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Abstract

Gas-mediated electron beam induced etching is a direct-write nanolithography technique.
In this thesis, through experimental observation and numerical simulation, descriptions of
reaction kinetics of electron beam induced etching were refined to include effects of resid-
ual contaminants, substrate material properties, and temperature dependence. Reaction
kinetics of electron beam induced etching are of interest because they affect resolution,
throughput, proximity effects, and topography of nanostructures and nanostructured de-

vices fabricated by electron beam induced etching.

A number of mechanisms proposed in the literature for electron beam induced removal
of carbon were shown to be insignificant. These include atomic displacements caused
by knock-on by low energy electrons, electron beam heating, sputtering by ionised gas
molecules, and chemical etching driven by a number of gases that include N,. The be-
haviour ascribed to these mechanisms was instead explained by chemical etching caused
by electron beam induced dissociation of residual contaminants such as H,O present in

the vacuum systems that are typically used for EBIE.

Reaction mechanisms in single crystal and ultra nano-crystalline diamond were shown to
be dependent on substrate material properties. Single crystal diamond etch morphology
is attributed to anisotropic etching along crystal planes, which varies with precursor com-
position. In contrast to single crystal diamond, etching of ultra nano-crystalline diamond
was shown to proceed via an electron activated pathway. A refined electron beam induced
etching model incorporating the role of electron induced damage in ultra nano-crystalline
diamond yields higher order reaction kinetics, predicting a new reaction regime limited by

the concentration of chemically active surface sites.

A temperature dependent, cryogenic electron beam induced etching technique was im-
plemented to increase the residence time of adsorbates on the surface. This technique
efficiently increases the rate of electron beam induced etching, demonstrated using nitro-
gen trifluoride as the etch precursor for silicon. Cryogenic cooling broadens the range of

precursors that can be used for electron beam induced etching, and enables high-resolution,
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deterministic etching of materials that are volatilised spontaneously by conventional etch

precursors.

Determining the reaction kinetics of electron beam induced etching enables new applica-
tions in nanoscale material modification. Methods for the fabrication of optically active,
functional diamond structures from single crystal diamond and rapid Stardust particle ex-
traction were demonstrated. Electron beam induced etching is ideal for these applications,

where high-resolution, damage-free etching is required.
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