଴ሻ െ ܾଵ ∑ ሺ ௜ܺ െ ܺ଴ሻ

ே
௜

ே
௜

ܰ
 

Equation 8.2 

Where ݔ௜ ∈ ሺܲሻ and ܺ଴ܧ ∈ ሺܲሻ. Substituting ܾ଴and ܾଵܧ  into the linear equation 

below to interpolate the best fitting line at a point ሺܺ଴, ଴ܻሻ. 

௜ܻሺܺ଴ േ ݇ሻ ൌ ଴ܻ ൅ ܾଵሺܺ଴ േ ݇ሻ ൅ ܾ଴ 

Equation 8.3 

Where ݇ is a desired length and please note that, we add the value of  ଴ܻ because ௜ܻ 

is a local linear approximation from a given point ሺܺ଴, ଴ܻሻ. 

8.1.1 Interaction by Point-to-Region 

There are many cases where scatter points are partitioned into a number of classes. Given 

a set of points P which is further classified into the disjoint set of classes ܲ ൌ

ሼܥଵ, ,ଶܥ … , ௜ܥ ௡ሽ such thatܥ ∩ ௝ܥ ൌ ∅, ݅ ് ݆. The point-to-region technique highlights the 

entire geometric region occupied upon the immediate selection of any data within the 

class.  

Technically, the core problem of point-to-region is to build a convex hull [104] of 

ሬሬሬሬሬԦܤܣ ሬሬሬሬሬԦ, the sign of the cross product ofܥܣ ሬሬሬሬሬԦ andܤܣ ௜. Given two vectorsܥ ൈ  ሬሬሬሬሬԦ determinesܥܣ

the direction of the triangle ܥܤܣሬሬሬሬሬሬሬሬԦ based on the right-hand-side rule. If the cross product of 

ሬሬሬሬሬԦܤܣ ൈ  ሬሬሬሬሬԦ is positive it means the triangle is clockwise. For example, in Figure 8.1 if weܥܣ

attempt to find the convex hull from the clockwise direction then the negative cross 

product implies that ܥܣሬሬሬሬሬԦ is outmost with respect to ܤܣሬሬሬሬሬԦ otherwise, we need to swap the 

order of B and C which constructs a triangle. This process continues until we reach the 
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origin ܣ. Figure 8.1 depicts the concept of using the cross product to find the convex hull 

on a 2D plane.  

 

 

Figure 8.1 An example of the cross product.  The diagram shows the application of 

using the cross product to find the convex hull of the data points. The direction of Z is 

important which determines the triangle is constructed either clockwise or 

counterclockwise. 

 

The technique offers the ability of focus+context for analyzing multiple classes over 

the highlighted regions. An application of point-to-region has been provided in Figure 

8.2. Obviously, the preliminary requirement of class data is certainly a weakness that 

limits its application to non-classified data points. However, its applicability can be 

extended by embedding the automatic data analysis of the clustering. The basic idea is to 

perform the K-means or hierarchical clustering on demand over the selected point in order 

to completely eliminate the preliminary requirement of data classification. 
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Figure 8.2 An example of point-to-region interaction. The diagram shows 

integrating point-to-region interaction with the flow based scatterplot matrix. 

 

Figure 8.3 (a) and Figure 8.3 (b) provide a visual comparison between the classic 

and flow based scatterplot representations. Figure 8.3 (c) shows our point-to-region 

interaction technique. In the interaction design, we allow users to use the focus+context 

concept to interact with scatter points directly. This interaction method can achieve noise 

reduction in class selection process. For example, when visualization detects a point that 

has been clicked, the entire convex hull of a corresponding class is highlighted and it 

greys out the background of the convex hull in the meantime. 

 

 

Figure 8.3 From scatterplot to flow based scatterplot.  (a) A classic scatter plots 

visualization. (b) Adding the decision flow where plots are augmented with respect to 

the decision variable. (c) Interaction (mouse click) by using point-to-region concept: 

that is, a point click causes an entire convex hull (a class) highlighted. 
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An application of flow based scatterplot matrix is shown in Figure 8.4 where the 

upper matrix remains the traditional scatterplot and the lower matrix embeds the flow 

based scatterplot. 

 

 

Figure 8.4 A visualization of the flow based scatterplot matrix.  The car dataset is 

used in this example where the upper and lower triangular matrix display the classic 

scatterplot and flow based scatterplot respectively. 

8.2 Space Filling Multidimensional Visualization 

Space Filling Multidimensional Visualization (SFMDVis) is a novel technique of 

multidimensional visualization that is primarily designed to avoid overplot and visual 

clutter. According to the categories defined by Keim and Kerigel [17], it is classified as 

a pixel oriented technique. For a similar prior work, a pixel bar chart visualization 

developed by Keim [105] will be a good example. 
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8.2.1 Properties and Definitions 

Multidimensional dataset consists of a set of variables ܺ ൌ ሼ ଵܺ, ܺଶ, ܺଷ, … , ܺேሽ, ∃! ௜ܺ ∈ ܺ 

with ܯ observations. For simplicity, we typically organized the dataset in the form of an 

ܯ ൈܰ matrix as follows: 

X ൌ ቌ
ଵܺ,ଵ ⋯ ଵܺ,ே

⋮ ⋱ ⋮
ܺெ,ଵ ⋯ ܺெ,ே

ቍ 

The column vector in the matrix is expressed as ܦ ൌ ሼ݀ଵ, ݀ଶ, ݀ଷ, … , ݀ேሽ. ௜ܲ is used 

to denote an observation such that ௜ܲ ൌ ൛݀௑భ, ݀௑మ, … , ݀௑ಿൟ and ௜ܲ ∈ ܲ. ܲ and ܦ describes 

the fundamental row and column vectors that we will be working with. Please note that, 

the notation of ݀௑೔  will also be used individually for element indexing in ௜ܲ  for 

convenience. In addition, we expect the drawing surface to be rectangular. ߱  and ݄ 

denote the width and height respectively in pixels where ሾ߱ ൈ ݄ሿ defines the drawing 

bound. Given a set of variables ܺ, we further divide the ߱ into the equal length as 

߱௑ ൌ
߱

ሺܰ െ 1ሻ
 

Where ߱௑ simply defines the width that we allocate to each variable in a horizontal 

line for color mapping and ߱௑ഢ߱௑ണതതതതതതതതത refers to the line segment. Please refer to Figure 8.5 

for clarity. 

 

 

Figure 8.5. The properties of SFMDVis. 
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8.2.2 SFMDVis 

The basic idea behind the space filling visualization is the representation of a data row ௜ܲ 

by a horizontal line which serves as a fundamental geometric primitive. The line is further 

segmented by the colors to denote the values with respect to each variable ௜ܺ. The width 

of ௜ܲ equals to ߱ and the height occupies a unit size in pixels on the screen multiplied by 

the zooming factor ߛ. For example, if the unit size is one pixel and ߛ ൌ 2, then each line 

will occupy 2 pixels in height. 

In a multidimensional dataset ܺ, variables might scale differently. Therefore, we 

need to apply a normalize function in order to remove the discrepancy such that ݂ ∶ ܲ →

෠ܲ. 

෠ܲ ൌ ෍ ෍
൫ܦ௑೔ െ ܺ௠௜௡൯
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ஽೉೔ఢ௉೔௉೔ఢ௉

∶ ௑೔ܦ ∈ ௜ܺ 

Equation 8.4 

Where ෠ܲ௜ ൌ ൛ܦ௑భ෢ ௑మ෢ܦ, ,… , ௑෢ಿܦ ൟ holds the normalized values with respect to each 

variable ௜ܺ within the range ሾ0,1ሿ஽ and ܺ௠௜௡ and ܺ௠௔௫ denote the minimal and maximal 

values of a target variable such that ሾܺ௠௜௡, ܺ௠௔௫ሿ. 

Recall that ෠ܲ௜ will be mapped to a line that further consists of a set of segments 

൛	߱௑భ߱௑మതതതതതതതതതത, ߱௑మ߱௑యതതതതതതതതതത, … , ߱௑ಿషభ߱௑ಿതതതതതതതതതതതതതൟ  and each segment is coded by two colors. This is 

because each segment holds two end points and each point represents a variable ௜ܺ. Let 

ܥ denotes the color vectors and ܥ ⇒ ሼܴ, ,ܩ  We can map a normalized .ܥ ሽ be a class inܤ

data ܦ௑ഢ෢  to the nearest ܥ௜ and it is given as: 

௜ܥ ൌ ቨ
௑ഢ෢ܦ

1.0
ൗ|ܥ|

ቩ ⟼  ܥ

Equation 8.5 

Where ۂ∗ہ denotes a floor function. Recall that, the maximal normalized value is 1 

so we divide it by the number of colors to work out the normalized cut point. We then 

divide the normalized data by the cut point to index a color. Therefore, the color order is 

important since the color progression is often perceived as a value magnitude with respect 
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to a variable. Similarly, we can work out the cut point range that ܥ௜ holds in data value 

(non normalized) with respect to ௜ܺ by the following equation: 

݇ ൌ
ሺܺ௠௔௫ െ ܺ௠௜௡ሻ

|ܥ|
, ൣܺ௠௜௡ ൅ ሺ݅ ൈ ݇ሻ, ܺ௠௜௡ ൅ ൫ሺ݅ ൅ 1ሻ ൈ ݇൯൧ 

Equation 8.6 

Where ݅ and ݇ refer to the bin index and cut point respectively. Recall that, we have 

mentioned earlier that each end point of a segment represents a variable so it is further 

divided by 2 as 	߱௑భ߱௑మതതതതതതതതതത 2⁄  for painting the value of each variable. Thus, given the tuple 

〈߱௑ഢ߱௑ണതതതതതതതതത, ,௜ܥ  ௝〉, there are two DrawLine calls required to paint the sub-segments withܥ

length ቂ߱௑೔, ప߱߱௑ണതതതതതതതത 2⁄ ቃ and ቂ ప߱߱௑ണതതതതതതതത 2⁄ , ௝߱ቃ for ܥ௜ and ܥ௝ respectively.  

The core algorithm of SFMDVis has been completely described in Algorithm 8.1 

where we pass two arguments P and X that hold the row and column vectors respectively.  

 

1. procedure ܴ݈݈݁݊݀݁݃݊݅݅ܨ݁ܿܽ݌ܵݎሺܲ, ܺሻ 

݈݁ݔ݅ܲݎݑܿ     .2 ← 0 

3.     /* Draw the vertical coordinates. */ 

4.     for ݅ ∶ൌ  do |ܺ|	݋ݐ	0

൫ሺ݅݁݊݅ܮݓܽݎܦ         .5 ൈ ߱௑ሻ, 0, ሺ݅ ൈ ߱௑ሻ, ݄,  ൯ݕܽݎܩ

6.     end 

7.     /* Iterate through each data row. */ 

8.     for ௜ܲ ∈ ܲ do 

9.         పܲ෡ ൌ ሺ݁ݖ݈݅ܽ݉ݎ݋݊ ௜ܲሻ 

10.         if ݀݁ݐ݈ܿ݁݁ܵݓ݋ܴܽݐܽܦݏܫ൫ పܲ෡൯ then 

11.             /* Draw the line segment. */ 

12.             for ݆ ∶ൌ ݋ݐ	0 |ܺ| െ 1 do 

௝ܥ                 .13 ← ݎ݋݈݋ܥ݌ܽ݉ ቀܦ௑ണ෢ ቁ 

௝ାଵܥ                 .14 ← ݎ݋݈݋ܥ݌ܽ݉ ቀܦ௑ണశభ෣ቁ 

15.                 ݉݅݀ ← ቀ߱௑ೕ ൅ ߱௑ೕశభቁ 2⁄  

16.                 /* Apply the zooming factor. */ 
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17.                 for ݇ ∶ൌ 0 ݋ݐ ݇ ൏  do ߛ

18.                     ݈ ← ሺ݈ܿ݁ݔ݅ܲݎݑ ൅ ݇ሻ 

݁݊݅ܮݓܽݎܦ                     .19 ቀ߱௑ೕ, ݈, ݉݅݀, ݈,  ௝ቁܥ

݁݊݅ܮݓܽݎܦ                     .20 ቀ݉݅݀, ݈, ߱௑ೕశభ, ݈,  ௝ାଵቁܥ

21.                 end 

22.             end 

23.         end 

݈݁ݔ݅ܲݎݑܿ         .24 ← ݈݁ݔ݅ܲݎݑܿ ൅  ߛ

25.     end 

26. end procedure 

 

Algorithm 8.1. The core algorithm of SFMDVis. 

Figure 8.6 illustrates a visualization of SFMDVis where one can see that there is no 

visual clutter and overplotting in SFMDVis because data items do not overlapped to each 

other. There two problems are commonly seen in parallel coordinates due to its spatial 

arrangement of data items. Also, every data item is directly selectable that makes 

SFMDVis really distinctive from others.  

Overall, the interactive techniques developed within SFMDVis have influenced our 

framework significantly. For example, the zooming technique developed in SFMDVis 

has been extended to interactive drill-down (Section 5.2.1 and 5.2.2) in parallel 

coordinates. 
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Figure 8.6. A visualization of SFMDVis.  (1) Text labels that describe the variable 

names. (2) Color legend. (3) and (4) denote the maximal and minimal value range. (5) 

Dynamic values and these refer to the data row pointed to by the mouse cursor. 

8.2.3 Color Models 

This section describes two supported color schemes in SFMDVis namely, the RGB and 

single-hue. 

8.2.3.1 RGB Color Ramping 

In the RGB color ramping scheme, red, green and blue are commonly chosen to express 

the higher, middle and lower magnitude of a value. This is probably because people 

naturally tend to associate red and blue with hot and cold respectively. In RGB ramping, 

the number of color bins are determined by a ramping factor denoted as ݎ which also 

controls the variation of the colors when progressing in between blue ሺ0,0,1ሻ to red 

ሺ1,0,0ሻ. Figure 8.7 has demonstrated a color legend of RGB ramping with ݎ ൌ 6. 
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Figure 8.7. An illustration of using RGB color remapping to denote the value 

magnitude. The red, blue and green denote the highest, lowest and middle value 

magnitude. 

 

The higher ramping factor separates colors in smaller step changes that may 

possibly affect the ability of the human eye to interpret the magnitude of the value if the 

change is really subtle. For example, if ݎ is too small then the number of color bins might 

be insufficient to represent the data distribution. On the other hand, the usability will 

decline rapidly when ݎ increases because the human eye might not be able to discern the 

subtle change in adjacent colors. When determining the proper ramping factor, we have 

noticed a study contributed by Healey [106] for choosing the effective colors in data 

visualization. According to the study, the result has suggested the human visual system 

can quickly identify up to 5 classes of color in parallel but the response time of target 

identification has increased during 7 and 9 color studies. Based on this observation, the 

ramping factor is set to 6 by default in our visualization for RGB color ramping. 

The algorithm implemented in our visualization is based on the implementation 

described by Bourke [107]. Although, we have modified the original work slightly but in 

general, the principal is the same so it will not be reproduced here. 

8.2.3.2 Single-Hue Ramping 

With multiple classes of color in RGB ramping, the user may need to reference the color 

legend frequently if they cannot translate the spectrum to the magnitude that it implies 

intuitively. For this reason, the single-hue is added as an alternative ramping scheme that 

aims to support users who are not comfortable with the RGB style colors. Please note that 

we offer the interaction possibilities for the user to switch between the color schemes by 

right-clicking the mouse over the color legend which will then display the color scheme 

options in a menu widget. 

Single-hue is commonly applied in the choropleth map for mapping the magnitude 

of the data (often aggregated) with respect to a geographic location. In single-hue 

ramping, the appearance of the color is progressed from dark to a light shade of the same 

color but with different levels of saturation and lightness, and therefore, the method is 

named single-hue. The basic idea of single-hue is illustrated in Figure 8.8 by Hue, 
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Saturation and Lightness (HSL) where the hue value ranges from ሾ0,255ሿ and, saturation 

and lightness are both measured in percentage between ሾ0,100ሿ%. 

 

 

Figure 8.8. An example of single-hue progression in the purple color. The 

corresponding HSL values are (270, 100%, 25%), (266, 57%, 36%), (243, 31%, 61%), 

(245, 29%, 69%), expressed from left to right. 

 

Our color selection is based on ColorBrewer [108] which is an excellent online tool 

that provides prebuilt-in colors for sequential, diverging and qualitative schemes. In the 

visualization, we provide the single-hue color options of blue, green, orange, purple and 

grey scale for user preference. Figure 8.9 has shown the visualization results of using the 

blue and green single-hue. 

 

 

Figure 8.9. Single-hue color ramping in blue and green colors. 
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8.2.4 Interaction Techniques in SFMDVis 

In this section, we will introduce the interactive techniques supported in SFMDVis. 

8.2.4.1 Zooming 

In SFMDVis, the zooming enlarges a pixel size for scaling a pattern. Sometimes it can be 

difficult to notice a weak pattern through the visual inspection since an entire pattern 

might occupy just few pixels in height. To address this issue, we have incorporated a 

zooming technique which can be activated by pressing the Ctrl-key and scrolling the 

mouse wheel in the meantime to control the zooming factor ߛ. The zooming factor is in 

the range of ሾ1, 10ሿ. Technically, ߛ can be infinitely large ሾ1,∞ሿ but we believe that a 

maximal value of 10 is enough in most cases. For example, if the unit size is one pixel 

with	ߛ ൌ 10 then each line will occupy 10 pixels in height which shall be large enough 

to perceive a pattern. Figure 8.10 compares two visualizations with the zooming factor 

set to 1 and 10. The color pattern for every single line can be observable easily when 

zooming factor has set to 10 where each line is 10 times larger than its default size and 

that is the maximal value supported. 
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Figure 8.10. Zooming in SFMDVis. (Left) The overview of the car dataset with ߛ ൌ 1 

which is the default and that means, there is no scaling at all. (Right) The car dataset 

with zooming factor ߛ ൌ 10. 

8.2.4.2 AND and OR Operator for Data Selection 

In SFMDVis, the technique to interact with data is a point-to-color region. The main 

consideration that we do not filter data based on an absolute value is to maintain visual 

consistency and expectation. For example, when a mouse clicks on a point with a color 

 ௜ for a variable ௜ܺ, the user intuitively expects that for these lines ௜ܲ with color brushingܥ
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஽೉೔ܥ ്  ௜ to be filtered out. Recall that, we deal with data in classes rather than absoluteܥ

value so if we strictly filter data based on their values rather than their classes then the 

visual consistency cannot be maintained. When a mouse click within a drawing region 

ሾ߱ ൈ ݄ሿ is detected, we pass the ݔ-coordinate to the following equation to determine the 

matrix column index ݊ ↦ ܺ such that 0 ൑ ݊ ൏ |ܺ|. 

݂ሺݔሻ ൌ ൝ ௜ܺ ,										෍ ߱௑೔ ൑ ݔ ൑ ߱௑ഢ, ߱௑ഢశభതതതതതതതതതതതത 2⁄
௑೔∈௑

		

		݁ݏ݅ݓݎ݄݁ݐ݋																																												,݈݈ݑ݊
 

Equation 8.7 

Where ሺ݅ ൅ 1ሻ ൏ |ܺ| to ensure that we access an element within the vector bound. 

For finding the matrix row index ݉ ↦ ܺ such that  0 ൑ ݉ ൏ |ܲ|, we need to divide the 

 :that is written as ߛ coordinate by the zooming factor-ݕ

݂ሺݕሻ ൌ ݕ
ൗߛ ൅

݄௢௙௙௦௘௧
ൗߛ  

Equation 8.8 

Where ݄௢௙௙௦௘௧ denotes the view offset in screen coordinate to the original due to 

the scrolling effect. These information are persisted by a tuple 〈݉, ݊〉. In SFMDVis, the 

user is able to select data with the AND and OR operator in order to control the visibility 

of the interested data for comparison with greater flexibility. Figure 8.11 illustrates the 

operation of data selection using the AND and OR operator. 
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Figure 8.11. Interactive AND and OR data selection in SFMDVis.  (Left) Data 

selection with AND operator. (Right) Data selection with OR operator. The cursor 

indicates the mouse clicks. The AND operator is useful in filtering out the data while 

OR operator can be used to find the data pattern between groups rapidly. 

8.3 Discussion 

In this chapter, we have first introduced a flow-based scatterplot matrix with a point-to-

region technique for interacting with a class of data. In addition, we have further 

introduced a novel multidimensional visualization called SFMDVis which does not use 

traditional coordinated system as well as classic geometric primitive to represent 

multidimensional data. Those two works are served as the extended contributions to the 

interactive mechanism in multidimensional visualization in addition to the virtual node. 
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Chapter 9 Conclusion 

9.1 Summary 

In summary, this dissertation presented models and techniques for interactive visual 

analytics in multidimensional visualization particularly in parallel coordinates. Overall, 

the materialized contributions are summarized as below. 

Chapter 3 introduced a new framework of visual interactions by refining Yi’s 7-

layer models. Existing frameworks tend to classify interactive tasks in a fine-grained 

manner based on the nature of the operations or the user’s intent. We argue that this is not 

necessary and the interactions can be narrowed down to inputs and output if one models 

visualization as a function. Therefore, we propose a 3-layer framework based on Yi’s 

model. The new model broadly classifies interactive visual analytics into 3 categories as 

data selection, visual techniques for view change, and data analytics techniques for 

reasoning. Formally, the layers in the new model are dynamic selection, dynamic viewing 

and dynamic scoping of data. The advantage of this new model makes it easy to 

understand and allows for better interpretation of the layered structure of visual 

interactions. 

In Chapter 4, a novel and sophisticated technique of data selection has been 

contributed, called the hierarchical virtual node (HVN). The chapter also provides 

comprehensive technical and implantation details. The basic idea is to interpolate visual 

nodes in parallel coordinate hierarchically for data selection. To the best of our 

knowledge, it is the first technique that enables users to interact directly with data in 

parallel coordinates using a point-selection (mouse click) method. There are many 

advantages of HVN. For example, point selection is always more intuitive, efficient and 

accurate than other methods. Also, it enables a multi-level of data interaction through the 

hierarchical grouping of the data. Another advantage that was not realized before the 

implementation is that it enables users to perceive the data distribution through the 

distribution of the virtual nodes and such information is often lost due to overplot in 

parallel coordinates. 
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Chapter 5 presented the HVN-oriented interactive tasks for visual analytics based 

on our model introduced in Chapter 3. These tasks were carried out in the system 

developed. 

9.2 Final Conclusion 

In conclusion, we have taken the research challenges and satisfied the goals defined. The 

proposed HVN which is the core technique of interaction has solved the issue to interact 

with multidimensional data directly in parallel coordinates. It opens the applications of 

many analytic tasks introduced earlier but is not limited to these. Moreover, they can be 

easily carried out by a point-selection technique which is the most intuitive model for 

human interaction and this would have otherwise been impossible to achieve by other 

techniques. 

In future work, the concept of the virtual nodes will be extended to other 

visualizations where applicable. The theoretical development of virtual interpolation will 

also continue. For example, the interpolation of the virtual node is based on the basis of 

hierarchical clustering but it is also possible to interpolate nodes based on the density for 

interaction though, this needs further study to prove its feasibility. 
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Appendix A Publications 
 

 T. H. Huang, M. L. Huang, Q. V. Nguyen, L. Zhao, Space-Filling 

Multidimensional Visualization (SFMDVis) for Exploratory Data Analysis, In 

Proc. of the 7th Inter. Sym. On Visual Information Communication and 

Interaction, pp. 19-28, 2014. 

 

 T. H. Huang, M. L. Huang, K. Zhang: An Interactive Scatter Plot Metrics 

Visualization for Decision Trend Analysis. ICMLA (2), pp. 258-264, 2012. 

 

 T. H. Huang, M. L. Huang, Jesse S. Jin: Parallel Rough Set: Dimensionality 

Reduction and Feature Discovery of Multi-Dimensional Data in Visualization. 

ICONIP (2), pp. 99-108, 2011. 

 

 M. L. Huang, T. H. Huang, J. Zhang: TreemapBar: Visualizing Additional 

Dimensions of Data in Bar Chart. IEEE Intel. Conf. on Information Visualization, 

pp. 98-103, 2009. 

 

 T. H. Huang, M. L. Huang: Visualization of Individual's Knowledge by Analyzing 

the Citation Networks. CGIV 2007, pp. 465-470, 2007. 

 

 T. H. Huang, M. L. Huang: Analysis and Visualization of Co-authorship 

Networks for Understanding Academic Collaboration and Knowledge Domain of 

Individual Researchers. CGIV 2006, pp. 18-23, 2006. 
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